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Abstract: There is an increasing need for digital twins of cities and their base maps, 3D city
models. Creating and updating these twins is not an easy task, so automating and streamlining
the process is a field of active research. A significant part of the urban geometry is residential
buildings and their roofs. Modeling of roofs for urban buildings can be divided into three
main areas — building detection, roof recognition and building reconstruction. The building
and roofs are segmented with the help of machine learning and image processing. Afterwards
the extracted information is used to generate parametric models for the roofs using methods
from computational geometry. The goal is to create correct virtual models of roofs belonging to
many different types of buildings. In this study, a supervised deep learning approach is proposed
for the segmentation of roof edges from a single orthophoto. The predicted features include the
linear elements of roofs. The experiments show that, despite the small amount of training data,
even in the presence of noise, the proposed method performs well on semantic segmentation of
roofs with different shapes and complexities. The quality of the extracted roof elements for the
test area is about 56% and 71% for mean intersection over union (IOU) and Dice metric scores,
respectively.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
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1. INTRODUCTION

The need for digital models of existing physical entities has
been around for decades (Liu et al., 2021) and especially in
the urban context, the term digital twin has been getting
increased research attention (Ketzler et al., 2020). The
basis for such a twin of cities is a 3D city model (Biljecki
et al., 2014; Ledoux et al., 2019; Stoter et al., 2019).
Creating and maintaining such a model is a tedious and
time-consuming task (Stoter et al., 2020) especially in
higher Level of Detail (LOD) (Biljecki et al., 2014), so
automating the process in a general and robust way is a
topic of research. Since the most represented assets of the
city scale are buildings in various forms and shapes, there
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01885) and by Operational Programme Science and Education
for Smart Growth under Grant Agreement No. BG0O5M20P001-
1.003-0002-CO01. P.O. Hristov was funded by the National Scientific
Program “Petar Beron i NIE” under the AUDIT project, no. KP-06-
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is a lot of focus of reconstructing the geometries from ex-
isting raw data, i.e., photogrammetry, cadastral footprints,
aerial point clouds (LiDAR) (Yao et al., 2018; Logg and
Naserentin, 2021, 2022). Existing building reconstruction
approaches are based on the data sources they use (single,
multi-sensor) or the amount of user interaction (manual,
semi-automatic, automatic).

Automatic detection and reconstruction of buildings have
become essential in many remote sensing and computer
vision applications. The desired outcome is an automati-
cally generated detailed 3D model of a building from aerial
imagery, footprints, LIDAR, or a fusion of them. It can be
applied in fields like architecture, civil engineering, urban
planning, construction, real estate, GIS, and lots of others.
The process is complex and has multiple steps for achiev-
ing a complete solution. The following literature review is
intended to provide an overview of the needed background,
the problem, the data, the techniques, and further research
directions for automatic 3D building model generation.
Depending on the data sources and methods used, the
steps may vary. For a complete, end-to-end solution, the
steps involve developing robust systems for building detec-
tion, rooftop recognition, and geometry generation.

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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1.1 Building Detection

Most approaches for building detection generally are
segmentation-based, classification-based, or hybrid meth-
ods. The system must efficiently separate buildings from
non-ground objects even in the presence of noise (clouds,
rain, snow) and low-resolution data. Pre-trained CNN-
based on the VGG-F architecture neural network (Si-
monyan and Zisserman, 2014) is combined with transfer
learning using aerial images of buildings, roads, and trees
results in the location of buildings surrounded by bounding
boxes with a quality rate of approximately 97% (Alidoost
and Arefi, 2018). Before training the network, resizing,
normalization, mean subtraction, and augmentation must
be applied to the image tiles.

1.2 Roof Recognition

One possible desired outcome is to classify the roof into a
set of pre-defined roof types. Another is to split it into
planar segments belonging to a set of pre-defined roof
segments. This can be achieved using various approaches.

This line-and region-based watershed segmentation method
is based on a combination of edge- and region-based seg-
mentation techniques and consists of three steps (El Mer-
abet et al., 2015). First is the pre-processing step where the
image is simplified in order to limit illumination changes.
The next step has two parallel operations: the simpli-
fied image is segmented both by watershed regions and
watershed lines. The last step integrates both watershed
segmentation strategies into a single cooperative segmen-
tation leading to accurate results with a quality rate of
approximately 96%.

The building detection approach using CNNs (Alidoost
and Arefi, 2018) is further continued where two networks
are trained. The first one is used to classify buildings
in the building detection step and the second network is
used to classify roofs in the recognition step. The second
network is fine-tuned using aerial images of flat, gable,
and hip roof types. The building regions are the input of
the second network which finally defines the roof shape of
each building as flat, gable, or hip with a quality rate of
approximately 92%.

Linear elements of individual roofs are derived from
the RGB image using an optimized multi-scale convo-
lutional-deconvolutional network (Alidoost et al., 2019).
The predicted features include the normalized digital sur-
face models (nDSMs) and linear elements of roofs in three
classes of eave, ridge, and hip lines with a quality rate of
approximately about 91.31% and 83.69%.

1.3 Building Reconstruction

Most approaches for 3D building reconstruction generally
are data-driven or model-driven. In data-driven methods,
point or image based segmentation techniques are used for
extracting corresponding points of roof planes and the 3D
shapes of roofs are generated by merging different planes.
In the model-driven approaches, the primitives of buildings
are extracted,and the most appropriate models are fitted
to the buildings points. Building footprint or location,
roof shape, and the height of buildings are important

parameters for 3D building model reconstruction which
reduces the complexity of the reconstruction procedure.

Orthogonal point cloud projections. The building orien-
tation is derived from analysing height histogram bins.
Orthogonal 2D projections of point clouds are generated
using the orientation, where roof segments occur as lines of
points which are extracted using a line tracking algorithm.
Then the lines are extended to planes, and they are anal-
ysed for deviations from rectangular shape. To generate
3D building models, two or more neighbouring planes are
grouped together (Partovi et al., 2019).

Straight skeleton computation. Straight skeleton is defined
as the union of the pieces of angular bisectors traced out
by polygon vertices during a continuous shrinking process
in which edges of the polygon move inward, parallel
to themselves at a constant speed (Aichholzer et al.,
1995). Using straight skeleton computation (Sugihara,
2013), 3D building models with general shaped roofs are
automatically generated. It can be applied to constructing
general shaped roofs based on any simple building polygon.

Binary polygon enhancement. The roof outlines extraction
approach using CNNs (Alidoost et al., 2019) is further
continued where for each building, the prismatic and para-
metric models are reconstructed based on the estimated
nDSM. The prismatic models of buildings are generated by
analyzing the eave lines. The parametric models of individ-
ual roofs are reconstructed using the predicted ridge and
hip lines. Next, the 3D lines of roofs are integrated into the
prismatic models to generate the 3D parametric models.
The experiments show that, even in the presence of noises
in height values, the proposed method performs well on
3D reconstruction of buildings with different shapes and
complexities. A similar approach using a Y-net is also
proposed by (Alidoost et al., 2020) where the input of
the network is a single RGB image, while the outputs are
predicted height information of buildings as well as the
rooflines in three classes of eave, ridge, and hip lines. The
extracted knowledge is utilized for 3D reconstruction of
buildings in LoD2 (Fig. 1).

LOD2 LOD

Fig. 1. Building detail at different LoD levels (Biljecki
et al., 2016)

Automated detection, recognition and reconstruction of
buildings from remotely sensed data are some of the most
important tasks in 3D city model generation. The desired
result is automatic generation of parametric LoD2+ mod-
els of buildings. To meet high application requirements
like full automation, high accuracy, less computational
power, and less operational time, more research in building
detection, rooftop recognition and geometry generation
needs to be conducted.

This study focuses on the roof recognition step using a
deep learning approach with convolutional neural networks
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and aims to segment roof edges from any other objects in
the image. The rest of the paper is organized as follows.
Section 2 describes the research method applied. Section 3
presents the obtained results. Finally, Section 4 concludes
the paper and gives directions for future work.

2. RESEARCH METHOD
2.1 Training Data

The data set for generating the training data needed
to contained both high resolution orthophotos and 3D
roof geometry. This limits our choices, since most open
data sets available are missing one or both of these. The
City of Helsingborg in Sweden has an open data web
portal (Helsinborg, 2022) with data that fulfilled both
of the requirements, as they had both high resolution
orthophotos (8cm pr pixel) and LoD2 3D building models
in DWG format (see Fig. 2). The training data used
was generated from open data over the areas of Eneborg,
Féltbacken and Husensjo.

Fig. 3. RGB image with corresponding segmentation mask
(Resized to 224 x 224).

Later in the project we also tested using different thick-
nesses of the rasterized lines in segmentation map (Fig. 4),
and found that buffering the lines to a thickness of 20 cm
prior to rasterizing showed some promising improvements
in the final model. Going forwards this approach will be
explored more.

Fig. 2. Orthophoto and 3D model from Helsingborg

Upon the examining the data, it became clear that the out-
lines of the 3D roofs didn’t always line up with the image of
the corresponding roof in the orthophotos. To correct for
this, 2D footprints of the 3D buildings were created and,
together with the orthophotos, loaded into QGIS. Here
each polygon was manually offset to more accurately line
up with the roof images in the orthophotos. In addition
roof polygons which didn’t have a corresponding building
in the orthophoto or where the building in the images
clearly didn’t match, were removed. This happened in
situations where the building had been either demolished
or extended in the time between the 3D model being made
and the orthophoto being taken.

Once this process had been done, the individual offset
applied to each footprint in QGIS was calculated and
the same XY offset was applied to the 3D model of the
corresponding building. Using FME the 3D roof surfaces
where converted to vector lines that where projected to
2D and rasterized (background was black and the lines
white) to a georeferenced raster with the same pixel size
and coordinate system as the orthophotos, creating a
segmentation mask for the roof.

The orthophotos and segmentation masks where then
tiled into 512x512 pixel images and only image tiles
that showed part of a building were included. The final
dataset was made up of 600 3x512x512 RGB images with
their corresponding 512x512 pixel gray scale segmentation
masks; see Fig. 3.

Fig. 4. Different rasterized line thickness

2.2 Dataset Problems

The dataset included images with buildings without any
annotations for them. Furthermore, it contained images
that were only partially correctly annotated. This hap-
pened in cases where we didn’t have the 3D model for
the corresponding building in the image. There were also
some labeling differences - some of the samples include
roof window annotations, while others don’t. Since the
training data didn’t include sufficient data without any
buildings and only buildings where annotated the classifier
would often misclassify non-building structures as roofs.
Highways for example can be inaccurately segmented as
buildings with flat roofs. The observed issues result in less
accurate predictions and need to be addressed in the future
to improve model performance.

0 100 200 0 100 200

Fig. 5. Partially annotated training image.



176 N. Kolibarov et al. / IFAC PapersOnLine 55-11 (2022) 173—178

2.8 Data Preprocessing

Data augmentation is a technique that can be used to
artificially expand the size of a training dataset by creating
modified versions of samples in the dataset. More data
can result in better inference accuracy and the augmented
variations of the samples can improve the generalization
of the model.

The following data augmentation techniques are used to
artificially enlarge the dataset:

e All samples are horizontally flipped.
e All samples are vertically flipped.
e All samples are cropped in the center.

2.4 Model Development

To separate buildings from other objects and extract
roof edges information, a convolutional neural network
for semantic segmentation is trained. U-Net was originally
invented and first used for biomedical image segmenta-
tion (Ronneberger et al., 2015). The approach follows a
popular encoder-decoder structure (Fig. 6). The encoder
downsamples the spatial resolution of the input, develop-
ing lower-resolution feature mappings and then the en-
coder upsamples the feature representations into a full-
resolution segmentation map. For semantic segmentation
of roof edges, the used model architecture was a ResNet18
encoder (He et al., 2015) and a U-Net decoder.
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Fig. 6. U-Net architecture.

Transfer learning is used to learn features from a separate
problem and then adapt the model to the roof segmenta-
tion problem. It has the benefit of decreasing the training
time and can result in lower generalization error. The
encoder is pre-trained on a large-scale hierarchical image
database - ImageNet. The model weights are publicly avail-
able and easily accessible on PyTorch Hub. It was trained
on more than 1,000,000 images for 1000 categories and it
has obtained knowledge on how to detect generic features.
Such pre-trained models offer state of the art performance
and remain effective on the initial image recognition task.

To learn parameters for roof segmentation, the proposed
network weights are initialized uniformly and trained
on the dataset mentioned in the previous sub-section.
For the loss function, a weighted combination of Binary

Cross-Entropy (BCE) with Dice coefficient is applied. The
Binary Cross-Entropy loss, shown in Eq. (1) examines
each pixel individually and then averages over all pixels,
asserting equal learning to each pixel, where gy is the
predicted class probability and y is the reference class
probability.

(1—-y)log(l—9)) (1)

The Sgrensen—Dice coefficient, shown in Eq. (2) is a
statistical tool which measures the similarity between two
sets of data. It measures the overlap between the predicted
mask and ground truth mask. This measure ranges from 0
to 1 where a coefficient of 1 denotes complete overlap. To
avoid division by zero and reduce overfitting, a smoothing
technique is used by adding a variable close or equals to 1
denoted as € to the numerator and denominator.

Lbce(y, Zj) = 7(y IOg(g) =+

N 2) yj+e
Ldice(yay) = ZyQ +ZQ2+€ (2)

We have an unbalanced class representation with the
prevalent class being non-building and using BCE loss on
its own is not suitable. Combining the two loss functions
and adding a weight 8 as shown in Eq. (3) allows for some
diversity in the loss, while benefiting from the stability of
binary cross-entropy.

L= BLbce + Ldice(l - ﬁ) (3)

Mini-batch stochastic gradient descent with momentum
and Adam optimizer are employed as training optimizers
for roof edge segmentation.

After stitching the predicted tiles together, the image
undergoes several image processing techniques which help
to increase the possibility of obtaining the correct corner
points and geometry that allows building polygon forma-
tion. Small pixel islands that are redundant are removed
by filtering using contour area then applying morpholgical
closing to fill the small holes in the image.

3. RESULTS
8.1 Roof edge segmentation network

The roof edge segmentation network was trained using
Google Colab on a single NVIDIA T4 with a batch size
of 16 for 100 epochs. Mini-batch gradient descent was
used with a combination of binary cross-entropy and Dice
coefficient for loss function and Adam algorithm with
learning rate, beta 1, beta 2, and epsilon parameters
selected as 0.001, 0.9, 0.999 and 1e-8.

3.2 Performance evaluation

To evaluate the performance of the trained network, a test
area was selected outside the training area composed of
different shapes and types of buildings. Faltbacken and
Husensjo were used for training and Eneborg was used
for testing. The number of training samples was increased
to about 2400 image tiles after data augmentation. The
input size of the proposed network was 224 x 224, while
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the size of the test area was about 7835 x 7680. If the
entire test area was resized to the needed input size of
the network, then the accuracy would be significantly
degraded. Therefore, the test area was divided into smaller
tiles (Fig. 7) and the predicted tiles were stitched together
afterwards (Fig. 8). The predicted roof elements include
valuable knowledge of building and roof boundaries.

0

Fig. 7. Tiled image, ground truth mask, predicted mask.

Fig. 8. Stitched predicted mask.

The accuracy of the estimated roof edges is evaluated
based on standard metrics such as pixel accuracy, Dice
and IOU scores. The pixel accuracy for the test area
is about 97%. However, this metric provides misleading
results since the roof edge class representation is small
within the image. Thus, the measure will be biased towards
the negative class. In such cases it is more suitable to
use other metrics for model evaluation. The IOU metric
measures the number of pixels common between the target
and prediction masks divided by the total number of pixels
present across both masks. The quality of the extracted
roof elements for the test area is about 56% and 71% for
mean [OU and Dice metric scores, respectively.

Another experiment was to access the performance of the
model on unseen data from another source. The data used
was acquired from Lantméteriet (Swedish Mapping and
Land Registration Authority) and consisted of orthopho-
tos over Hammarkullen in Gothenburg, Sweden. These
images were at a lower resolution (25 cm per pixel) than
our training data. To compensate this, the images were
upsampled to match the resolution of the training data
prior to running them through the model. Since there is
no labeled data available it is not possible to accurately
measure the overall performance of the model. Insights on
the model performance are gained through visual inspec-
tion (Fig 9). Given the small amount of training samples
and the different data distribution, the model seems to be
able to recognize roofs from non-roof objects in the image.

125 150 175 200 75 100 125 150 175 200

100 125 150 175 200

Fig. 9. Tiled image and predicted mask.

4. CONCLUSIONS

In this study, we presented an approach based on su-
pervised deep learning techniques to extract roof edges
of buildings from a single orthophoto towards generating
parametric LoD2+ models. Although there were limita-
tions for the dataset in terms of size and noise, a neural
network was trained for roof edge binary semantic segmen-
tation. The results over the test area showed the reasonable
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performance and promising possibilities of the proposed
method, despite the issues of the provided dataset. Ap-
plying transfer learning using an encoder pre-trained on
orthophotos of buildings instead of photos of common
objects, should also increase the accuracy and decrease
training time significantly. Expanding the dataset by ac-
quiring samples from different sources including variation
in cities, illumination, weather conditions, as well as clean-
ing it from inaccurate labels, needs to be done in future
studies to improve the generalization and transferability
of the trained network.

This project is part of the larger Digital Twin Cities
Centre (https://dtcc.chalmers.se) and all code will be
made available at https://gitlab.com/dtcc-platform
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