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A B S T R A C T   

Driver fatigue detection systems have potential to improve road safety by preventing crashes and saving lives. 
Conventional driver monitoring systems based on driving performance and facial features may be challenged by 
the application of automated driving systems. This limitation could potentially be overcome by monitoring 
systems based on physiological measurements. Heart rate variability (HRV) is a physiological marker of interest 
for detecting driver fatigue that can be measured during real life driving. This systematic review investigates the 
relationship between HRV measures and driver fatigue, as well as the performance of HRV based fatigue 
detection systems. With the applied eligibility criteria, 18 articles were identified in this review. Inconsistent 
results can be found within the studies that investigated differences of HRV measures between alert and fatigued 
drivers. For studies that developed HRV based fatigue detection systems, the detection performance showed a 
large variation, where the detection accuracy ranged from 44% to 100%. The inconsistency and variation of the 
results can be caused by differences in several key aspects in the study designs. Progress in this field is needed to 
determine the relationship between HRV and different fatigue causal factors and its connection to driver per-
formance. To be deployed, HRV-based fatigue detection systems need to be thoroughly tested in real life con-
ditions with good coverage of relevant driving scenarios and a sufficient number of participants.   

1. Introduction 

Driver fatigue is a major concern for road safety, and it accounts for 
10–30 % of all fatal crashes (Hallvig et al., 2014; Philip and Åkerstedt, 
2006; Zwahlen et al., 2016). Therefore, driver fatigue detection systems 
could potentially reduce fatigue related road fatalities and severe in-
juries. In the European Union, driver monitoring systems will become 
mandatory for new produced vehicles (European Parliament and 
Council, 2019) and it will become part of Euro NCAP safety assessment 
(Euro NCAP, 2017). 

Fatigue is a complex phenomenon caused by multiple factors, and 
there is no consensus in the literature on the definition of fatigue and its 
relationship to sleepiness (Weinbeer et al., 2018). These terms have 
often been used synonymously in the literature. In this review, we will 
not develop the definition of fatigue or sleepiness and distinguish be-
tween them. Instead, we will break them down into common causation 
factors for fatigue in road driving (Fig. 1), and both terms will be used 
with the intention to follow the original literature cited in the review. It 
has been suggested that driver fatigue has both sleep related and task 

related causes (May and Baldwin, 2009). As shown in Fig. 1, sleep 
related fatigue is influenced by the circadian rhythm of sleepiness as 
well as the sleep homeostat, which depends on sleep duration and time 
awake since the last sleep episode. Task related fatigue is influenced by 
the driving itself and depends on time on task and the mental task load. 
Both underload and overload can contribute to fatigue, and the influ-
ence on driver performance and countermeasures may vary accordingly 
(Williamson et al., 2011). It is worth noting that studies focusing on 
driver sleepiness can include not only sleep related factors but also task 
related factors, and sleepiness measures such as subjective sleepiness 
rating could be influenced by task related factors as well (Åkerstedt 
et al., 2014). 

Current fatigue detection systems are typically based on assessments 
of either driving performance such as speed and steering, facial features 
such as head pose, eye closure, and eye gaze, or physiological mea-
surements such as electroencephalography (EEG), electrocardiography 
(ECG) and electromyography (EMG). Most of the current commercially 
available systems are based on driving performance and facial features 
detected by cameras (Chowdhury et al., 2018). However, those methods 
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will be challenged by the increasing application of vehicle automation 
systems. SAE international defines 6 levels of driving automation from 
Level 0 (no automation) to Level 5 (full automation) (SAE, 2016). Many 
currently produced cars are equipped with Level 1 and 2 automation 
systems. In this case, speed and steering could be controlled by the 
vehicle through lane keeping and adaptive cruise control functions, and 
that information can then no longer be used as a measure of the driver’s 
performance (Gonçalves and Bengler, 2015). Prototypes of Level 3 and 4 
vehicles are on trial in demonstration sites, in which case the driver will 
no longer be responsible for monitoring the environment when auto-
mation is active. When reaching Level 3 and above in the future, facial 
features including eye gaze, eyelid closure and head positioning may not 
be available as indicators of driver fatigue (Wörle et al., 2019). At the 
same time, fatigue could become more frequent under automated 
driving if the driver does not have active task engagement (Ahlström 
et al., 2021; Körber et al., 2015; Schömig et al., 2015; Vogelpohl et al., 
2019). Physiological measurements of fatigue could become a potential 
solution to this challenge. 

A recent review investigated the performance of driver sleepiness 
detection methods using physiological signals (Watling et al., 2021). 
They concluded that progress is needed to reach sufficient specificity 
and sensitivity and that using multiple physiological signals resulted in 
improved assessment. However, many physiological sensors are not 
favorable for daily usage due to the obtrusive measurement setups that 
require attachment of gel electrodes and wiring (Lohani et al., 2019). 
Heart rate variability (HRV) has drawn particular interest due to its 
relationship with fatigue and ease of measure in real life (Lohani et al., 
2019). HRV is the fluctuation of time between adjacent heart beats. The 
variation of heart rate (HR) is generated by heart-brain interaction 
through the sympathetic and parasympathetic branches of the auto-
nomic nervous system. HRV reflects the response of cardiac autonomic 
nerves to inputs from baro-, chemo-, nasopharyngeal and other re-
ceptors, as well as central autonomic commands that are associated with 
stress, physical activity, arousal, sleep, etc. (Silvani et al., 2016). Several 
sleep laboratory studies show that HRV can be a good indicator for 
vigilance state measured by reaction speed to visual stimulus under total 
sleep deprivation (Chua et al., 2012) and partial sleep deprivation 
(Henelius et al., 2014; Kaida et al., 2007). HRV has also been shown to 
be associated with cognitive task demand and time on task effects (Hi-
dalgo-Muñoz et al., 2018; Luque-Casado et al., 2016). With the devel-
opment of unobtrusive sensing techniques, HR and HRV could be 
measured through wearable sensors (Sikander and Anwar, 2019; Zheng 
et al., 2014) or vehicle integrated sensors (Leonhardt et al., 2018; Pinto 
et al., 2017) in daily driving scenarios. Several studies have approached 
the relationship between driver fatigue and HRV parameters by building 
fatigue classifiers based on HRV features (Abtahi et al., 2018; Buendia 

et al., 2019; Fujiwara et al., 2019; Kundinger et al., 2020a; Lenis et al., 
2016; Li and Chung, 2013; Mahachandra et al., 2012; Patel et al., 2011; 
Persson et al., 2021; Zeng et al., 2020). 

Although many studies have reported HRV as a driver fatigue indi-
cator, there is not yet a consensus on how HRV changes during the 
development of driver fatigue. Several reviews on driver monitoring 
systems have included solutions based on HR (Sahayadhas et al., 2012; 
Sikander and Anwar, 2019; Watling et al., 2021), but the relation be-
tween HRV and fatigue has not been summarized. This review aims to 
summarize and analyze the literature on 1) how HRV features change 
under fatigue, 2) Performance of HRV based fatigue detection systems, 
and 3) the potential for HRV to be used as an indicator of driver fatigue 
in real life settings. We conducted a systematic review of studies that 
have explored the relationships between HRV and driver fatigue and 
that have developed HRV based driver fatigue detection systems. 

2. Methods 

2.1. Search methods 

Three databases deemed most relevant for the research topic were 
searched in this systematic review, i.e., PubMed, Scopus, and Web of 
Science (Web of Science Core Collection). The search was conducted in 
July 2021 and there was no limit to the starting date. The terms used in 
the search were ‘(heart rate OR hr OR hrv) AND (sleep* OR drows* OR 
fatigue) AND driver’. The terms were searched for in the fields of title, 
abstract and keywords. Metadata (title, author list, journal, volume, 
etc.) of the articles from the search results together with the abstracts 
were downloaded and imported to Rayyan (Ouzzani et al., 2016) for 
screening and selection. 

2.2. Eligibility criteria 

We included only original research journal articles written in En-
glish. As we were aiming to investigate solely the relationship between 
HRV and driver fatigue, the included studies should report the relation 
between driver fatigue and HRV explicitly. Studies that mix HR or HRV 
together with other measurements were excluded from the review. 
Studies that were not conducted with car driving task, e.g., airplane, 
ship, train driving, as well as race car driving were also excluded. Since 
the focus was on mental fatigue, studies that targeted physical fatigue 
were also excluded. The selection process is shown in Fig. 2. In total, 977 
records were found in the three databases and 633 records remained 
after duplication removal, in which 384 journal articles in English were 
kept for screening. After reading through the title and abstract, 348 
articles were excluded, and 36 articles were left for full text assessment. 

Fig. 1. Common factors that lead to drivers’ mental fatigue.  
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Following full text investigation, 18 articles were removed, leaving 18 
articles for review. Among the 18 removed articles, six articles were 
removed due to mixing HRV with other measurements, four studies were 
not performed with car driving tasks, two did not include HR or HRV, 
two did not have a reference fatigue measure, two used HR or HRV 
directly as a valid fatigue indicator, one demonstrated the development 
of a HR based fatigue detection system without evaluation, and one 
studied how a HR based fatigue detection system correlated to driver 
behavior. The eligibility criteria were decided by all authors together. 
Search, screening, and final article selection were performed by the first 
author (K.L). 

2.3. Data extraction 

The information extracted from the selected publications included 

demographics, driving tasks, measurement methods, classification 
approach, and detection performance and results. For demographics 
information, number of participants and the age of the participants were 
extracted. For the driving task, we extracted the type of driving task 
(simulator or on-road), the duration of each driving session, how many 
driving sessions each participant performed, and any manipulation 
method to introduce fatigue. Regarding measurements, we extracted the 
method for the HR measurement and how the reference level of driver 
fatigue was measured. For studies that aimed to build classifiers the 
validation methods and detection performance was extracted. For 
studies that reported HRV under fatigued conditions compared to alert 
conditions, we extracted the HRV features that differed between con-
ditions and the direction of the changes. We focused on standard HRV 
features included in the Task Force guidelines for HRV measurements 
(Malik et al., 1996), which have been widely used in this field and in the 

Fig. 2. Flow chart of article identification, screening, and selection.  
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included studies. Included HRV features and their short descriptions can 
be found in Table 1, and more detailed definition information can be 
found in (Malik et al., 1996; Shaffer and Ginsberg, 2017). 

3. Results and discussion 

Details of the reviewed studies are listed in Table 2. A substantial 
variation in the study implementation and results can be found across all 
studies. In total, 11 of the reviewed studies demonstrated differences in 
HRV features between fatigued states and alert states (Table 2). In 
studies that examined the HR level (or mean NN interval), reduced HR 
was found when drivers were fatigued, with only one exception where 
no significant change was found (Egelund, 1982). However, when it 
comes to the other time and frequency domain HRV features, the 
changes are not consistent across all studies. There were 11 reviewed 
studies that had developed HRV based fatigue detection systems and the 
reported detection performance ranged from 44 % to 100 % percent in 
accuracy. The difference in outcomes could be the result of differences in 
several aspects of the study designs including experiment setups, fatigue 
definition, and validation methods. The differences in study design also 
makes it difficult to compare the results quantitatively across all studies. 
In the following discussion we will highlight several key elements in the 
study design and their potential influences on the outcomes. 

3.1. Study design 

3.1.1. Study population 
The sample sizes of reviewed studies ranged from 2 to 86. Half of the 

studies had relatively small study samples with less than 10 participants. 
There were six studies that included >30 participants in their experi-
ments (Buendia et al., 2019; Fujiwara et al., 2019; Kundinger et al., 
2020a, 2020b; Persson et al., 2021; Vicente et al., 2016). 

Age has been known as an influencing factor for the majority of 
linear and nonlinear HRV indices for both long term (Voss et al., 2009) 
and short term (Voss et al., 2012) measurements. Among the reviewed 
articles, five studies included participants with a wide age range 
(Buendia et al., 2019; Kundinger et al., 2020a, 2020b; Patel et al., 2011; 
Persson et al., 2021). In addition, one study approached the influence of 
age by separating participants into two age groups (Kundinger et al., 
2020b), the study suggests that a model developed with a specific age 
group is not well suited for another age group. 

Sex is another demographic factor potentially associated with HRV. 
Sex differences in HRV measures have been reported by many studies 
(Koenig and Thayer, 2016). Among the reviewed articles, (Zeng et al., 
2020) investigated sex differences for 13 HRV measures in both alert and 
fatigued states. In that study, more measures in the fatigued state 
showed significant differences between sexes than in the alert state, and 
male drivers had more measures with significant differences between 
fatigued and alert states than female drivers. 

3.1.2. Driving task 
About two thirds of the reviewed studies were performed in a 

simulator, and six studies used a real road driving task, (Buendia et al., 
2019; Egelund, 1982; Jung et al., 2014; Persson et al., 2021; Salvati 
et al., 2021; Wang et al., 2019). The study by (Vicente et al., 2016) used 
data from both simulator and on-road driving. Two reviewed studies had 
an automated driving task with simulated SAE Level 2 driving (Kun-
dinger et al., 2020a, 2020b), whereas remaining articles were performed 
with manual driving. 

3.1.2.1. Fatigue manipulation. The reviewed studies have taken 
different approaches to introduce fatigue to the subjects. Circadian 
rhythms and sleep homeostasis are two main contributors to sleep 
related fatigue (Franken and Dijk, 2009). Six studies manipulated fa-
tigue by letting the participants perform driving tasks at different times 
of the day (Buendia et al., 2019; Kundinger et al., 2020a, 2020b; Lee 
et al., 2019; Murugan et al., 2020; Persson et al., 2021). (Kundinger 
et al., 2020a; Vicente et al., 2016) introduced partial or complete sleep 
deprivation before the driving session. When it comes to task related 
fatigue, under-stimulated and prolonged driving is known to introduce 
higher risk of driver fatigue (Williamson et al., 2011). Several studies 
opted to use monotonous driving tasks to speed up the development of 
fatigue (Fujiwara et al., 2019; Kundinger et al., 2020a, 2020b; Lenis 
et al., 2016; Murugan et al., 2020). The duration of the driving task 
varied from 10 min up to several hours. For studies with continuous and 
prolonged driving tasks, the time-on-task also became an important 
factor for fatigue development. 

3.1.3. Measurements 

3.1.3.1. HR measurement method. Several types of HR measurement 
devices have been used in the studies included in the review. Conven-
tional ECG with gel electrodes was used by the majority (Buendia et al., 
2019; Egelund, 1982; Fujiwara et al., 2019; Lenis et al., 2016; Murugan 
et al., 2020; Patel et al., 2011; Persson et al., 2021; Vicente et al., 2016; 
Wang et al., 2019; Zeng et al., 2020). Wearable ECG-based HR chest 
straps is another solution that brings better usability than the ECG with 
gel electrodes, which was used by (Khamis et al., 2016) and (Lee et al., 
2019). (Jung et al., 2014) used integrated ECG electrodes on the steering 
wheel. Photoplethysmography (PPG) based solutions can be even easier 
to use since they can be integrated in wrist bands (Kundinger et al., 
2020a, 2020b; Lee et al., 2015) or the steering wheel (Rahim et al., 
2015). This advantage may enable pervasive usage in daily driving 
scenarios for HRV based monitoring. However, PPG based solutions are 
more sensitive to motion artifacts compared to ECG based devices. Two 
studies (Kundinger et al., 2020a; Lee et al., 2015) compared the wrist 
band PPG to ECG for fatigue detection and show that PPG-based HR can 
be used for this application but with reduced detection performance 
compared to ECG. Salvati et al. (2021) used a microphone sensor inte-
grated in the seat cover for HR detection. 

3.1.3.2. Reference fatigue measure. Different approaches were taken to 
measure the fatigue level as the ground truth. Some studies provided 
insufficient information about the definition of fatigued state used. This 
makes it difficult to interpret results and compare results across different 
studies. Observer rating was the most used method for reference fatigue 
(Kundinger et al., 2020a, 2020b; Lee et al., 2019; Lenis et al., 2016; 
Murugan et al., 2020; Rahim et al., 2015; Vicente et al., 2016; Zeng 
et al., 2020). However, low inter-rater agreement has been found for 
observer ratings of fatigue (Ahlstrom et al., 2015). Subjective ratings 
were also used for many studies. The Karolinska Sleepiness Scale (KSS) is 
a well validated scale for subject rating (Kaida et al., 2006), it was used 
by several studies (Buendia et al., 2019; Khamis et al., 2016; Kundinger 
et al., 2020b; Persson et al., 2021; Salvati et al., 2021). Some studies 
used self-defined scales, e.g., (Wang et al., 2019) used a 4-level scale that 

Table 1 
Summary of HRV features that are included in the review.  

Domain Label Feature 

Time HR Mean heart rate value 
SDNN Standard deviation of NN intervals 
RMSSD Root mean square of successive differences 
pNN50 Percentage of intervals that differ > 50 ms from previous 

interval 
Frequency VLF Very low frequency spectral power (0.0033–0.04 Hz) 

LF Low frequency spectral power (0.04–0.15 Hz) 
LFnu Normalized power in LF band 
HF High frequency spectral power (0.15–0.4 Hz) 
HFnu Normalized power in HF band 
LF/HF Ratio between LF and HF  
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Table 2 
Details of reviewed studies.  

Study Driving setting Participants Measurements HRV 
response 

Fatigue Detection System 

(Salvati et al., 
2021) 

- Real road 
- Motor way 46.2 km, twice per 
drive in afternoon, 14 sessions for 
all 

- 3, age > 30 - HR: capacitive microphone sensor, seat 
cover integrated 
- Fatigue: PERCLOS and Subjective rating 
(KSS), every 15 min  

- Window: 5 min 
- Type: Rule based classification 
- Performance: Acc: 63 % 

(Persson 
et al., 2021) 

- Real road 
- Manipulation: daytime 
● Set 1: motor way, 90 min*2 
(day, night) 
● Set 2: motor way, 135 min*2 
(day, night) 
● Set 3: rural road, 90 min*3 
(day, evening, night) 

● Set 1: 18 (M10, 
F8), mean age 41 
● Set 2: 24 (M12, 
F12), mean age 35 
● Set 2: 44 (M23; 
F21), mean age 44 

- HR: ECG 
- Fatigue: Subjective rating (KSS), every 5 
min 

HR – 
SDNN +
RMSSD +
pNN50 +
VLF n.s. 
LF +
LFnu +
HF n.s. 
HFnu – 
LF/HF +

- Window: 5 min 
- Type: Three class / binary 
classification 
Personal baseline: segments with 
KSS less than 5 
- Validation: 10-fold, LOSO 
- Performance: Acc: 44 %, Sen: 33 
%, Spe: 66 % (three-class, LOSO) 

(Murugan 
et al., 2020) 

- Simulator 
- Manipulation: daytime, 
secondary task 
- Monotonous speedway, 120 min  

- 10 (M9, F1), age: 
19–35 

- HR: ECG 
- Fatigue: Video based labeling (Criteria not 
specified), multiple class labeling by 
normal, drowsy, fatigue, visual inattention, 
cognitive inattention  

- Window: Not specified 
- Type: Five class / binary 
classification 
- Validation: Hold out 75 % 
training, 25 % testing 
- Performance: Acc: 58 % (five- 
class), Acc: 100 % (binary, normal- 
drowsy), Acc: 96 % (binary, 
normal-fatigue) 

(Kundinger 
et al., 
2020a) 

- Simulator 
- Partial automated driving (ACC, 
acceleration and break, no take 
over) 
- Manipulation: daytime 
- Monotonous closed-loop track, 
highway with little traffic, 45 
min*1 (morning/afternoon/ 
evening) 

- 15 young (M9, F6), 
mean age: 22.87 ±
1.81 
- 15 older (M7, F8), 
mean age 67.60 ±
1.88 

- HR: PPG wristband, ECG 
- Fatigue: Observer rating on video and 
micro-sleep by eye closure  

- Window: 5 min sliding with 2 s 
increment 
- Type: Binary classification 
- Validation: 10-fold, LOSO 
- Performance: Acc: 73 %, (LOSO, 
PPG) 
Acc: 79 %, (LOSO, ECG) 

(Kundinger 
et al., 
2020b) 

- Simulator 
● Set 1: Manipulation: sleep 
deprivation 
- Monotonous closed-loop track, 
60 min (sleep deprived and 30 
min (normal sleep) 
● Set 2: Manipulation: daytime 
- Monotonous closed-loop track, 
highway with little traffic, 45 
min*1 (morning/afternoon/ 
evening)  

● Set 1: 10 (M9, F1), 
mean age: 24 ± 2.05 
● Set 2: 15 young 
(M9, F6), mean age: 
22.87 ± 1.81 
-15 older (M7, F8), 
mean age 67.60 ±
1.88  

● Set 1: 
- HR: PPG, wristband 
- Fatigue: Observer rating on video and 
subjective rating (KSS every 10 min) 
● Set 2: 
- HR: PPG, wristband 
- Fatigue: Subjective rating (KSS), every 5 
min  

- Window: 2 min sliding with 2 s 
increment 
- Type: Binary classification 
- Validation: 10-fold 
- Performance: Acc: 99 % 

(Zeng et al., 
2020) 

- Simulator 
- Highway, 60 min, between 9:30 
to 17.30 

- 20 (11 M, F9), 
mean age 25.95 ±
2.67 

- HR: ECG 
- Fatigue: Video based facial expressions, 
three levels 

HR – 
SDNN+

RMSSD+
pNN50 +
VLF +
LF +
LFnu n.s. 
HF +
HFnu n.s.  

(Fujiwara 
et al., 2019) 

- Simulator 
- Monotonous highway loop, 90 
min*2 (11:00, resting and lunch 
in between) 

- 34 (M25, F9) mean 
age 22.7 (18–36) 

- HR: ECG 
- Fatigue: N1 onset, EEG-based sleep 
scoring  

- Window: 3 min 
- Type: Anormal detection 
- Personal baseline: 0.12–1.5 h 
awake episodes 
Performance: 12/13 pre-n1 
episodes were detected prior to 
sleep onsets, 1.7–times false 
positive per hour 

(Buendia 
et al., 2019) 

- Real road 
- Manipulation: daytime 
● Set 1: rural road, 90 min*3 
(day, evening, night) 
● Set 2: rural road 90 min*3 
(day, evening, night) 
● Set 3: motor way, 135 min*2 
(day, night) 

● Set 1: 21 (M11, 
F10), mean age 44.8 
± 7.8 
● Set 2: 22 (M22, 
F11), mean age 45 
± 8.2 
● Set 2: 38 (M19; 
F19), mean age 35 
± 9.6 

- HR: ECG 
- Fatigue: Subjective rating (KSS), every 5 
min 

HR – 
SDNN +
RMSSD +
LF +
LFnu +
HF +
HFnu n.s. 
LF/HF +

(Lee et al., 
2019) 

- Simulator 
- Manipulation: daytime 
- Euro Truck Simulator 2 

- 6, age: 25–35 - HR: ECG chest strap and PPG wristband 
- Fatigue: Video of face and behavior, 
criteria not specified  

- Window: 2 min 
- Type: Binary classification 
- Drowsy samples in the morning 

(continued on next page) 
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has not been evaluated and the cut off level for classification was not 
reported. Another approach was to define fatigue based on percentage of 
eyelid closure over the pupil over time (PERCLOS) (Li and Chung, 2013). 
PERCLOS has been used extensively as a measure of fatigue but the 
relationship with subjective sleepiness is not straightforward (Sommer 
and Golz, 2010). (Fujiwara et al., 2019) used EEG signals to find the N1 
sleep stage onset defined by alpha wave attenuation. One study did not 
use a reference measure for fatigue but used the driving distance or time- 

on-task as the reference (Egelund, 1982). 

3.1.4. Fatigue detection 

3.1.4.1. Time scale. Different temporal scales were used for analysis 
and for developing fatigue detection systems. Most studies targeted 
continuous analysis and detection, where data were segmented over the 
entire drive using moving or sliding window. The window length varied 

Table 2 (continued ) 

Study Driving setting Participants Measurements HRV 
response 

Fatigue Detection System 

- In total, 6 trails in morning and 
16 after dinner or lunch 

and awake samples after lunch or 
dinner are dropped 
- Validation: 10-fold 
- Performance: Acc: 70 % for ECG, 
Acc: 64 % for PPG 

(Wang et al., 
2019) 

- Real road 
- Freeway, 345 km, (between 
8:00–18:00) 

- 10, mean age 32.6 
(24–45) 

- HR: ECG 
- Fatigue: Subjective rating (alert/slight 
fatigue/serious fatigue/drowsiness), every 
15 min  

- Window: sample by sample 
- Type: Anormal detection 
- Personal baseline: Entire driving 
session 
- Performance: All cases 
recognized, with less than 5 min 
delay 

(Vicente 
et al., 2016) 

● Set1: Simulator 
- Highway, 120 min 
- Manipulation: sleep deprivation 
● Set2: Simulator 
- Highway, 100 min 
- Manipulation: sleep deprivation 
● Set3: Real Road 
- Highway or road during 8 h 
working day  

● Set1: 9 (M4, F5))  

● Set2: 11 (M5, F6)  

● Set3:10 (M8, F2) 

- HR: ECG 
- Fatigue: External observer (awake/ 
fatigued/ drowsy) for set 1 and 3, 
Sleep condition (not/partial/- sleep 
deprived) for set 1 and 2  

LF/HF – ● Drowsiness episodes (set 1 & 3): 
- Window: 1 min 
- Type: Binary classification 
- Personal baseline: segments in 
first 3 min 
- Validation: LOSO 
- Performance: Sen: 59 %, Spe: 98 
% 
● Sleep-deprivation (Set 1, 2, & 3): 
- Window: 3 min 
- Type: Binary classification 
- Performance: Sen: 62 %, Spe: 88 
%  

(Lenis et al., 
2016) 

- Simulator 
- Two-lane street, monotonous, 
40 min*7, between 1 am to 8 am 

- 14 young (age and 
gender are not 
specified) 

- HR: ECG 
- Fatigue: video observation for microsleep 
events 

HR – 
pNN50 +
RMSSD +
SDNN +

(Khamis et al., 
2016) 

- Simulator 
- Highway, 60 min *2 (with/ 
without vibration), during 9–10 
am 

- 3, age: 27–40 HR: ECG chest strap 
Fatigue: Subjective rating (KSS), before, 
during (after 30 min) and after driving, 
Driving performance (variation of lane 
deviation) 

HR –  

(Rahim et al., 
2015) 

- Simulator 
- 2 h 

- 2 (M1, F1) - HR: PPG on steering wheel 
- Fatigue: Video of driver’s behavior, 
criteria not specified 

LF/HF –  

(Jung et al., 
2014) 

- Real road 
- 2 h 

- 2 (M2, F0), age 
27–31 

- HR: ECG steering wheel integrated 
- Fatigue: driver’s behavior (normal, 
drowsy, fatigued) 

HR – 
SDNN – 
RMSSD – 
pNN50 – 
LF – 
HF – 
LF/HF +

(Li and 
Chung, 
2013) 

- Simulator, 
- 10 min*2(alert/drowsy) 

- 4 (M3, F1) - HR: PPG 
- Fatigue: PERCLOS (alert (0 %-30 %)/ 
drowsy (30 %-40 %)) 

LF/HF + - Window: 1 min 
- Type: Binary classification 
- Validation: LOO (sample) 
- Performance: Acc: 95 %, Spe: 95 
%, Sen: 95 % 

(Patel et al., 
2011) 

- Simulator 
- Manipulation: 2 h less sleep 
night before 

- 12, mean age 47 ±
11 

- HR: ECG 
- Fatigue: not specified 

LF/HF – - Type: Binary classification 
- Performance: Acc: 90 % 

(Egelund, 
1982) 

- Real road 
- Highway, 340 km, between 
1.30 pm and 5.30 pm 

- 9 (M5, F3), age 
19–22 

- HR: ECG 
- Fatigue: driving distance 

HR n.s. 
SDNN n.s. 
LF +
(0.05–0.15 
Hz)  

- Fields in HRV response and fatigue detection system left empty when it was not investigated by the study. 
- For descriptions of driving scenarios, original phrasing from the reviewed article is used. 
- For HRV response, ‘+’ and ‘-’ stands for higher and lower value under fatigue state comparing to alert state, respectively, ‘n.s.’ for no significant change. 
- M = male, F = female, HR = Heart rate, ECG = electrocardiogram. PPG = photoplethysmography, EEG = electroencephalography, PERCLOS = percentage of eyelid 
closure, Acc = accuracy, Sen = sensitivity, Spe = specificity, LOSO = leave one subject out, LOO = leave one out. 
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between 1 min and 5 min. Few studies used only one sample (a short 
driving session or a short window picked from the driving session) for 
each participant under each condition (fatigued/alert). 

3.1.4.2. Learning and validation. Most of the reviewed detection sys-
tems were built with supervised learning methods, where each sample 
(usually containing data measured within a certain time window) used 
for the model training was labeled with the fatigue condition. (Fujiwara 
et al., 2019) and (Wang et al., 2019) applied semi-supervised and un-
supervised learning with anomaly detection approaches instead. In these 
cases, the models were first built with the data under alert conditions or 
the entire dataset with the majority being alert conditions, and then the 
models were used to detect anomalies in data, which were identified as 
the fatigued conditions. 

Validation methods can have a significant impact on the perfor-
mance measure (Saeb et al., 2017). It should be taken into consideration 
that HRV measures have inter-individual differences in both resting 
level and response to different stimulations (Nunan et al., 2010; Ohyama 
et al., 2007). Data samples from the same driving session and partici-
pants are likely to be highly correlated. To evaluate real life performance 
for new users, the data from the same driving session and same partic-
ipant needs to be separated from the training and test set. Some 
reviewed studies have applied leave one subject out (LOSO) cross vali-
dation where such separation was achieved (Kundinger et al., 2020a; 
Persson et al., 2021; Vicente et al., 2016). Most of the remaining studies 
used 10-fold cross validation or hold out validation without arrange-
ment for participant separation in training and testing, which may bias 
the results and exaggerate detection performance in relation to future 
use in real life driving scenarios. 

To deal with the inter-individual differences, some reviewed studies 
have applied personalization methods. (Vicente et al., 2016) and 
(Persson et al., 2021) used personalized baselines to create a personal-
ized feature set that accounts for the basal level of personal HRV mea-
sures. For models developed using the anomaly detection approach 
(Fujiwara et al., 2019; Wang et al., 2019), each person has their own 
model based on data from themselves. 

3.2. HRV response for driver fatigue 

Not all reviewed studies reported how HRV variables were related to 
fatigue, i.e., the direction of change when going from alert to fatigued. In 
total, 11 studies reported the difference in HR or HRV between fatigued 
and alert states. Among all measures, the LF/HF and HR level (or mean 
NN interval) were most investigated (Table 2). Decreased HR (increased 
mean NN interval) in the fatigued state was reported by five out of six 
reviewed studies that investigated HR change, while the remaining 
study did not find a significant change. For other time and frequency 
domain HRV parameters, contradictory results can be found where both 
increased and decreased values have been reported (Table 2). Several 
reviewed studies (Li and Chung, 2013; Patel et al., 2011; Rahim et al., 
2015; Vicente et al., 2016) and other studies (Awais et al., 2014; Byeon 
et al., 2006) have considered LF/HF to be an important indicator of 
fatigue, as a reflection of the balance between parasympathetic and 
sympathetic nerve activity. However, the changes of LF/HF were not 
consistent across all reviewed studies. The inconsistency can be caused 
by different experiment setups, including the driving task, cause of fa-
tigue and level of fatigue. Small study samples could also limit the 
generalizability of some studies. 

It has been hypothesized that fatigue activates the parasympathetic 
nervous system, which leads to higher levels of HF, whereas when the 
sleep demand is counteracted by subjects fighting to stay awake this will 
lead to sympathetic activation that increases LF (Vicente et al., 2016). 
Therefore, for real road driving, drivers might have higher intention to 
fight against sleepiness than in the simulator studies, which leads to 
higher sympathetic activation. However, the physiological base of such 

an assumption is questionable. The HRV LF power is reflecting a mixture 
of sympathetic and parasympathetic activities together with other fac-
tors and the LF power is thus not directly correlated to sympathetic 
nerve activity (Moak et al., 2007; Piccirillo et al., 2009). The physio-
logical base for LF/HF is indistinct and to interpret LF/HF as the balance 
between the parasympathetic and sympathetic nerve activity has been 
challenged (Billman, 2013). 

Differences in the cause of fatigue can also be the reason for different 
HRV responses in relation to fatigue. In sleep research, several studies 
have reported increased HRV measured as SDNN (Kaida et al., 2007) in 
sleepy subjects. Increased VLF and LF power (Henelius et al., 2014), 
(Chua et al., 2012) have been associated to decreased vigilance caused 
by total or partial sleep deprivaiton. In those studies the effect of sleep 
homeostats and circardian effects are involved. While falling asleep, 
reduced HRV has been observed (Shinar et al., 2006). For task related 
factors, studies have shown that HRV changes are reflecting the cogni-
tive task demand (Luque-Casado et al., 2016) or the time on task effect. 
For the time on task effect, both increased (Matuz et al., 2021) and 
decreased (Luque-Casado et al., 2016; Melo et al., 2017) HRV has been 
reported. The difference could be caused by different task demands and 
engagement (Pendleton et al., 2016). 

Even when studying the same type of fatigue, the level of fatigue is 
another factor that needs to be considered. In study by (Henelius et al., 
2014), a strong correlation between HRV spectral power and the psy-
chomotor vigilance performance was only found for high levels of 
sleepiness under sleep deprivation, but not slight vigilance decrement in 
an ordinary day. Hence, studies that target low levels of fatigue may 
have different results than those targeting high levels of fatigue. 

3.3. Performance of fatigue detection 

The performance measure of HRV based driver fatigue detection 
systems varied from poor to perfect across the reviewed studies. Very 
high accuracy (i.e., both high sensitivity and specificity) was found in 
some simulator studies without subject-wise separation in learning and 
testing. Due to the differences in study design, those performance 
measures have different meanings in practice and cannot be compared 
directly by the numbers. Several design aspects can have a significant 
impact on the study outcome. The factors that were discussed in the 
previous section, including how fatigue was introduced and measured, 
can also affect the performance of a fatigue detection system. Another 
key factor is whether the data from the same participant were separated 
from the training and testing set. The difference in detection perfor-
mance measures between LOSO cross validation and k-fold cross vali-
dation was shown by (Kundinger et al., 2020a) and (Persson et al., 
2021). Having real road scenarios rather than simulator, having a 
broader population coverage (e.g., sex, age, fitness, etc.), and using less 
accurate HR sensors can also lead to lower performance measures 
(Persson et al., 2021). 

3.4. Use of HRV based detection in real life 

A majority of the reviewed studies were conducted in a simulator 
environment, and few were conducted with controlled real road sce-
narios. Findings from those studies may face many challenges in real life 
scenarios due to a variety of contextual factors that can alter HRV. HR 
and HRV have been shown to reflect cognitive workload (Luque-Casado 
et al., 2016). In real life scenarios, varying complexity of the driving 
context and involvement of secondary tasks will influence HR and HRV 
as well as fatigue development. Changes in emotional states and stress, 
food intake, and change in environmental factors (e.g., altitude, tem-
perature) can also introduce variation in HR and HRV (Appelhans and 
Luecken, 2006; Boos et al., 2017; Castaldo et al., 2015; Sollers et al., 
2002). Whether those stimulations can overshadow the HRV changes 
due to fatigue needs to be investigated in real life driving scenarios. HRV 
based monitoring can also be challenging in people with certain medical 
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conditions and medications whose HRV regulation is affected. 
Having personalized algorithms could be a key element for an ac-

curate HRV based fatigue detection system. Current studies involve 
measurements for each participant during one or two days only. How-
ever, the personal basal HRV level can change overtime and good stra-
tegies for personalization need to be investigated. At the same time, 
those personalization methods should also consider local regulations 
regarding personal data usage in practice. 

3.5. Future perspectives 

The development of driver fatigue is a complex process influenced by 
multiple factors, and so is the physiological regulation of HRV. With this 
review we are not able to conclude that there are solid relationships 
between HRV and driver fatigue. How HRV is related to different causes 
of fatigue and its relation to driving performance under different types of 
fatigue needs to be further investigated. It will be helpful for future 
studies to have a transparent reporting on factors that influence fatigue 
and on reference measures for fatigue. 

There is a need to find a good reference measure for fatigue that can 
reflect deterioration of driving performance and safety outcomes. Some 
reviewed studies have used fatigue measurements that have not been 
validated. Finding a valid and reliable ground truth measure of fatigue is 
challenging. There are drawbacks with both the subjective and objective 
physiological measures of fatigue and sleepiness. The drivers might not 
be fully aware of or might not acknowledge their signs of fatigue. They 
can also experience difficulties in reporting the correct level on sub-
jective rating scales. Objective physiological measurements often do not 
correspond fully to the level of fatigue or sleepiness experienced by the 
subject. At the same time, test procedures in newly developed regula-
tions such as European Union General Safety Regulation could be used 
as a base for future study design (European Parliament and Council, 
2019). 

A recent on-road experiment with a relatively large population did 
not achieve a satisfactory result for fatigue detection with direct usage of 
HRV (Persson et al., 2021). Future studies could consider alternative 
personalization strategies, introduce time dependent modeling, and 
combining HRV with other information to improve the performance of 
HRV based assessment. 

4. Conclusions 

HRV has the potential to be a valuable marker for detecting driver 
fatigue. However, substantial progress is still required before HRV-based 
driver fatigue detection can be deployed in real life driving. Reviewed 
articles show that reduced HR is associated with fatigued driving states. 
However, when it comes to other HRV measures, the direction of change 
is not consistent. We believe the inconsistency could be introduced by 
the differences in causal factors and reference measurement for fatigue 
that were implemented in different studies. There is a need for more 
concrete knowledge about how HRV changes with different levels and 
causes of fatigue and their relation to driver performance. The perfor-
mance of HRV based fatigue detection systems show a wide range of 
accuracy, the results are difficult to compare across all studies due to 
differences in the experiment setups. Reduced detection performance 
can be found in studies with large on-road experiments and subject- 
independent modeling. Using alternative personalization strategies, 
time dependent modeling, and utilizing other types of information could 
potentially contribute to more accurate detection in the future. Current 
findings from simulator and controlled on-road studies need to be 
further validated with real life driving studies. 
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Detection of microsleep events in a car driving simulation study using 
electrocardiographic features. Current Directions in Biomedical Engineering 2 (1), 
283–287. https://doi.org/10.1515/cdbme-2016-0063. 

Leonhardt, S., Leicht, L., Teichmann, D., 2018. Unobtrusive vital sign monitoring in 
automotive environments—A review. Sensors (Switzerland) 18 (9), 1–38. https:// 
doi.org/10.3390/s18093080. 

Li, G., Chung, W.Y., 2013. Detection of driver drowsiness using wavelet analysis of heart 
rate variability and a support vector machine classifier. Sensors (Switzerland) 13 
(12), 16494–16511. https://doi.org/10.3390/s131216494. 

Lohani, M., Payne, B.R., Strayer, D.L., 2019. A review of psychophysiological measures 
to assess cognitive states in real-world driving. Frontiers in Human Neuroscience. 
https://doi.org/10.3389/fnhum.2019.00057. 

Luque-Casado, A., Perales, J.C., Cárdenas, D., Sanabria, D., 2016. Heart rate variability 
and cognitive processing: The autonomic response to task demands. Biological 
Psychology 113, 83–90. https://doi.org/10.1016/j.biopsycho.2015.11.013. 

Mahachandra, M., Yassierli, S., I.Z., Suryadi, K.,, 2012. Sensitivity of heart rate 
variability as indicator of driver sleepiness. In: In: 2012 Southeast Asian Network of 
Ergonomics Societies Conference (SEANES). IEEE. https://doi.org/10.1109/ 
SEANES.2012.6299577. 

Malik, M., John Camm, A., Thomas Bigger, J., Breithardt, G., Cerutti, S., Cohen, R.J., 
Coumel, P., Fallen, E.L., Kennedy, H.L., Kleiger, R.E., Lombardi, F., Malliani, A., 
Moss, A.J., Rottman, J.N., Schmidt, G., Schwartz, P.J., Singer, D.H., 1996. Heart rate 
variability: Standards of measurement, physiological interpretation, and clinical use. 
Circulation 93 (5), 1043–1065. https://doi.org/10.1161/01.cir.93.5.1043. 

Matuz, A., van der Linden, D., Kisander, Z., Hernádi, I., Kázmér, K., Csathó, Á., Yan, H., 
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