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Abstract
One goal of developing automated road vehicles is to completely free people
from driving tasks. Automated vehicles with no human driver must handle all
traffic situations that human drivers are expected to handle, possibly more.
Though human drivers cause a lot of traffic accidents, they still have a very
low accident and failure rate that automated vehicles must match.

Tactical planners are responsible for making discrete decisions for the com-
ing seconds or minutes. As with all subsystems in an automated vehicle,
these planners need to be supported with a credible and convincing argument
of their correctness. The planners interact with other road users in a feedback
loop, so their correctness depends on their behavior in relation to other drivers
and road users over time. One way to ascertain their correctness is to test the
vehicles in real traffic. But to be sufficiently certain that a tactical planner is
safe, it has to be tested on 255 million miles with no accidents.

Formal methods can, in contrast to testing, mathematically prove that given
requirements are fulfilled. Hence, these methods are a promising alternative
for making credible arguments for tactical planners’ correctness. The topic of
this thesis is the use of formal methods in the automotive industry to design
safe tactical planners. What is interesting is both how automotive systems
can be modeled in formal frameworks, and how formal methods can be used
practically within the automotive development process.

The main findings of this thesis are that it is viable to formally express
desired properties of tactical planners, and to use formal methods to prove
their correctness. However, the difficulty to anticipate and inspect the interac-
tion of several desired properties is found to be an obstacle. Model Checking,
Reactive Synthesis, and Supervisory Control Theory have been used in the
design and development process of tactical planners, and these methods have
their benefits, depending on the application. To be feasible and useful, these
methods need to operate on both a high and a low level of abstraction, and this
thesis contributes an automatic abstraction method that bridges this divide.

It is also found that artifacts from formal methods tools may be used to
convincingly argue that a realization of a tactical planner is safe, and that
such an argument puts formal requirements on the vehicle’s other subsystems
and its surroundings.

Keywords: Formal methods, safety case, automated vehicles, tactical
planning, formal verification, formal synthesis, model checking, reactive syn-
thesis, supervisory control theory, automatic abstraction.
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CHAPTER 1

Introduction

Automated Vehicles (AVs) are road vehicles that under certain periods of time
can perform the driving task without continuous supervision by a driver [1].
The features that operate an AV are referred to as Automated Driving Sys-
tems (ADS) [2]. These systems are set apart from both active safety systems
and driver support systems in that active safety systems are activated to avoid
accidents, whereas driver support systems operate under the supervision of the
driver. Thus, none of the latter systems perform the actual driving task. In
contrast, an ADS completely relieve people from the driving tasks in a certain
traffic environment, and hence may enable vehicle usage that is not possible
with supervised features or during manual driving. Also, removing the human
driver has the potential to reduce the effects of human weaknesses on driving
and traffic.

On the far end of the unsupervised spectrum are the Fully Automated
Vehicles, which are equipped with features that perform the driving tasks
without any supervision from a driver [1]. These features completely free
people from driving, and the introduction of such vehicles is thought to bring
several benefits and new application areas. One example is that people who
currently cannot or should not drive, for instance elderly or visually impaired
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Chapter 1 Introduction

people, might get access to better personal mobility with the introduction of
fully automated vehicles [3]–[6].

Even if not fully automated, there are several ways in which AVs may be
beneficial. For instance, it is likely that the inter-vehicle distance in traffic
can be reduced, and that AVs can help reduce traffic jams [7]. Experience has
also shown that the fuel economy can be improved by driver support systems,
and this benefit will likely carry over to AVs [7]. These effects all have the
potential to reduce emissions and infrastructure need.

The relief from the driving task that AVs bring also allows the driver to
engage in other tasks. For instance, some people might want to engage in
leisure activities in the vehicle instead of manually driving in congested traf-
fic [8]. However, a drawback might be that such benefits for the individual
driver may increase traveling by car, and by that effect pose a challenge for
the sustainability of the traffic system.

Another important benefit of AVs is believed to be improved traffic safety.
Many traffic accidents are attributed to human error [1], [7], and past ex-
perience of active safety and driver support systems has shown that their
introduction significantly reduces the prevalence of certain accident types [7].
Thus, it is not unlikely that removing the driver and replacing them with more
advanced features further reduces accidents. Although the share of accidents
that are actually caused by human error might often be overrated [9]–[11],
AVs still seem to have the opportunity to decrease the number of traffic fatali-
ties. This decrease is thought to be possible by improving on active safety and
driver support systems as well as by increasingly weakening the dependence
on the driver [7], [12].

Naturally, if traffic safety is to increase by automation, then any driving
automation system that performs some or all of the driver’s driving tasks must
be safer than a human driver. This applies to traffic situations where drivers
perform poorly, but also where they already perform well; both when it comes
to handling a wide variety of situations and in cases where the vehicle suffers
from malfunctions. Although human drivers cause a lot of traffic accidents,
they still have a very low accident and failure rate [13]. This low rate poses
difficulties when AVs are developed; if these vehicles are to increase traffic
safety, then their introduction cannot cause higher risk of accidents than what
is expected without them. Hence, the low accident rate of human drivers
effectively puts requirements on how safe AVs must be. However, this does
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not mean that all AVs have the same requirements on safety. The more driving
tasks and situations that are to be handled by an AV, the more work goes into
ensuring and proving that the system is sufficiently safe, and, consequently,
there might be a long time until Fully Automated Vehicles are available [14].

The safety of the AV must be supported by a credible and convincing ar-
gument of its correctness [15], and one method to ascertain this can be by
real world driving. But then, the vast amount of data needed [13] and the
fact that failures during the driving will add millions of kilometers to the
needed total mileage [15] means that complete-vehicle testing is implausible
and scales poorly to accommodate updates of the system. The data need
can be reduced by using other statistical methods to estimate the failure rate
from the distribution of a threat metric [16], but it might still be prohibitively
costly to apply a corrective update to the system and redo the testing.

The ADS is typically realized in several electrical or electronic (E/E) sub-
systems, each with a specific sub-task that can be verified independently of
the others. By verifying the subsystems independently before complete-vehicle
testing, the risk of faults or deficiencies during the complete-vehicle testing is
reduced, and so is the required milage. For the purpose of this thesis the AV’s
E/E subsystems are broken up into four categories according to the overview
shown in Figure 1.1. Starting from the left, the sensors perceive the vehicle’s
surroundings and turn that into sensor-specific semantic information. For in-
stance, a camera can find other vehicles in an image. The information from
each separate sensor is then passed on to the Sensor Fusion subsystem. It
takes in information from all the sensors and merges it to produce a more
accurate estimate of the environment. Based on the fused sensor information,
the Decision and Control subsystem decides which actions to take and how.
Decision and Control passes on its decisions to the actuators in form of, e.g.,
paths and acceleration commands. The actuators convert the decisions to,
e.g., steering torque and brake torques.

All four subsystems can be further divided, but here it is only interesting
to consider Decision and Control, which can be divided into strategic, tactical,
and operational planning [17], as seen in Figure 1.1. Strategic planning refers
to planning for long time horizons, such as route planning. Tactical planning
refers to planning during the coming seconds or minutes, which would include
discrete decisions such as when to do lane changes or whether to stop at an
intersection. The operational planning is performed on the scale of millisec-
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Strategic Planning

Tactical Planning

Operational Planning

Decision and Control

Sensor FusionSensors Actuators

Figure 1.1: System overview.

onds up to a second, and examples are speed control and sudden avoidance
maneuvers.

If the E/E subsystems are to support the correctness argument of the com-
plete system, each of the four subsystems in Figure 1.1 must be supported by
a credible and convincing argument of their correctness [15]. Since the sub-
systems have different tasks and solve them with different approaches their
correctness is also ascertained with different methods. The actuators and the
operational planning subsystems are analyzed and verified with methods from
control theory, which provides tools for asserting stability, and determining
maximal tracking error, etc [18]. This is a field with mature analytical meth-
ods developed from the 1930’s and onward. The sensors and sensor fusion
subsystems can use statistical approaches to verify their correctness in open-
loop simulations [19]. Given a recorded input, an accuracy of the estimates
compared to ground-truth data can be calculated. The main issue for the
sensors and Sensor Fusion subsystems is that a lot of data is needed [13], and
that reliable ground-truth data or annotations can be laborious to attain [20].

Many of the analytical tools from control theory are not suitable for analysis
of discrete decisions made by the tactical planners that are the main concern
of this thesis. For example, analytical proofs of stability and reachability for
continuous- or discrete-time systems with continuous states cannot in general
be used on discrete-state systems. The open-loop simulations that are useful
for the perception parts can also not be used to the same extent for the
tactical planning subsystem. This so since the planner’s decisions affect the
environment, and the planner needs to interact with other road users in a
feedback loop. A recording of a traffic scenario will therefore only be a valid
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basis for a convincing correctness argument if the planners take the exact same
decisions as the vehicle did during the recording; an implausible feat for the
millions of miles needed as indicated by Kalra and Paddock [13]. This thesis
explores ways to limit the needed quantitative and statistical verification effort
of tactical planners, and tries to focus on achieving provably correct planners
as a means to acquire credible and convincing arguments of the correctness of
their construction.

Two standard methods to provide evidence that fault and deficiency preva-
lence in E/E subsystems are sufficiently low are reviewing and testing [21].
Reviews are qualitative and requires staff to go through and inspect work
products. Testing is quantitative and measures the effect when systems are
exposed to certain inputs. Both these verification methods can be applied in
large parts of the development process [21], but neither of them can provide
proofs of correctness; they can only find faults, not show absence of them [22].
Also, when the design or implementation of a part is changed the reviewing
and testing must be performed again.

An alternative approach is formal methods [22], [23], which can, in contrast
to reviews and testing, mathematically prove that the requirements are ful-
filled. (A caveat being that this statement holds for a model of the system, so
any modeling errors void the correctness proof.) At their core, formal methods
have a formal language with well defined and unambiguous semantics, which
means that they are suitable for automatic machine reasoning. The formal
language is used to formalize the requirements into a specification, and to
construct a formal model. After the specification and the model are available
there are mainly two subclasses of formal methods from which to choose to
continue the process; formal verification and formal synthesis.

Formal verification needs a formal model of the implementation and possi-
bly the environment with which it interacts [22]. This model can be the actual
software code, a simplified abstraction of it, or a simple model of the intended
functionality of the item; this depends on what requirements are being ver-
ified. When the specification and the formal model are available, a formal
verification tool can search for counterexamples. If none are found, then the
model fulfills the specification. Because formal verification comes with a proof
or a counterexample, less effort has to be spent on reviews and tests. Since
much of the process is automated, it can be run again and again without much
manual effort, further easing the effort compared to reviews and tests.
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Formal synthesis, on the other hand, does not have a model of the im-
plementation included in the formal model, but it requires a model of the
environment [23], [24]. Based on the specification and the formal model,
formal synthesis automatically computes a correct-by-construction implemen-
tation. This has the advantage over formal verification that manual imple-
mentation, often and error prone and time consuming process, can be avoided.
Also, changes in the requirements does not necessarily incur any manual re-
implementation.

Formal methods, especially formal verification, have been used successfully
in industrial applications [25]–[27]. They have a clear potential also in the
automotive industry to increase the quality of the safety work, as well as de-
crease development time and cost. However, except in the case of program
verification, it is not established in any large extent as to what parts of the
automotive development process that can benefit from formal methods. Po-
tential pitfalls and limitations are also not well explored.

The overall purpose of this thesis is to investigate whether formal meth-
ods can be used in the automotive industry to design safe tactical planners.
What is interesting is both how automotive systems should be modeled in
formal frameworks, and how formal methods can be used practically within
the automotive development process.

This thesis attempts to evaluate how problems in the development of tac-
tical planners in AVs can be solved by formal methods and how some formal
methods compare in terms of benefits and drawbacks. A central question is
whether there are any obstacles to adopting formal methods, and especially
formal synthesis, as a tool to develop provably correct tactical planners for
AVs.

1.1 Hypothesis
The hypothesis of this thesis starts with the belief that formal methods, and es-
pecially formal synthesis, can be applied in automotive development processes
to generate useful and meaningful correct-by-construction tactical planners.
Such formal methods should be beneficial as they alleviate drawbacks of other
methods that cannot provide correctness proofs, specifically the processes of
reviews and testing. However, since formal methods, and especially formal
synthesis, do not seem to be widely adopted for generation of tactical planners
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for AVs, probably there are limitations or obstacles that hinder the adoption.
These potential limitations and obstacles are investigated in this thesis.

Furthermore, with discrete systems operating in continuous domains there
must be a mapping, or abstraction, from continuous states to discrete states.
This abstraction affects how a tactical planner can operate, and selecting the
wrong level of abstraction could cause synthesis to generate useless or trivial
planners, or fail to generate planners at all. The assumption is that coarse
abstractions that take planner capabilities into account may contribute to less
effort being allowed to be spent on justifying the safety of the formally proven
tactical planners.

1.2 Research questions
Based on the hypothesis, this thesis aims to answer the following research
questions:

RQ 1 What are the current limitations of formal synthesis for tactical plan-
ners for automated vehicles that hinders its adoption in the automotive
industry?

RQ 2 To what problems regarding tactical planners can synthesis and verifi-
cation be applied?

RQ 3 What level of abstraction is possible to use for tactical planners for
automated vehicles, and will that level facilitate meaningful and non-
trivial planners?

1.3 Contributions
The main contributions of this thesis are:

• It presents how formal methods may be used to provide evidence that
tactical planners fulfill their safety requirements in the context of appli-
cable standards. This is both a contribution to answer RQ 1, but also
an attempt to lessen the limitations of formal synthesis (Paper A).

• It identifies the difficulty to inspect the result of synthesis as an obstacle
to adoption of formal synthesis, providing one piece in the answer of RQ 1
(Paper D, Paper C, Paper E).

9
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• It identifies a conflict between the desire to express detailed require-
ments and to generate generic tactical planners, which gives some an-
swers to RQ 3 (Paper B, Paper E).

• It provides insights into how verification and synthesis models differ
when it comes to separation of environment, requirements, and plan-
ner, which helps in answering which method to use in relation to RQ 2
(Paper B, Paper E).

• It determines that the differing syntax and semantics of the modeling
paradigms have little effect on the synthesized planners. However, a
few characteristics of the synthesis results of the different paradigms are
important to consider when formal synthesis is applied to a problem,
answering which synthesis methods should be chosen in respect to RQ 2
(Paper C, Paper E).

• It presents the robust stutter bisimulation relation that can be used to
automatically create coarse abstractions for non-deterministic systems.
The relation is useful to reduce the size of the state space for feedback
systems such as ADS, where the environment includes actions taken by
other road users, providing a partial answer to RQ 3 (Paper F).

1.4 Method
The research of this thesis has mainly been exploratory and qualitative. As
such, the work has been uncovering and formulating new research problems
and questions, as much as it has been trying to answer the above questions
and accept or reject the hypothesis.

One part in answering all research questions and confirming the hypothe-
sis is to investigate how to construct a convincing safety argument based on
formal methods. Paper A provides results to this mean by employing an ar-
gumentative approach to contribute to the research in this area. This method
was chosen because the safety research on the use of formal methods applied
to tactical planners still seems to be in its infancy. Furthermore, the safety
research on automated vehicles overall is still debating which methods are best
suited to ensure safety. Therefore, it could be valuable to broaden this debate
with approaches on using formal methods to argue for safety. A complete
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study on approaches to verify and validate this approach would likely require
large amounts of data and an already implemented system that is evaluated
in real-world road traffic. Such an extensive study would be infeasible in the
scope of this thesis.

Focus has been on exploring the technical aspects of the research questions
and hypotheses. Hence, Paper B, Paper C, Paper D, and Paper E evaluate
different aspects of formal methods in automotive safety-critical development
by various case studies. These case studies focus more on the limitations of the
tools themselves, and less on evaluating limitations arising from organizational
perspectives.

Paper B applies formal verification to ensure that a developed tactical planer
for an automated vehicle always reaches a safe state. This particular case
study was chosen because it is a pertinent problem for Automated Vehicles.
The study created a model of the traffic environment in which relevant and
realistic requirements were proven. Then the model was validated both by
simulations and real world tests to assess the feasibility of using formal veri-
fication for that class of problems.

Paper C compares several aspects of the two different formal synthesis
paradigms Reactive Synthesis and Supervisory Control Theory by applying
each method to two different sample problems. These two paradigms were
chosen because several aspects of the paradigms have different characteristics,
and the sample problems were likewise chosen such that a variety of types of
requirements and dynamics were present. The comparison evaluates different
qualitative properties that are useful for choosing a specific formal method for
different problems.

Formal verification previously found problems in an implementation of a
planner for lane changes, and Paper D further explored how those problems
could be fixed by using synthesis. As in Paper C, the intent was to qualita-
tively investigate useful properties of formal synthesis, but here more specifi-
cally in the automotive domain.

The fourth case study was conducted in Paper E. The same setting as in
Paper B was used to compare the same formal methods as in Paper C, but
now in an automated-driving setting.

For these four case studies, realistic requirements and scenarios have been
formulated, and formal methods have been used to design correct-by-construc-
tion tactical planners. These planners have then been evaluated by simula-
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tions, physical experiments, or visual inspections.
Some results from the case studies implied that abstraction techniques are

important to ease the use of formal methods in the automotive domain. Pa-
per F presents one such technique, and shows that it is relevant for Reactive
Synthesis. The relevance is established by the use of mathematical analysis
and a small proof of concept.

1.5 Outline
This thesis is divided into two parts. Part I introduces safety of AVs, explains
some fundamentals of formal methods, and puts the appended papers into
context. Part II contains the appended papers forming the basis of the thesis.

Part I consists of the following chapters: Chapter 2 goes through the funda-
mental concepts of formal methods that are used in later chapters; Chapter 3
presents the problem of credibly arguing for the safety of AVs; considerations,
benefits, and obstacles when using formal methods to develop correct-by-
construction tactical planners are treated in Chapter 6; modeling and auto-
matic abstraction are treated in Chapter 5; Chapter 6 concludes the findings
in this thesis and presents future challenges; finally, Chapter 7 gives short
summaries of the appended papers.
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CHAPTER 2

Formal Methods

Formal Methods is a class of mathematically rigorous techniques and tools
that are used to specify, design, verify, and synthesize components; mainly by
allowing rigorous reasoning about correctness of these components [28]. At
the foundation of these methods are formal languages, which provide rigor
by establishing precise and unambiguous definitions of language syntax and
semantics. Every statement of such a language is thus well-formed and has a
precise meaning. Many formal languages used at the core of formal methods
allow automatic or semi-automatic generation of proofs for statements, where
the interesting statements to prove typically can be the formalized require-
ments of some subsystem in Fig. 1.1.

Examples of formal languages are different automata and logic based lan-
guages, where, for instance, propositional logic and regular expressions are
two concrete examples of languages with formal syntax and semantics. In this
thesis the interest lies mainly in formal systems whose formalism allows to be
interpreted over time, since this allows reasoning about a vehicle’s behavior
over time.
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2.1 Regular languages
A formal language is defined as a set of words constructed from a set of
letters Σ, the alphabet, according to a set of rules. Regular languages are a
specific subset of the formal languages.

Regular languages consist of words that are sequences of the letters of an
alphabet Σ. The word of zero length of the alphabet Σ is denoted by Σ0 = {ε},
where ε is the empty word. The words of length n+ 1 are defined inductively
as Σn+1 = {ρ a | ρ ∈ Σn and a ∈ Σ}, where ρ a denotes the sequence acquired
from concatenation of the word ρ with the letter a. The Kleene closure of an
alphabet Σ, denoted by Σ∗, is the language of all the finite words constructed
from Σ, i.e., Σ∗ =

⋃
n∈N Σn. The language of infinite words over Σ is denoted

by Σω, and the language of all finite and infinite words over Σ is Σ∞ =
Σ∗ ∪ Σω. The concatenation of two languages L1 and L2 is L1L2 = {ρ1ρ2 |
ρ1 ∈ L1 and ρ2 ∈ L2}. A finite word ρ ∈ Σ∗ is a prefix of the word π ∈ Σ∞,
written ρ ⊑ π, if there exists a word π′ ∈ Σ∞ such that ρπ′ = π. The word
ρ ∈ Σ∗ is a proper prefix, written ρ ⊏ π, if ρ ⊑ π and ρ ̸= π.

A language L is ∗-regular (or simply regular) if all the words of the language
are built by finite number of concatenations of letters in the alphabet Σ [29],
and a language L is ω-regular if all the words of the language are built by
infinite number of concatenations of the letters in the alphabet Σ [22].

The set of finite prefixes of a word π ∈ Σ∞ is pfx(π) = {ρ ∈ Σ∗ | ρ ⊑ π}.
The closure of a set of finite words L ⊆ Σ∗ is the set of words whose prefixes
are all in L, defined by clo(L) = {π ∈ Σ∞ | pfx(π) ⊆ L}. Hence, Σω is the
closure of Σ∗, i.e., Σω = clo(Σ∗).

The regular and ω-regular languages are closely connected to transition
systems, which can be used to model regular and ω-regular languages.

2.2 Transition Systems
Transition systems consist of states and transitions [22]. The transitions be-
tween the states are labeled with transition labels, that define which inputs a
certain state can consume and how the transition system transits to the next
state given that input. The states are labeled with atomic propositions by a
labeling function, which makes it possible to refer to specific states, or groups
of states, by their propositions. Transition systems and derivatives thereof
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form the foundation of most of the papers and methods considered in this
thesis.

Definition 1: A transition system (TS) is a tuple

TS = ⟨S,Σ, δ, S◦,AP, L⟩ (2.1)

where

• S is a set of states;

• Σ is a set of transition labels;

• δ ⊆ S × Σ× S is a transition relation;

• S◦ ⊆ S is a set of initial states;

• AP is a set of atomic propositions;

• L : S → 2AP is a labeling function.

If the set of states S is finite, then TS is a finite transition system, and if
the transition relation δ is a function, then TS is a deterministic transition
system.

When a transition system changes state from one state to the next, it takes
a step along a transition. A sequence of steps through a transition system
can be seen as progress of time, either by requiring that a step from the
current state to the next state at certain time instances, or by considering the
transition labels as events that fire at arbitrary times and makes the system
step to the next state. Thus, the traversals of the states of a transition system
can be the basis for reasoning about temporal properties.

A finite sequence of states ρ = s1 · · · sn ∈ S∗ is a finite path fragment of
a transition system TS if there exists a sequence of transition labels w =
σ1 · · ·σn−1 ∈ Σ∗ such that (si, σi, si+1) ∈ δ for all 1 ≤ i < n. The set of all
finite path fragments of a transition system TS is denoted by Frags∗(TS). An
infinite sequence of states π = s1s2 · · · ∈ Sω is an infinite path fragment of TS
if all prefixes are path fragments of TS , i.e., if pfx(π) ⊆ Frags∗(TS). The set
of all infinite path fragments, and the set of all path fragments of a transition
system TS are denoted by Fragsω(TS) and Frags∞(TS), respectively. A path
fragment π = s1s2 · · · ∈ S∞ is a path of a transition system TS if s1 ∈ S◦,
and the set of paths of a transition system TS is denoted by Pathsω(TS).
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The labeling function L labels each state of the transition system TS with
a subset of the atomic propositions AP with which individual states or groups
of states can be referred to. In some instances, the distinction between propo-
sitions and states is important because the states are considered unobservable,
whereas the labels are observable, i.e., an external entity does not know which
state a transition system is in, but it knows the label of the current state.

A path fragment of a transition system leaves a trace of state labels. For-
mally, the trace of a finite path fragment is given by a function trace : S∗ →
(2AP)∗, where its definition is given recursively for a finite path fragment
ρ = ρ′sn ∈ S∗ (with sn ∈ S) by

trace(ρ) = trace(ρ′sn) =
{
L(sn) if ρ′ = ε ;
trace(ρ′)L(sn) otherwise .

(2.2)

The trace function can be extended to infinite path fragments as trace : S∞ →
(2AP)∞, where the output is an infinite sequence of subsets of AP.

The set of trace fragments of a state s of a transition system TS , written as
traces(s), is the set of all traces of path fragments starting from the state s,
i.e., traces(s) = {trace(π) ∈ (2AP)∞ | s ⊑ π ∈ Frags∞(TS)}. The set of traces
of a transition system TS , denoted traces(TS), is the set of trace fragments
of the initial states of TS , i.e., traces(TS) = {traces(s) | s ∈ S◦}.

Path fragments and traces thereof can contain repetitions of a state or a
state label, respectively. In some cases these repetitions are not important,
and it can therefore be beneficial to disregard them; it is sometimes irrelevant
how long a system resides in a state or set of states. For instance, safety
requirements for a vehicle might specify that crashes must be avoided, and
that it must be possible to at all times reach a stopped position where the
risk of harm is acceptably low. Both these requirements must be fulfilled, but
there is no reference to specific time instances, so path fragments that only
differ in the number of repetitions of each state or label can be considered
equivalent.

A step (si, σ, si+1) ∈ δ of a transition system TS is a stutter step if si =
si+1. A stutter free sequence sf(π) ∈ S∞ is obtained from the path fragment
π = s1s2 · · · ∈ S∞ by removing all elements si+1 such that si+1 = si. Stutter
free traces are obtained similarly by checking whether L(si+1) = L(si). Two
path fragments π1 and π2 are stutter equivalent if they are equivalent modulo
stuttering, i.e., if sf(π1) = sf(π2) and if π1 and π2 are either both finite or both
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infinite. Two path fragments π1 and π2 are stutter trace equivalent if they are
equal when repetitions are removed, i.e., if sf(trace(π1)) = sf(trace(π2)) and if
trace(π1) and trace(π2) are either both finite or both infinite.

Kripke Structures
A special case of transition systems are Kripke structures, which omit the
transition labels Σ.

Definition 2: A Kripke structure is a tuple

K = ⟨S, S◦, δ,AP, L⟩,

where S is a set of states, S◦ ⊆ S is a set of initial states, δ ⊆ S × S is a
transition relation, AP is a set of atomic propositions, and L : S → 2AP is a
labeling function that assigns a set of atomic propositions to each state.

Paths and traces are defined analogously for Kripke structures as for transi-
tion systems, except that the steps of a path fragment do not need a transition
label to be taken, i.e., a sequence of states π = s1s2 · · · ∈ S∞ is a path frag-
ment of a Kripke structure K as long as (si, si+1) ∈ δ.

Finite State Automata
Automata are modifications of transition systems where the labeling function
is removed and a set defining an acceptance condition is introduced.

Definition 3: A non-deterministic finite state automaton (NFA) is a tuple

A = ⟨S,Σ, δ, S◦, F ⟩ ,

where S is a finite set of states, Σ is a finite set of transition labels, the
alphabet, S◦ ⊆ S is a set of initial states, δ ⊆ S × Σ × S is a transition
relation, and F ⊆ S is a set representing the acceptance condition. If δ is a
function and S◦ a single state, then the automaton is called a deterministic
finite state automaton (DFA).

Let w = σ1σ2 · · · ∈ Σ∞ be a word. A run for w in A is a path ρ = s1 sn · · · ∈
S∞ such that (si, σi, si+1) ∈ δ for all i ≥ 1. So a word of an NFA is formed
by concatenating the letters on the transitions taken when stepping through
a path of the NFA.

The acceptance condition of an NFA A is a set of states, i.e., F ⊆ S. A
finite run s1 · · · sn ∈ S∗ is called accepting, or marked, by A if the end state sn
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is in F . A word w of A is accepted, or marked, by A if there is an accepting
run for w in A.

The language of an NFA A, denoted L(A), is the set of all finite words over
the alphabet that has a run in A, i.e., L(A) = {w ∈ Σ∗ | there exists a run
for w in A}. Correspondingly, the accepted language, or marked language, of
an NFA A, is the set of all accepted words of A. It can be shown that the
collection of languages accepted by NFAs is exactly the collection of regular
languages [22].

NFAs accept runs for which the end state is in the acceptor set, which means
that accepted runs and accepted words are finite sequences. The accepting
condition can be changed to construct automata whose marked languages con-
sist of infinite words. These automata are called ω-automata. The structure of
the acceptance condition F of ω-automata can have different structure, which
leads to a rich plethora of automata with marked languages of infinite words.
ω-automata will be treated below, but first an extension of NFAs is presented.

ω-Automata

ω-automata have the same structure as NFAs, but the acceptance condition
only accepts infinite words. The set of states that occur infinitely many times
in a run π = s0s1 · · · ∈ Sω is obtained by the function Inf(π) = Inf(s0s1 · · · ) =
{s ∈ S | there exists an infinite set N ⊆ N such that for all i ∈ N, s = si}.

A non-deterministic Büchi automaton (NBA) BA is obtained from an NFA
A = ⟨S,Σ, δ, S◦, F ⟩ by changing the acceptance condition such that an infinite
run π = s1s2 · · · ∈ Sω is accepted by BA if at least one of the states occurring
infinitely often in π is in F , i.e., if Inf(π) ∩ F ̸= ∅. A word w of an NBA BA
is accepted if there exists an accepted run for w in BA. If δ is a function and
S◦ is a single state, then BA is a deterministic Büchi automaton (DBA).

It can be shown that the collection of languages accepted by NBAs is exactly
the collection of ω-regular languages [22]. However, the collection of languages
accepted by DBAs do not include all ω-regular languages, so DBAs are stricty
less expressive than NBAs. This is in contrast to DFAs and DFAs, which are
equally expressive.
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Compositions of Transition Systems
Systems and specifications are often easier to formalize when they are decom-
posed and separate. However, the semantics of their combinations is needed
to analyze their interactions.

Definition 4: Given two NFA A1 = ⟨S1,Σ1, δ1, S
◦
1 , F1⟩ and A2 = ⟨S2,

Σ2, δ2, S
◦
2 , F2⟩, the full synchronous composition of A1 and A2 is A1 ∥ A2 =

⟨S1 × S2,Σ1 ∪ Σ2, δ, S
◦
1 × S◦

2 , F1 × F2⟩, where:

• ((s1, s2), σ, (s′
1, s

′
2)) ∈ δ if σ ∈ Σ1 ∩ Σ2, (s1, σ, s

′
1) ∈ δ1, (s2, σ, s

′
2) ∈ δ2,

• ((s1, s2), σ, (s′
1, s

′
2)) ∈ δ if σ ∈ Σ1 \ Σ2, (s1, σ, s

′
1) ∈ δ1,

• ((s1, s2), σ, (s′
1, s

′
2)) ∈ δ if σ ∈ Σ2 \ Σ1, (s2, σ, s

′
2) ∈ δ2.

The full synchronous composition of two NFA is itself an NFA. The state
set of a full synchronous composition is all the pairs of states with the first
state from A1 and the second from A2. Transitions labeled with a letter in
the alphabet of both automata are added to the composition if each of the
automata has a corresponding transition between its states. For letters that
are part of only one automaton, transitions are added to the composition if
that automaton has the corresponding transition. The acceptance condition
must be modified for parity automata.

2.3 Linear Temporal Logic
Linear Temporal Logic (LTL) is a formal logic capable of expressing tempo-
ral properties. In addition to atomic propositions in the set AP and standard
propositional logic operators {⊤,¬,∧}, the alphabet of LTL includes temporal
operators [30]. In this thesis, the temporal operators ◦ (next) and U (until) are
letters in the formal language of LTL. Other temporal operators like ♢ (even-
tually), □ (always), and W (weak until) are also used in formulas, but they
can be defined based on U [22]. These temporal operators can be used to
express, for instance as done in Paper B, that if one of a vehicle’s subsystems
fails, then eventually the vehicle shall stop safely at the side of the road.

The formal language of LTL formulas can be defined inductively. Then an
LTL formula φ is generated by φ = ⊤ | p | ¬θ | θ ∧ ψ | ◦ θ | θ U ψ | (θ), where
p ∈ AP, and θ and ψ are LTL formulas. The semantics of LTL formulas can be
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interpreted over words of the alphabet 2AP. Whether a word w = σ0σ1 · · · ∈
(2AP)∞ satisfies an LTL formula φ, written w ⊨ φ, is defined inductively on
the structure of φ:

• w ⊨ ⊤ always holds;

• w ⊨ p iff p ∈ σ0;

• w ⊨ ¬ψ iff w ⊨ ψ does not hold;

• w ⊨ ψ ∧ θ iff w ⊨ ψ and w ⊨ θ;

• w ⊨ ◦ψ iff σ1σ2 · · · ⊨ ψ;

• w ⊨ ψ U θ iff there is an m ≥ 0 such that σmσm+1 · · · ⊨ θ and for all
0 ≤ i < m it holds that σiσi+1 ⊨ ψ.

The unary next operator ◦ means that the formula ψ holds in the next
state. The binary operator U is interpreted as until, and means that a formula
θ holds in the current or some future position of the word, and at all positions
prior to that, ψ holds. The other temporal operators can now be defined as:

• ♢φ ≡ ⊤ U φ, which is interpreted as eventually, and means that a
formula holds at some future position in the word;

• □φ ≡ ¬♢¬φ, which is interpreted as always, and means that a formula
holds at the current position and all future positions of the word;

• ψ W φ ≡ □ψ ∨ ψ U φ, which is interpreted as weak until, and means
that a formula ψ holds until θ holds, or ψ holds forever.

(The propositional operators ∨, →, and ↔ are defined by ¬ and ∧ as usual.)
The language of an LTL formula φ, denoted Lm(φ), is the set of all infinite

words that satisfy the LTL formula, i.e., Lm(φ) = {w ∈ (2AP)ω | w ⊨ φ}.
The language of an LTL formula φ can be represented by a nondeterministic
Büchi automaton BA, such that Lm(φ) = Lm(BA) [22], [31], [32].

LTL formulas can also be interpreted over path fragments of transition
systems. In that case, the LTL formula is satisfied by a path fragment if the
trace of the path fragment satisfies the LTL formula. Let TS be a transition
system with state set S and initial states S◦, and let π ∈ Frags∞(TS). Then
π satisfies an LTL formula φ, written π ⊨ φ, if trace(π) ⊨ φ. An LTL formula
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holds at state s ∈ S, written ⟨TS , s⟩ ⊨ φ, if all infinite path fragments starting
at s satisfy φ, i.e., if π ⊨ φ for all s ⊏ π ∈ Fragsω(TS). The transition system
TS satisfies the LTL formula φ, written TS ⊨ φ, if ⟨TS , s◦⟩ ⊨ φ for all initial
states s◦ ∈ S◦.

Two classes of interesting properties of LTL are safety and liveness, where
the simplest examples are □p and □♢p, respectively. Safety properties can
be disproved with finite prefixes of the strings of the formal language, which
means that safety properties define what shall never happen. Liveness prop-
erties cannot be disproved with finite strings of the language, thus liveness
properties specify conditions that shall be fulfilled infinitely many times.

The next operator ◦ can be excluded from LTL to form a fragment called
LTL\◦. All stutter equivalent words satisfy the same LTL\◦ formulas [22].
That is, let w1, w2 ∈ (2AP)∞ be two stutter equivalent words, then w1 ⊨ φ iff
w2 ⊨ φ.

2.4 Model Checking
Model Checking [22] is used to check that a formal model of a system satisfies
the formalized requirements, the specification. The system can consist of
hardware or software, but planners that interacts with their environment are
considered in this thesis. The planner and its environment interacts in a
feedback loop, as seen in Fig. 2.1. However, Model Checking (MC) does not
make a difference between the planner and its environment, and treats them
together as one system.

Environment

Planner

System

y x

Figure 2.1: A closed-loop system with environment and planner. x is the output
from the environment, which can be observed by the controller. y is
the output from the planner.

The system shown in Figure 2.1 is called a closed-loop system; all behaviors
are internal to the system. Figure 2.1 shows the types of systems that are
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most relevant for this thesis. In general, the system can be composed of
several parallel processes that run asynchronously and pass messages between
them.

Verification of software with MC starts with the formal specification and the
formal model of the system. The intended result of model checking is either
a proof that the model exhibits the behavior of the formal specification, or a
counterexample that demonstrates why the specification does not hold for the
model. The benefit of performing model checking over reviewing and testing
is that model checking is exhaustive, it is automatic, and it can prove that no
faults are present. However, a caveat is that this holds only when the model
captures the relevant behaviors of the system. state-space explosion problem.

In LTL Model Checking, the formal properties are expressed in LTL and
the software program is modeled as a transition system, typically a Kripke
structure. Let the transition system K be a Kripke structure that models a
software program, and φ an LTL formula that expresses a desired behavior of
K. Then a Büchi automatonB is constructed for ¬φ, and it is checked whether
an accepted word of B is a trace of an allowed path of K [22]. If such a path
exists, it is satisfied by ¬φ and hence cannot be satisfied by φ. Essentially, it
is checked whether the transition system K has a path specifically forbidden
by φ. If so, K cannot possibly fulfill φ.

The construction of transition systems and Büchi automata can be quite
involved, so there are software tools that let the user define the transition
system in a formal format more suitable for humans, and the properties in
LTL. For instance, in Paper B, the language Promela is used to model the
system, and the model checker Spin [33] is used to model check specifications
expressed in LTL. The Promela models are automatically translated into a
transition system and the specifications into Büchi automata.

2.5 Reactive Synthesis
Reactive Synthesis (RS) [24] aims to automatically synthesize a reactive mod-
ule that satisfies the desired guarantees ϕs, under the assumptions of the
environment ϕe. In other words, the reactive module satisfies the formula
ϕe → ϕs [34]. A reactive module evolves in computation cycles and engages
in an ongoing interaction with its environment, as illustrated in Figure 2.2.
The reactive module P alternately reads inputs from the environment E and
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assigns values to its outputs, possibly affecting the environment. For a com-
prehensive introduction to RS, refer to [35].

E P

time

x0

x1

x2

x3

y0

y1

y2

y3

Figure 2.2: Progression of time and the turns of the environment E and the Planner
P.

The planner and the environment interact in a feedback loop, as seen in
Fig. 2.3. The planner observes the output x from the environment and sets
its output y to affect the environment such that the specification is fulfilled.

Environment

Planner

x

y

Figure 2.3: The planner is synthesized in a feedback loop with the environment.

In RS, the set of atomic propositions AP is divided into two disjoint sub-
sets APe and APs, representing the propositions of the environment and the
reactive module, respectively. The atomic propositions in APe are seen as the
inputs to the reactive module, while APs are its outputs.

The synthesis can be performed as follows. The words over the alphabet Σ =
2APe∪APs that satisfy the formula ϕ ≡ ϕe → ϕs can be represented by an NBA.
The NBA can be converted to a language-equivalent parity automaton [36],
which in turn can be converted to a parity game [37] with two players. One
player represents the environment propositions and the other player represents
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the reactive module’s propositions. Solving the game yields a planner that
guarantees the fulfillment of ϕ [37].

The method outlined here for general LTL formulas has a worst case double
exponential computational complexity [38]. However, despite the bad compu-
tational complexity, recent works have presented algorithms that are usable
in practice for general LTL formulas [37]. Another successful path to tackle
the computational complexity is to consider fragments of LTL.

One subset of LTL that is particularly interesting is called General Reac-
tivity of Rank 1 (GR(1)) [39]. This subset of formulas is useful because it is
possible to perform reactive synthesis of the GR(1) fragment in polynomial
time. Given an LTL formula φ defining the environment model and the for-
mal specification, GR(1) synthesis constructs a reactive module such that the
total system satisfies φ, if such a reactive module exists. The LTL fragment
GR(1) has the following form [39]:

φ ≜
(
(ψeinit ∧ □ψesafe ∧

∧
0<i≤J

□♢ψelive,i) → (ψsinit ∧ □ψssafe ∧
∧

0<i≤N
□♢ψslive,i)

)
,

(2.3)

where ψeinit and ψsinit contain all the initial conditions of the environment
and the reactive module, respectively. ψesafe and ψelive,i (J number of sub-
specifications) are the safety and liveness assumptions on the environment.
ψssafe and ψslive,i (N number of sub-specifications) are the desired safety and
liveness properties of the reactive module. In this thesis, Paper C and Paper E
use the GR(1) synthesis tool TuLiP [40] to synthesize tactical planners.

2.6 Supervisory Control Theory
Supervisory Control Theory (SCT) [23], [41] is a model-based approach for
control of Discrete Event System (DES). In a DES the transitions of the au-
tomata are triggered by occurrences of events; the labels on the transitions
are not interpreted as inputs but observations of events. Given a DES to be
controlled, the plant, and a specification describing the desired behavior, a
control entity, called a supervisor, can be automatically synthesized to dy-
namically restrict the behavior of the plant, such that the closed-loop system
satisfies the specification. It is also possible to verify that the DES satisfies
the specification without synthesizing a supervisor.

24



2.6 Supervisory Control Theory

In SCT, the accepting states are called marked states. This thesis considers
SCT where the languages consist of finite strings, but there are also variants
of SCT where the strings are infinite [42]. The requirements on a system
can be formalized as marked states in the plant, or as separate specification
automata with their own marked states.

In the closed-loop interaction of the supervisor and the plant, depicted in
Figure 2.4, the plant generates all events under control of the supervisor that
can disable some of them. Thus, the alphabet Σ is split into two sets; the
controllable events Σc ⊆ Σ that can be disabled by the supervisor, and the
uncontrollable events Σuc = Σ \ Σc that cannot be disabled.

Plant

Supervisor

ΣΣc

Figure 2.4: The supervisor observes events generated by the plant, and may control
the plant by disabling controllable events.

A supervisor P for a plant G must never disable any uncontrollable event
of G, it must be controllable. This means that if G allows an uncontrollable
event after a word that is in the language of both P and G, then P must allow
that uncontrollable event. Formally, L(P )Σuc ∩L(G) ⊆ L(P ) must hold [23].

One property of the closed-loop system that is of interest in SCT is whether
the resulting DES is blocking. A DES is blocking if there exists some reachable
unmarked state from which no finite path fragment reach a marked state. In
terms of languages, for a supervisor P and a plant G, the composed system
P ∥ G is blocking if pfx(Lm(P ∥G)) ⊂ L(P ∥G), and it is non-blocking if
pfx(Lm(P ∥G)) = L(P ∥G). By definition, pfx(Lm(P ∥G)) ⊆ L(P ∥G), so for
evaluating non-blockingness it suffices to show L(P∥G) ⊆ pfx(Lm(P∥G)) [23].

To ensure that the closed-loop system satisfies the specification, any word
possible in the closed-loop system must be allowed by the specification. By
disabling controllable events, the supervisor can confine the plant to a subset
of its possible states so that the closed-loop system only visits states that are
considered “good” by the specification. For a supervisor P , plant G, and a
specification K, this means that it must be ensured that L(P ∥G) ⊆ L(K∥G)
and Lm(P ∥G) ⊆ Lm(K∥G).
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Basically, supervisor synthesis is an iterative removal of states and/or tran-
sitions of an initially calculated supervisor “candidate”. Practically, this candi-
date is calculated from G∥K [23]. The iterative algorithm removes from G||K
the states that break the controllability and/or the non-blocking properties.
Iteration is necessary since enforcing one property may break the other. The
iteration will eventually reach a fix-point, and what then is obtained is the
controllable, non-blocking, and maximally permissive supervisor. Maximal
permissive means that the supervisor disables as few events as possible.

With the introduction of updates to NFAs it is possible to restrict the plant’s
behaviors by adding updates to the plant. In that case the synthesis algorithm
does not have to generate a supervisor as a separate automaton, but can add
to the plant new updates that control the generation of controllable events.

Binary Decision Diagram (BDD) [43] can be used in the synthesis algorithm
for the purpose of adding updates to plants. A BDD is a data structure that
can efficiently store huge state-spaces and transition sets encoded as Boolean
functions. The computational complexity of synthesis using BDDs does not
depend on the number of states or transitions, but on the number of nodes in
the BDD, as the computations are performed symbolically rather than explic-
itly; synthesis is performed on sets of states and transitions rather than single
such elements. The approach presented in [44] uses partitioning techniques to
further stretch the ability of the synthesis procedure. In Paper C, Paper D,
and Paper E, the SCT tool Supremica [45] is used to synthesize supervisors.

2.7 Note on Terminology
The terminologies of Model Checking, Reactive Synthesis, and Supervisory
Control Theory are both overlapping and conflicting, as Paper C points out
when the formal synthesis tools TuLiP [40] and Supremica [45] are compared,
so this section gives a short note on the terminology used in these fields.

What is important for this thesis are mainly three things: the planner,
the environment, and the requirements. The planner refers to the (artificial)
product that is being designed; the tactical planner in the case of this thesis.
For a given planning problem, the planner is exactly the parts of a system
that are allowed to be changed or designed. The environment is the outside
world with which the planner interacts. Within automotive applications this
is typically the dynamics of the car, the roads, and other road users. However,
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the environment also includes other systems and subsystems of the car that
cannot or must not be changed during the design of the planner. Examples of
this can be sensors or actuators, as seen in Fig. 1.1. Lastly, the requirements
are the desired behaviors of the system as it interacts with its environment.
The requirements define desired and undesired behaviors of the system.

Model Checking starts from a planner, possibly interacting with an environ-
ment, and its requirements. However, MC lumps together the planner and its
environment and calls them together the system, as seen in Figure 2.1. The
formalization of the requirements is called the specification, and this thesis
will follow that convention.

The terminology of RS differs from MC. The goal in RS is to synthesize
the planner, or reactive module, such that it guarantees the fulfillment of the
requirements as long as the environment model fulfills the assumptions put on
it [40]. The assumptions are specifications on how the environment produces
the input x, as shown in Fig. 2.3. If the environment assumptions are not
fulfilled, then the planner does not need to fulfill the specification.

Since RS aims to synthesize the planner, there is never a model of the
planner in RS, but a planner specification derived from the requirements.
In RS terminology there is also no environment model, but an environment
specification that states the assumed behaviors of the environment. To be
consistent through the thesis, the assumed behavior of the environment will
be called the environment model for RS.

Supremica, and SCT in general, can be used for both formal verification
and synthesis. Regardless, the formalization of the environment, planner, and
requirements are divided into plant and specifications. In general, the plant
models the environment, and synthesis automatically computes a supervisor
according to the given specification. For verification, the plant models the en-
vironment and the supervisor in a closed-loop, and it is determined whether
this feedback system fulfills the specification. The specifications are the for-
malizations of the requirements. However, the plant can also have markings
on states, which is a formalization of a certain type of requirements that ex-
press the possibility to reach those states. The goal of synthesis with SCT is
to construct a supervisor.

There is also different terminology in use for languages and transition sys-
tems. The alphabet Σ of automata generally consists of letters, but in the
specific case of SCT the elements of the alphabet are called events. For tran-
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sition systems the alphabet consists of actions [22] or, like in Paper F, they
are control inputs. Furthermore, the states in the acceptance condition F are
commonly referred to as accepting states, whereas SCT calls them marked
states. Likewise, the accepted and marked language of an automaton refer to
the same concept.

Functions that choose the next state, output, or action based on a transition
system’s history are referred to as controllers, strategies, policies, or reactive
modules. They are all defined as a function observing a sequence of states
or letters, and outputs a decision on where the system shall transit next.
Supervisors are similar, instead of outputting a decision, they disable events.

To the extent possible, this thesis will refer to the synthesized entity as a
planner, its surroundings as the environment, and the formalized requirements
as the specification.
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CHAPTER 3

How safe?

In order to deploy Automated Vehicles on public roads, the automotive in-
dustry must present compelling arguments that the vehicles are sufficiently
safe [15]. Here, and henceforth, “sufficiently safe” means that a vehicle or
system does not cause an unacceptable high risk of harm. The safety argu-
ments are often compiled into a safety case which is “a structured argument,
supported by a body of evidence that provides a compelling, comprehensible
and valid case that a system is safe for a given application in a given oper-
ating environment [46].” There are three principal elements in a safety case:
requirements, arguments, and evidence [47]. The safety case details, among
other things, the processes used to govern the safety work, the identified haz-
ards and risks, the break-down and implementation of the requirements that
mitigate the identified risks, the verification and validation plan and its re-
sults, and an argument justifying that all of these activities together give
evidence that the system is safe [21], [48].

Systems that aid the driver in their driving task through warnings or by
performing the entire or parts of the driving task, are generally referred to as
driving automation systems. The amount of work that goes into the safety
case is largely governed by the degree of driver involvement in the driving tasks
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and the extent of the situations that the driving automation system handles.
Based on these capabilities, driving automation systems are popularly divided
into six standardized levels of automation, as detailed by SAE J3016_202104
Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles [2]. Though this standard is not about safety, it
defines the terminology that is used in some safety standards.

Two widely accepted automotive safety standards that recommend pro-
cesses for how companies can manage and systematically work with safety are
ISO 21448 Road vehicles – Safety of the intended functionality (SOTIF) [48]
and ISO 26262 Road vehicles – Functional safety (FuSa) [21], where the former
addresses risks of performance deficiencies in system features, and the latter
addresses risks caused by malfunctions. Both standards focus on limiting risk
of harm that originates from deficiencies and failures of E/E systems, such
as sensor limitations, algorithmic faults, and hardware faults. They explicitly
exclude risk of harm that stems from, for instance, fires caused by malfunc-
tioning hardware, unauthorized access due to lacking cyber security, etc. This
delimitation applies also to this thesis.

The standards help with structuring the safety work and they provide rec-
ommendations for which methods to apply in different stages of the devel-
opment process in order to limit the risk of deficiencies or failures that have
harmful consequences. However, in the end it must be shown that the residual
risk is sufficiently low [48], i.e., the risk of harm that stems from unknown and
unanalyzed situations. What “sufficiently low” means is of course subjective,
but it will likely be affected by regulations and the current traffic accident
statistics [49]. For an automated driving system that completely replaces a
human driver, i.e., a fully automated vehicle, a tremendous effort is required
to validate such a target on a complete-vehicle level. For instance, as noted
by [13], if a fleet of 100 automated vehicles drives 24 hours/day, 365 days/year,
at an average speed of 25 mph, it takes 400 years to demonstrate with 95 %
confidence that their failure rate is 20 % better than the human driver failure
rate of 1.09 fatalities per 100 million miles (US, 2013). Furthermore, if there
is a failure during this verification, the amount of required field testing is
increased [15].
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3.1 Levels of Driving Automation
The six levels of driving automation categorize driving automation systems
based on which agent performs the dynamic driving task (DDT) and the
DDT fallback, and how extensive the operational design domain (ODD) is [2].
The DDT is the normal driving task and it consists of two parts, the lat-
eral and longitudinal control, as well as the object and event detection and
response (OEDR). Lateral control typically refers to operation of steering,
whereas longitudinal control refers to operation of engine torque and brake
torque, i.e., the normal motion control of the vehicle. The OEDR task con-
sists of monitoring the driving environment to detect objects and events that
affect the DDT, and properly respond to such objects and events, at all times.
Detecting a preceding vehicle and determining a proper speed and distance to
it, or identifying a flat tire and safely stopping at the side of the road are two
examples of OEDR tasks. With these definitions of OEDR, and lateral and
longitudinal control it is clear that the DDT consists of the tasks of tactical
and operational planning, but not strategic planning.

The ODD is the operational conditions under which a driving automation
system is designed to perform the DDT. The conditions that define the ODD
can be for instance road type, lighting conditions, level of precipitation, traffic
conditions, etc. Driving automation systems can be activated to perform the
DDT once the vehicle has entered their ODD, and they stop performing the
DDT when the vehicle exits their ODD. Some operational conditions that
make up the ODD can be transient and intermittent, and in that case the
driving automation system does not have to deactivate if reliable operation
of the DDT can still be performed; a system that requires high quality lane
markers for sustained operation might still operate reliably if the quality of
the lane markers are low for a short period of time.

On exiting the ODD there are two options for the driving automation sys-
tem: either the system itself performs a DDT fallback, or it cedes operation to
the driver who then performs a DDT fallback1. In addition, a DDT fallback
is performed if the vehicle suffers from a failure that prevents the driving au-
tomation system from reliably performing the DDT. As with the ODD exit,
the driving automation system either performs the DDT fallback itself, or
cedes operation to the driver who performs the DDT fallback. One allowed

1The standard allows a remote operator to perform the DDT fallback as well, but that
distinction is not important in the context of this thesis.
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DDT fallback is to perform a minimal risk maneuver (MRM) to reach a min-
imal risk condition (MRC), where the MRC is a stopped position where the
risk of harm is acceptably low. The topic of Paper B is to use formal verifi-
cation to prove the correct operation of a tactical planner that is responsible
for activating the DDT fallback.

The six levels of driving automation are defined based on which agent per-
forms the different parts of the DDT, which agent is ready to perform the
DDT fallback, and the extent of the ODD. The higher the level, the less re-
sponsibility is put on the driver. The levels distinguish between a limited and
an unlimited ODD. A limited ODD excludes some driving situations, while
an unlimited ODD contains all possible driving situations.

Level 0 No Driving Automation: The human driver performs the entire
DDT and is responsible for the OEDR.

Level 1 Driver Assistance: A driving automation system performs sustained
lateral or longitudinal control in a limited ODD. The human driver
is responsible for the other tasks and is ready to perform a DDT
fallback.

Level 2 Partial Driving Automation: A driving automation system performs
sustained lateral and longitudinal control in a limited ODD. The
human driver is responsible for OEDR and is ready to perform a
DDT fallback.

Level 3 Conditional Driving Automation: A driving automation system per-
forms the entire DDT in a limited ODD, but a human driver is
ready to perform a DDT fallback. The system may perform a
DDT fallback itself, but might not do so in every situation.

Level 4 High Driving Automation: A driving automation system performs
the entire DDT in a limited ODD, and must perform a DDT
fallback when needed. It cannot be expected that a human driver
is available to perform a DDT fallback, but it is allowed to ask a
driver to perform the DDT fallback, for instance, at the ODD exit.
However, if a driver fails to assume operation of the vehicle, then
the system must perform the DDT fallback.

Level 5 Full Driving Automation: A driving automation system performs
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the entire DDT in an unlimited ODD, and must perform a DDT
fallback when needed.

Essentially, the levels categorize driving automation systems based on driver
involvement and driver responsibility. It is only for Level 5 that the ODD
has a determining role. However, for the levels below Level 5, the extent of
the ODD also provides a scale on which systems fall, so it can be seen as the
levels are one axis and the ODD is another axis on which driving automation
systems can be categorized.

Systems at levels 1 and 2 are referred to as driver support systems, whereas
systems in levels 3 to 5 are referred to as Automated Driving Systems (ADS).
The term Automated Vehicle roughly refers to vehicles equipped with an ADS,
and Fully Automated Vehicle refers to Level 5 systems. This thesis is mainly
focused on ADS, where Paper B and Paper E specifically consider a vehicle
with an ADS in Level 4. However, many of the methods and conclusions of
this thesis are probably applicable also to driver support systems, and some
systems in Level 0.

3.2 Driving Around the World
Several companies working with driving automation systems publish reports
that detail their efforts to ascertain safety [50]–[54]. They also publish how
long they have driven with their field test vehicles (or customer vehicles in
the case of Tesla). Waymo had in 2017 driven 10 million miles [55], and in-
creased that to more than 20 million miles in 2021 [54]. They had additionally
driven more than 15 billion miles in simulated environments. Tesla drivers had
driven 1 billion miles in 2018 [56], and increased that figure to 3 billion miles in
2020 [57]. Yandex drove 1 million miles until 2019 [58], and increased it to in
total more than 6 million miles in 2021 [59]. Uber had driven at least 2 million
miles in 2018 [60], [61]. All of these companies, except Tesla, are field testing
vehicles with ADS in SAE J3016_202104 Level 4. Tesla’s system is available
for consumers and relies on the driver performing parts of the OEDR, so it is
a Level 2 driver support system.

Is this amount of driving enough to credibly argue that the systems are
safer than a human driver? To be 95 % sure that an automated vehicle is at
least as safe as a human driver (in the U.S.) it needs to drive 255 million miles
with no fatalities [15]. As can be seen above, most ADS companies fall short
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on this target with at least one order of magnitude. Tesla seems to fare
well since they have tested on 12 times as many miles as required. However,
fatalities increase the required number of miles; 402 million miles required for
one fatality and 535 million miles for a second fatality, for instance [15]. And
there have been fatalities where, for instance, Tesla and Uber cars have been
involved [62]–[64].

It is also possible to consider the failure and disengagement rate of the
ADS that are tested. During testing, there is a safety driver in the vehicle
who is ready to disengage the ADS and assume operation of the vehicle if
there is a system failure or an unsafe situation. The rate at which these
disengagements occur can illustrate the difficulty of validation. For instance,
in 2020 in California, Waymo’s ADS had 0.0333 system failures or safety-driver
disengagements per 1000 miles [65]. This means a failure or disengagement
every 30 thousand miles, and consequently 8500 failures or disengagements per
255 million miles, none of which are allowed to cause a fatality if the safety
driver is not to intervene.

With these mileages in mind, it seems infeasible to base a correctness argu-
ment solely on the amount of miles driven by an ADS. The question is then:
what is the alternative?

3.3 ISO 21448 and ISO 26262
As mentioned above, ISO 21448 (SOTIF) and ISO 26262 (FuSa) are two safety
standards that apply to the automotive industry, where SOTIF addresses the
safety of the intended functionality and FuSa addresses functional safety, i.e.,
reducing risk of malfunctions. FuSa applies to any automotive E/E system,
whereas SOTIF’s aims is to complement FuSa and provide safety processes for
ADS, driver support systems, and other E/E systems that sense the external
environment (and thus often support part of the OEDR somehow). Both
standards structure the safety work by breaking it down into different work
packages on different subsystems and for different system components, and
thereby manage the complexity of the safety case.

The two standards begin the work in similar ways by identifying possible
hazards. These are behaviors that may cause harm. Each hazard is considered
in all the operational situations of the system, its ODD, and the combination
of the hazard and an operational situation is called a hazardous event. The
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criticality of each hazardous event is then based on how severe the conse-
quences of that event is (severity), how often the vehicle is in the operational
situation of the hazardous event (exposure), and how likely it is for an agent
other than the safety-critical functionality to detect and respond to the haz-
ardous event (controllability). For instance, one identified possible hazard
could be the omission of braking, and this hazard together with the opera-
tional situation of approaching a stationary vehicle, resulting in a collision,
is a hazardous event. The severity is decided by the collision speed, and the
exposure is decided by the probability of a stationary vehicle on a road where
such speed is held. The controllability is based on how likely the driver is to
brake to avoid the collision, which, among other things, is influenced by the
automation level.

The purpose of the ISO 26262 standard is to prevent the hazardous events
caused by malfunctions, and the means with which to prevent them are spec-
ified in safety goals. To prevent fatal collisions with pedestrians, for instance,
a safety goal might be to limit the top speed of the vehicle to 30 km/h. For
every identified hazardous event, the estimated severity, exposure, and con-
trollability are combined to form an automotive safety integrity level (ASIL).
The ASIL is transfered to all safety goals that are attached to the hazardous
event, and the ASIL will guide what safety efforts that are needed during
development to ascertain the fulfillment of each safety goal. The ASIL of a
safety goal can be interpreted as the criticality of the safety goal, and a higher
level means more critical and that a lower frequency of violation is accepted.

When all safety goals have been formulated, the standard follows a V-
model [21]: an architecture with subsystems is developed for the system, and
the safety goals are broken down into functional safety requirements, allocated
to the subsystems.

For driving automation systems in Level 1 to Level 5, the exposure might
be heavily influenced by the system design and performance. Such systems
perform (parts of) the DDT, and thus may affect the exposure to hazardous
events through their actions [66]; keeping a close distance to the preceding
vehicle on a highway when an on-ramp joins, might, for instance, increase
the exposure to close cut-ins from other vehicles. In SOTIF, the solution
is to set a target exposure rate of the triggering events. If that target is
judged too difficult to attain, the system must be redesigned and potential
hazards must be identified for the new design. The redesign can typically
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be performed according to the V-model as with FuSa, with a break-down of
new requirements to subsystems. Otherwise, if the target is judged to be
acceptable, then the fulfillment of the target must be shown by verification
and validation. The verification and validation tasks and their corresponding
target exposures can also be broken down to the subsystems.

It has been suggested that target exposure rates should be set similarly to
SOTIF for ADS in FuSa. The safety goals would then be based on consequence
classes and incident types instead of hazardous events to form a Quantitative
Risk Norm (QRN) [66]. In QRN there are different consequence classes for
different ranges of severity, and each consequence class has a target frequency
of occurrence. Incidents are undesired events, including accidents, and inci-
dent types are different categories of incidents. An incident type contributes
to one or several consequence classes, and one consequence class can have
several contributing incident types. The combination of one incident type
and one consequence class gives rise to a safety goal with a target maximum
frequency. After the safety goals have been defined in this manner, the usual
FuSa process follows [66]. The example Safety Case in Paper A follows this
approach.

From a safety point of view, ADS are increasingly difficult to develop be-
cause of three mechanisms. Firstly, as the ODD is expanded, so is the com-
plexity of the technical solution. Even if the highest ASIL or lowest target
exposure of all the safety-critical requirements on a specific subsystem is the
same, the increased complexity means more safety effort. Secondly, expansion
of the ODD means more hazardous events with higher severity and exposure.
These increases lead to higher ASIL, or lower target exposure, and thus again
greater safety effort. Also, identifying a high proportion of all the triggering
events becomes increasingly hard since the number of potential system defi-
ciencies increases as the ADS must handle more driving situations. Thirdly,
the goal is to let the system perform the OEDR, or parts of it, and this in-
creased reliance on the system causes lower controllability [67], which also
means higher ASIL or lower target exposure.

The ASIL is rightfully high as an effect of these three mechanisms since it
is difficult to refine requirements that are complete with respect to the safety
goal [68], [69], and it is difficult to implement fault free code [70]. High ASIL
makes sure that requirement refinement, implementation, verification, and
validation are all performed according to strict processes that minimize the
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risk of faults. However, these processes cause long and costly development.
For instance, implementation and verification of high-ASIL software requires,
among other things, extensive design reviews of the code and testing of almost
every input-output combination to assure that the software requirements are
fulfilled to high enough level. But these tasks are cumbersome and require
involvement from many people, will still miss faults, and have to be repeated
when requirements change [22].

3.4 Saving Some Time

Evidently, the approach of ensuring safety solely by driving many million
miles is expensive and time consuming. Hence, there are incentives to limit
the amount of miles required to assure a high confidence of correctness. For
instance, limiting updates and failures of a system after field tests have started
by ensuring that the system is correct from the start saves both time and lives.
SOTIF and FuSa provide processes that can support that aim by judging risks
in different situations, and recommend how to mitigate them to acceptable
levels. Part of the process is to break down the safety-critical requirements to
individual components. The break down can be beneficial in the development
work since the efforts to ensure safety can start before all components can be
integrated into one system and tested as a whole in a field test. However, the
extensive reviews and testing needed for components with the highest ASIL
are imperfect and expensive in time and money. This is a limiting factor for
SAE levels 4 and 5, as there are likely several components with the highest
ASIL.

What can be done to construct systems that are correct from the start
and limit the efforts put into review and testing? The ISO 26262 standard
mentions formal methods as one class of methods that can be used to ascertain
correctness on the software level. However, the standard does not instruct how
formal methods can be applied on a functional level for feedback systems, so
before such methods can be applied within the development process of tactical
planners it must be known what problems the formal methods can solve and
how to apply them to the applicable problems.
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3.5 Formal Methods in Safety Argumentation

There are several studies that contribute with approaches on how to structure
an argument based on formal methods in the safety case [71]–[74]. However,
these studies concern formal methods applied to implemented software, and
not to the functional characteristics of feedback systems. Thus, one of the
challenges to solve when using formal methods to ensure safety of tactical
planners is how to structure an argument in the safety case such that the
formal proof may be used as evidence.

One aspect of the safety in this context is that the tool that provides the
formal proof must also be subject to a convincing argument of its correctness.
A systematic approach to structure such an argument is suggested by Habli
and Kelly [75]. For program verification, such an argument must include
evidence that the tool’s model of the semantics of the programming language
is correct with respect to the behavior of the compiled code. This evidence is
related to the tool and can in many cases be gathered once.

For tactical planners, however, the formal model typically is not so detailed
as to capture the semantics of software, but rather is coarser to efficiently rea-
son about more abstract behaviors over longer time horizons. In general, this
makes the formal model dependent on the specific problem, so the evidence
of correct models must be handled per instance, and cannot be gathered only
once. Other aspects of the correctness of a tool, such as correctness of the
proof system and the implementation of the tool, can still be gathered once.

One approach for structuring the safety argumentation for ADS based on
formal methods is presented in Paper A. The paper uses the Goal Structuring
Notation (GSN) [76] to illustrate the structure of the argument. GSN is a set of
graphical elements and relations that can be used to graphically show how an
argument is structured in a GSN goal structure, which is an acyclic directed
graph. The graphical elements of GSN are shown in Fig. 3.1. Rectangles
represent goals, and these are the elements that correspond to requirements
whose fulfillment must be supported by compelling evidence. Parallelograms
represent strategies, which are arguments that justify how a goal is supported
by other evidence. Circles represent solutions, which are concrete pieces of
evidence. For instance, a formal proof may be taken as evidence for a solu-
tion. Ellipses labelled with capital “A” and rectangles with rounded corners
represent assumptions and contexts, respectively. They both indicate the set-
ting of the element that they are related to, and they implicitly apply to
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elements that provide evidence for the elements that they are directly related
to. GSN includes the two relations SupportedBy and InContextOf, which are
represented by arrows with solid and hollow heads, respectively. The diamond
is used to decorate elements that are yet to be developed into a structure with
supporting evidence.

Solution

⟨description⟩

Strategy

⟨description⟩

Goal

⟨description⟩

Assumption

⟨description⟩
A

Context

⟨description⟩

Figure 3.1: The core elements of a GSN goal structure. The solid and hollow
arrowheads denote the SupportedBy and the InContextOf relationship,
respectively. The diamond indicates an undeveloped element.

A GSN goal structure for a formal model and specification can be seen in
Fig. 3.2. The goal is for the formal model to fulfill the specification in the
form of a formal guarantee that expresses that crashes must not occur, and
this is captured in G1. Fulfillment of G1 is supported by the formal proof,
which is referred to by a unique ID. However, the context of the goal G1
ought to be given explicitly, i.e., the circumstances under which the goal is
fulfilled. The context of the goal includes three formal models that describe
the behaviors of the subsystems shown in Fig. 1.1. Without the context of
the formal models to which the proof is referring, the proof has no meaning.
Clearly, the formal guarantee that is proven to be fulfilled is also an important
part of the context. Lastly, an ADS operates in an ODD that describes the
intended operating environment. A formal model of the ODD describes how
the ADS interacts with its environment, and in Fig. 3.2 it is assumed that the
formal model of the ODD includes the environments in which the ADS will
operate.

Paper A argues that the correct realization of the subsystems implies the
correctness of the ADS, and at its core, the approach in Paper A splits the
argument in two parts. One part is concerned with the evidence of the correct
realization of the subsystems in Fig. 1.1, and the other part is an argument
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G1

Formal models
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Sensor Fusion and
Sensor assumptions

Formal model of Sensors
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match ODD
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Decision and Control
assumptions

Formal model of
Decision and Control

Formal proof

proof ID

Actuator assumptions

Formal model
of Actuators

Guarantee

There are
no crashes

Figure 3.2: GSN goal structure illustrating how a formal model and specification
can be argued to support the goal of fulfilling the specification.

based on the structure in Fig. 3.2. The argument is illustrated in Fig. 3.3,
where evidence supporting that the ADS cannot crash is split into two sepa-
rate arguments, the strategies S1 and S2. S1 represents the evidence that the
subsystems are implemented correctly. As can be seen in the figure, correct-
ness of the subsystems means that there is evidence for the fulfillment of the
goals G3, G4, and G5, where each goal states that the subsystem’s behaviors
do not violate the behaviors of the corresponding formal model. A GSN goal
structure showing the entire break-down from a safety goal onto subsystems
is shown in Fig. 3 in Paper A.

Assume that those three goals are fulfilled. If it can be proven that the
formal models fulfill the guarantee, then G1 must be fulfilled in the ODD,
because the guarantee is a formalization of G1. Thus, evidence that G2 is
fulfilled is also evidence that G1 is correctly broken down into G3, G4, and
G5, and this is the argument being made by the strategy S2.

The three goals of the subsystems are undeveloped and must themselves
be supported by a compelling safety argumentation. The ISO 21448 and
ISO 26262 standards provide means and processes for structuring such argu-
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Figure 3.3: GSN illustrating an argument for the correct break-down of the goal
G1 onto the goals G4, G5, and G6. See Fig. 3 in Paper A for more
details.

ments.
The contributions of Paper A suggest how the results of formal methods

applied to tactical planners fits in a compelling safety argument.
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CHAPTER 4

Correct-by-Construction Tactical Planners

In theory, formal methods are a promising approach for the development of
correct tactical planners, and case studies have been performed to demonstrate
the real usefulness of formal methods applied to practical problems [25], [77]–
[81]. Tactical planners are special because of three characteristics;

• they make discrete decisions in environments where they interact with
other road users;

• they make the decisions while moving, so the vehicle’s position changes
continuously; and

• they need to be agnostic of absolute position since they should operate
in large parts of the world’s road network.

These three characteristics require special consideration because temporal
specifications are needed to describe the desired interactions, and the level
of abstraction of the states have to be chosen carefully.

This chapter describes how these characteristics affect the modeling of the
planner and the environment, and the formalization of the requirements. Es-
pecially, different modeling formalisms are compared to expose benefits and
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drawbacks of using one formalism over the another. The results and conclu-
sions in this chapter are mainly based on Paper B, Paper C, Paper D, and
Paper E, but some parts are also from Paper A.

4.1 Safety of Minimal Risk Maneuver
Recall from Chapter 3 that an ADS performs the Dynamic Driving Task (DDT)
in a specified Operational Design Domain (ODD). For Level 4 ADS it is also
required to perform the DDT fallback, also called a Minimal Risk Maneu-
ver (MRM), to reach a Minimal Risk Condition (MRC). The MRC is typically
a state where the vehicle is stationary and preferably some distance away from
the active part of the road so that the risk of encounters with other traffic
is low. As a consequence, the MRM usually includes braking in a controlled
manner and maneuvering out of the active traffic lanes. The need to activate
an MRM is prompted by events that compromise the safety of sustained op-
eration of the DDT. Leaving the ODD is one such event, but events such as
internal failures of the ADS may also trigger the activation of an MRM.

Paper B investigates how formal verification can be used to ensure correct-
ness of the activation of an MRM for an AV. The task of the vehicle is to
complete a transport mission starting from a parking lot and ending in an-
other parking lot. Between the parking lots is a road network that the vehicle
has to navigate through. The safety aspects of the MRM activation is handled
by a tactical planner, which unfortunately is denoted as a safety supervisor in
Paper B. The safety planner coordinates nominal planners and controllers, and
the safety planner must activate the safe-stop trajectory planner in the event
of a failure of any of the nominal planners. The safe-stop trajectory planner
continuously monitors the road and evaluates several different trajectories to
reach positions near the road where reaching an MRC might be suitable. The
trajectories that reach suitable positions for an MRC are updated regularly
to be available for the safety supervisor to activate when needed.

In the particular study of Paper B, the considered failure events were loss
of localization capability caused by a GPS sensor failure, and failures of the
nominal planners to plan new paths when the vehicle is close to the end of
the current path. Loss of localization capability prompts an MRM because
the ADS cannot know whether the current location is part of the ODD, and
because the paths planned by the nominal planners are not safe when the
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current position of the vehicle is not fully known. The failure of one of the
planners to plan a new path prompts the activation of an MRM because
driving without a path is unsafe, and stopping outside of the active lane is
preferable to stopping in the middle of the road.

Formal verification is a versatile tool for proving absence of faults, which is
experienced in Paper B. Paper B uses Model Checking simultaneously with
model-based design in an iterative process to develop the safety supervisor.
The system is modeled in Promela and verified with Spin [33]. As discussed in
Section 2.7, the model of the supervisor and its environment are merged and
there is no precise distinction between the two. In this context, since the cor-
rectness of the supervisor is the main focus, all other subsystems of the ADS
and the environments defined by the ODD are considered the environment of
the model of the supervisor. The different subsystems are two different nom-
inal path planners, one safe-stop trajectory planner, one nominal trajectory
planner, the localization module with the GPS sensor, a low level controller,
and the vehicle dynamics, all of which can be seen in the architecture in Fig. 1
on page B6 in Paper B. The model of the implemented supervisor is proven
to be correct assuming that the models of the other subsystems and the ODD
fulfill the properties of the real environments that the ADS is deployed into.

The formal specification of desired properties is given entirely in LTL. As
noted in Paper B, the implementation of the supervisor was easy to inte-
grate with the rest of the vehicle’s systems, and no errors were found during
simulation or in-vehicle experiments. Although the simulations and in-vehicle
experiments were not exhaustive, the smooth integration gives some indication
that the process with alternating design, implementation, and model checking
contributes to less errors than if it had not been used.

In terms of safety argumentation, Paper B does not explicitly detail how
the results and the artifacts contribute to a safety case. However, many of
the important artifacts and pieces of evidence at the behavioral level of the
ADS as detailed in Paper A are produced. The formal proofs of the for-
malized requirements show that the models of the subsystems together fulfill
the requirements. Implicitly, the formal models are then taken to be the re-
quirements on the subsystems, although the approach is both top-down and
bottom-up. As realizations of several subsystems already were available at the
start of the study in Paper B, the formal models were initially based on the
implementations of those subsystems, but during the development of the su-
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pervisor there were changes made in the formal model that prompted changes
in the realizations.

To show that the realizations of the subsystems fulfilled the behaviors of the
formal models, the subsystems of the ADS were tested separately by unit tests,
together in simulations, and together in in-vehicle tests. The tight connection
between the supervisor model and its implementation also meant that the
proofs of the correctness of the formal model can help justify the correctness
of the implementation. Still, as noted in Paper B, the need to synchronize the
formal model and the implementation of the supervisor is a weak point in the
process, which requires other means of gathering evidence of its correctness.
In Paper B this is done by testing in simulation and in-vehicle tests.

The study in Paper B shows that it can certainly be useful to use Model
Checking for LTL formulas in the development of safety-critical tactical plan-
ners for AVs. However, formal verification has some drawbacks. Paper B
concludes that the model of the planner has to be updated to match new
implementations of the planner. Manual modeling always has the possibility
of introducing faults [22], and remodeling naturally increases that risk. The
modeling can in some instances be made automatic, but then the same caveat
applies for the translation algorithm. Another drawback, experienced by Zita
et al. [26], is when a specification does not hold and the formal verification
reports a counterexample that is difficult to remedy manually.

Furthermore, in Paper B there are several different requirements that must
be fulfilled by the models. Theoretically, these requirements can all be con-
juncted and model-checked together. Practically, that approach is not feasible
in general because the size of the Büchi automaton used in Model Checking
is worst case exponential in the size of the LTL formula [31].

Not conjuncting the formulas has other beneficial effects because different
LTL formulas refer to different atomic propositions, and they use different
temporal connectives. This can be exploited by the Model Checker to ef-
fectively reduce the size of the problem instance. For instance, as stutter
trace equivalent path fragments satisfy the same LTL\◦ formulas, the Model
Checker can potentially collapse many states of the formal model with the
same atomic propositions, thus likely reducing the problem size. Conjuncting
several LTL formulas may then reduce these opportunities.

Model Checking each requirement separately is a drawback when the re-
quirements are not fulfilled by the model. A failed verification results in a
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counterexample that may be used to find and help correct faults in the model.
However, a correction for one requirement might also invalidate another re-
quirement. These drawbacks mean that manual effort is required to iteratively
design correct models, as was done in Paper B. Formal synthesis automates
this process to find a model that satisfies all the requirements.

4.2 Comparison of Reactive Synthesis and
Supervisory Control Theory

The purpose of this thesis is to investigate whether and how formal meth-
ods, and in particular formal synthesis, can be used to design safe tactical
planners. Part of the investigation into formal synthesis is performed in Pa-
per C, in which two small case studies are set up to compare Reactive Syn-
thesis (RS)[24] and Supervisory Control Theory (SCT)[23], [41] from a more
general modeling perspective. Though Paper C considers the two specific
formalisms GR(1) [39] and SCT and the two specific tools TuLiP [40] and
Supremica [45], the interesting result for this thesis is the comparison of some
of the different characteristics of the formalisms. The comparison in Paper C
is based on two case studies; a turn-based game and an automated vehicle
scenario.

From a technical and theoretical standpoint, RS and SCT differ quite sig-
nificantly, but studies have shown that most aspects can be translated from
one formalism to the other [82]–[84]. However, maximal permissiveness can-
not in general be enforced in RS, and liveness properties cannot in general be
enforced in SCT, at least not for the formulations considered in this thesis.
In contrast to the theoretical studies, Paper C studies what these differences
mean for a practitioner when modeling. The two problem instances studied
in Paper C were chosen to focus on the modeling differences of the formalisms
in general, and not specifically focused on automotive applications.

One fundamental difference between TuLiP and Supremica is the modeling
format. TuLiP has support for synthesis with LTL specifications, albeit the
restricted fragment of GR(1), while Supremica’s modeling is performed with
automata. Although writing LTL or drawing automata is a major difference
in terms of modeling language and for the process of the designer, it does not
seem to matter in terms of what problems and solutions that formal synthe-
sis can be applied to, at least not in the problems investigated in Paper C,
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Paper D, and Paper E. Based on the theory of formal languages in Chapter 2
and the results in Paper C, it seems like the modeling formats are sufficiently
similar to allow expressions of similar structure in an automata sense.

4.3 Patching with Supervisory Control Theory
Paper C compares RS and SCT from a modeling perspective and does not
focus on the applicability of formal synthesis for tactical planners. This appli-
cability is investigated in Paper D and Paper E. The most relevant results of
Paper D are presented in this section, and the most relevant results of Paper E
are presented in the next section.

The goal of Paper D is to patch a fault in a manually implemented tactical
planner that is responsible for deciding when it is safe to make lane changes
(Lateral State Manager (LSM), shown in Figure 1 in Paper D). The manually
implemented code was modeled by Zita et al. [26] and formally verified with
Supremica [45]. The result of the verification exposed several faults, of which
one was very elusive in the attempts to manually correct it. Paper D attempts
to automatically produce a patch for the LSM by using Supremica to formally
synthesize a supervisor.

The supervisor obtained for the LSM this way is correct by construction, but
it is clear that “correctness” in this case does not mean the same as patching
and correcting the LSM. To come to this conclusion, that the supervisor did
not rectify the fault within the LSM, requires inspection of the supervisor.

Supremica can generate supervisors as automata in several different ways.
The simplest automaton obtained from Supremica in the scope of Paper D
consists of 700 states, and is unreasonable to visually inspect. Another op-
tion for interpreting it can be to simulate it, but that defeats the purpose of
automatic synthesis.

However, Supremica can also use BDD-based synthesis, where the result is
added as updates to the existing plants instead of generating new automata1.
It is evident that the updates added by the synthesis do not have the intended
effect of patching the fault; instead of correcting the fault the guards put
limitations on which values the inputs to the LSM can take. Typically, a
planner cannot restrict its inputs, so this synthesis result it highly undesirable.

1The BDD-based synthesis is convenient when patching since the updates are easy to
translate to if-statements and add to the original code.
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The issue can be traced back to the model, but would not have been found
easily if it were not for the possibility to inspect the generated supervisor.

4.4 Reactive Synthesis and Supervisory Control
Theory for Realization

Paper D and Paper E are similar to each other, but where Paper D applies
synthesis with SCT on an existing model, Paper E investigates how the formal
models and requirements from Paper B can be used as a basis for synthesis
with RS and SCT. The purpose of Paper E is to find benefits and drawbacks of
using RS and SCT as modeling languages, both compared to each other, but
also compared to the Model Checking performed in Paper B. The comparison
is made on models in the tools TuLiP and Supremica. The intention is not to
compare the performance of the tools themselves.

The hypothesis of Paper E is that the synthesis effort would be low because
requirements and models are already available from Paper B. This is true for
the requirements.

The requirements are directly usable for RS, except that some LTL formulas
used in Paper B cannot directly be formalized in the GR(1) fragment. For
instance, there is a requirement specifying that the vehicle must reach the
goal infinitely often or it must eventually be stopped safely forever. This is
formalized as □♢g∨♢□s, where g represents the goal position and s represents
being safely stopped. ♢□s cannot be expressed in GR(1). This was dealt with
by conjuncting the specifications □♢s and □(s→ ◦s). The former means that
s must hold infinitely often, and the latter means that once s holds, then s

holds forever in the future. The combination of these specifications satisfy
♢□s. However, this is a stricter specification than ♢□s, because ♢□s allows
behaviors of the kind (s)(¬s)(s) · · · (¬s)(s)(s) · · · , while □♢s∧□(s→ ◦s) does
not. This is not a problem in Paper E, however, because the intention of the
specification is that once s holds, it shall hold forever in the future.

The specifications for SCT were implemented as automata with the LTL
specifications as blueprints. The requirements have simple formalizations in
Supremica, but because the semantics of LTL and automata in SCT differ,
the specifications in Supremica does not express precisely the same behavior
as in LTL.

The models, on the other hand, is not as easily used for synthesis. The
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models in Paper B have different level of abstractions. The model of the
vehicle describes the relation between position and speed, whereas the tactical
planner makes decisions on a much higher level. In Paper E it is found out
that this mix of abstraction levels is difficult to handle in synthesis with TuLiP
and Supremica. The tactical planner automatically gets access to the low level
states of the vehicle model, which means that the planner is synthesized to
operate in environments with the exact same length of the planned paths.
The planner must be more abstract than that to be sufficiently general to be
used in more diverse environments. It is also computationally demanding to
handle all the positions in the path in the synthesis algorithms. A higher level
of abstraction for the vehicle model is chosen in Paper E, but this puts more
demands on ensuring that the model and the low-level controller are correct.

In the following sections, combined results of Paper B, Paper C, Paper D,
and Paper E are presented. That is, conclusions and results that bridges
across all of these four papers.

4.5 Inspection of Results
One of the key findings of obstacles to using formal synthesis in larger scale
industrial applications is the importance of inspection of the results. When
the number of states of the supervisor or reactive module exceeds about 20
and when the states are highly interconnected, it becomes very difficult to
inspect and understand their resulting properties. Obviously, the supervisor
or reactive module adheres to the stated formal specifications that all have
very precise and formal syntax and semantics, but with several interacting
formal specifications it is increasingly difficult to anticipate all effects of the
interactions. An objection would be that the supervisor or reactive module
could be calculated by hand to get an understanding of the results, but that
defeats the purpose of applying automatic methods to reduce the efforts of
manual labor.

Interestingly, this obstacle of interpreting the results are also an issue within
machine learning (ML), and specifically within deep learning (DL) [85], [86].
On a high level the work processes of ML and formal synthesis are very similar.
A model of the environment is one input (data in the case of ML and a formal
model in the case of formal synthesis), the requirements is the second input
(reward function for ML and formal specification for formal synthesis), and a
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black box model is the output (a trained agent in ML and an automaton in
formal synthesis). The goal in both fields is to find a black-box result that
fulfills the requirements, adhering to the rules of the environment.

Although the solutions to these issues of explainability or ability to inspect
and understand most likely require different tools for analysis and interpreta-
tion, the interest of the topic in ML still indicates how important these issues
are to solve before the methods can be used with credibility; explaining why
and when they work are important when arguing that automated vehicles are
safe in certain operational domains. As described in Section 4.6, though, for-
mal synthesis has benefits in that the assumptions on the environment become
very clear because of the separation of environment and specification.

The problem of inspection is a large part of Paper D where the results
would otherwise not have been possible to understand. Paper E also includes
examples where the possibility to inspect the black-box result is important
in order to formalize the correct environment model and the correct require-
ments. In Paper C the focus was to compare the synthesis methods from a
modeling perspective, and thus the importance of inspection was not made
explicit. However, conclusions of the issue of inspection can still be drawn
from the results of Paper C.

Paper E further indicates the importance of interpreting the synthesis re-
sults. By inspection, errors are found in both the model of the environment
and in the formalizations of the requirements. In contrast to Paper D, which
only concerns SCT (more specifically Supremica), Paper E also brings these
conclusions into the field of RS, or at least synthesis with the GR(1) fragment,
by evaluating synthesis in TuLiP [40] side-by-side with Supremica [45]. Given
that booth tools implement fundamental algorithms in their field, it seems
likely that the results on inspection applies broadly in the fields.

In addition to finding errors in the formalizations, Paper E finds that in-
spection of the supervisor and the reactive module is an important tool for
qualitatively comparing the properties of them. For instance, it is possible to
visually inspect and conclude that the supervisor allows all the traces that the
reactive module accepts, but the reactive module does not accept all traces
that the supervisor allows.

Similarly, Paper C uses visual inspection of the supervisor and the reactive
module to ascertain that they represent the same solution in its first case
study. As the state spaces are relatively small, visual inspection is possible.
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The supervisor and the reactive module for the second case study in Pa-
per C, on the other hand, have huge state spaces that are unsuitable for visual
inspection, even if the length of the road is heavily reduced. The comparisons
in Paper C that require evaluation of the results are instead performed with
simulations. Simulations are enough to obtain the results and draw the con-
clusions presented in Paper C, but better tools for inspection might have
contributed to more profound results.

As already stated above, Paper B does not perform synthesis. However,
code and abstract state machines are used in the design to aid the under-
standing of the behaviors of the tactical planner. Compared to the generated
supervisor and reactive module, the code and abstract state machines seem
to facilitate understanding by providing structure and by collapsing (or ab-
stracting) states that have the same behavior.

The same idea might be applied to the synthesized planners’ states to sim-
plify the inspection of large supervisors and reactive modules. State transi-
tions of planners that have no effect on the current output might contribute
to an unstructured representation in the synthesized planners’ automata-
representations, and merging those states might benefit the understanding.

4.6 Verification vs. Synthesis
The main conclusion of both Paper D and Paper E is that it is helpful to
already have formal models and requirements, but they need to be reworked
before they can be successfully used in synthesis.

Zita et al. [26] provide plants and specifications in Supremica to find a
fault in the LSM. The approach of Paper D is to use the same plants and
specifications as input to formal synthesis to generate a patch for the LSM.
This approach fails, and the main reason seems to be that the verification
model does not have any separation of the planner and the environment. All
dynamics are treated as a description of the environment behavior, where
the planner can restrict all behaviors. The verification model is a direct
translation of the code, so every line of code is represented. However, what
matters for synthesis is how the inputs behave, how that affects the state, and
how the outputs should be set based on the inputs and the state.

Paper E illustrates more distinctly what type of changes are needed to go
from verification to synthesis. As noted above, the verification model has
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merged the environment and planner behaviors, and they have to be split
before the synthesis can start. To start from such a pre-existing model of the
environment simplifies the modeling for synthesis, but there is a significant
difference in syntax and semantics in the imperative verification model in
Promela on one hand, and the declarative LTL and automata in TuLiP and
Supremica on the other.

From an operational domain perspective the distinct separation of envi-
ronment behaviors and planner behaviors is a great benefit of the synthesis
process. As mentioned in Section 4.5 above, explaining when the synthesized
planner works is an important part of a credible safety argument [15], and
separate formal environment assumptions can simplify that argumentation.

The specifications expressed in LTL in Paper B can be used with almost
no changes in the synthesis of the reactive module in Paper E. Minor changes
are needed to account for the limitations that GR(1) brings. The translation
of the LTL formulas into automata for Supremica is more involved, but is
not an obstacle. However, the LTL specification of Paper B is not complete;
it only expresses the properties that are most interesting to verify. Hence,
more specifications are needed to synthesize a tactical planner with the same
behavior as the manually implemented one.

The incompleteness of the requirements in formal verification is only a draw-
back when they are later used in synthesis, however; when the only purpose is
to formally verify the planner and environment, the possibility to verify only
the properties that matter simplifies the process.

4.7 Modeling Considerations
As seen before, the level of abstraction of the models is important to consider
before applying formal methods to a design problem. The abstraction is an
important part of the model in any language, but there are also important
considerations as to which modeling formalism to use. As already indicated
in Chapter 2, the different formal languages have many similarities in their
underlying definitions and algorithms, but their semantics and what is possible
to express can differ widely. However, despite these differences, it can often
be possible to acquire similar results in the different formalisms by careful
modeling. This section mainly covers the differences in modeling for synthesis.

The GR(1) fragment, which the TuLiP model is restricted to, limits which
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formulas that can be used in the model. Although GR(1) excludes a large
part of LTL, it is still possible to specify such properties with a combination
of GR(1) formulas and extra atomic propositions in AP . Piterman et al. [39]
demonstrate how ‘until’ can be specified in GR(1) synthesis, and Paper E has
examples of how other non-GR(1) formulas are expressed. For instance, the
property of □(p→ □q), where p, q ∈ AP , can be expressed as:

□(q → ◦q) (4.4)
□(p→ q) . (4.5)

The formula (4.4) expresses that if q holds at one step, then it also holds in the
next. This ensures that once q holds, it will hold forever in the future. In (4.5)
it is expressed that q must hold whenever p holds. Combined with (4.4), this
ensures that q holds forever in the future whenever p holds.

Hence, as indicated by both Paper C and Paper E, the restrictions of GR(1)
do not seem to be an obstacle for synthesizing tactical planners in the con-
sidered problems. Whether these results are general is not clear and needs
to be evaluated by a more systematic review of the type of requirements and
environments that applies to a broader class of tactical planners.

The GR(1) restriction of LTL does not seem to be an obstacle for the
modeling compared to LTL, but the difference between the properties that
can be expressed in LTL in general and in SCT can become obstacles for
synthesis. Hence, it is important to select a suitable modeling formalism
depending on what type of problem that should be solved and what kind of
solution that is desired.

In Section 2.6 it is stated that supervisors synthesized with SCT are max-
imally permissive; the supervisor disables as few events as possible, while
still guaranteeing that all requirements are fulfilled. This characteristic of
supervisors is unparalleled in RS, so its effects are important for the choice
of synthesis formalism. Maximal permissiveness allows supervisors to restrict
unsafe behaviors, while the supervisors do not mandate which safe behav-
iors that should be promoted. Depending on problem and desired solution, a
maximal permissive planner can be a benefit or a drawback. The intention of
having maximally permissive supervisors is that they shall restrict a system
to the safe states and not interfere with decisions that are not affecting safety.
However, that intention does not prevent other uses, as illustrated in [87].

The simple stick-picking game modeled in Paper C, shows that maximal
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permissiveness does not always mean a difference when the supervisor is com-
pared to a reactive module. If there is only one solution to a problem the two
formalisms generate the same planner. However, it needs to be considered
that the number of possible solutions might not be known a priori.

The tactical planners synthesized by Supremica in Paper C and Paper E
show the effects that maximal permissiveness has. In many states of these
supervisors several controllable events are allowed to fire. It is up to the plant
in its role as event generator to fire one of them, or in some cases wait for an
uncontrollable event to fire. The supervisors give no indication of whether one
event is better than another, only that the enabled ones all keep the system
in a safe set of states if fired. This can be an opportunity or a drawback. If
the supervisor is intended to be a restriction that maintains a vehicle in a safe
set of states, then it might be beneficial to only formalize the safety related
requirements.

Reactive modules are not maximally permissive. The reactive modules that
are synthesized by TuLiP in Paper C and Paper E have one certain output
for each input. This means that they have one defined behavior and do not
represent only a restriction of the actions, they define exactly what decision
to make. A caveat of this characteristic is, as noted in Paper E, that it may
emerge behaviors that seems enforced, whereas they are actually not. Consider
a formal model and specification that are synthesized into a tactical planner
that exhibits a desired behavior that seems enforced but is not. Consider also
that the tactical planner later must be augmented with a new specification not
relating to the original desired behavior. Since the original desired behavior
is not specified there is a chance that it disappears in synthesis with the new
specification.

As Paper E illustrates, a maximally permissive supervisor will display such
specification omissions while a reactive module might show them. As discussed
in Section 4.5, it is difficult to understand what properties all the interactions
between the specifications result in. Maximal permissiveness gives a possibility
to view what properties that are specified or not.

Further considerations when choosing between synthesis formalisms are
progress, cycles, and turns. Progress means that the planner and the en-
vironment are “moving” toward the marked states. In TuLiP, progress is
synonymous with liveness, but the term progress is used in this thesis since
liveness has a strict definition and is not defined for Supremica.
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The accepted languages of TuLiP and Supremica differ in two important
aspects related to progress: the length of the paths, and whether marked states
must appear in them. TuLiP builds upon the semantics of LTL, which means
that the language of the environment and the formal specification consists
of infinite strings of states, where marked states appear infinitely often (see
Section 2.3). With □♢ it is therefore possible to specify that a system shall
reach a certain state, and the synthesized reactive module guarantees that the
state is eventually reached. Supremica, on the other hand, is based on FSM
that only accept finite strings of states. These accepted strings of states either
end with a marked state, or are prefixes of such strings; the language contains
finite words for paths that do not include marked states (see Section 2.6).
What this means for the modeling semantics in SCT is that a system may
reach a marked state, and the synthesized supervisor must allow the marked
state to be reached.

The specifications of Supremica cannot force progress, but the the maximal
permissiveness of a supervisor means that the structure of its FSM representa-
tion allows all safe progress properties. In a sense, a supervisor allows all safe
progress properties by default, while a reactive module generated by TuLiP is
only guaranteed to satisfy the specified progress properties.

Paper C discusses cycles in connection to progress. Cycles are sequences
of states that are repeated forever. They are easy to express in TuLiP, as
shown in Paper C. A benefit of using TuLiP in this case is that it is apparent
if the specified cycles cannot be satisfied, because TuLiP will then generate
an empty reactive module.

Paper C outlines a method to, in a sense, force cycles in Supremica. The
plant is structured in a way such that a supervisor cannot prevent further
execution cycles. This is achieved by having one marked location with an
uncontrollable event on the outgoing transition. So, if the plant fires the un-
controllable event (which the supervisor cannot prevent), then the supervisor
also has to allow the plant to fire the remaining events to complete the cycle
(because of the marking). Though this does not produce cycles that are re-
peated forever, it makes sure that, if the plant so chooses, there is always the
possibility for another cycle.

For instance, consider the automaton in Fig. 4.1. If the event e2 is control-
lable, then a supervisor is allowed to disable e2 and prevent further transitions
from b to a. However, if e1 is made uncontrollable, then a supervisor cannot
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a b

e1

e2

Figure 4.1: A simple example of an automaton with a cycle. If e2 is uncontrollable,
then a supervisor cannot prevent cycles to progress.

prevent arbitrary long cycles through a and b.
One reason to force cycles is to emulate a game where two or more players

take turns in a sequential manner. TuLiP synthesizes a reactive module by
solving a game between the environment and the reactive module, which is
a benefit in some applications. For instance, in the second case in Paper C,
both cars must be allowed to decide their individual speed in each cycle (time
step). The environment model or formal specification in TuLiP do not need
formulas expressing how the speed updates shall be interleaved. Supremica,
on the other hand, needs a separate plant whose only purpose is to ensure
that the environment and supervisor update the speed in turns. Since these
cycles represent the passing of time in some sense, it is crucial that they can
continue forever.
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CHAPTER 5

Discrete Modeling and Automatic Abstractions

Vehicles move in continuous time and space, but tactical planners make de-
cisions at discrete time instances, and their available decisions may be from
a discrete set of actions. Such systems, where a physical system and a dig-
ital computer affect and interact with each other, are often referred to as
Cyber-physical systems [88]. The physical system has an infinite number of
states and is governed by continuous dynamics in continuous time, whereas
the digital computer has a finite number of states and is governed by discrete
transition relations and discrete events.

The methods described in Chapter 2 and Chapter 4 all expect a finite
state model as input. For these formal methods to be usable to provide
proof of correctness for tactical planners operating in a cyber-physical system
context, the physical system must be modeled as a finite state transition
system. Hence, the continuous time evolution of the physical system must be
turned into a transition relation between states, and the infinite state space of
the physical system must be represented as a finite set of states. In this thesis,
representing a continuous time evolution with a transition relation is called
discretization, and representing a large number of states with fewer, as in the
latter case, is called abstraction. The original physical system is from here on
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referred to as the continuous system, the discretized system is referred to as
the concrete system, and the system obtained after abstraction is referred to
as the abstract system.

For the abstract system to be usable, its relation to the concrete system must
fulfill properties such that verification or synthesis on the abstract system also
carry some meaning in terms of the concrete system. What these properties
are depend on the applied methods and requirements. As an example, it is
easy to correctly abstract many systems to a transition system with one state
and one transition that forms a self-loop that starts and ends in the same state.
This abstraction may correctly represent the possible behaviors of the concrete
system, albeit on a very abstract level, but the abstract system is not usable
for any practical analysis of the concrete system. When using the abstract
system for synthesis, a natural property to require on the relation between
abstract and concrete system is that, if a planner fulfilling its specification
is found for the abstract system, then a corresponding planner can also be
found for the concrete system. For verification it is usually required that,
if the concrete system system does not fulfill the specification, nor does the
abstract system.

In general, from the point of view of the computational complexity of for-
mal methods algorithms considered in this thesis, it is desirable to obtain an
abstraction which is as coarse as possible. To be usable, however, the for-
malization of the requirements must still be sufficiently detailed. That is, the
state set of the abstract system consists of as few states as possible, while the
specification can still distinguish between good and bad behaviors.

This chapter details modeling considerations for manually modeling dis-
crete abstract systems, and presents automatic methods to obtain discrete
abstractions from infinite state systems.

5.1 Considerations for Manual Modeling
During manual modeling of finite transition systems, the abstraction can be
done to different levels. For instance, Paper B and Paper C abstract a vehicle’s
longitudinal dynamics1 in fine detail (or low abstraction), where the distance
traveled is divided into many small steps. The discrete speed determines how

1That is, the dynamics in the driving direction. Paper B considers the motion along paths
and Paper C considers a straight road.
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many steps the vehicle moves in each time step, just like the dice decide how
many streets the players move in Monopoly2.

A major advantage of a low level of abstraction is the type of formal spec-
ifications that can be expressed. If the model has many details it is also
possible to express detailed specifications. Both Paper B and Paper C display
this advantage. In Paper B it is possible to express a specification for ‘do not
pass the end of a path’, and in Paper C it is possible to express that the two
automated vehicles shall ‘keep a safe distance’. Both of these specifications
are intuitive to state as they refer to end effects.

In the end, what is important for tactical planners is that they are safe,
which means that they must not crash. The low level of abstraction used in
Paper B and Paper C means that such ‘do not crash’-requirements can be
expressed directly.

The detailed models of Paper B and Paper C come with a price, however.
Their low level of abstractions are impractical for two reasons.

Firstly, the correctness of the planners is restricted to the certain model of
the environment, which in Paper B means the specific lengths of the paths,
and in Paper C means a circular road of a certain size and exactly one other
vehicle. In practice, a vehicle is used in much more varied situations than
what is modeled in Paper B and Paper C. Even if an automated vehicle has
a very restricted ODD, there are far too many roads and traffic occupants to
model them all. In conclusion, the tactical planners must be generic and fit a
wide range of environments with a weak dependence on detailed states. Since
Paper B uses model checking in the development of the planner, it is possible
to design a generic planner and verify it on a detailed model; the planner
can handle several different paths and is verified on one detailed path. An
induction argument could be made for its correctness on other paths. Paper C,
however, uses synthesis to generate a planner, and that planner’s decisions
depend on both vehicles’ positions on the road. Removing the other vehicle or
increasing the number of steps of the road after synthesis has been performed
creates invalid states, so the decisions of the planner become nonsense.

Secondly, the low level of abstraction means a large number of states. Even
if the operational domain is limited, there will be a huge number of states.
Formal methods suffer from the state-space explosion problem, which means
that the memory needed to store all states becomes too big to be tractable.

2And just like in Monopoly, something bad happens when moving too fast.
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For any reasonably capable tactical planner the state-space explosion problem
would be a serious obstacle with a low level of abstraction. The paths in
Paper B has a maximal length of 1500 steps, and Spin [33] cannot handle
much more. Supremica is close to the memory limit already when the road in
Paper C is 100 steps long.

Paper D and Paper E aim to synthesize generic planners that are not bound
to specific positions as in Paper B and Paper C. To accomplish that, their en-
vironment models have a higher level of abstraction. Neither of the two papers
have states that represent detailed position, but rather the states represent
operational modes. Paper E, for instance, does not include position along a
path or the vehicle’s speed in the model of the environment. Instead, the
model considers all positions along one path as one state, and the vehicle can
either be stopped or driving. This higher level of abstraction leads to generic
planners since the details of the paths in Paper E do not matter to the planner,
as long as the process of passing between them is the same.

In addition to the benefit of allowing generic planners, synthesis with high
levels of abstraction also decreases the size of the state space. Then the
synthesized planners become easier to inspect and interpret.

A downside of a high level of abstraction can be that each state captures
a wide variety of behaviors. When constructing an argument in the safety
case, this might put a large burden on the collection of evidence that should
support the correctness of the abstract model. A high level of abstraction can
therefore ease the effort for the synthesis or verification, while leaving so much
effort on gathering evidence to justify the assumptions in the model that the
gain of using formal methods is defeated.

5.2 Automatic Methods
Instead of manual modeling of finite state systems, it is possible to use auto-
matic methods that divide the continuous state space into a finite number of
blocks of a partition. One such abstraction method is bisimulation [89]. Bisim-
ulation is guaranteed to find finite partitions for certain classes of systems [90],
but in practice it is also useful for finding finite abstractions for systems of
other classes. Bisimulation preserves all LTL properties [22], which makes
it useful for automatically abstracting systems to be used in Model Check-
ing or Reactive Synthesis with LTL specifications. The abstraction method
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introduced in Paper F builds on bisimulation, so a short summary of bisim-
ulation and some motivations are presented before the results of Paper F are
discussed.

One common way of constructing the partition for the abstract system is to
start with with a coarse partition and iteratively split blocks until the abstract
system has the properties sought after.

Formally, a set Π = {P1, P2, . . . , Pn} is a partition of a set S if Pi ̸= ∅ for
all i, Pi ∩ Pj = ∅ for all i ̸= j, and

⋃
1≤i≤n Pi = S. That is, the elements of

a partition Π are non-empty, disjoint, and together contain all the elements
of S. The elements of a partition are called blocks. The union of an arbitrary
number of blocks is called a superblock.

Let R be an equivalence relation on the set S. For an element s ∈ S, the
equivalence class of s with respect to R is [s]R = {s′ ∈ S | (s, s′) ∈ R}. The
set of all the equivalence classes of R, also called the quotient of S modulo
R, is S/R = {[s]R | s ∈ S}. The quotient of S modulo R is a partition of S,
and a partition Π induces an equivalence relation R if S/R = Π. A partition
Π1 is finer than a partition Π2, and Π2 is coarser than Π1, if the induced
equivalence relations R1 and R2 fulfill R1 ⊆ R2. For a more detailed and
formal presentation of the notation in this chapter, see Section 2.

Bisimulation
Two states s1 and s2 in a transition system are considered bisimilar if the
two following properties hold. First, they must be labeled with the same
atomic propositions. Second, it must be the case that any transition from s1
to state s′

1 can be matched by a transition from s2 to some state s′
2, where s′

1
and s′

2 are themselves bisimilar. Consider for instance the transition system
G = ⟨S,Σ, δ, S◦,AP, L⟩ in Fig. 5.1. The states a1 and a2 are bisimilar because
they have the same label, and the only transition that can be taken from each
of them leads to states that are bisimilar. On the other hand, the states b1
and b2 are not bisimilar, because b1 has an outgoing transition to the state a2
with label a and b2 only has a transition to b1. As a2 and b1 have different
labels, they cannot be bisimilar, thus, so cannot b1 and b2.

More formally, a relation R ⊆ S × S is a bisimulation relation if for all
pairs of states (s1, s2) ∈ R it holds that: L(s1) = L(s2); and, if there is some
σ1 and some state s′

1 such that (s1, σ1, s
′
1) ∈ δ, then there exists some σ2

and some s′
2 such that (s2, σ2, s

′
2) ∈ δ and (s′

1, s
′
2) ∈ R; and vice versa. The
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a1 : a a2 : aA1

a3 : aa4 : aA2 b4 : b b3 : b

b1 : b b2 : b

B2

B1

c1 : c c2 : c Cd2 : dd1 : dD

σ1

σ1

σ1

σ1
σ2

σ1

σ1

σ1

σ1

σ2σ2

σ1

σ1 σ1 σ1

σ1

σ1 σ1

σ2

Figure 5.1: A transition system G adapted from Paper F. Circles represent states.
The symbol before the colon in the text in the states is the state’s
name, and the symbol after the colon is its atomic proposition. The
labels on the transitions are the actions. The capital letters are labels
on the set of states represented by the dashed rectangles. The dashed
transition from b4 to c1 is removed compared to Paper F.

coarsest partition Π that is closed under a bisimulation relation R is called
the bisimulation quotient, and it is defined as Π = S/R in Paper F.

The coarsest partition of the system G in Fig. 5.1 with respect to bisimu-
lation consists of eleven blocks where {a1, a2} is one block and the remaining
states are in one block each. The abstract system, denoted by G/R, is con-
structed such that the abstract states are the blocks of the partition. Tran-
sitions are added between the states in the abstract system corresponding to
the transitions between the concrete states. That is, if (s1, σ1, s

′
1) ∈ δ in G,

then a transition is added in G/R between the block that contains s1 and
the block that contains s′

1. Hence, the abstract state {a1, a2} in Fig. 5.1 will
have a self-loop, and there will be a transition from the abstract state {b1} to
{a1, a2}. The labeling function of the abstract system assigns labels accord-
ing to the labels of the concrete states in the block. The label is always well
defined since all the concrete states in every block must have the same label.

An algorithm to calculate the bisimulation quotient for a transition system
is shown in Algorithm 1. It starts with a partition of S where the blocks consist
of all states that have the same labels, as seen on lines 1 and 2 of Algorithm 1.
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Algorithm 1: Coarsest bisimulation
Input: Transition system G = ⟨S,Σ, δ, S◦,AP, L⟩
Output: Coarsest bisimulation quotient

1 R0 ← {(s1, s2) ∈ S × S | L(s1) = L(s2)};
2 Π0 ← S/R0;
3 i← 0;
4 while there exists a splitter T ∈ Pi of some block P in Πi do
5 P0 ← P ∩ Pre(T );
6 P1 ← P \ Pre(T );
7 Πi+1 ← (Πi \ P ) ∪ {P0, P1};
8 i← i+ 1;
9 end

10 return Πi;

Because bisimular states must have the same label, the partition P0 must be
at least as coarse as the bisimulation quotient. In the while-loop, lines 4–
9, the algorithm uses the one step predecessor operation Pre(·) to determine
whether blocks must be split further. The one step predecessor operation is
defined for sets T ⊆ S as

Pre(T ) = {s ∈ S | there exists σ ∈ Σ and t ∈ T such that (s, σ, t) ∈ δ} .

It is the set of all concrete states that in one transition can reach a concrete
state in the target set T . In line 4, a block T is a splitter of a block P if
P ∩ Pre(T ) ̸= ∅ and P \ Pre(T ) ̸= ∅. In Fig. 5.1, Pre(A1) = {a1, a2, b1} is a
splitter of B1 = {b1, b2} because B1∩Pre(A1) = {b1} and B1 \Pre(A1) = {b2}.
The blocks are split accordingly until none of the blocks need to be split
further. More details of the algorithm can be found in the book by Baier and
Katoen [22].

Linear discrete-time systems can be abstracted by a bisimulation algorithm
by the use of linear operations on convex polytopes [91]. The one-step prede-
cessor operator is defined in the same way, but the sets are represented as a
combinations of linear constraints.
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Consider the following linear discrete-time system:

x(k + 1) =
[
1 2
0 1

]
x(k) +

[
2
2

]
u(k) , (5.6)

where x ∈ X ⊆ R2 is the state, and u ∈ U ⊆ R is the control input. A
transition system with an infinite number of states and transitions can be
based on X as the state set, U as the set of actions, and (5.6) as the basis
for the transition relation δ. See Section 2.1 in Paper F for a more general
description.

The system (5.6) can describe the dynamics and the low-level controller of
the vehicle in Paper B and Paper E, where x = [d, v]T is the vehicle’s position
and velocity along the path, respectively. The input signal u is the acceleration
request, and is bounded to U = [−0.5, 0.5]. The vehicle must not pass the
end of a path until a new one has been constructed. For the sake of example,
assume that the current path p1 starts at −4 and ends at 0, and that the next
path, p2, shall be planned from 0 to 4. This division of the state space X
can be represented by labeling all the states with atomic propositions from
AP = {p1, p2} according to whether the position d is positive or negative.

The result of running the bisimulation algorithm on (5.6) until there are no
more splitters with an area larger than 0.01 area units is shown in Fig. 5.2.
The state set X is represented by the thick black line, and each region within
X represents one block in the final partition. However, since the algorithm is
terminated when there still exist splitters, the coarsest bisimulation quotient
is finer than the shown partition. The figure is meant only for illustrative
purposes to show that the bisimulation quotient consists of many blocks.

The specification preventing the vehicle from driving off the end of a path
in (B.11) in Paper B has the form □(d > 0 → q), where q is an atomic
proposition representing whether the next path has been planned. With the
propositions of the abstract system, this can be expressed as □(p2 → q)
because p2 represents all positions greater than 0. A planner for the abstract
system chooses at least one transition that is allowed in the current abstract
state, and such a planner can be modeled manually and verified by Model
Checking, or it can be synthesized by Reactive Synthesis.

66



5.2 Automatic Methods

−4 −3 −2 −1 0 1 2 3 4
d [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
v

[m
/s

]

Figure 5.2: The resulting partition of (5.6) after Algorithm 1 has been run until
all new splits result in blocks with an area less than 0.01 area units.
The state set X is represented by the thick black line, and each region
within X represents one block of the partition. The states labeled
with p2 are all in the large block to the right of 0 on the x-axis.

Robust Stutter Bisimulation
The feasibility of formal methods is highly dependent on the size of the state
space, so it is desirable to construct abstract systems with as small state spaces
as possible. As seen in Fig. 5.2, the bisimulation quotient for (5.6) consists
of many blocks; too many for the abstraction to really be useful. Also, the
usefulness of the coarsest bisimulation quotient of the transition system in
Fig. 5.1 is debatable, since the abstract system only consists of one less state
than the concrete system.

It can be observed in Fig. 5.1 that any path fragment starting in state d1 is
stutter trace equivalent to some path fragment starting in d2, and vice versa.
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That is, given a path fragment starting in d1, it is always possible to find a
path fragment starting in d2 such that the order of the atomic propositions
of the states visited by the path fragments are the same. Thus, d1 and d2
satisfy the same LTL\◦ formulas. Hence, if the requirements to be verified or
synthesized are free from the next operator, as is the case in Paper B, then
d1 and d2 can be represented by the same abstract state.

To see why the removal of the next operator makes a difference, consider the
LTL formula φ ≡ ◦ d. The formula φ holds in d1 of Fig. 5.1, but not in d2. It
holds in d1 because if π1 is a path fragment starting in d1, then π1 = d1d2 · · ·
and trace(π1) = dd · · · . By the definition of ◦, it holds that dd · · · ⊨ φ, and
then it follows that π1 ⊨ φ, since ◦ d requires the second label (the next one)
to be d. On the other hand, π2 = d2c1 · · · is a path fragment starting in d2.
Its trace is trace(π2) = dc · · · , and it does not hold that dc · · · ⊨ φ. So π2 ⊭ φ,
and it follows that φ does not hold in d2.

One relation that can consider d1 and d2 equivalent, and that preserves
LTL\◦, is the divergent stutter bisimulation relation [22]. A relation R ⊆ S×S
is a divergent stutter bisimulation if, for all pairs of states (s1, s2) ∈ R the
following holds:

(i) L(s1) = L(s2),

(ii) if there exists a σ1 and a state s′
1 such that (s1, σ1, s

′
1) ∈ δ, then there

exists some finite path fragment ρ = s2u1u2 . . . uns
′
2 such that (s2, ui) ∈

R for all 1 ≤ i ≤ n, and (s′
1, s

′
2) ∈ R,

(iii) if there exists an infinite path fragment π1 = s1v1v2 . . . such that
(s1, vi) ∈ R for all i ≥ 1, then there exists some infinite path fragment
π2 = s2u1u2 . . . such that (s2, uj) ∈ R for all j ≥ 1,

(iv) and vice versa.

In Fig. 5.1, the partition {A1,A2,B1 ∪ B2,C,D} is a divergent stutter bisimu-
lation quotient.

An algorithm similar to Algorithm 1 can be used to compute divergent stut-
ter bisimulation quotients. Instead of directly using the one-step predecessor
operator Pre, the algorithm uses the PPre(P, T ) operator which is the set of
states in P from which a state in T can be reached in finite number of steps
without leaving P . With a slight abuse of notation, PPre(P, T ) essentially
is all the states that satisfies P U T . See Paper F for further details on this
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non-standard notation of letting U operate on sets of states. Checking for
splitters with PPre(P, T ) ensures that condition (ii) is fulfilled. To ensure
that condition (iii) is fulfilled, the algorithm essentially checks each block P

for states that fulfill □P , and splits according to the same rules as in Algo-
rithm 1. Fig. 5.3 shows the divergent stutter bisimulation quotient for the
system (5.6) with the same state set as in Fig. 5.2.
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Figure 5.3: The divergent stutter bisimulation quotient of the system (5.6).

As can be seen in Fig. 5.3, the partition is much coarser than in Fig. 5.2.
Given that none of the specifications in Paper B use the next operator, the
satisfiability of them is not affected by the coarser abstraction. Seemingly,
the reduction in state set size is obtained with little loss. However, the fewer
abstract states are obtained by sacrificing structure, and the price being paid
is the temporal meaning of the transitions in the abstract system. Taking one
transition in an abstract system constructed from the bisimulation quotient
corresponds to one transition in the concrete system, which means that “time”
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passes with the same rate in both systems. For abstractions constructed from
the divergent stutter bisimulation quotient, on the other hand, one transition
in the abstract system can correspond to an arbitrary number of transitions
in the concrete system. This number is also not fixed; one abstract transition
can correspond to one concrete transition in one time instance, and it can
correspond to 100 concrete transitions in another time instance. In essence,
one transition in the abstract system might correspond to a millisecond, or it
could correspond to an hour. The non-correspondence of number of transitions
also means that it is non-trivial to construct a planner for the concrete system
based on a planner for the abstract system, but it is known through explicit
construction that a planner enforcing an LTL\◦ formula φ on the concrete
system exists iff there exists a planner enforcing φ on the abstract system [92].

When bisimulation or divergent stutter bisimulation are used to construct
an abstract system for the purpose of designing or synthesizing planners, then,
in general, the concrete system must be deterministic [92], [93]. This is ex-
emplified by the block B1 ∪ B2 in Fig. 5.1, where the action σ1 leads to a
non-deterministic transition from state b1. As can be seen, any path fragment
that starts in b1 has a stutter trace equivalent path fragment starting in b4,
and vice versa. However, when a transition system is controlled by a planner,
it is done so through the actions in Σ. Again, see Section 2.1 in Paper F why
this is the case, and see Def. 8 on page F9 for a formal definition of how the
planner (called a controller in Paper F) interacts with the system. From a
planner’s perspective, the LTL\◦ formulas that can be enforced from b1 and
b4 are not the same.

For instance, from b4, a planner that always chooses σ1 in b4 and σ2 in
a3 will only allow the path fragment π1 = b4a3b4a3 · · · which has the trace
trace(π1) = baba · · · . However, in b1 a planner must choose σ1, and then in
one step the system may end up in either a2 or a3; which one is determined by
an external agent and the choice is not known a priori by the planner. Hence,
from b1 the path fragment π2 = b1a2a1a2a1 · · · with trace trace(π2) = baa · · ·
is always a possibility. Since trace(π1) = baba · · · ⊨ □♢b, and since π1 is the
only path fragment allowed from b4, it follows that □♢b can be enforced from
b4. However, as trace(π2) = baa · · · ⊭ □♢b, and as π2 is always allowed from
b1, it follows that □♢b cannot be enforced from b1. Hence, b1 and b4 are not
equivalent from a planner’s perspective and should not be in the same block
of a quotient.
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Paper F presents a relation called robust stutter bisimulation that addresses
abstraction and control of non-deterministic transition systems. It is shown
that an LTL\◦ formula φ can be enforced on the abstract system if and only if
φ can be enforced on the concrete system. Algorithm 2 in Paper F computes
the coarsest robust stutter bisimulation quotient, and an explicit construction
method is presented for how a concrete planner can be constructed from an
abstract planner.

The robust stutter bisimulation is useful, for instance, when the system
dynamics include disturbances. Consider adding a disturbance to the discrete-
time system of (5.6):

x(k + 1) =
[
1 2
0 1

]
x(k) +

[
2
2

]
u(k) +

[
1
0

]
w(k) , (5.7)

where w ∈ W = [−0.25, 0] is additive noise. The robust stutter bisimulation
quotient of (5.7) is shown in Fig. 5.4. The disturbance causes three small
blocks to show up, since from the states in those blocks due to the disturbance
it is not possible to force the system into the big middle block.

The robust stutter bisimulation is not only relevant for discrete-time sys-
tems subjected to additive disturbances. As stated above, an abstract system
based on the bisimulation quotient matches temporally with the underlying
concrete system. Recall from Section 5.2 that p1 and p2 refer to the planned
paths, and that q holds if p2 has been planned successfully. If the validity of
the path p2 expires after some time, then this dynamic can be modeled in a
separate non-deterministic transition system Q where q does not hold after
a certain number of transitions. Since the transitions in the bisimulation-
based abstract system has a fixed temporal meaning, a product system of the
abstract system and Q can be used as a model for synthesis.

However, a similar approach does not work if the abstraction is based on di-
vergent stutter bisimulation. When the product is constructed, each transition
in the abstract system is matched with some transition in Q. The transition
in Q has a fixed time duration, but since the abstract transition is matched
by an arbitrary number of concrete transitions, the abstract transition has a
variable time duration. Hence, a transition that takes an hour in the abstract
system might be matched to a transition in Q which takes one second.

The solution to this issue can be to construct the product from the con-
crete system and Q, and then use robust stutter bisimulation to abstract the
product system.
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Figure 5.4: The robust bisimulation quotient of the system (5.7).

Further Studies
There are several opportunities when it comes to further studies on robust
stutter bisimulation. Paper F shows an example where a robot navigates a
maze, where the robot is modeled by a linear system with inputs and additive
disturbances. An implementation of Algorithm 2 in Paper F was used to au-
tomatically compute the partition shown in Fig. 5 of Paper F. To understand
the limitations and benefits of robust stutter bisimulation to a greater extent,
it needs to be evaluated on more and different problem instances. Addition-
ally, more research is needed on more efficient implementations. One thing in
particular to investigate is whether the efficiency is affected by the order in
which blocks and superblocks are evaluated for being splitters.

Furthermore, Algorithm 2 was implemented only to compute robust stutter
bisimulations for linear systems with additive noise. It would be useful to
extend the implementation to also compute the robust stutter bisimulation for
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systems of the type in (5.6) with disturbance in the form of a finite transition
system.

It might also be interesting to investigate how to handle measurement noise
in robust stutter bisimulation.

As is shown in Paper F, robust stutter bisimulation preserves the existence
of planners enforcing LTL\◦ formulas. However, for some systems there are
coarser abstractions that also preserve the existence of planners enforcing
LTL\◦ formulas. Consider for instance the transition system shown in Fig. 5.5.
In this transition system, states a2 and a3 are not robust stutter bisimilar,
because there is a planner that can force the system to stay in a2 forever, but
there is no planner that can force the system to stay in a3. The state a1 is
not robust stutter bisimilar to either a2 or a3, and the robust stutter bisimilar
quotient becomes Π1 = {{a1}, {a2}, {a3}, {b1}}.

a1 : a a2 : a

a3 : a

b1 : b
σ1

σ2

σ1

σ2

σ1

σ1

Figure 5.5: System with coarser partition than robust stutter bisimulation that
still preserves the existence of controllers enforcing LTL\◦ formulas.

Looking instead at the path fragments that can be enforced from a1 and a2,
it is clear that for any path π1 starting in a1 there exists some path fragment π2
starting in a2 such that π1 and π2 are stutter trace equivalent. The other way
around also holds, so it follows that the same LTL\◦ formulas can be enforced
from a1 and a2. Hence, Π2 = {{a1, a2}, {a3}, {b1}} is a partition that is
coarser than the robust stutter bisimulation quotient, and that preserves the
existence of controllers enforcing LTL\◦ formulas.

This conclusion suggests two avenues of research. The first one is to answer
the question “is there a more expressive logic which is a superset of LTL\◦ that
is preserved by Π1?” A prime suspect to start investigating would then be
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CTL∗
\◦, a logic which is known to be preserved by divergent stutter bisimula-

tion in verification contexts [22]; that is, when the abstraction is not intended
to be used in synthesis.

The second research avenue is to implement an algorithm that can com-
pute Π2. Since all the requirements in Paper B can be formalized in LTL\◦, it
would be interesting to investigate whether coarser partitions that preserve the
existence of planners enforcing LTL\◦ formulas can be efficiently computed.

5.3 Abstractions in Safety Cases
It is argued in Paper A that to provide compelling safety evidence formal
models must be used as requirements for the corresponding subsystems they
model. For large transition systems, this could be a major obstacle to over-
come during verification of the subsystem. Automatic abstractions might
alleviate the effects of this obstacle by dividing the concerns. Instead of veri-
fying that a manual model at a high level of abstraction correctly captures the
behaviors of the subsystem, it is possible to verify the correctness of a model
at a low level of abstraction and use the correctness proof of the abstraction
to justify that the abstract system model is correct.

For instance, the models in Paper E is at a high level of abstraction, and
evidence must be collected that supports the correctness of each state and
transition. However, verifying that the system (5.6) is correct could be much
easier than verifying the correctness of the models in Paper E, much be-
cause (5.6) allows for extrapolation. Once (5.6) is verified to be correct, then
the correctness proofs in Paper F provide evidence that the abstract system
is also correct.
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Conclusions

Formal methods have several benefits as tools to design tactical planners for
automated vehicles. Given the requirements and an environment model, the
planner can be guaranteed to be correct. This provable correctness is in con-
trast to other methods, such as reviews and tests which can only find errors
but cannot prove absence of errors. Furthermore, tactical planners’ available
decisions may be from a discrete set of actions, and thus the requirements
are natural to express in discrete states, which formal methods are particu-
larly well suited for. Tactical planners also act in dynamical feedback systems
where they interact with the environment by actions and observations, which
are built-in features of formal methods. An important capability of the formal
methods in this regard is that they are capable of expressing temporal prop-
erties that detail how these interactions will or must continue over time. To
conclude and answer RQ 2, it seems that it is possible to apply formal methods
for tactical-planner problems with the above mentioned characteristics.

Formal synthesis is an especially interesting class of formal methods because
they can automatically generate the planner based on requirements and mod-
els. Formal synthesis removes the need to manually develop and implement
the planner, so the development efforts can be directed to formalizing good
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requirements and good assumptions on the environment.
Examples in this thesis show that formal methods can be used to synthesize

useful correct-by-construction tactical planners for automated vehicles. How-
ever, related to RQ 1, the application of formal synthesis to the generation of
such planners has obstacles, mainly related to inspection and abstraction.

The first obstacle is that the output of formal synthesis methods are a
black box that makes decisions based on previous inputs. Theoretically, the
behavior of the black box is known, since the model of the environment and
the requirements are known. Practically, on the other hand, it is difficult to
completely understand all possible interactions. Ascertaining that the synthe-
sis result is reasonably correct could be done by visual inspection of planners
with small number of states, or simulation to check that the right decisions are
made. However, neither approach is more effective than reviews and testing,
which are the activities that formal methods were to amend. Consequently, if
formal synthesis shall be used to generate tactical planners with tens of thou-
sands of states, then the validation of the requirements requires consideration.
Possible approaches to simplify the validation might be to find abstractions of
synthesized planners, or build libraries of common models and requirements
that are known to be correct.

The second obstacle concerns the level of abstraction of the tactical plan-
ners. In addition to answering RQ 1, the analysis of this obstacle is also
relevant with respect to RQ 3. Safe planners must avoid collisions, so the ca-
pability to express such requirements are crucial. Two vehicles have collided
if they occupy the same physical space, so a requirement expressing ‘do not
collide’ must be able to refer to the positions of the two vehicles. Moreover,
to be practical in traffic, the resolution of the positions need to be high. As
an example, if a road would be divided into 100 meter sections, then the
planner cannot drive closer than 100 meters to any other vehicle; the feasible
resolution for a planner would rather be counted in single meters. Modeling
all roads that the planner should operate on in such detail is infeasible. The
solution is to model in a higher level of abstraction and use generic states
that model modes of operation rather than, for instance, position. However,
with a high level of abstraction it is not possible to express the same detailed
requirements.

It follows that it is valuable to have methods that allow both detailed re-
quirements and generic planners. This thesis proposes an automatic abstrac-
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tion method called robust stutter bisimulation that attempts to combine these
properties. It allows requirements to, for instance, express ‘do not collide’,
while synthesizing the planner from the abstracted system. The robust stut-
ter bisimulation provides one specific level of abstraction that is usable for
tactical planners, giving a partial answer to RQ 3.

6.1 Future Work
The contributions and conclusions of this thesis are mainly on a technical and
theoretical level. What has been investigated is the applicability of formal
methods to model and specify the systems that are relevant for correct-by-
construction tactical planners for automated vehicles. However, RQ 1 asks
“what are the current limitations of formal synthesis for tactical planners
for automated vehicles that hinders its adoption in the automotive industry.”
Clearly, identifying technical and theoretical obstacles is an important part
in answering this question, but investigating engineering and organisational
obstacles is just as pertinent to actually achieve adoption.

The overarching purpose of this thesis is guaranteeing safety of tactical
planners. The correctness proof that formal methods provide is often touted
as their greatest strength, but it is not established what impact the correct-
ness proofs have on the real-life safety. An argument for how formal methods
could provide compelling evidence for the safety of tactical planners and a
proposal of how the safety case can be structured is put forth in Paper A.
However, understanding the safety benefit of formal methods requires more
than an argument. Actual effect on real-life safety must be investigated to un-
derstand the true benefits or drawbacks that comes from using formal methods
to construct safety-critical tactical planners for automated vehicles.

Instead of attempting to use formal methods for creating correct-by-construc-
tion tactical planners, it might be worthwhile to use formal methods in the
concept phase of projects to quickly construct planners that fulfill the current
set of requirements. That way, the behaviors induced by the requirements
could be evaluated before any implementation. It is also suggested by Paper A
that formal methods could be put to use as a tool to assess the soundness and
completeness of requirement break-downs. These two approaches have not
been considered in this thesis, but could be relevant for future research.
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CHAPTER 7

Summary of included papers

This chapter provides a summary of the included papers.

7.1 Paper A
Jonas Krook, Yuvaraj Selvaraj, Wolfgang Ahrendt, Martin Fabian.
A Formal-Methods Approach to Provide Evidence in Automated-Driving
Safety Cases.
Submitted to IEEE Transactions on Intelligent Vehicles, Oct. 2022.

Paper A contributes with an approach to structure a convincing safety ar-
gument with evidence from formal methods. The paper shows how formal
methods can provide proof that tactical planners fulfill their requirements,
and it demonstrates how formal methods can be used to close the gap between
the complete system requirements and the broken down subsystem require-
ments. If the formal models are proven correct, the formal models are used as
requirements on the subsystems. This structure of the safety argument can be
used to alleviate the need for reviews and tests to ensure that the break-down
is correct, thereby saving effort both in data collection and verification time.
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7.2 Paper B
Jonas Krook, Lars Svensson, Yuchao Li, Lei Feng, Martin Fabian.
Design and Formal Verification of a Safe Stop Supervisor for an Auto-
mated Vehicle.
Published in International Conference on Robotics and Automation, pp.
5607–5613, May 2019. ©2019 IEEE DOI: 10.1109/ICRA.2019.8793636.

In Paper B, formal verification is used to aid the design of a safety-critical
tactical planner for an automated vehicle tasked with a transport mission.
The planner has requirements on temporal properties, which can be difficult
and expensive to assure by testing and/or reviewing. The results indicate that
formal methods can indeed be beneficial in automotive development processes.
Continuous formal verification of the design and implementation during de-
velopment means that ‘bad’ requirements and solutions are found early; sim-
ulations and real-world experiments of the complete system were performed
successfully with little modification. The results also show that formal veri-
fication has the capability of proving functionality of a generic planner on a
more specific environment model.

7.3 Paper C
Zahra Ramezani, Jonas Krook, Zhennan Fei, Martin Fabian, Knut
Åkesson.
Comparative Case Studies of Reactive Synthesis and Supervisory Con-
trol.
Published in 18th European Control Conference (ECC), pp. 1752–1759,
Jun. 2019. ©2019 IEEE DOI: 10.23919/ECC.2019.8795696.

TuLiP and Supremica are tools from the fields of Reactive Synthesis and
Supervisory Control Theory. Paper C compares the two synthesis methods
implemented in TuLiP and Supremica from a modeling perspective. The
comparison is based on two case studies; a turn-based game and an automated
vehicle scenario. Paper C demonstrates differences and similarities between
the two synthesis tools, which can indicate in what situations a practitioner
should use one or the other. For instance, it is demonstrated how shared
resources affect the modeling, how cycles can be modeled, and how progress
requirements are treated.
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7.4 Paper D

7.4 Paper D
Jonas Krook, Anton Zita, Roozbeh Kianfar, Sahar Mohajerani, Martin
Fabian.
Modeling and Synthesis of the Lane Change Function of an Autonomous
Vehicle.
Published in IFAC-PapersOnLine, vol. 51, no. 7, pp. 133–138, Jul. 2018.
14th IFAC Workshop on Discrete Event Systems (WoDES). 2405-8963
©IFAC DOI: 10.1016/j.ifacol.2018.06.291.

An earlier research study [26] applied formal verification and found issues in
manually implemented code for an automotive application. Paper D explores
whether these issues may be patched by using formal synthesis. Models and
requirements are available, but the results show that it is not possible to use
those directly to synthesize a meaningful patch. However, the attempted pro-
cess of patching gives insights into prerequisites and limitations of synthesis.

7.5 Paper E
Jonas Krook, Roozbeh Kianfar, Martin Fabian.
Formal Synthesis of Safe Stop Tactical Planners for an Automated Ve-
hicle.
Published in IFAC-PapersOnLine, vol. 53, no. 4, pp. 445–452, Nov.
2020. 15th IFAC Workshop on Discrete Event Systems (WoDES). 2405-
8963 © The Authors DOI: 10.1016/j.ifacol.2021.04.059.

The tactical planner designed in Paper B was formally verified to be correct.
However, formal verification has some drawbacks, so Paper E replicates the
tactical planner in Paper B with the two different synthesis methods imple-
mented in TuLiP and Supremica in order to investigate whether formal synthe-
sis can alleviate the drawbacks. The synthesis methods are compared to each
other, and to formal verification as performed in Paper B. The comparisons
treat modeling, requirements, and the resulting planners. It is shown that the
synthesized planners are similar to each other and that the requirements can
be formalized in both of the synthesis methods’ formalisms. Paper E gives
insights into benefits and drawbacks of using formal synthesis to design tacti-
cal planners. As an example, it is difficult to inspect and interpret the results
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of synthesis, so it is sometimes difficult to know what behaviors interacting
requirements cause. Additionally, there is a conflict between the possibility
to express detailed requirements while also generating generic planners.

7.6 Paper F
Jonas Krook, Robi Malik, Sahar Mohajerani, Martin Fabian.
Robust Stutter Bisimulation for Abstraction and Controller Synthesis
with Disturbance.
Submitted to Automatica, Jun. 2022. DOI: 10.48550/arXiv.2205.13959.

The conclusion in Paper E, which is corroborated by Paper B and Paper C,
that there is a conflict between detailed requirements and generic planners
is addressed in Paper F. The problem is addressed by the introduction of
the robust stutter bisimulation relation, which preserves the existence of ro-
bust planners for linear temporal logic formulas without the next operator.
The robust stutter bisimulation is used to construct an abstract system with
(hopefully) fewer states than the concrete system, and it is proven by explicit
construction that there exists a controller enforcing a linear temporal formula
for the abstract system if and only if there exists a corresponding controller
for the concrete system. The results of the paper are useful for synthesizing
controllers for systems subject to disturbances in the form of bounded noise
or adversarial actions, and it is shown that the method works for a robot
navigation example.
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