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Material handling by means of autonomous mobile robots (AMRs) is a phenomenon that has

gained momentum in the last few years, as the perception and decision-making capabilities

of the robots increase, and as computers become more powerful and can control larger and

larger fleets. In modern industrial applications, fleets of AMRs operate in a heterogeneous

environment, shared with humans and other vehicles and obstacles. In this work we model

the features of a modern production environment and thus formulate the Conflict-Free Electric

Vehicle Routing Problem (CF-EVRP). The inputs to the CF-EVRP are:

• information on the fleet (how many AMRs, of what type, and their operating range);

• list of tasks to execute (location in the plant and time windows for execution);

• plant layout (road segments, allowed travelling direction, and depots location).

Solving the CF-EVRP provides a schedule for the fleet of AMRs to execute the tasks within

their time windows, and to account for the AMR’s limited operating range, so that the charging

time at the depots is part of the schedule. Moreover, the CF-EVRP includes capacity con-

straints on the road segments, limitations on the number of robots that can travel on road

segments at the same time.

The overall problem is to find solutions that satisfy all constraints while avoiding travelling

unnecessarily long routes, and at the same time meet the stipulated time-windows to deliver

material just-in-time. The compositional algorithm (ComSat) presented in this work is based

on the idea to break down the overall scheduling problem into sub-problems that are easier

to solve, and then to build a schedule based on the solutions of the sub-problems. ComSat

is designed to work well for industrial scenarios where there are good reasons to believe that

feasible solutions do exist. This is a reasonable assumption as in an industrial setting where

a sufficient number of mobile robots can be assumed to be available.
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I don’t claim to be a mathematician, but these words inspired my work. . .
“Mathematics, he said, isn’t merely a question of applying rules, any more than
science. It doesn’t merely make the most combinations possible according to certain
fixed laws. The combinations so obtained would be exceedingly numerous, useless
and cumbersome. The true work of the inventor consists in choosing among these
combinations so as to eliminate the useless ones, or rather, to avoid the trouble
of making them, and the rules that must guide the choice are extremely fine and
delicate. It’s almost impossible to state them precisely; they must be felt rather than
formulated.”

Robert M. Prising on Henri Poincaré
Zen and The Art of Motorcycle Maintenance

1974





Abstract
The recent advances in perception have enabled the development of more au-
tonomous mobile robots in the sense that they can operate in a more dynamic
environment where obstacles surrounding the robot emerge, disappear, and
move. The increased perception of Autonomous Mobile Robots (AMRs) allow
them to plan detailed on-line trajectories in order to avoid previously unfore-
seen obstacles, making AMRs useful in dynamic environments where humans,
traditional fork-lifts, and also other mobile robots operate. These abilities
contributed to increase automation in logistic applications. This thesis dis-
cusses how to efficiently operate a fleet of AMRs and make sure that all tasks
are successfully completed.

Assigning robots to specific delivery tasks and deciding the routes they
have to travel can be modelled as a variant of the classical Vehicle Routing
Problem (VRP), the combinatorial optimization problem of designing routes
for vehicles. In related research it has been extended to scheduling routes for
vehicles to serve customers according to predetermined specifications, such as
arrival time at a customer, amount of goods to deliver, etc.

In this thesis we consider to schedule a fleet of robots such that areas
avoid being congested, delivery time-windows are met, the need for robots
to recharge is considered, while at the same time the robots have freedom to
use alternative paths to handle changes in the environment. This particular
version of the VRP, called CF-EVRP (Conflict-free Electrical Vehicle Routing
Problem) is motivated by an industrial need. In this work we consider using
optimizing general purpose solvers, in particular, MILP and SMT solvers are
investigated. We run extensive computational analysis over well-known combi-
natorial optimization problems, such as job shop scheduling and bin-packing
problems, to evaluate modeling techniques and the relative performance of
state-of-the-art MILP and SMT solvers.

We propose a monolithic model for the CF-EVRP as well as a composi-
tional approach that decomposes the problem into sub-problems and formu-
late them as either MILP or SMT problems depending on what fits each
particular problem best. The performance of the two approaches is evaluated
on a set of CF-EVRP benchmark problems, showing the feasibility of using a
compositional approach for solving practical fleet scheduling problems.

Keywords: Job Shop, Vehicle Routing, Bin Sorting, SMT, MILP.
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CHAPTER 1

Introduction

The past few decades have witnessed a change of paradigm: the main pro-
duction resources are no longer human beings, but robots and computers.
This is happening not only on the shop floor, but at every echelon of the
production. This thesis focuses on solving logistic problems involving a fleet
of Autonomous Moving Robots (AMRs). It investigates efficient methods to
schedule AMRs with limited operating range, such that they can pick up and
deliver goods throughout the plant within given time windows. Moreover, the
schedule is such that the AMRs do not incur in conflicts with each other, i.e.,
they do not block each other’s way due to geometrical limitations of the paths
they are travelling on.

1.1 Automation in Modern Production Facilities
Modern technologies are revolutionizing the industrial world. Machines can
execute calculations faster and more reliably than humans. Computers can
schedule the production in a matter of minutes, saving hours or even days of
pen-and-paper work. Robots are nowadays advanced enough to execute com-
plex manufacturing or assembling tasks [1], thus being able to replace human
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Chapter 1 Introduction

workers in an ever growing number of situations. The world is experiencing
an unprecedented shift towards automated production.

Another important truth about modern production can be effectively ex-
pressed by the following quote:

“Chances are, if something can be expressed as a mathematical equation,
then at some point somebody will want to minimize it.” [2]

When it comes to modern production systems, different solutions in terms of
process design or manufacturing plan can affect some outcome parameters; it
could be a direct cost, or the manufacturing time, or it could be environment
related, such as overall CO2 emissions. Therefore, not every solution has
the same quality. Companies want to increase their profit and decrease their
cost, governments want to reduce pollution. No matter what the parameter
to control is, the goal is to find, among all possible solutions, the one that
optimizes (minimizes or maximizes) it.

One important task that has drawn the attention of both academia and
industry in the last decades is planning and Scheduling [3], [4]. In a nutshell,
planning is the task of deciding what and how much needs to be done, while
scheduling is the task of deciding who needs to do it and when [5]. As indus-
trial systems grow larger and more complex, manual planning and scheduling
is no longer an option.

However, even for the most advanced computers, computing a plan or a
schedule can be challenging. The large size and the complex requirements of
modern scenarios have added so many degrees of freedom to the industrial
systems, that the number of possible solutions can be in the same order as
the number of atoms in the universe, or even larger. Therefore, brute force
enumeration is not an option, because it could take up to thousands of years
to check all the solutions.

Fortunately, in many cases, brute force enumeration is avoidable. One can
reason about the problem and find relations among its elements to develop
algorithms that quickly find a solution. For some problems it is actually pos-
sible to quickly find the optimal solution with respect to a certain parameter
by means of these tailor-made algorithms; let us label the problems whose
solution can be found quickly as tractable.

On the other hand, many problems are not tractable; there exist problems
that are proved to be hard to solve (further details about this are given in
Section 2.1). In general, even for hard problems it is still possible to design
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algorithms that are better than brute force enumeration, but such algorithms
may still be too slow.

While the definition of tractable and hard problems will be provided in
formal terms in the next chapter, let us now focus on what are the implications
when dealing with one class of problems or the other. The key factor in
industrial applications is the time available to solve the problem. If a problem
is tractable, we can assume that no matter what instance of such problem
we have to solve, we will have enough time to produce a solution. On the
other hand, for hard problems, time becomes a constraining factor, and it is
imperative to come up with a solution in reasonable time.

When a hard problem involves optimization, one option is to trade quality
for time [6]. In other words we accept a worse solution, in terms of the param-
eters to optimize, as long as we can compute it faster. One common strategy
when dealing with hard optimization problems is problem decomposition; rele-
vant decomposition methods are Lagrangean decomposition [7], column gener-
ation [8], and more recently Benders decomposition [9]. The original problem
(often called master problem) is broken down into sub-problems, and so is its
complexity. The sub-problems are then iteratively solved and their solutions
are used to build a solution to the original problem. This fragmentation of
the original problem may cause a loss of information, therefore it is not al-
ways possible to guarantee that the solution found will be optimal. However,
the sub-problems are easier to solve and even if it takes multiple iterations to
achieve a solution to the original problem, the overall computation time can
be shortened.

1.2 General Purpose Solvers and Optimization
Problems

Solving different problems requires different algorithms. However, there exist
more general algorithms that are able to compute solutions for several prob-
lems. For instance, Mixed Integer Linear Programming (MILP) [10] can be
used to solve problems arising from real-world systems, as long as such systems
can be described by linear constraints and objective function. On the other
hand, MILP is not the only approach that provides a general framework to
deal with linear constraints. Among other approaches, Satisfiability Modulo
Theory (SMT) [11] is nowadays a viable alternative and have in quite a few
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cases showed interesting performance when dealing with industrial problems,
as in [12] and [13].

Over the years, powerful MILP and SMT solvers have been developed [14],
[15]. These solvers provide a flexible framework to model many industrial
problems. The end user does not need to be an experienced computer scientist
to develop an algorithm that will solve the problem. Instead they need to be
able to model the problem, if possible, as a set of linear expressions and then
feed it to the solver.

Modern solvers can quickly solve large models, counting up to tens of thou-
sands of variables and expressions [16]. Even so, modern industrial problems
are sometimes so complicated that these solvers are not able to provide a good
enough solution within the available time. For these reasons, a tailor-made al-
gorithm can be designed to solve a specific problem, because by exploiting the
problem structure, it can yield a better performance in terms of computation
time.

In some cases a hybrid approach can prove very efficient [17]–[20]; an overall
algorithm is developed to solve the problem by means of problem decompo-
sition, and then the sub-problems resulting from breaking down the original
problem are solved by means of general purpose solvers.

1.3 The Conflict-Free Electric Vehicle Routing
Problem (CF-EVRP)

The main industrial problem tackled in this thesis is called the Conflict-Free
Electric Vehicle Routing Problem (CF-EVRP). This problem is about com-
puting a schedule for a fleet of AMRs with a limited operating range and the
ability to recharge their batteries at the depot. The schedule must be such
that the robots are able to deliver goods to customers within given time win-
dows. Also, the schedule must account for geometrical limitation of the road
segments the AMRs are travelling on, so that they do not block each other’s
way.

Material handling by means of AMRs has been gaining momentum for quite
some years now [21]. Traditionally, the mobile robots used for logistic oper-
ations work in a controlled environment, following predefined lanes and with
low to no interaction with other robots or humans. This is so because of the
inherent complexity of an ever changing environment such as a manufacturing
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or assembly plant, and the limited perception and decision capability of the
robots.

This trend is changing [22] as the perception and decision capabilities of
the robots increased over the years. The new challenge is to use large fleets of
AMRs that can navigate through a maze of corridors, shelves, and worksta-
tions, react to changes in the environment, and deliver components in time to
ensure the production schedule is not disrupted. As the number of robots in-
creases, and as they are allowed to operate next to humans and other vehicles,
so does the possibility of the robots running into static or dynamic obstacles.
Therefore the AMRs have to be able to plan their trajectory on-line in order
to avoid such obstacles; they also have to be able to avoid conflicts with other
AMRs. Beside obstacles avoidance, the AMRs have to manage their battery
level in order to be able to execute their task and go back to the charging
station; most important of all, they have to meet the time windows for pickup
and delivery operations. They cannot be too late in order to avoid disrup-
tion in the production schedule, nor can they be too early in order to avoid
congestion by the workstations.

The schedule for a system like the one described may need to be continuously
updated, because every time a change occurs, the old schedule may become
obsolete; if a pallet is suddenly left in the middle of a road, blocking the
transit of AMRs in both directions, all the AMRs using that road would have
to be re-routed and may then interfere with other AMRs schedules; if an AMR
breaks down, its task would have to be assigned to a new AMR.

Every time a change occurs, a new schedule must be computed in order to
guarantee continued production. However, computing a schedule can be very
challenging; as mentioned before, the number of factors to take into account
is high, and they intertwine with one another, creating an even larger number
of possible solutions. Moreover, when scheduling the AMRs, minimizing the
travelled distance, or the number of vehicles required, or the level of conges-
tion in the plant is usually desired, therefore optimization is required. Finally,
the requirement of delivering goods within given time windows further compli-
cates the problem, making it hard to even find any solution for some specific
instances, least of all an optimal one.

It is clear that brute force enumeration is not an option for this problem.
Even the state-of-the-art solvers are not fast enough to compute a schedule
within seconds (they actually take several minutes to solve rather simple in-
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stances [23]). As mentioned before, the existence of time windows for the
execution of the tasks makes it challenging to develop heuristic algorithms for
quick computation of a solution. Also, though optimality may be out of reach
for this problem, the quality of the solution cannot be completely disregarded.

Our approach to this problem is to break it down into sub-problems and
develop a tailor-made algorithm to iterate through the sub-problems in order
to find a solution to the original problem. Some of the sub-problems require
optimization and are therefore solved by means of optimizing general purpose
solvers. The choice of the solvers for the specific sub-problem (mainly between
MILP and SMT) is also a result of this research, as different solvers have been
tested over benchmark instances of well-known combinatorial optimization
problems.

1.4 Research Questions
This thesis explores the following research questions:

RQ1 What are the strengths and weaknesses of SMT solvers and how do
they compare to MILP solvers when used to solve industrial problems?

SMT solvers emerged within the computer science community and were
originally employed for software and hardware verification. More recently
they have been used as solving tools in other fields. Therefore evaluating them
on different industrial problems could reveal their strengths and weaknesses.
Moreover, it is interesting to evaluate SMT solvers against MILP solvers on
different classes of problems and find out whether one technology outperforms
the other, when and, possibly, why.

RQ2 How can the strengths of SMT and/or MILP solvers be exploited and
combined to design an efficient algorithm for the CF-EVRP?

A strategy to solve the CF-EVRP in shorter time is to break it down into
sub-problems. Since each sub-problem is solved on its own, different strategies
can be applied depending on the problem features. MILP and/or SMT could
be used as back-end solvers in a compositional algorithm designed to find a
solution to the overall problem by iteratively solving the sub-problems. The
method does not guarantee to find the optimum but it can still provide close-
to-optimal solutions while significantly shortening the solving time.
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1.5 Methods
In order to gather information about MILP and SMT, different problem classes
have been studied: Job Shop (JSP) [24], Vehicle Routing (VRP) [25], and Bin
Sorting (BSP) [26]. For each of these problems, benchmark instances are
available (see Section 2.2). In this thesis, mathematical models have been
formulated, based on existing literature about the problems and then solved
using both MILP and SMT solvers. Comparison is based on running time
necessary to find the optimum, or accuracy (gap between optimum and current
best estimate) when timeout is reached.

For the CF-EVRP, we formulated a monolithic approach and evaluated it
on some generated problem instances using SMT; We then broke down the
problem into sub-problems and for each of them, we formulated mathematical
models and designed a compositional algorithm to iteratively solve the sub-
problems to find a solution to the CF-EVRP. Some sub-problems are solved
using SMT solvers, while others are solved using MILP solvers.

1.6 Contributions
The contributions of this thesis are the following:

• Evaluation of different model formulations of three well-known optimiza-
tion problems, namely the JSP, the BSP, and the VRP, implemented
both as MILP and SMT;

• Formulation of the CF-EVRP problem;

• Decomposition of the CF-EVRP into sub-problems and mathematical
formulation of each of them;

• Design of the compositional algorithm ComSat to find a solution to the
CF-EVRP by iteratively solve the sub-problems it is decomposed into;

• Evaluation of the performance of ComSat against a monolithic formu-
lation of the CF-EVRP implemented as SMT, over a set of generated
benchmark instances;

• Improvements on ComSat by exploiting SMT Unsat Core.
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1.7 Outline
This thesis consists of two parts. Part I is a general introduction to the field
and puts the appended papers into context. Part II contains the appended
papers. Part I is organized as follows: Chapter 2 gives an overview on the topic
of problem complexity and provides examples through some specific problems
investigated during this research project. Chapter 3 provides background
knowledge about MILP and SMT, and compares these two methods over the
problems presented in Chapter 2. Chapter 4 gives an in-depth overview of
the CF-EVRP. Chapter 5 formally describes the CF-EVRP and presents the
monolithic approach (MonoMod) and the compositional algorithm ComSat.
Chapter 6 summarizes the contributions of the included papers. The thesis
ends with closing remarks and directions for future work in Chapter 7.

10



CHAPTER 2

Optimization Problems in Automation

In the previous chapter we qualitatively introduced the concept of problem
complexity and discussed the issue of dealing with hard problems, especially
when time is a constraining factor and a solution cannot take too long to gen-
erate. In this chapter, problem complexity is discussed in more quantitative
terms in order to be able to define the complexity of the CF-EVRP and mo-
tivate the need to design an algorithm that can handle such complexity and
compute a solution in an acceptable time.

2.1 Problem Complexity and Efficient Algorithms
In the previous chapter, the words problem and solution have been used several
times; let us now provide some formal definitions to better understand the
following topics.

• Variable: a symbol that represents an element of the studied system and
may assume any value from a predefined set of values called the domain;

• Constraint: a condition involving a subset of the problem’s variables;
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• Objective function: a function involving a subset of the problem’s vari-
ables, where the domain is the cross product of the domain of the func-
tion’s variables, and the co-domain is a real value to be maximized or
minimized;

Given a real-world problem, it is possible to formulate a mathematical model
by defining a set of variables to represent the different entities of the system
of interest, and a set of constraints to represent how these different entities in-
teract with each other. Moreover, if the real-world problem is an optimization
problem, the model will also include an objective function. An assignment of
values to the variables from their respective domains can be be divided into
two categories:

• Feasible: if all constraints in the model are satisfied.

• Infeasible: if at least one constraint in the model is not satisfied.

Feasible assignments, henceforth called solutions, can be further divided into
two categories:

• Optimal: if the assignment of values leads to the smallest (or largest)
possible value of the objective function, given the valid domain of the
variables, for a minimization (or maximization) problem. Note, that
there can exist several optimal solutions to the same problem, i.e., dif-
ferent solutions with the same objective function value;

• Sub-Optimal: if the solution is worse than optimal.

Some additional definitions needed to talk about problem complexity:

• Algorithm: a finite sequence of instructions that can be mechanically
carried out, such as a computer program that always terminates [27].

• Search-space: the set of all possible assignments to the problem, both
feasible and infeasible.

The search-space is introduced in order to discuss the efficiency of different
algorithms that aim to solve the same problem. In fact, an inefficient algorithm
such as brute-force enumeration may have to search the entire search-space
before terminating. On the other hand, when an efficient algorithm exists to
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solve a problem, it may be sufficient to check only a few assignments before
finding a solution.

It is now possible to classify problems based on the efficiency of the known
algorithms to solve them. We say a problem is tractable if there exists an
efficient algorithm to solve it, hard otherwise. In turn, an algorithm is said
to be efficient if it runs in polynomial time, i.e., it can find a solution to a
problem in a number of steps, and therefore a time, that is in the worst case
polynomially proportional to the size of the problem [28]. If the number of
steps is worse than polynomial, the algorithm cannot be called efficient.

Let us clarify this point by first talking about the size of a problem. For
a given problem, there may exist instances of different sizes. The size is
usually defined by one or more parameters of the problem. For example, let
us assume that we want to sort a list of numbers in increasing order. What is
the complexity of this problem? How large is its search-space? How efficient
is an algorithm to solve the problem? We are going to formulate the problem
as an assignment problem where the numbers to sort have to be assigned
a position in the sorted list. The first thing to do is to understand what
determines the problem size. In this case it is the number of elements to sort.
The next step is to formulate a mathematical model of the problem. Let us
define the set of variables that describe the problem. This will also allow us
to determine the search-space.

Let I = {ι1, . . . , ιn} be the set of n items to sort. Then let xι be the
variable modelling the position of item ι ∈ I in the sorted list. We will use
one variable for each item in I and each variable can be assigned a value in the
integer range [0, n]. Therefore the search-space size of this problem, using this
modelling approach, and including both feasible and infeasible assignments,
is nn. To be more specific, the number of possible permutations of a list of
elements of size n is n! ≤ nn; however, using the set of variables xι, ι ∈ I
there can be (infeasible) assignments where two or more variables have the
same value, meaning that two or more elements occupy the same position.

The next step is to formulate the constraints that relate the variables to each
other. To do so, let us define, for each element ι in I, the set of elements from I
that are smaller than or equal to ι; let such set be Sι = {ι′ ∈ I | ι′ ≤ ι}, ∀ι ∈ I.
Note, that Sι = ∅ when ι is the smallest element in the list.
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Then we have the problem formulation:

1 ≤ xι ≤ n, ∀ι ∈ I (2.1)
xι ̸= xι′ ∀ι, ι′ ∈ I, ι ̸= ι′ (2.2)
xι ≥ xι′ ∀ι ∈ I, ι′ ∈ Sι (2.3)

Constraint (2.1) defines the domain of the variables; constraint (2.2) forces
each value to be placed in a different position; constraint (2.3) places larger
values after smaller ones. By changing the sign in (2.3) from ≥ to ≤ the
solution to the model will be a list sorted in descending order.

This formulation could be implemented and solved using a MILP solver;
the best algorithms known for MILP are worse than polynomial in time [29].
However, sorting a list in ascending (or descending) order is known to be a
simple problem. In fact, for a list of n numbers, it takes n log (n) steps in
the worst case to sort them [30]. This example clarifies the point made in
the previous chapter; reasoning about the problem allows to figure out its
properties and exploit its structure to design better algorithms to solve it.
Since sorting can be formulated as a MILP problem, it is possible, but not
efficient, to use a MILP solver and compute a solution. However, sorting does
possess a structure that allows to solve it in polynomial time by designing a
specific algorithm for the purpose.

P vs. NP
In this section the definition of tractable and hard problems is formalized by
introducing the complexity classes P and NP. There exist several complexity
classes, but for the current discussion we restrict ourselves to P and NP.

Before talking about complexity classes though, it is necessary to define a
class of problems called decision problems. A decision problem is a problem
whose solution is a yes/no answer [31]. For instance, given a model, verifying
whether there exists a feasible assignment or not, is a decision problem.

Also, the following discussion is based on the assumption that no efficient
algorithm exists to solve problems in NP. Such assumption is commonly
believed to be true, though any attempt to prove it has failed so far.
P is the class of decision problems for which there exist a polynomial al-

gorithm to solve them; a problem in P is called tractable. For some decision
problems that do not belong to P it is still possible, given a solution to the
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problem, to verify its correctness in polynomial time. These problems belong
to the class NP. Of course, if solving a problem takes polynomial time, so
does verifying a given solution, therefore P ⊆ NP. Problems in NP that are
not in P are said to be hard.

Moreover, it is possible to classify the relative complexity of problems by
reducing (transforming) them into other problems whose complexity is known.
In order to formalize this concept, let us define polynomial-time reduction.

Polynomial-time reduction is the transformation of one problem into an-
other in polynomial time. If it is possible to reduce or transform a problem
X into another problem Y in a number of steps that is polynomial to the size
of problem X, then X is polynomial-time reducible to Y . In other words, we
can claim that “X is at least as hard as Y ”. In fact, assuming that there exist
a black box capable of solving Y in polynomial time, then X is solvable in
polynomial time too. For more details about polynomial reduction see [28].

A decision problem C is said to be NP-complete if it belongs to NP and
all problems in NP have polynomial-time reduction to C. Over the decades,
many problems have been proven to be NP-complete [28].

Everything that has been said so far about P and NP holds as long as
no efficient algorithm is found to solve a problem in NP. If that happens,
because of the polynomial-time reduction, all NP-complete problems could
be efficiently solved, and P = NP.

So far, we provided definitions that apply to decision problems, although in
this thesis, we actually focus on finding solutions, not only to verify whether
existing solutions are valid. However, according to [32], for NP-complete
problems, finding the actual solution is not harder than finding out whether
one exists or not.

When talking about optimization problems though, the same reasoning does
not apply. Given a solution to an optimization problem, it is not guaranteed
that there is an efficient way to verify that it is the optimal solution. Op-
timization problems belong to the class of NP-hard problems, i.e., the class
of problems that are at least as hard as the NP-complete problems, and not
necessarily in NP.

This section only briefly introduces the main ideas behind complexity classes,
for further details we refer the reader to [33]. However, the brief introduction
provided can help to understand the need of figuring out more efficient meth-
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ods to deal with hard problems such as the CF-EVRP. In the next section
are presented some known NP-hard, optimization problems, investigated to
evaluate the performance of SMT and MILP solvers and used to design an
algorithm for the CF-EVRP (see Chapter 5).

2.2 Complexity of Known Optimization Problems
Let us now continue our discussion on complexity by introducing the three
problems that have been used as benchmarks for comparing general purpose
solvers in the first half of this research project; for more details we reference
the reader to the appended papers.

The Job Shop Problem

M1

M2

M3

M4

0  1  2  3  4  5  6  7  8  9  10 time(s)

Figure 2.1: Illustration of a possible solution to a job shop problem.

The job shop problem (JSP) [34] is the NP-hard [35] optimization problem
of assigning machines to jobs in such a fashion that the make-span is mini-
mized. In the JSP each job has to visit each machine in order to be finished;
the order of the visits is pre-defined. Also, machines can only execute one
job at a time; the duration of a job’s visit on a machine is fixed and given
as input. The problem has been studied for decades and there exists a vast
literature on exact and approximate methods to solve it [36], together with
a large set of benchmark problems ranging from small to very large. Fig-
ure 2.1 shows a possible schedule for a problem concerning four jobs and four
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machines. The different patterns in the rectangles represent different jobs;
the rectangles length represent the duration of the job’s visit on the machine.
There exists plenty of literature and different sets of benchmark problems on
the VRP available for comparison [34], [37]–[40].

The JSP has variants featuring additional requirements; the flexible job
shop problem (FJSP) [41], where operations can be executed by more than
one machine; the no-buffer JSP [42] where jobs cannot leave a machine until
the next machine in the sequence is available for processing, since there are
no buffers to hold the parts. A sub-variant of this problem involves limited-
capacity buffers; there is the no-wait JSP, which involves constraints on the
elapsing time between operations of the same job, due to the perishability of
the goods, also described in [42]. Further details about JSPs and previous
studies on the subject are presented in Paper A.

For the standard JSP, even though finding the optimal solution, or even
proving that a solution is optimal is hard, it is possible to design heuristic
algorithms to produce sub-optimal solution very quickly. One would be to
simply execute all operations sequentially. It would yield a very bad objec-
tive function value, but it would be a feasible assignment, and it would take
virtually no time to compute.

The Bin Sorting Problem

Bins' Capacity = 4

Items Assignment
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Figure 2.2: Illustration of a possible assignment for a bin sorting problem.

The bin sorting problem (BSP) is the NP-hard [43] optimization problem
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of fitting items into bins such that the number of bins is optimal. Items
are characterized by a value indicating their size (in real world scenarios this
could represent their weight or their volume) and there exist two versions of
the BSP, one being the dual of the other. In the bin packing problem (BPP)
[26], there is a maximum capacity of the bins that cannot be exceeded and the
goal is to minimize the number of bins; in the bin covering problem (BCP),
there is a minimum capacity of the bins that cannot be under-reached and
the goal is to maximize the number of bins. Figure 2.2 shows a BPP where
nine items have to be packed in bins of maximum capacity four.

Especially for the BPP there is plenty of literature available for comparison
[44], [45], as well as five different sets of standard benchmark problems [46]–
[50]. The literature for the BCP is less exhaustive and slightly outdated,
possibly because the problem is so closely related to the BPP [51]; However,
more recent work on online BCP is presented in [52]. Further details about
VRPs and previous studies on the subject are presented in Paper B.

Also for the bin sorting problem, it would be possible to design heuristic
algorithms to provide sub-optimal solutions quickly. For the BPP for instance,
the simplest solution (and the worst one) would be to pack an item in each
bin; a better one would be to pack items in a bin until no additional item fits
and then repeat the algorithm with more bins until all items are packed.

The Vehicle Routing Problem

VRP

(a) (b)

DepotDepot

Figure 2.3: Illustration of the vehicle routing problem.

The Vehicle Routing Problem (VRP) [53] is an NP-hard [54] optimization
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problem of computing routes to serve customers while minimizing a cost func-
tion, typically the travelled distance, or the number of vehicles required (or
a combination of both). Customers are also characterized by a service time,
which is the time the vehicle serving the customer has to spend at the cus-
tomer’s location in order to serve it. In the VRP, for a route to be valid, it has
to start and end at the same depot (in case of multiple depots). Moreover,
each customer has to be visited by exactly one vehicle. There exist many dif-
ferent extensions of the basic problem, involving additional constraints such
as limited capacity of goods that a vehicle can carry (this corresponds to spe-
cific demands of goods for each customer) [55], limited operating range of the
vehicles in terms of travelled distance [56], time windows to deliver goods (i.e.
earliest and latest arrival time at a customer) [57], multiple depot stations,
etc. A common trait when dealing with the VRP is to treat the real world
map as a graph, where each point of interest (i.e. depots, customers) is a node
and two nodes are connected with each other by a weighted edge representing
their distance. There exists plenty of literature and different sets of bench-
mark problems on the VRP available for comparison [56], [58]. Also, [59]
presents a review of different models, classifications and solving algorithms.
Further details about VRPs and previous studies on the subject are presented
in papers C, D, and E.

Once again, finding the optimal solution is hard, but, as for the previous
two problems, it is possible to develop heuristic solutions that will produce
sub-optimal solutions quickly. For instance, having one vehicle serving all the
customers, or having one vehicle for each customer.

2.3 Complexity of the CF-EVRP
So far we have seen problems that are hard to solve to optimality, but tractable
if the goal is to find a sub-optimal solution for them. As we mentioned in the
previous chapter though, there exist problems that are hard even when the
goal is finding any solution at all. In scheduling, one factor that seems to
further complicate things is the existence of time windows for the execution
of an operation (JSP) or the serving of a customer (VRP). In fact there is no
guarantee that the solutions provided by an heuristic algorithm will meet the
time windows for the operations/customers.

This is exactly what happens in the CF-EVRP. The time windows for the
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delivery of goods to the workstations constrain the execution time, while the
limited capacity of the road segments may require the vehicles to wait for each
other or to take longer routes in order to avoid blocking each other’s way. In
such a scenario it is impossible to define a simple heuristic to find a solution,
because infeasibility can be caused by a combination of factors. It is therefore
necessary to try different assignments and backtrack when one turns out to
be infeasible.

The approach described in the previous paragraph may sound naive, since it
is basically a trial and error strategy. However, there is still much reasoning
that can be done in order to avoid trying assignments that are obviously
infeasible. Moreover, it is also possible to learn from infeasible assignments
and steer the search based on them. In Chapter 5 is presented an in-depth
discussion over the Compositional Algorithm (ComSat) developed to solve the
CF-EVRP by efficiently and incrementally build an overall solution based on
the solutions of the sub-problems the CF-EVRP is broken into.

Before diving into the details of how to solve the CF-EVRP efficiently, an
overview on MILP and SMT is given in the next chapter, and then a formal
description of CF-EVRP itself is given in Chapter 4.
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CHAPTER 3

On Satisfiability Modulo Theory and Mixed Integer
Linear Programming

As MILP and SMT play an important role in this thesis, we will here give a
brief introduction on how to utilize these techniques. The purpose of the fol-
lowing sections is to present the main concepts regarding the two approaches;
therefore no proofs are provided nor any in-depth explanations. Instead, we
refer the reader to relevant literature. For a thorough introduction to MILP
see [60], and for SMT see, for example, [61].

3.1 Mixed Integer Linear Programming (MILP)
In order to understand how MILP works, it is necessary to first understand
linear programming (LP). The difference between MILP and LP is that in
LP all variables are real-valued, while in MILP a subset of the variables can
be integer, or binary. An LP problem is a conjunction of linear inequalities
together with a linear objective function over a set of real variables. As a
convention, a linear problem is a minimization, though it can easily be con-
verted into maximization (or the other way around) by changing the sign of
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the objective function.
A general linear problem counting n variables and m constraints takes the

standard form:

min cT x⃗

such that Am,nx⃗ ≤ b

x⃗ ≥ 0

where x⃗ = [x1, . . . , xn] is a vector containing the decision variables, cT =
[c1, . . . , cn] is an array of coefficients for the objective function, b is a column
vector of the right side values, and Am,n is a coefficient matrix.

The following example with two variables x and y can be shown on the
plane where each constraint is represented by a line and since the problem is
a conjunction of them, they all have to be fulfilled, together with the x⃗ ≥ 0
constraint, thus defining an area called the feasible region, a portion of the
plane where all possible solutions to the problem lie.

min −0.75x− y (3.1)
such that x + y ≤ 4 (3.2)

1.5x + y ≤ 5 (3.3)
x, y ≥ 0 (3.4)

In the problem, (3.1) is the objective function, (3.2) and (3.3) are the linear
inequalities, and (3.4) is the non-negativity constraint over the variables.

In Figure 3.1 (a), constraints (3.2) and (3.3), represented by the blue and
red line, together with the non-negativity of the variables, define the feasible
region shown as the gray area. Any feasible solution to the problem lies
within that area, while any point in the white area conflicts with at least
one constraint. By formulating a problem in standard form, i.e., by having
only linear inequalities with the symbol ”≤“, it is possible to represent it
graphically (as shown in Figure 3.1). It is always possible, given a linear
problem, to convert it into standard form. When all constraints are linear,
the feasible region has the shape of a convex polygon and the optimal solution
corresponds to one or more of its extreme points.

The objective function represented by the green line in Figure 3.1 (b) is
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(a) (b)

Figure 3.1: Illustration of the feasible region (a) and objective function (b) for the
LP example.

used to determine which extreme point(s) corresponds to the optimal solution.
In fact, let’s assume it is possible to shift the objective function along its
perpendicular and position it on the extreme points of the polygon. Depending
on its expression, its value will increase or decrease as it shifts upwards or
downwards. In the example, since the coefficients of x and y are negative,
when shifting it upwards its value will decrease. When we position it on an
extreme point, the corresponding solution is given by solving the system of
inequalities that represent the lines touching that point. At the same time
the objective function value is calculated by plugging in the solution into the
objective function expression.

In the example above, the extreme points of the feasible region are

(0, 0), (10/3, 0), (2, 2), (0, 4),

the objective function can assume the values 0,−2.5,−3.5,−4 when touching
each point. Since the problem is a minimization, the optimal solution is the
one corresponding to the smallest value of the objective function, i.e., the
point (0, 4). Graphically, we can see as (0, 4) is the furthest point that the
objective function can touch before ”leaving“ the feasible region.

One particular case is when the objective function is parallel to one of the
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Figure 3.2: Illustration of the feasible region when the integrality constraint ap-
plies.

lines touching the extreme point to the optimal solution. In that case, in fact,
the objective function will be touching two points, not one. Both points are
optimal, as well as all the points in between them. In this case there is an
infinite number of optimal solutions. It could also be thought that there exist
no feasible region, i.e., no assignment to the variables that satisfies all the
constraints.

As of today, the most widely used algorithm to solve linear problems is the
Simplex algorithm [62]. Its complexity is in the worse case exponential in
the problem size; nonetheless it performs pretty well in practice. There is a
polynomial algorithm to solve linear problems, the Interior Points algorithm
[63], that in practice though does not perform as well as the Simplex algorithm.

When the variables are restricted to be integer, there is no guarantee that
the optimum lies on a vertex. Figure 3.2 shows again the feasible region
of a problem but this time the integrality constraint applies and only the
points marked by a star are actually feasible. In this case, the extreme point
corresponding to the optimal solution, happens to be integer, therefore solving
the relaxed LP would yield a feasible solution to the MILP problem too.

One possibility to solve a mixed integer linear problem is to apply a branch
and bound algorithm; based on the fact that solving a relaxed version of the
problem,i.e. the integrality constraint on all the variables is removed, yields a
solution at least as good or better than the solution of the original problem,
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the algorithm iteratively solves relaxed problems to find tighter and tighter
bounds for the original one, until the gap between the bounds falls below a
desired threshold.

An example can be used to clarify the procedure:

min −50x1 − 20x2 − 60x3

s.t. 2x1 + x2 + 2x3 ≤ 120.5
3x1 + 2x2 + 2x3 ≤ 150

x1 ≥ 20
x1, x2, x3 ∈ N

In the problem above, the integrality constraint over the variables is in-
cluded; this means that the objective function value z may be fractional,
depending on the coefficients (this is not the case here since they are all in-
teger as well), but the values of the decision variables x1, x2 and x3 must be
integer.

Figure 3.3: Illustration of branch and bound steps.

Figure 3.3 shows some of the steps that a branch and bound algorithm
would take to find an (possible multiple equally good) optimal solution to the
problem. In step 1 the relaxed problem is solved and the optimal value is 3510
but the solution is not feasible for the original problem because x2 and x3 are
not integer numbers. This leads to four alternatives, represented by nodes

25



Chapter 3 On Satisfiability Modulo Theory and Mixed Integer Linear
Programming

2, 3, 8, and 9, respectively. An additional inequality is added that restricts
the variable domain to be either smaller than or equal to the floor or larger
than or equal to the ceiling of its current value. In node 2, x2 is restricted to
be smaller than or equal to 9 (its value from the previous iteration was 9.5).
The relaxed problem with the additional constraint is solved again and this
time the optimum is 3480 but the solution is still unfeasible for the original
problem, since x3 is 35.75. We can branch again by adding another inequality:
either x3 is larger than or equal to 36 (ceiling of 35.75) or it is smaller than
or equal to 35 (floor of 35.75).

The process goes on until a feasible integer solution is found, as happens in
node 6. Now we have a lower bound for the original problem z = 3460. From
now on, every time we explore a branch we can stop whenever we found a
solution whose value is smaller than the current z and prune (stop exploring)
that branch because we know that no better solution can be found there since
going down a branch we can only find worse and worse solutions because we
keep shrinking the feasible region.

When an integer solution is found, the search on that branch is over. If the
optimal value for the current relaxed problem is better than the current lower
bound, this becomes the new lower bound and the search starts on another
branch. The algorithm terminates when all branches are either searched or
pruned. Note that this example concerns the maximization of the objective
function.

There exist techniques that build on top of the branch and bound algo-
rithm to increase the performance but as of today, solving a mixed integer
linear problem is computationally demanding and many problems still remain
intractable [64]. The reader is referred to [60] for further details.

26



3.2 Satisfiability Modulo Theories (SMT)

3.2 Satisfiability Modulo Theories (SMT)
In this section a background on Satisfiability Modulo Theories (SMT) is given;
the focus is on describing how SMT solvers find satisfiable assignments. The
search for optimal solutions is not described in detail as there are many differ-
ent algorithms that can be built on top of a solver to drive its search for the
optimum, while the decision process for feasibility is common among them all.
However, a brief discussion on optimizing SMT solvers is provided at the end
of the section. In the following, some terminology is given:

Literal: a literal is either a variable or its negation. A literal is negative if it
is a negated variable, and positive otherwise. A positive literal is satisfied if
its variable is assigned to True. Similarly, a negative literal is satisfied if its
variable is assigned to False.

Clause: several literals connected by logical disjunction ∨ [65]. A collection
of one or more conjuncted and/or disjuncted clauses is called a formula. An
empty clause is always False.

Conjunctive Normal Form (CNF): a formula is in conjunctive normal form
if it is a conjunction of disjunctions of literals, i.e., it has the form

∧
i

∨
j

lij

 ,

where lij is the j-th literal of the i-th clause. An empty CNF formula is always
True.

In order to understand how SMT solvers work, it is necessary to discuss
Boolean satisfiability [66] (SAT). A SAT problem is formed by a formula
of Boolean variables in conjunctive normal form. Solving a SAT problem
means finding an assignment to each variable (either True or False) that
makes the whole formula True, or providing a counterexample that shows
that the formula is unfeasible. Although SAT is in general NP-complete [67],
over the years SAT solvers have become very efficient and can nowadays solve
large problems counting even millions of variables and clauses in relatively
short time [68].
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When modelling a system, often CNFs are not the most user-friendly way
to represent its behaviour; fortunately, there exist ways to transform any for-
mula into a CNF formula, and it can be done efficiently by using Tseitin’s
linear encoding [69]. The reason why it is worth to spend computation time
on transforming a formula into CNF is that since it is a conjunction of clauses,
as soon as one clause is determined unsatisfiable, the whole formula is unsat-
isfiable. This property can be exploited by SAT solvers to efficiently solve
many problems involving a high number of variables.

State of a clause under an assignment: a clause is satisfied if one or more
its its literals are satisfied (True), conflicting if all of its literals are assigned
but the clause is not satisfied, unit if it is not satisfied and all but one of its
literals are assigned, and unresolved otherwise.

If a clause is unit, this means that all but one of its literals are assigned
but the clause is still not satisfied, i.e., all assigned literals are False. This
means that the remaining unassigned literal has to be True, otherwise the
clause would be conflicting. Therefore the remaining literal is implied by the
clause.

The solver starts assigning literals based on some heuristic strategy, until
one or more clauses become unit and implies one (or more) literals. This
implication may turn more clauses into units, otherwise there is going to be
more heuristic based assignments. The process goes on until all literals are
assigned or a conflict arises because the implications made a clause conflicting.

Modern SAT solvers exploit the above mentioned properties of formulas in
CNF by applying the conflict driven clause learning (CDCL) framework to the
problem. The search-space can be thought of as a binary tree, in which nodes
are partial assignments and leaves are full assignments. The solver traverses
the tree and when a conflict is found, it “learns” from the conflict by adding
a new clause to the model containing the information about the assignment
that led to the conflict, backtracks to the point where the assignment was
made and tries a different assignment. The newly added clause will prevent
making the same (conflicting) assignment again. The solver keeps traversing
and backtracking until it finds a feasible assignment or no assignment exists
that satisfies all the clauses, including the learned ones.
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Example of the CDCL procedure
Let us clarify the concepts introduced so far with a small example. Assume
we want to find an assignment for the following formula:

(¬x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x3 ∨ x1). (3.5)

Initially, no literal is implied so the choice to satisfy one literal rather than
another is merely dependent on the heuristic strategy used. Remember that,
since the formula is a conjunction of clauses, as soon as one clause is conflicting,
the whole formula is not satisfied by that assignment.

Let us assign the value False to the variable x1 in order to satisfy the literal
¬x1 in the first clause. The second clause would then imply the variable x2
to be True, since its first literal x1 is not satisfied. Now x3 is implied by
the third clause to be False, since the first literal in it, ¬x2 is not satisfied.
Finally, the last implication makes the fourth clause conflicting, because it
forces the variable x1 to be True, since the first literal in it is not satisfied,
but we previously assigned to x1 the value False.

Thus it is necessary to backtrack where the decision that eventually led to
the conflict was made and make a different one. In this case, that decision
was assigning the value False to x1.

In order to avoid repeating the same mistake, we will add a clause saying
that x1 must be True, to the formula, i.e., ¬(¬x1). In this case the new
learned clause only contains one literal, which forces the literal to be satisfied.
Satisfying x1 also satisfies the second and fourth clause and makes x2 implied
by clause one, which in turn makes ¬x3 implied by clause three.

We have now a full assignment that satisfies (3.5):

x1 = x2 = True, x3 = False

From SAT to SMT
While SAT solvers can be extremely efficient in dealing with large models,
Boolean satisfiability is not expressive enough to easily model many real-world
industrial problems. Boolean variables and propositional logic can be handy
when it comes to model binary decision (executing this operation or not),
but integer and real variables and linear arithmetic are necessary to describe
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other important features (operations’ duration for instance). As it happens,
SMT solvers are able to use integer and real variables over a range of different
theories, including combinations of theories. SMT solvers can do so in two
different ways: the eager approach or the lazy approach [70].

However, before going into details about the eager and lazy approaches, it
is necessary to provide some more terminology:

• logical symbols: standard Boolean connectives (e.g. “∧”,“¬”), quantifiers
(“∃” and “∀”), and parenthesis;

• non-logical symbols: functions, predicates, and constant symbols. A
set of non-logical symbols is called a signature and is denoted by the
symbol Σ;

• Σ−formula: formula that uses only the non-logical symbols from Σ (pos-
sibly in addition to logical symbols, this is why the distinction between
logical and non-logical symbols is needed);

• free variable: variable that is not bound by a quantifier, i.e., ∃ or ∀;

• sentence: formula without free variables;

• syntax: rules for constructing formulas.

The distinction between logical and non-logical symbols is necessary be-
cause, while the clause of a theory may or may not be constructed using logical
symbols, clauses are combined using logical symbols, regardless of the theory
they belong to. For instance, a formula in linear arithmetic, is a conjunction
of clauses, where each clause is a linear equality/inequality.

In a theory, the syntax is needed to interpret the non-logical symbols. For
instance, the symbol “+” is usually associated to addition, but this may not
be true for some theories. Hence, we need rules to use the non-logical symbols
to construct the formulas.

Theory T: a theory is a set of Σ-sentences. For a given Σ-theory, a Σ-formula φ

is T-satisfiable if there exists an assignment that satisfies both the formula
and the sentences of T.

In other words, we use a set of sentences to define the syntax of a theory,
i.e. to define the interpretation of the non-logical symbols.
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Eager Approach

One possibility to solve a problem involving a combination of theories is to
convert its model into SAT. For each variable, depending on its domain, a
number of Boolean variables are generated and for each constraint, a set of
clauses. Then the assignment problem is solved using the CDCL framework
as described above.

This procedure is called bit blasting and can be computationally expen-
sive. For each variable in the original problem there will be as many Boolean
variables as the size of the original variable domain. When it comes to con-
straints translation, the procedure can be even more expensive. Let us clarify
this point with an example; the goal is to find an assignment to x1 and x2
such that x1 is smaller than or equal to x2, and their domains can be either
0, 1, or 2.

x1 ≤ x2 (3.6)
x1, x2 ∈ {0, 1, 2} (3.7)

To turn this problem into a SAT formulation, we define the following
Boolean variables:

xij i ∈ {0, 1}, j ∈ {0, 1, 2}.

There is one Boolean variable for each variable in the original problem and
for each element in the variable domain.

The linear inequality in 3.6 can be converted as follows:

xij =⇒
∧

j′∈{0,1,2}
j′ ̸= j

¬xij′ ∀i ∈ {0, 1}, j ∈ {0, 1, 2} (3.8)

x1j =⇒
∧

j′∈{0,1,2}
j′< j

¬x2j′ ∀j ∈ {0, 1, 2} (3.9)

(3.8) states that if one of the Boolean variables representing each original
variable is True, all the other Boolean variables representing the same original
variable must be False. This is equivalent to say that exactly one of the
Boolean variables representing each original variable can be True and this
constraint is necessary because each original variable can assume only one
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value from its domain; (3.9) states that if the Boolean variable representing
x1 having the value j is True, none of the variables representing x2 having a
value strictly smaller than j can be true.

While the eager approach can successfully be applied to finite domain the-
ories, it is not clear how it would be possible to reduce linear real arithmetic
literals to a Boolean satisfiability problem and since in this thesis we deal
with finite domain theories, the subject is not further investigated, though
the reader is referred to [71] for further details.

Lazy Approach

The lazy approach combines the underlying SAT solver with a theorem prover
to decide the assignment of variables. This means that the SMT solver must
be able to recognize the theory it is dealing with and must be equipped with
a prover appropriate for that theory.

A formula of a certain theory is a logical combination of clauses belonging to
that theory. The solver will replace each clause in the formula with a Boolean
variable and call the SAT solver to find a satisfiable assignment. If such
assignment exists, the solver will call the theorem prover to check whether
the current assignment is feasible within the theory. If not, a new clause is
learned and the process starts again.

Once again, an example can aid understanding. Consider the formula:

(x1 = x3∨x1 = x2)∧(x1 = x2∨x1 = x4)∧x1 = x2∧x1 ̸= x3∧x1 ̸= x4 (3.10)

The theory involved in this formula is called equality theory [61] where literals
are either equalities or inequalities. Given a conjunction of literals (that would
be the outcome of the SAT solver), there exist procedures to check whether
the assignment is satisfiable or not.

In this case, the SMT solver would generate Boolean variables:

c1 : x1 = x2

c2 : x1 = x3

c3 : x1 = x4

ci (for i ∈ {1, 2, 3}) will evaluate to True if the corresponding equality literal
is indeed an equality, False otherwise.
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Call the SAT solver to find an assignment for

(c2 ∨ c1) ∧ (c1 ∨ c3) ∧ c1 ∧ ¬c2 ∧ ¬c3

Let us assume the solver finds the satisfiable assignment c1∧¬c2∧¬c3; this
means that the following is true: x1 = x2 ∧ x1 ̸= x3 ∧ x1 ̸= x4.

The solver will now call the theorem prover to check the assignment (which,
in this case is satisfiable)

The examples presented in this section are inspired by [61], which is recom-
mended reading for further details on techniques for solving SMT-problems.

Optimization Modulo Theory

As mentioned in Chapter 1, it is possible to express many practical industrial
problems in quantitative terms and define a cost function to optimize. This
led to efforts of supporting optimization in the SMT-based tools. In [72] an
SMT variant is introduced where the theory involved in the problem becomes
progressively stronger, meaning that more sentences are added to it as the
optimization process takes place; this is done by implementing a branch-and-
bound setting where the solver knows the cost function and the current best
bound. Each time a better bound is found, models with a cost higher than
this new bound become inconsistent with the theory. In [73] and [74], the au-
thors describe some of the optimizing algorithms running under the hood of
the SMT solver Z3, such as a collection of MaxSAT solvers, solvers that drive
the search for an optimal solution by trying to satisfy as many soft constraints
as possible, and a module for optimization of linear arithmetic objective func-
tions; among others, the module contains a Simplex-based algorithm for the
CDCL framework [75]. In [76], the authors provide insight on how optimiza-
tion is achieved with the SMT solver OptiMathSAT. It is explained that unlike
other optimizing SMT solvers, in which the solver is used as a black-box and
the optimization proceeds through a sequence of incremental SMT calls, with
OptiMathSAT the whole optimization procedure is pushed inside the SMT
solver.

In conclusion, optimization with SMT solvers can be achieved in different
ways and it is hard to tell which one is the most efficient, since different
approaches perform differently depending on the problem.
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The Unsat Core
Besides evaluating whether a set of constraints is feasible, it can be of interest
to understand which constraints are the ones that cause infeasibility, if the
formula is infeasible.

In general, a formula in CNF is infeasible if it is possible to generate an
empty clause ⊥ by resolution from the original clauses [77]. Two clauses can
be resolved to generate a resolvent clause as long as there is one and only one
variable that appears in both clauses, negated in one and non-negated in the
other, The resolvent clause takes the disjunction of the remaining literals in
both clauses.

For example, let the formula φ be the conjunction of

c1 = x1 ∨ x2

c2 = ¬x2 ∨ x3

c3 = ¬x1

c4 = ¬x3,

that is,
φ = (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x1 ∧ ¬x3.

Then, resolving c1 and c2 is possible, since they only have x2 in common,
and x2 is negated in c1 and non-negated in c2. Resolving c1 and c2 leads to
the resolvent clause c5 = x1 ∨ x3. After this resolution, the formula becomes:

φ = (x1 ∨ x3) ∧ ¬x1 ∧ ¬x3

Similarly, resolving c5 and c3 leads to the resolvent clause c6 = x3 since x1
appears in both c5 and c3 with different sign, and c3 = ¬x1 = ¬x1 ∨ False.
After this resolution, the formula becomes:

φ = x3 ∧ ¬x3

Finally, resolving c6 and c4 leads to c7 =⊥. Since it is possible to generate
an empty clause from the original clauses, φ is infeasible.

Unsatisfiable Core (or Unsat Core): An Unsat Core is a set of clauses that
make any assignment infeasible. More formally, given a set of clauses φ, Ci
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is an Unsat-Core of φ if Ci ⊆ φ and Ci is infeasible [77]. This means that
a problem may have more than one Unsat Core. Moreover, Unsat Cores can
have different cardinalities and one Unsat Core can be a subset of another
Unsat Core.

Minimal Unsat Core: An Unsat Core is said to be minimal if by remov-
ing any clause from it, the remaining clauses become feasible. Note, that a
problem can have multiple minimal Unsat Cores.

In order to illustrate the definition of Unsat Cores and minimal Unsat Cores,
a Boolean example from [77] will be treated. The example concerns a set of
variables x = {x1, x2, x3}, and a set of clauses φ = {ω1, ω2, ω3, ω4, ω5, ω6}
in CNF. The clauses are defined as:

ω1 = x1 ∨ ¬x3 ω2 = x2 ω3 = ¬x2 ∨ x3
ω4 = ¬x2 ∨ ¬x3 ω5 = x2 ∨ x3 ω6 = ¬x1 ∨ x2 ∨ ¬x3

As an example, consider clauses ω2, ω3 and ω4. For the clause ω2 to be True,
the variable x2 must be True. Then, ω3 implies that x3 must be True, which
in turn means that the clause ω4 is False. Thus, this example is infeasible.

It turns out that this example has 9 different Unsat Cores, namely:

C1 = {ω1, ω2, ω3, ω4, ω5, ω6} C2 = {ω1, ω2, ω3, ω4, ω5}
C3 = {ω1, ω2, ω3, ω4, ω6} C4 = {ω1, ω3, ω4, ω5, ω6}
C5 = {ω2, ω3, ω4, ω5, ω6} C6 = {ω1, ω2, ω3, ω4}
C7 = {ω2, ω3, ω4, ω5} C8 = {ω2, ω3, ω4, ω6}
C9 = {ω2, ω3, ω4}

In Figure 3.4, it is shown how, when considering the inclusion operation,
the set of Unsat Cores forms a sub-lattice [78], where the unique upper bound
is always the entire set of clauses C1, while the lower bounds are the minimal
Unsat Cores, namely C4 and C9.
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{ω1, ω2, ω3, ω4, ω5, ω6}

{ω1, ω2, ω3, ω4, ω5} {ω1, ω2, ω3, ω4, ω6} {ω1, ω3, ω4, ω5, ω6}{ω2, ω3, ω4, ω5, ω6}

{ω1, ω2, ω3, ω4} {ω2, ω3, ω4, ω5}{ω2, ω3, ω4, ω6}

{ω2, ω3, ω4}

Figure 3.4: Lattice of the Unsat Core set.

Evaluating Infeasibility Scenarios

We now present four different scenarios where the formula is infeasible and
one or more Unsat Cores can be extracted.

Scenario 1

In the first scenario, three constraints lead to infeasibility:

ω1 : x + y < 0
ω2 : x = 1
ω3 : y = 1

If both x and y must be equal to 1, it is impossible for x + y to be smaller
than 0. When considered pairwise, these constraints do not generate any
inconsistency. However, when considering all three of them at the same time,
they are infeasible. Therefore, if any one of the constraints is removed, the
entire problem becomes feasible. As an example, if constraint ω2 is removed,
any assignment where x < −1 would be a solution.
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{ω1, ω2, ω3}

Figure 3.5: Lattice of the Unsat Core set of Scenario 1.

As shown in Figure 3.5, the Unsat Core set only contains one element, in-
cluding all three constraints.

Scenario 2

In the second scenario there are three constraints, each of them being infeasible
with either of the other ones:

ω1 : x = 1
ω2 : x = 2
ω3 : x = 3

Clearly, x cannot be 1, 2 and 3 at the same time. If any one of the constraints
is removed, the two remaining constraints will still be infeasible. However, if
two constraints are removed, the remaining constraint will be feasible.

{ω1, ω2, ω3}

{ω1, ω2} {ω2, ω3} {ω1, ω3}

Figure 3.6: Lattice of the Unsat Core set of Scenario 2.

In Figure 3.6 is shown the lattice of of the Unsat Core set, where there are
three lower bounds, hence three minimal Unsat Cores.
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Scenario 3

In the third scenario four constraints are grouped into two pairs of constraints
in conflict with each other:

ω1 : x = 1
ω2 : x = 2
ω3 : y = 1
ω4 : y = 2

As can be seen, constraints ω1 and ω2 can never be true at the same time.
The same holds for constraints ω3 and ω4. Even if one of the constraints is
removed, there is still a remaining pair of infeasible constraints. Only if at
least one constraint of each of the pairs is removed, does the problem become
feasible.

{ω1, ω2, ω3, ω4}

{ω1, ω2, ω3} {ω1, ω2, ω4} {ω2, ω3, ω4} {ω1, ω3, ω4}

{ω1, ω2} {ω3, ω4}

Figure 3.7: Lattice of the Unsat Core set of Scenario 3.

Figure 3.7 shows that there are two minimal Unsat Cores, each with cardi-
nality 2, namely ω1 and ω2, and ω3 and ω4.

The three scenarios presented in this section show that even small formulas
can easily have multiple Unsat Cores and such Unsat Cores can intertwine in
different ways. Being able to catch them all could provide important informa-
tion about the system modelled by the infeasible formula and therefore have
interesting applications, as shown in Paper E.
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3.3 Modelling using MILP/SMT

In the previous section we give a brief introduction to the techniques used
by MILP and SMT solvers. We discussed how SMT solvers allow for logical
conditions over literals belonging to different theories. We now show how
these approaches can be used to deal with problems in industrial systems.
As an example we model the non-overlapping of operations sharing the same
resource, first as MILP and then as SMT.

One way to formulate the constraints is by having a continuous variable
representing the start time of each operation. Some operations are supposed
to be executed by the same machine and therefore cannot overlap in time; the
first operation has has to be completed before the next one can start.

Let sa and sb be continuous variables representing the starting time of
operations a and b, and let da and db be the duration of operations a and
b, respectively. For a MILP solver to handle the non-overlap constraint, it is
necessary to declare an additional binary variable z ∈ {0, 1} and find a large
enough number M . If M is not large enough the solver may return the wrong
schedule. The constraints to declare are then:

sa ≥ sb + db −M · z, (3.11)
sb ≥ sa + da −M · (1− z) (3.12)

When z = 1 (and M large enough), constraint (3.11) is trivially fulfilled,
since sa ≥ 0 and sb +db−M < 0, and thus this constraint has no effect. At the
same time, when z = 1 (3.12) becomes sb ≥ sa +da, which puts a requirement
on sb to be larger than the staring time of operation a plus its execution time
(that is, operation a’s end time). On the other hand, when z = 0, (3.12) is
trivially fulfilled while (3.11) becomes sa ≥ sb + db, thus constraining sa to be
larger than sb plus its execution time.

On the other hand, with an SMT solver it is possible to combine literals of
linear arithmetic, i.e. linear inequalities, with propositional logic:

sa ≥ sb + db ∨ sb ≥ sa + da.

There can be much harder logical conditions to model and it becomes harder
and harder to do it with a MILP solver since everything has to be in the form of
a linear inequalities. Also, the additional binary variables used to model logics
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increase the search-space size exponentially; in a model counting n binary
variables, a branch and bound algorithm has to solve 2n relaxed problems in
the worst case, only to account for the binary variables, though there may be
other integer decision variables that increase the size even further.

3.4 Comparison of MILP and SMT over
benchmark problems

The benchmark problems presented in Chapter 2 have been modelled as
MILP and SMT and solved using the state-of-the art MILP and SMT solvers,
Gurobi [79] and Z3 [73], respectively. In this section the solutions provided
by the MILP and SMT solvers are compared in terms of solving time.

The Job Shop Problem
As for all classes of problems, the model formulation plays an important role in
the solving phase so it is important to know which are the main formulations
existing to model the JSP and how they affect the solver’s performance. In
[80], the authors present the disjunctive, time-indexed, and rank-based models
as the most common formulations for the JSP (an in-depth description of
these models is provided in Paper A) and present a computational analysis
over a set of benchmark instances. Such formulations are tested using the
state-of-the-art MILP solvers CPLEX [81] and Gurobi and, for both solvers,
the disjunctive model shows the best performance.

In Paper A, the above mentioned models are formulated as SMT and then
they are evaluated on a set of benchmark problems using Z3. The comparison
shows that also for SMT solvers the disjunctive model outperforms the other
two formulations, sometimes by an order of magnitude. This allows the dis-
junctive model to solve much larger problem instances in reasonable time, as
shown in the tables of Paper A. For a fair comparison, the disjunctive model
is formulated as MILP as well and run over the same set of problems, using
Gurobi and the SMT solver OptiMathSAT [82]. These tests show that Z3
outperforms Gurobi on all problems and the gap increases as the problem size
increases. In general, the combination of an SMT solver and the disjunctive
model is able to handle relatively large benchmark instances in a relatively
short time (timeout set to 20 minutes). In Figure 3.8, two cactus plots depict
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Figure 3.8: Comparison of different model formulations (left) and different solvers
(right) over a benchmark set of the JSP.

the comparison of models (left) and the comparison of solvers (right) in terms
of number of solved instances versus running time. Further investigations
[61] revealed that, when expressing the JSP using the disjunctive model, the
problem’s constraints fall into the domain of difference logic, a fragment of
linear algebra; Z3 uses the polynomial Ford-Bellman algorithm [83] to check
whether an assignment for this theory is feasible or not. Having the SAT
engine efficiently finding feasible assignments and the theorem prover quickly
checking them leads to an overall fast execution.

The Bin Sorting Problem
The original problem formulation for bin packing and bin covering [26] in-
volves binary variables to model whether an item is placed into a bin or not.
When formulated in this way, the symmetry of the problem leads to a very
large search space for relatively small instances that makes it hard to quickly
compute optimal solutions.

An alternative formulation involves the enumeration of the possible com-
binations of items that fit into a bin. In this enumerative formulation each
variable is an integer representing one combination and the value it is assigned
is the number of bins filled with the items included in the combination. This
formulation can break the problem symmetry but nonetheless the number of
possible combinations grows exponentially with the number of items and the
problem soon becomes intractable. However, in Paper B we show that only a
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Figure 3.9: Comparison of different model formulations using Z3 and Gurobi over
a benchmark set of the BCP.

small portion of all these combinations can actually form an optimal solution,
and this allows to use the enumerative formulation to solve problems more
efficiently.

Paper B is an extension of our previous work on the subject presented in
Paper F, where we implemented such an enumerative approach for the BCP
only, but for MILP and SMT (in Paper B only MILP is used). For this
problem the MILP solver Gurobi proved to be much faster than the SMT
solver Z3 which is the reason why SMT is not used in Paper B. The problem
formulation does not involve complex logical constraints, rather a conjunction
of linear inequalities and therefore using an SMT solver did not provide any
advantage in the modelling phase, nor in the solving one. In Figure 3.9 the
cactus plot compares Z3 and Gurobi running the standard formulation from
[26] (STD) and the formulation presented in papers B and F (EQU).

The Vehicle Routing Problem
As a first step toward the formulation of the CF-EVRP, we investigated the
Vehicle Routing Problem with Time Windows (VRPTW). This problem is a
VRP where each customer must be served within a time window. Also, the
VRPTW belongs to the class of capacitated VRPs, where customers have
requirements on the amount of goods to be delivered, namely demands, and
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vehicles have limits on the amount of goods they can deliver, namely capacity.
Traditionally, the problem is modelled using a set of three-index binary vari-

ables to keep track of which vehicle is travelling from A customer to customer
B. Moreover, additional variables are required to keep track of the load car-
ried by the vehicles and the service time of the customers. Such formulation is
called three-index formulation, since variables are identified by three indexes,
one denoting the customer the direct travel starts from, one denoting the cus-
tomer it ends at, and one denoting the vehicles travelling. However, a more
recent formulation by [25] only requires a set of two-index binary variables
indicating a direct travel from customer A to customer B, i.e., no vehicle is
specified. In fact, because exactly one vehicle is allowed to visit each customer,
there is no risk of ambiguous solutions even when the third index, that speci-
fies the vehicle, is omitted. This formulation helps to break the symmetry of
the problem.

We implemented the two-index formulation both as MILP and SMT and
compared their performance over the benchmark set of Solomon instances
[58] counting 25 and 50 customers. The goal is to minimize the total travelled
distance. The experiments are performed on an Intel Core i7 6700K, 4.0 GHZ,
32GB RAM running Ubuntu-18.04 LTS ; the solvers compared are Z3 4.8.9
and Gurobi 9.0.0. The Solomon instances are grouped into three classes, based
on the customer distribution, i.e. clustered (c), random (r), or mixed random
and clustered (rc); they are also further divided into short time horizon (100)
and long time horizon (200) (see more on time horizon in the next chapter).

Table 3.1: Comparison of Z3 and Gurobi over Solomon benchmark instances with 25 and 50
customers. The time limit is set to 1200 second; for each class of instances it is
reported the average time to solve the instances that did not timeout, and the number
of instances solved out of the total number of instances in that class. The symbol “-”
means that no instance is solved for a specific class.

Gurobi Z3
Customers 25 50 25 50
Instance Av. (s) Opt Av. (s) Opt Av. (s) Opt Av. (s) Opt

c100 80.5 9/9 200.9 9/9 42.1 5/9 836.6 2/9
c200 75.9 8/8 102.6 8/8 45.5 3/8 754.8 1/8
r100 157.9 12/12 481.2 12/12 25.6 1/12 - 0/12
r200 61.7 11/11 525.4 11/11 129.8 1/11 - 0/11
rc100 301.8 8/8 527.2 8/8 391.6 2/8 - 0/8
rc200 312.2 8/8 525.4 8/8 36.9 1/8 - 0/8
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Table 3.1 shows the average running time to solve the instances of each
class to optimality within the time limit of 1200 seconds, and the number of
solved instances (out of the total). Gurobi is able to solve all instances within
the time limit both for 25 and 50 customers, while Z3 could only solve a few.
Moreover, although in most cases the average solving time for Gurobi is larger
than the solving time for Z3, it is important to remember that it is calculated
only over the solved instances; hence some hard-to-solve instances took Gurobi
long to solve and were not solved at all by Z3, but the timeout does not show
up in the average. In conclusion, Gurobi shows better performance than Z3
in dealing with VRPTW.

3.5 Conclusions on the MILP/SMT performance
In the previous section we have introduced the performance evaluation of the
state-of-the-art MILP solver Gurobi and the state-of-the-art SMT solver Z3
over benchmark problems of three optimization problems. Although these
two solvers do not reflect the general performance of all the solvers from their
respective community, it is possible to draw some conclusions about their
expected behaviour and how it relates to certain problem structures.

For instance, the BSP and the VRPTW models involve only conjunctions
of linear inequalities. Therefore the MILP solver has no trouble dealing with
very large models (in the evaluation presented in Paper B, we generated mod-
els counting up to twenty million variables). The SMT solver also comes
with theories to handle linear algebra, but it is not as efficient as the MILP
solver and, therefore, slower. One reason for this is that companies such as
Gurobi and CPLEX have been spending decades refining the algorithms that
run under the hood of their MILP solvers, while SMT is a relatively newer
approach.

On the other hand, the JSP has a disjunctive constraint (non-overlap of
operations requiring the same job) that has to be modeled using additional
binary variables together with the big M method when using the MILP solver.
The SMT solver, instead, will set up a SAT problem where each linear inequal-
ity is treated as a Boolean variable and find an assignment (if such exists) for
them; then the theory prover will check the feasibility of the assignment of
the Boolean variables for the corresponding inequalities in polynomial time
using the Bellman-Ford [83] algorithm.
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The computational analysis run for the JSP, the BSP, and the VRPTW
seems to indicate that, if the problem structure involves only conjunctions of
literals belonging to linear algebra, the MILP solver will likely be the most
suitable option; on the other hand, if the problem involves more logical con-
straints, such as disjunctions, implications, etc., the SMT solver will likely
outperform the MILP solver, being naturally designed to handle constraints
of propositional logic over literals of different theories. These conclusions are
used in Chapter 5 to reason about which solver is the best candidate to solve
each sub-problem resulting from the decomposition of the CF-EVRP.
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CHAPTER 4

The Conflict-Free Electric Vehicle Routing Problem

In this chapter the CF-EVRP is formally defined and a discussion on the dif-
ferent requirements is presented. Essentially, the CF-EVRP is the problem of
providing a high level schedule for a fleet of AMRs (often simply called vehi-
cles in the following discussions) to pick up and deliver (tasks) goods through
an industrial plant. Such a schedule involves the assignment of vehicles to the
tasks and the computation of the paths to travel to execute the tasks. The
problem does not include low-level trajectory planning for the AMRs, which
is handled by a separate system. The main reason for this is that the infor-
mation necessary to solve the low-level trajectory planning problem, including
current and estimated future states of dynamic obstacles, is not available at
the time of solving the scheduling problem. Instead, the approach defines
the capacity of the road segments to differentiate areas where the AMRs can
maneuver around each other from areas where they can not.

When solving the CF-EVRP, the plant and its workstations, storage, and
depots are abstracted into a strongly-connected, weighted, directed graph. A
solution to the CF-EVRP is therefore a list of nodes and edges for the selected
AMRs; for each node and edge it is also reported when the AMR will arrive
to it (node), or start travelling through it (edge).
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4.1 Formal definition of the CF-EVRP
The CF-EVRP is an extension of the VRP. The motivation for the formula-
tion of the CF-EVRP is the need for managing a fleet of AMRs whose task is
to pick up and deliver material in a manufacturing or assembly plant. Unlike
other scenarios, where it can be assumed that roads between customers are
wide enough to allow vehicles to travel freely through them, without having to
worry about other vehicles travelling through the same roads, a plant layout
may have areas where only a limited number of vehicles can be accommodated
simultaneously. In other words, the geometry of certain roads may be such
that two or more vehicles may block each other’s way, hence generating a con-
flict. For this reason we define the capacity of the road segments, intersections,
and workstations and include capacity constraints in the problem formulation.
A schedule is said to be conflict-free if it fulfills the capacity constraints.

Moreover, transportation vehicles in industrial plants may be powered by
batteries, and so have a limited operating range. It is therefore important to
consider that vehicles may have to return to the depot to charge their battery
after having travelled a certain distance. This means that the vehicle will not
be available for some time, depending on charging related parameters.

Finally, customers may be related by precedence constraints. A vehicle must
serve them in a pre-defined order, since one or more customers may represent
storage locations to pick material from and another customer may represent
the workstation to deliver material to. These and further requirements of the
CF-EVRP are listed into the following:

• Customers in the CF-EVRP represent jobs. Jobs are sets of tasks, typi-
cally one or more pick up tasks and one delivery task;

• All jobs have to be completed for a successful schedule; for a job to be
completed a vehicle has to be assigned to it and visit the locations of the
job’s tasks according to the tasks’ sequence and within their respective
time windows.

• Vehicles are not allowed to arrive at the task’s location before the time
window’s lower bound and wait there (many other VRP formulations,
allow such waiting).

• Vehicles are powered by batteries with limited capacity but with the
ability to recharge at the depots. It is assumed that state of charge
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increases proportionally to the time spent at the depot and decreases
proportionally to the travelled distance. Also, vehicles travel at constant
speed v or they are stationary.

• The round-trip between the depot and a customer is shorter than the
vehicles operating range, therefore vehicles can always serve at least one
customer and go back to the depot before running out of charge.

• There exist multiple depots; vehicles have to return to the depot they
were dispatched from and can only recharge their batteries there (with-
out queuing).

• A non-empty subset of vehicles is eligible for each job.

• All vehicles have the same operating range and start at full charge;
whenever they return to the depot they charge to full state-of-charge
before becoming available again.

• Road segment capacities limit the number of vehicles a road segment
can simultaneously accommodate at any point in time.

• Only (non-cyclic) paths, that is, only finite sequences of edges that join
sequences of distinct vertices are considered.

• The total travelled distance is used as optimization criterion to evaluate
the quality of the solutions.

4.2 Customers Serving
When it comes to serving the customers, the CF-EVRP shares common traits
with other VRPs. First, the existence of a time windows, which is the main
feature of the VRP with Time Windows (VRPTW). The VRPTW is an exten-
sion of the VRP where customers have to be served within given time window,
a time interval that spans from the earliest to the latest arrival time. Vehicles
are allowed to arrive at the customer’s location before the earliest arrival time,
but they will have to wait to serve the customer [84]; on the other hand, they
are not allowed to arrive later than the latest arrival time. The CF-EVRP is
also characterized by precedence constraints among customers; this feature re-
lates it to the VRP with Backhauls [85], where the set of customers is divided
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into a subset of linehaul customers, each requiring a given quantity of product
to be delivered, and a subset of back haul customers, where a given quantity of
inbound product must be picked up. Also, in CF-EVRP there can be multiple
depots, which is used in many variants of VRPs and was first introduced in
[86]. There exists problem formulations where vehicles are allowed to start
and end their routes at different depots [87]. however, in the CF-EVRP, we
follow the standard formulation of multi-depot VRPs [88], where vehicles are
restricted to end at the depot they started from. Finally, not all vehicles are
eligible to serve a particular customer; instead, for each customer, there exist
a subset of the full fleet that includes the eligible vehicles to serve such cus-
tomer. This feature is studied in the Heterogeneous VRP (HVRP) [89] and is
motivated by the need of specific vehicles to execute certain tasks.

4.3 Limited Operating Range of the Vehicles
The first attempts to model rechargeable vehicles date back to the late 90s,
[90], and models were subsequently extended in [91] and [56]. When repre-
senting the problem as a graph, charging stations are special nodes where the
vehicle can charge its battery on its way to customers. Since in a VRP ve-
hicles have to visit customers exactly once, a solver for a VRP problem may
misjudge an instance, i.e., declare it unfeasible while it is actually feasible,
because a feasible solution could require the same vehicle to visit the same
charging station twice or more, or not at all. In order to avoid these situations,
it is possible to define virtual charging stations, i.e., copies of the actual ones
located in the same spot, so that the same vehicle can go back to the same
location to recharge without having to visit the same node more than once.
For the virtual stations the requirement of visiting them exactly once is then
relaxed to at most once so that vehicles do not have to visit them unless they
need to. In [56] a model formulation based on the concept of virtual charging
stations to implement a hybrid local and tabu search is presented. The model
has been extended further by [92], to include additional requirements on the
cost function to reduce the energy consumption. Ever since, due to the faster
and faster spread of electric vehicles as well as car sharing services, there has
been a large effort in finding scalable algorithms for the Electric-VRP (E-
VRP). In [93], a hybrid Adaptive Large Neighbourhood Search is proposed.
In [94] the focus is on optimizing the vehicle distributions and fleet sizes for
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Mobility-on-Demand systems. In [95] models and coordination policies for
fleets of self-driving vehicles combined with public transit are discussed.

In the CF-EVRP, the recharge of vehicles’ batteries is only allowed at the
depots the vehicles were originally dispatched from and the vehicles have to
fully charge their batteries before being available to serve more customers.
This restriction helped to design an efficient algorithm to schedule the fleet
of AMRs (more details on this topic in Chapter 5). It is also reasonable in
an industrial context that vehicles have enough charge to serve one or more
customers before needing to recharge.

4.4 Travelling Between Customers: the Paths
Choice

Let us assume that a VRP represents the delivery of goods performed by
a truck company in a country, where the customers may be different cities.
When travelling between two cities, the driver may take little detours, due to
road closure, or lunch breaks. However, as long as these detours are negligible
compared to the whole trip, the total distance is not affected so much as
to affect the schedule. Therefore the path between two customers can be
abstracted into a straight line and minor detours will not affect it. When
paths between customers can be abstracted into straight lines, the input to
a VRP is usually represented by a complete graph [84], [88], [96], i.e., an
undirected graph in which every pair of distinct vertices is connected by a
unique weighted edge. This means that vehicles are allowed to travel directly
from any customer to any other customer at the cost of the edge that connects
the two nodes representing the customers. It also implicitly implies that the
actual location of the vehicle is not known.

This approximation works well for many applications. However, in a plant
layout, omitting the path used to travel between two locations would cause loss
of important information. In fact, it is necessary to know exactly what road
segments the vehicles are travelling on in order to avoid conflicts and because
detours to avoid congestion could cause significant delays on the delivery and
cause to miss the time window. For this reason the whole plant layout and
its workstations, storage areas, and depots are abstracted into a strongly-
connected, weighted, directed graph. In such a graph the nodes represent
the workstations, the intersections of drivable road segments, and the depots;
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nodes can usually accommodate only one vehicle at the time, unless they are
hubs, in which case they can accommodate an arbitrary number of vehicles
at the same time. The edges represent the road segments; each edge has
two weights representing respectively the segment’s length and its capacity.
The capacity of a road segment can have two values; 1 if the edge is too
narrow for two vehicles travel through it in opposite direction at the same
time, 2 otherwise. An example of a plant abstracted into a graph is given in
Figure 4.1 taken from Paper D, where the road segments length is the edges
weight (normal font) and the segments’ capacity is the weight in subscript
font; for instance, edge (1, 2) has a weight of 17, 51, meaning that its length
is 17.5, and its capacity is 1.

j1-1

j1-2

j2-1

j4-1

j3-1

j2-2

j4-2

j3-2

17,51 4252 152

12,51 12,51 17,51

302

12,52 12,52

17,52 42,52 152

27,52

12,52 1502

501

401

151

27,52

12,51

152

12,52

102

37,52

102

1 2 3 4

5 6 7 8

9 10

11 12 13

14

15 16

17 18 19 20

D2

D1

Figure 4.1: A hypothetical plant layout taken from paper D and its abstraction into a graph.

Designing conflict-free routes in environments with limited capacity of road
segments is a problem that has been investigated over the years. One of the
first attempts to tackle the problem is presented in [97], where the solution is
computed by means of column generation. In [98], an ant colony algorithm
is applied to the problem of job shop scheduling and conflict free routing of
mobile robots. In [99], a collision-free path planning for multi AGV systems
based on the A∗ [100] algorithm is presented. In this work, the environment
is modeled as a grid, and conflicts can originate from vehicles occupying the
same spot on the grid at the same time. In [101], a heuristic approach to
solve the conflict-free routing problem with storage allocation is presented.
In [102], a MILP formulation to design conflict-free routes for capacitated
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vehicles is presented. This is an exact method, but it can only solve relatively
small problem instances. In [103] a hybrid evolutionary algorithm to deal with
conflict-free AGV scheduling in automated container terminals is presented.

4.5 The Intrinsic Complexity of the CF-EVRP
As we have seen in the previous sections, the CF-EVRP shares common traits
with many other VRPs and its features have been tackled by others in past
and recent times. However, it is the combination of these features in one large
problem that further complicates the solution process and requires the design
of a new procedure to compute a schedule for the AMRs fleet in reasonable
time. On the other hand, the CF-EVRP offers a general framework to model a
large class of VRPs, since it allows for heterogeneous fleets, limited operating
range, time windows, precedence constraints among customers and capacity
constraints on the road segments. Finding an efficient procedure to solve it
may contribute significantly to the field of VRPs. Moreover, to the best of
our knowledge, there is no work focusing on all these features at once. With
this work, we have the opportunity to fill this gap in the literature and at the
same time solve a relevant industrial problem.

In the next chapter is presented the proposed solution method for the
CF-EVRP in Chapter 5.
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CHAPTER 5

A Compositional Algorithm to solve the CF-EVRP

In this chapter we present the proposed method to solve the CF-EVRP. First,
we introduce the mathematical formulation of the problem, presented in Pa-
per C, which is formulated as SMT and solved using the optimizing SMT solver
Z3. Then we present an alternative formulation, where the CF-EVRP is de-
composed into sub-problems that can be used by the compositional algorithm
ComSat to find a solution to the original problem. Finally, the inefficiencies
of ComSat are analyzed and an improved version of it that makes use of the
Unsat Core is presented.

5.1 A Mathematical Formulation of the CF-EVRP
Paper C presents a complete, monolithic formulation of the CF-EVRP. In
order to compute a conflict-free solution for the CF-EVRP it is necessary to
know where each vehicle is at any time; therefore, the monolithic formulation
(henceforth called MonoMod) involves time and space discretization. It is well
known within the community of scheduling and optimization that discretiza-
tion often leads to a large increase in the search space size for a relatively
small increase in the problem instances’ size. Thus, discretization is not suit-

55



Chapter 5 A Compositional Algorithm to solve the CF-EVRP

able for large systems involving a high number of vehicles or customers, or a
vast plant. Still, to test the performance of the state-of-the-art SMT solver
Z3 for CF-EVRP, MonoMod was formulated as SMT and solved by Z3.

Given that the CF-EVRP is novel, there are no problem instances avail-
able for benchmarking. Hence, we generated sets of instances to evaluate the
performance of MonoMod by measuring the solving time with respect to the
parameters of the solved instances. As mentioned before, the plant is ab-
stracted into a strongly-connected, directed, weighted graph. The graphs in
the generated benchmark set can have 15, 25, or 35 nodes, which correspond
to a grid-like graph of size 5×3, 5×5, and 5×7, respectively. The connectiv-
ity of the graph also affects the instance size, hence we defined the parameter
Edge Reduction to represent the number of edges. The value 0 correspond to
a complete grid; the value 25 corresponds to a grid where 3, 6, or 9 pairs of
edges (i.e. (A, B) and (B, A)) are removed for N equal to 15, 25, and 35, re-
spectively; the value 50 corresponds to a grid where 6, 12, or 18 pairs of edges
are removed for N equal to 15, 25, and 35, respectively. Figure 5.1 shows
the 5× 3 graph with edge reduction coefficient equal to 0 (a), 25 (b), and 50
(c). For the 5 × 5 and the 5 × 7 graphs the same pattern is repeated once
and twice, respectively. The number of vehicles available and jobs to execute
also affects the instance’s size. Finally, because of time discretization, also
the time horizon contributes to the instance size. Typically the time horizon
is defined a as fixed point in time in the future when all jobs are required
to be executed; however, in CF-EVRP it represent the time when all jobs
are required to be executed and the vehicles are required to have returned to
the depot they were dispatched from. This feature is captured by constraint
(C.10), though not explicitly stated in Paper C.

In the generated instances the capacity of all road-segments is restricted to
1. For the graph it is specified which nodes are hubs that can accommodate
an arbitrary number of vehicles at the same time. Another parameter of the
instance is the number of vehicles available. Each vehicle is assigned a starting
node and more vehicles can start from the same node (in this case the node
must be a hub). Also, a list of jobs to execute is given; each job is characterized
by a number of tasks and the vehicle(s) eligible to execute it. In turn, each
task is characterized by a location (node), a precedence list specifying the
tasks to execute before (if any), and a time window. Other parameters of the
instance are the charging and discharging coefficients, as well as the operating
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Figure 5.1: Graph with 15 nodes arranged in a 5 × 3 grid with edge reduction coefficient equal
to 0 (a), 25 (b), and 50 (c).

range of the vehicles, and the time horizon by when all jobs should be finished
and the vehicles should be back at their starting locations.

In the computational analysis 160 problem instances are evaluated. The
parameters’values used for the problem generation are:

• N-V-J (nodes, vehicles, and jobs, respectively). N-V-J can be either
15-3-5, or 25-4-7, or 35-6-8. Each job is composed by one pickup and
one delivery;

• Edge Reduction can be either 0, or 25 or 50.

• Time Horizon can be either 15, 20, 25, or 30.

• All edges have weight equal to 1.

For each combination of the above-mentioned parameters, five different
problems are generated by randomly assigning the starting node for each type
of vehicle, the operating range, the charging coefficient, the number of vehi-
cles available per each type, the type of vehicle required for each job, and the
location of the jobs’ tasks. For the analysis we used Z3 4.8.9. The time limit
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is set to 10800 seconds (three hours). All the experiments were performed on
an Intel Core i7 6700K, 4.0 GHZ, 32GB RAM running Ubuntu-18.04 LTS.
Though Z3 allows for optimization of the objective function, the size of the
problems evaluated is such that no optimum is expected to be found in any
reasonable time. Therefore Z3 is set to find satisfiable (hence sub-optimal)
solutions.

Table 1 of Paper C shows the results of the computational analysis. As
expected, for larger values of time horizon, nodes, vehicles, and jobs the com-
putation time increases, soon becoming unreasonable for a real-time scheduler.
Already for problems counting four vehicles and seven jobs it can take up to
two hours to compute a feasible schedule. Moreover, the models are so large
that only generating them can take several minutes. It is clear that the mono-
lithic approach cannot be used for large scale problems, and a more efficient
solution is required.

5.2 A Compositional Algorithm to Solve the
CF-EVRP

In this section we present ComSat, a compositional algorithm to solve the
CF-EVRP. As mentioned many times before, we decompose the overall prob-
lem into sub-problems. Now we provide explicit descriptions of, and thorough
discussions on these sub-problems. In Paper D, a mathematical formulation
for each of these sub-problems is also presented. Then, we show how ComSat
can find a solution to the CF-EVRP by iteratively solving these sub-problems.

As mentioned in chapters 1 and 2, when a problem is too time-consuming
to be solved by a monolithic procedure, a possible solution is to decompose it
into smaller problems and then build an overall solution using the solutions
to these sub-problems. For the CF-EVRP, a major challenge is caused by the
need of producing conflict-free solutions. Since time discretization is needed
to model the location of vehicles at each time, the number of variables and
constraints to declare grows exponentially with the instance size. Instead, the
strategy adopted with ComSat is to group the different requirements stated
in Chapter 4 and solve them sequentially, backtrack when an intermediate
solution is infeasible and look for a different one. In this way it is possible to
avoid time discretization and solve larger instances in shorter time.
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The Main Sub-Problems
A pre-processing step is required before the actual sub-problems can be solved,
the computation of the shortest paths between any customer and the depots
and between any two customers. In fact, in order to solve the first sub-
problems, it is necessary to have a unique path to travel from any customer
(or depot) to another.
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Figure 5.2: Computation of shortest paths between any two customers/depots.

Let us clarify this point. Figure 5.2 shows a graph abstracting a hypothetical
plant (a). Let us assume that nodes 17 and 4 are depots and nodes 1, 7, 11,
and 14 are customers. In order to turn the problem into a VRP it is necessary
to know the distances among each pair of nodes, and such distance must be
unique. In (b) it is shown how each of the above mentioned nodes is now
connected with any other node by an edge whose length is the length of the
shortest path to travel between those pairs of nodes in (a).

The first sub-problem is the Routing Problem. This is a multiple depot
VRP with time windows, a heterogeneous fleet of vehicles and precedence
constraints among the customers. Additionally, the routes are restricted to be
at most as long as the operating range of the vehicles; by adding this restric-
tion, we eliminate the complexity of dealing with the limited operating range
of the vehicles, which is then tackled in the next sub-problem. Whenever solv-
ing the Routing Problem, only the shortest paths to connect customers/depots
with each other are considered; in fact, at this stage, no capacity constraint
is included. Also, at the moment, no actual vehicle is considered; routes are
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designed to be assigned to existing vehicles, which means that customers are
grouped based on the types of vehicles eligible to execute them, but no specific
vehicle is assigned to them. This is an optimization problem and the parame-
ter to minimize is the number of routes to serve all customers. We chose this
criterion because we assume that the fewer vehicles are dispatched the fewer
the chances of running into conflicts. The solution to this problem is a set
of routes to serve all customers according to the requirements mentioned in
this paragraph. Moreover, for each route, the latest start time is computed.
This is the latest time for the vehicle assigned to the route to set off such that
the strictest time window of the route is met. Figure 5.3 (b) shows a possible
routing solution for the problem presented in Figure 5.2 (a).
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Figure 5.3: Feasible solution to the Routing Problem.

The second sub-problem is the Assignment Problem. This is the problem
of deciding which vehicle should be assigned to each of the routes designed by
solving the previous sub-problem. Vehicles are assigned based on their type,
but also on their availability; in fact, if a vehicle was dispatched to serve some
customers, once it returns to its depot it will not be available until its battery
is fully charged. The time required for the charging, based on our assumption,
is linearly proportional to the length of the route travelled before charging.
Assignments are also decided based on the time windows of the customers that
are served in a certain route. Of all the eligible vehicles, the choice is made
among the ones that are available early enough so that the time windows can
be met. This is a feasibility problem, whose solution is the assignment of one
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vehicle to each route. Moreover, for each assignment is specified the latest
start time for the vehicle to execute the route such that the strictest time
window in the route is met. The problem is modelled as a JSP, where vehicles
are resources and routes are jobs (see Chapter 2 for reference to the JSP).

The third sub-problem is the Capacity Verification Problem. This is the
problem of verifying that the vehicles do not break the capacity constraints
while travelling through the plant to serve the customers belonging to the
routes they are assigned to. In order to do so, it is necessary to know ex-
actly what nodes and edges the vehicles are passing by. This information is
available from the pre-processing step, when the shortest paths between any
two customers/depots were computed. Each route is therefore represented by
a sequence of nodes (and edges between the nodes) that starts at the node
representing a depot, passes by the nodes representing the customers belong-
ing to the routes, and returns to the depot. Figure 5.4 shows how the routes
computed in the previous phase (a) are then “plugged” into the actual plant
layout and checked for capacity constraints violation (b).
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Figure 5.4: Routes (a) are verified against capacity constraints on the actual plant layout (b).

One route is marked with red arrows while the other is marked with green
ones. The yellow arrows represent the edges that are used by both routes.
Based on the tasks’ time windows, it is possible to infer whether the two routes
can use the edges (and the nodes in between them) at different times (conflict-
free) or must use at least one of them at the same time, thus generating a
conflict. This is a feasibility problem, whose solution is, for each route, the
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arrival time at each node included in the route. This problem is also modelled
as a JSP, where nodes and edges in the graph are resources and the routes
are the jobs. The vehicles assigned to the routes have to use nodes and edges
to move through the plant and serve the customers. In order to enforce the
capacity constraints, the nodes and edges with limited capacity are treated as
resources that can only execute one job at the time. Moreover, the deadline for
the customers of each route apply to the node where the customer is located.

Search of Alternative Paths
In the previous section the main sub-problems that the CF-EVRP is decom-
posed into are presented. They are solved sequentially and, if all of them
are feasible, the solution to the Capacity Verification Problem is a solution to
the CF-EVRP. However, if the Capacity Verification Problem is not feasible,
it is necessary to change the paths by solving the Paths Changing Problem.
This is the problem of finding the shortest paths that have not been selected
before to connect any two customers/depots. It is an optimization problem
and the reason for finding the shortest paths is that the shorter the paths,
the faster the vehicles can travel from customer to customer, the higher the
chances they will meet the time windows. Figure 5.5 shows how the path that
connects Node 7 to Node 17 is initially 7− 13− 12− 11− 15− 18− 17 in (a)
and is replaced by 7− 6− 10− 9− 17 having the same length in (b).
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Figure 5.5: The shortest paths used to design routes (a) are changed to avoid capacity con-
straints violations (b).
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Now the red and green routes only overlap on Node 7, thus minimizing the
chances of a conflict.

However, after a new set of paths has been computed, there is no guarantee
that the Routing Problem will still be feasible. It could be the case that the
previously computed routes now exceed the vehicles operating range, or that
the vehicles can no longer meet the time windows. It is therefore necessary to
check the feasibility of the previously computed routes using the new set of
paths by solving the Routes Verification Problem.

Mathematical Formulation of the Sub-Problems
When modelling a problem, there is often more than one way to formulate it,
based on what variables are chosen to describe its dynamics. The formulations
of the sub-problems presented in Paper D are meant to exploit the strengths of
the solvers used to solve them. In particular, when formulating the Assignment
and Capacity Verification problems, the choice of modelling them as JSP
is motivated by the findings of Paper A. Also, the formulation of the Path
Changing Problem, inspired by [104], suits SMT solvers as it only uses Boolean
decision variables and propositional logic to model the constraints. As for the
Routing Problem the choice of modelling it as MILP is motivated by the results
of Chapter 2. Finally, the Routes Verification Problem is also formulated as
SMT; even for large instances, this sub-problem only involves a small number
of variables and constraints and can be quickly solved by both SMT and MILP
solvers. Therefore there was no thorough investigation on whether one solver
would be faster than the other.

ComSat
After introducing the sub-problems, let us discuss how a solution to the
CF-EVRP is found by solving them, or if no solution exists how it is pos-
sible to conclude so. ComSat being a compositional algorithm means that it
is composed by sub-algorithms, each solving one of the sub-problems listed
in the previous sections. Table 5.2 shows which sub-algorithm solves which
problem, what input(s) they take, and what output they return. The glossary
of Table 5.1 summarizes the names of the sets used to store and exchange
information among the sub-problems.

The algorithm, whose flowchart is shown in Figure 5.6, begins with the
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Table 5.1: Glossary for the sets of the sub-problems.

CP: set of current paths
SP: set of shortest paths
NP: set of new paths
PP: set of previous paths
CR: set of current routes
PR: set of previous routes
CA: set of current assignment of vehicles to routes
PA: set of previous assignment of vehicles to routes
CVS : set of conflict-free routes (pairs of nodes and arrival times for each
route)
RVF : Boolean variable representing the feasibility of the Routing Problem

computation of the shortest paths SP between each pair of tasks. This step
is only executed once to provide unique paths for the Routing Problem, which
is then solved. In this step neither the vehicles’ availability nor the segment
capacities are considered; the goal is simply to design routes to serve tasks
within the time windows. Therefore, if the Routing Problem is infeasible,
the whole problem is infeasible, because there is no possible routing such
that tasks are served within their time windows. The information about the
previous routes will be stored in PR so that each time this algorithm is called,
it will provide a new solution to the Routing Problem.

If the Routing Problem is feasible the next step is to verify whether the
available vehicles can execute the routes. The assignment of vehicles to routes
is based on the requirements of the routes’ tasks for specific types of vehicles,
on the routes latest start time, and on the vehicles’ operating range and charge
rate. This is done by solving the Assignment Problem; also in this case there
can be multiple feasible solutions, so it is important to store the current one in
CA to be able to rule it out the next time the Assignment Problem is solved.
If the Assignment Problem is infeasible the algorithm backtracks and runs the
Routing Problem again, otherwise, it returns a list of feasible assignments CA
and proceeds to the Capacity Verification Problem.

At this point, each route has been assigned an actual vehicle to execute it
and start times have been restricted to meet the vehicles’ need for charging
and the time windows of the tasks they are assigned to. Hence it is possible
to verify if the execution of the routes is conflict-free. If that is the case, the
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overall problem is feasible and the algorithm terminates and returns a feasible
schedule CVS . On the other hand, if this step is infeasible, the algorithm will
try to find alternative paths for the vehicles to execute the routes.

Table 5.2: Algorithms to solve the sub-problems. Given within parentheses next
to the name of the algorithm is the problem that it solves.

Router (Routing Problem)
Input: CP, PR
Output: CR
Define optimization problem using (D.5)-(D.19)
Optimize and extract CR from the solution
Assign (Assignment Problem)
Input: CR, PA
Output: CA
Define feasibility problem using (D.20)-(D.25)
Solve and extract CA from the solution
CapacityVerifier (Capacity Verification Problem)
Input: CA
Output: CVS
Define feasibility problem using (D.26)-(D.32)
Solve and extract CVS from the solution
PathsChanger (Paths Changing Problem)
Input: PP
Output: NP
Define optimization problem using (D.33)-(D.39)
Optimize and extract NP from the solution
RoutesVerifier (Routes Verification Problem)
Input: CR, NP
Output: True or False
Define feasibility problem using (D.40)-(D.43)
Solve problem and return True if feasible, else False

Finding alternative paths is handled in two steps. The PathsChanger al-
gorithm finds new paths NP and the RoutesVerifier makes sure the Routing
Problem is still solvable (i.e. tasks can still be served within time windows)
using these new paths. If the Paths Changing Problem is infeasible, all paths
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from one task to the next one have been checked for each route. Therefore the
algorithm backtracks and looks for a new assignment. Otherwise if the Paths
Changing Problem is feasible, the algorithm moves forward to the Routes Ver-
ification Problem. If the Routes Verification Problem is feasible, the algorithm
backtracks to verify whether the solution using the new paths NP is feasible
against the capacity constraints by solving the Capacity Verification Problem;
if not, the PathsChanger algorithm is called again.

Start

SP = ComputeShortestPaths(N , E)

CP← SP; PP.add(CP)

CR = Router(CP, PR)

CR = ∅No Solution
PR.add(CR)

PA = ∅

CA = Assign(CR, PA)

CA = ∅

CVS = CapacityVerifier(CA)

CVS = ∅ CVS

PA.add(CA)

CP← SP ; PP.add(CP)

PP = ∅

NP = PathsChanger(PP)

NP = ∅

CP← NP ; PP.add(CP)

RVF = RoutesVerifier(CR,NP)

RVF = True

Yes

No

No

Yes

No

No
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Figure 5.6: Flowchart of ComSat. The Router and PathsChanger algorithms are
put in rounded corner boxes, to remark that they are optimization
problems.
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Whenever the Assignment Problem is infeasible, all possible assignments
for the current set of routes CR have been explored. Thus, before calling
the Router algorithm again, CR is added to PR. In the same way, whenever
the Paths Changing Problem is infeasible, all possible paths for the current
assignment CA have been explored, hence CA is added to PA. Also, the set
of previous paths PP is emptied because these paths are only eligible for the
current assignment, and the shortest paths are set as current paths to compute
the next assignment.

On the other hand, when exploring different paths the current assignment
is not changed, it is only checked whether it is feasible with the new paths;
thus, CA is not added to PA. Finally, as ComSat loops through PathsChanger
and RoutesVerifier to find a feasible set of paths, NP is assigned to CP, which
in turn is added to PP after every unsuccessful iteration.

5.3 Strengths and Weaknesses of ComSat
ComSat has been tested on instances of the CF-EVRP to evaluate its perfor-
mance. First, a set of smaller problem instances, counting up to four vehicles,
seven jobs, a time horizon of 60 time-steps and a graph of 25 nodes, is used
to compare the performance of ComSat and MonoMod; then, a set of larger
instances counting up to eleven vehicles, fifteen jobs, a time horizon of 300
time-steps and a graph of 35 nodes, is generated to find out how big a prob-
lem can be solved in reasonable time by ComSat. In Table 4 of Paper D the
results of the first set of experiments are reported. On average, when solving
feasible instances, ComSat is faster than MonoMod, with increasing gap as
the size of the instances increases. Also, unlike for MonoMod, the perfor-
mance of ComSat is not affected by the time horizon; this is because breaking
down the problem the way we did allows to avoid time discretization, hence
the time horizon no longer affects the problem’s size. On the other hand,
when solving instances that turn out to be infeasible, MonoMod outperforms
ComSat in many cases. Further investigations on the instances showed that
the bottlenecks of ComSat are Router and the PathChanger (the next two
sections provide additional details on the subject).

In the second set of experiments, ComSat is able to find a solution to
most of the instances, or to declare them infeasible within the time limit of
1200 seconds. In quite a number cases it actually shows better performance
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compared to the smaller instances from the first set of experiments. This is
because an instance can be infeasible for different reasons, and in some cases it
takes only a few iterations to determine feasibility/infeasibility. For instance,
there could be a limited number of feasible sets of routes that satisfy all the
constraints in the Routing Problem; if they all turn out to cause infeasibility in
one of the next sub-problems, then the whole instance is immediately declared
infeasible. However, as shown in Table 5 of Paper D, the solving time increases
as the instances become larger and for the larger sets, only a few instances
are solved before the time limit.

Testing different formulations of the Routing Problem

When it comes to the Router, the goal is the computation of feasible routes.
The model formulation we used is inspired by the two-index formulation (see
Section 3.4). As previously mentioned, this formulation helps to break the
symmetry of the problem, an advantage not only when computing one solu-
tion, but also when looking for alternative ones. Moreover, for single depot
VRPs it is possible to produce feasible solutions using only two-index variables.
However, for multi depots VRPs, this is not easily achieved; in fact, designing
routes that start and end at the same depot (a requirement of the CF-EVRP)
would involve a very large number of constraints, that would slow down the
solving process significantly. On the other hand, without such constraints, the
solver may produce infeasible routes before finding a feasible one.

The alternative is to use a set of three-index binary variables instead (see
Section 3.4), where the third index specifies the vehicle that is travelling from
customer A to customer B. These variables allow to model the existence of
multiple depots and experimental results show that the solving time is actually
similar to the solving time for the two-index formulation. The draw back is
the symmetry of multiple solutions, since the routes between them could be
exactly identical, only executed by different vehicles.

Whether the two-index or three-index formulation is used, as the problem
size grows, the number of Router solutions that are either infeasible or redun-
dant increases. This does not affect the correctness of the overall solution in
the end, because the routes are checked before moving on to the next problem
(Assignment); however, there is clearly room for improvement in the way this
problem is dealt with.
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The Unsat Core Guided Search for Alternative Paths
Another bottleneck in the solution procedure is the computation of alterna-
tive paths. In fact, when the solution using the shortest paths gives rise to
conflicts, the PathChanger computes an alternative set of paths while trying
to minimize their cumulative length. This means that the new set of paths
will be very similar to the previous set of paths, which in turn means that
probably the conflict will still take place. Experiments on problem instances
that were purposefully designed to generate conflicts when using the shortest
paths showed that it can take hundreds of calls to the PathChanger before a
conflict-free set of paths is found.

For this reason, in Paper E, a new procedure is presented. This procedure
exploits the SMT solver’s ability to return a minimal Unsat Core and use it to
define additional constraints for the PathChanger to find conflict-free paths.
When the Capacity Verification Problem is infeasible, it is possible to query
the solver to return one Unsat Core. In Paper E we present a procedure to in-
terpret the Unsat Core in order to identify the nodes and edges where capacity
constraints where violated. This information is then used to formulate addi-
tional constraints in the PathChanger that forces one of the vehicles involved
in the conflict to avoid using the nodes and edges that caused the conflict.
Experiments showed that this new approach can solve the conflicts at once,
while the previous, more naive approach, would take many iterations.

5.4 A General Framework for Industrial VRPs
In this chapter we saw two methods to solve the CF-EVRP. First we presented
MonoMod, the implementation of a monolithic mathematical formulation of
the CF-EVRP. The limitations of this approach in terms of performance and
the need for a more efficient method led to breaking down the original problem
into sub-problems. In Paper D we provided mathematical formulations for
each of these sub-problems and a sound and complete procedure, ComSat, to
use the sub-problems to find a feasible solution to the CF-EVRP.

Benchmark tests highlighted ComSat’s weaknesses. However, ComSat be-
ing a compositional algorithm allows to improve single sub-problems’ solving
procedures without affecting its overall soundness and completeness. In this
work we provided proof of concept on the validity of the proposed solution;
however, there is much room for improvement in the actual implementation
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of the algorithm.
Such implementation may also be problem-dependent. In fact, when facing

a specific problem, the end user may find it more convenient to use one strat-
egy rather than another to solve a sub-problem. For instance, when dealing
with the Routing Problem a local search algorithm [105] may provide faster
solutions in some cases, while column generation [106] may be preferred in
other cases. This is true for all other sub-problems. In fact, we formulated
the sub-problems as either MILP or SMT because modern MILP/SMT solvers
are able to quickly solve large models and because, as long as the model fed
to the solver is correct, we are sure the solution to the sub-problem is correct
too (we assume the algorithms used by the solvers are sound and complete).
However, it could be possible to design (or implement existing) tailor made
algorithms for each sub-problem that would shorten the computation time
significantly.

Moreover, we claim that the CF-EVRP offers a general framework to model
several classes of industrial VRPs and, therefore, ComSat is a sound and
complete procedure to solve all of them. In fact, VRPs where the capacity of
road segments or limited operating range are not considered, where vehicles
are homogeneous, or customers have no precedence constraints among each
other, etc., are all particular cases of the CF-EVRP.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers. It also puts them
into context, discussing the role of each paper and its contribution to the
research project that led to this thesis.

The first stage of the research project is the evaluation of SMT and MILP
and the comparison of two state-of-the-art SMT and MILP solvers, namely
Z3 and Gurobi. This evaluation is presented in papers A and B. In Paper
A, the disjunctive, time-indexed, and rank-based models for the standard JSP
are modelled as SMT and solved by Z3; the disjunctive model turns out to
be the fastest. The performance of Gurobi is then compared with Z3 when
both solvers are running the disjunctive model, and Z3 outperforms Gurobi
on each and every problem instance. In Paper B, the concept of skinny and
fit bins for Bin Covering and Bin Packing problems, respectively, is presented.
This concept is used to improve on enumerative problem formulations and to
develop a heuristic method to quickly obtain sub-optimal solutions. Both the
exact and the approximate, heuristic method are formulated as MILP and
solved by Gurobi, which proved to be able to handle very large models in
reasonable time.

The second stage of the research project is the formalisation of the require-
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ments for a material handling system based on AMRs that accounts, among
other things, for limited operating range of the robots and capacity constraints
on the road segments. This formalization, and the consequent formulation of
the CF-EVRP, is presented in Paper C, where the CF-EVRP is introduced,
modelled as SMT and solved by Z3. Experiments show that only small prob-
lems can be solved in reasonable time.

The results from Paper C show that a monolithic formulation is not suitable
to solve large problems in reasonable time. Hence, the next stage is to design
a scalable method for the CF-EVRP. Such method is presented in Paper D,
where a compositional algorithm (ComSat) to solve the CF-EVRP is presented
and compared to the monolithic formulation from Paper C, showing better
performance in terms of running time.

Finally, in the last stage of the research project, strengths and weaknesses of
ComSat are evaluated and weaknesses are improved upon. The improvements
are presented in Paper E, where the search for alternative paths (in case the
current ones are conflicting) is handled by exploiting the SMT solvers ability to
return Unsat Cores and using the information extracted from the Unsat Core
to guide the search for better paths.

6.1 Paper A
Sabino Francesco Roselli, Kristofer Bengtsson, Knut Åkesson
SMT solvers for job-shop scheduling problems: Models comparison and
performance evaluation
Proceedings of 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE),
pp. 547–552, Dec. 2018.
©2018 IEEE DOI: 10.1109/COASE.2018.8560344 .

This paper presents a comparison of different model formulations for the
standard job shop problem, namely the disjunctive, time-indexed, and rank-
based models over a set of generated benchmark problems. The models are
implemented for the state-of-the-art SMT solver Z3. Since the disjunctive
model shows the best performance in terms of solving time, it is selected
for further comparison against the state-of-the-art MILP solver Gurobi; Z3
outperforms Gurobi on each and every instance and, in general, is able to
solve to optimality medium size problems within 1200 seconds.
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6.2 Paper B
Sabino Francesco Roselli, Fredrik Hagebring, Sarmad Riazi, Mar-
tin Fabian, Knut Åkesson
On the Use of Equivalence Classes for Optimal and Sub-Optimal Bin
Packing and Bin Covering
2021 IEEE Transactions on Automation Science and Engineering (TASE)
vol. 18, no. 1, pp. 369-381, Jan. 2021.
©IEEE DOI: 10.1109/TASE.2020.3022986 .

This paper presents a study of the bin sorting problem and how to improve
the performance by cutting off portions of the search-space. The improvement
is designed for an enumerative formulation, where decision variables represent
potential bins; reasoning about the problem constraints allows to eliminate
all those potential bins that, given their size (in terms of cumulative value
of the items within them), could never be part of an optimal solution. The
new approach shows good performance when compared to the standard for-
mulation and can be implemented for both packing and covering problems.
It is supposed to scale very well in terms of number of items, though being
based on potential combinations of items, a wide range of values for the items
can quickly lead to a state-space explosion. In the paper is also presented a
heuristic approach were classes of bins’ values are merged together in order
to simplify the problem and reduce the solving time, at the cost of solution
quality. The heuristic method is compared to the optimal one and proves
to significantly reduce the computation time while only slightly reduce the
solution quality.

6.3 Paper C
Sabino Francesco Roselli, Martin Fabian, Knut Åkesson
Solving the Conflict-Free Electric Vehicle Routing Problem Using SMT
Solvers
Proceedings of 2021 29th Mediterranean Conference on Control and Au-
tomation (MED),
pp. 542–547, Dec. 2018.
©2018 IEEE DOI: 10.1109/MED51440.2021.9480202 .

This paper introduces the CF-EVRP, the problem of scheduling and routing
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Chapter 6 Summary of included papers

of vehicles with given time-windows for delivering material, limited capacity
constraints of the road network, and with the need for battery recharge. The
problem is formulated as SMT and evaluated on a set of generated problem
instances using the state-of-the-art SMT solver Z3. Experiments show that
the solver can handle medium size instances in a reasonable amount of time.

6.4 Paper D
Sabino Francesco Roselli, Per-Lage Götvall, Martin Fabian, Knut Åkesson
A Compositional Algorithm for the Conflict-Free Electric Vehicle Rout-
ing Problem
2022 IEEE Transactions on Automation Science and Engineering (TASE)
pp. 1405 - 1421, May. 2022.
©IEEE DOI: 10.1109/TASE.2022.3169949 .

In this paper, the compositional algorithm ComSat for solving the CF-EVRP
is presented. The CF-EVRP is decomposed into sub-problems and ComSat it-
erates through them until a globally feasible solution is found. The proposed
algorithm is implemented using an optimizing SMT-solver and is evaluated
against an implementation of a previously presented monolithic model. The
soundness and completeness of the algorithm are proven, and it is bench-
marked on a set of generated problems and found to be able to solve problems
of industrial size.

6.5 Paper E
Sabino Francesco Roselli, Remco Vader, Martin Fabian, Knut Åkesson
Leveraging Conflicting Constraints in Solving Vehicle Routing Problems
Proceedings of 16th IFAC Workshop on Discrete Event Systems (WODES)
September 7-9, 2022 - Prague, Czechia .

Previous work introduced the compositional algorithm ComSat that solves
the CF-EVRP by searching a strongly connected, weighted, directed graph
modeling the problem. Though ComSat showed good performance in general,
some problems took unreasonably long time to solve due to the high number of
iterations required to find solutions with respect to the road segments’ capacity
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6.5 Paper E

constraints. The bottleneck is the Path Changing Problem, i.e., the problem
of finding a new set of shortest paths to connect a subset of the customers,
disregarding previously found shortest paths. This paper presents an improved
version of the PathsChanger function to solve the Path Changing Problem that
exploits the unsatisfiable core, i.e., information of which constraints conflict, to
guide the search for feasible solutions. Experiments show faster convergence
to feasible solutions compared to the previous version of PathsChanger .
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CHAPTER 7

Concluding Remarks and Future Work

In this thesis we have discussed the challenges of modern industrial problems
in general, and of material handling by means of transportation robots in
particular. We have presented the CF-EVRP as a novel problem in the field,
whose formulation is motivated by the need of modelling industrial scenarios
where mobile robots operate together with human workers and other vehicles,
and have to be able to react to an ever changing environment. The CF-EVRP
offers a general framework that can be used to model several industrial sce-
narios involving vehicles with limited operating range, limited capacity of the
plant layout in terms of vehicles that can access certain road segments at the
same time, time windows for delivery, and more.

We analyzed the scalability of the CF-EVRP by formulating it as SMT and
solved it using the state-of-the-art SMT solver Z3. The experiments showed
the limitations of using a monolithic model, MonoMod, to solve the problem
in terms of computation time, hence we developed the compositional algo-
rithm, ComSat, to be able to handle larger problem instances. As a first step,
we decomposed the CF-EVRP into sub-problems and provided mathematical
formulations for each of them. Then we designed ComSat to iterate through
these sub-problems to find a feasible solution to the CF-EVRP.
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In our implementation of ComSat, the sub-problems are solved by means
of general purpose solvers, i.e., either MILP or SMT. In order to choose the
best solver for each sub-problem we tested their performance on well-known
optimization problems.

Experiments on the JSP showed Z3 to be significantly faster than state-
of-the-art MILP solver Gurobi, while for the BSP and the VRPTW it was
the other way around. Later investigations showed that the JSP has a struc-
ture that can be efficiently exploited by Z3, since its constraints fall into the
category of difference logic, a fragment of linear arithmetic for which there
exist polynomial algorithms. Z3 can use a lazy approach (see Chapter 3) to
find assignments for such constraints and check their consistency using one of
these polynomial algorithms. As for BSP and VRPTW there is no particular
structure that Z3 can exploit and the superiority of Gurobi in handling linear
arithmetic is evident.

Based on these findings we formulated some sub-problems of the CF-EVRP
as JSP and used Z3 to solve them in ComSat. We applied the same reasoning
for the other sub-problems, choosing the solver that would better exploit the
sub-problem structure. We designed a set of benchmark instances to test
ComSat and MonoMod and compare their performance. These tests showed
a significantly better scalability of ComSat compared to MonoMod, but also
highlighted the compositional algorithm bottlenecks. One bottleneck is the
search for alternative paths when the shortest ones cause conflicts.

We therefore exploited the concept of Unsat Core and the ability of Z3
to return Unsat Cores when a problem is infeasible to develop an improved
method (part of ComSat) for the search of alternative paths. Preliminary
tests on this method showed a much lower number of iterations needed to find
conflict-free paths.

In general, based on our experiments and finding, we here answer the re-
search questions we formulated in Chapter 1:

RQ1 What are the strengths and weaknesses of SMT solvers when used to
solve industrial problems?

We formulated all the problems presented in this thesis using both MILP
and SMT, except for MonoMod (only implemented as SMT), although that
would be possible too. From a modelling perspective, SMT solvers allow for
logical constraints over literals of different theories, including combinations of
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them; when using MILP solvers instead, only conjunctions of inequalities over
reals and integers are allowed, therefore modelling may be trickier, since it
requires declaring additional variables and modelling techniques such as the
big M method [107].

For instance, when modelling the JSP, the non-overlapping of operations
sharing the same resource can be directly modelled with an SMT solver as
a disjunction of two linear inequalities. On the other hand, modelling the
non-overlapping constraint with MILP is only possible with the support of an
auxiliary binary variable and a large enough constant (the big M method), as
shown in Section 3.3.

When it comes to performance, SMT solvers are preferable when the prob-
lem structure involves complex logical constraints such as the disjunctive con-
straints for the JSP, as discussed in Paper A. On the other hand, MILP
solvers are faster if the problem mainly involves conjunctions of inequalities;
an example of this is the equivalence class method presented in Paper B. The
method involves a linear model with only conjunctions of inequalities over
integer variables; the comparison of Z3 and Gurobi for problems formulated
using the equivalence class method showed that Gurobi outperformed Z3.

RQ2 How can the strengths of SMT and/or MILP solvers be exploited and
combined to design an efficient algorithm for the CF-EVRP?

ComSat takes advantage of the CF-EVRP decomposition into sub-problems
to incrementally build an overall solution based on each sub-problem solution.
When formulating the sub-problems, the Assignment and CapacityVerifica-
tion problems are modelled as variants of the JSP and solved using Z3, since
computational analysis presented in Paper A shows the superiority of SMT
over MILP when solving a JSP. Also the PathChanger has been modelled us-
ing Boolean variables and logical constraints, a formulation that fits an SMT
solver better than a MILP solver. Moreover, in Paper E the search for alterna-
tive paths has been improved using Unsat Cores extraction, a feature available
for Z3 but not Gurobi. On the other hand, the Routing Problem is a variant
of a VRPTW, for which MILP showed better performance than SMT, hence
we formulated it and solved it using Gurobi.
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7.1 Future Work
One of the goals of this research project was to create a general framework
to formulate (CF-EVRP) and solve (ComSat) a wide range of transportation
problems in industrial plants. This goal has partially been achieved, since it
is possible to model systems with the following features:

• heterogeneous fleets of AMRs, with limited operating range and non-
negligible charging times;

• jobs with specific requirements in terms of time windows, eligible vehi-
cles, precedence constraints, and service time;

• plants having having multiple depots and capacity constraints on their
driving roads in terms of the number of vehicles that can be accommo-
dated simultaneously.

However, it is relevant to extend the current formulation to handle the ad-
ditional features and remove restrictions that were defined in order to develop
ComSat:

• it is not possible to select more than one vehicle to execute a task;

• vehicles travel on closed routes, i.e,. they have to start and end at the
same depot;

• the paths computed for the vehicles to travel between customers cannot
involve cycles, a feature that can potentially remove feasible solutions,
compared to a real system.

Moreover, though ComSat shows promising performance when solving in-
stances from the generated benchmark set, there is room for improvement in
terms of implementation that would allow it to scale to even larger problems.
For instance, it would be possible to work on each sub-problem separately and
develop a tailor made algorithm for each of them, rather than using general
purpose solvers. Since each sub-problem is modelled as a variant of a well-
known optimization problem there is plenty of literature to take inspiration
from. Clustering [108] could help splitting one instance of the CF-EVRP into
several smaller ones, speeding up the computation process at the cost of the
solution quality. Also worth mentioning, the version of ComSat presented in
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7.1 Future Work

Paper D is proven to be sound and complete. However, it has been shown
how, for some instances, in order to guarantee that the answer returned is
correct, a lot of iterations are needed. Maybe some heuristic procedure could
be introduced in the algorithm that trade soundness and completeness for
better performance.

Finally, when comparing the quality of the solutions yielded by MonoMod
and ComSat, we used the total travelled distance as objective function. We did
so because it is a standard parameter to optimize in VRPs. However, the total
travelled distance may not be the best option for an industrial application.
Other possibilities could be the minimization of the make-span, or the number
of vehicles out in the plant at the same time. Changing the objective function
could produce much different solutions, and also change the computation time
significantly, a feature that needs being investigated.

Future work in this research project would be to improve on the above
mentioned features and embed them into an online framework that allows
to recompute a new schedule when changes in the plant require it. For this
purpose, a variation of ComSat based on a rolling horizon rather than a fixed-
time horizon may better suit industrial problems, having to deal with only a
short time span, and also reflecting better the ever changing environment of
an industrial plant.
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1 Introduction

Abstract

The optimal assignment of jobs to machines is a common
problem when implementing automated production systems.
A specific variant of this category is the job-shop scheduling
problem (JSP) that is known to belong to the class of NP-
hard problems. JSPs are typically either formulated as Mixed
Integer Linear Programming (MILP) problems and solved by
general-purpose-MILP solvers or approached using heuristic
algorithms specifically designed for the purpose.
During the last decade a new approach, satisfiability (SAT),
led to develop solvers with incredible abilities in finding fea-
sible solutions for hard combinatorial problems on Boolean
variables. Moreover, an extension of SAT, Satisfability Mod-
ulo Theory (SMT), allows to formulate constraints involving
linear operations over integers and reals and some SMT-solvers
have been also extended with an optimizing tool.
Since the JSP is a well-known hard combinatorial problem, it
is interesting to evaluate how SMT-solvers perform in solving
it and how they compare to traditional MILP-solvers. We
therefore evaluate state-of-the-art MILP and SMT solvers on
benchmark JSP instances and find that general-purpose open-
source SMT-solvers are competitive against commercial MILP-
solvers.

1 Introduction
The Job-shop scheduling problem (JSP) is a well known problem within the
Operation Scheduling Community, where the target is to allocate resources to
operations while minimizing some cost function. In [1] a thorough study on the
subject is presented, providing information about the evolution of techniques
and algorithms to deal with the JSP whether the target was the true optimal
or an approximation of it.

Industrial scheduling problems are typically extensions of the pure job-shop
problem described above. Additional extensions are the possibility to have
alternative resources that can process an operation, constraints on setup-time
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for resources, constraints on the idle-time between operations, etc. In many
applications it might be desired to not minimize the make-span but instead
make scheduling decisions based on given deadlines for operations and then
minimize the tardiness or maximum lateness.

A recent study by [2] shows promising results in solving JSP problems by
employing Constraint Programming (CP) to implement Local-Search (LS)
algorithms. A similar solution has also been implemented by Beck et Al. [3],
leading again to good results. Apparently the combination of CP and LS is a
powerful instrument to takle the JSP, although also other techniques are used
in practice. In fact, according to Beck himself, as shown in [4], both in industry
and academia, Mixed Integer Linear Programming (MILP) is largely employed
for the JSP. Based on this the authors did a benchmark on three popular MILP
solvers, IBM ILOG CPLEX [5], Gurobi [6], and SCIP [7]. CPLEX and Gurobi
are considered to be state-of-the-art commercial solvers [8], while SCIP is a
fast non-commercial solver. In [4] the authors also compared alternative MILP
problem formulations that have been proposed in the literature for the classical
job-shop problem. The tools were evaluated on a large set of benchmark job-
shop problems. The result of the benchmark is that for the tools evaluated, the
performance of CPLEX and Gurobi were comparable and significantly better
than SCIP and that the traditional disjunctive formulation of the job-shop
problem was superior to both Time-Index and Rank-Based formulations.

While many industrial problems can be solved by general purpose MILP-
solvers, the combinatorial complexity of the JSP implies that for sufficiently
large problems it will not be possible to find an optimal solution within reason-
able time. For such problems, specific-purpose methods have been developed:
they often make use of heuristics as well as hybrid techniques including local
search and genetic algorithms, e.g. [9] and [10]), that lead to good enough
solutions in a reasonable amount of time [11].

An alternative technology to solve combinatorial problems have emerged
within the community of formal verification of hardware and software: satis-
fability search (SAT) [12]. This approach consists of expressing the problem
through Boolean variables in Conjunctive Normal Form (CNF) and determine
whether there exists an assignment to these variables such that the formula
evaluates to true. Today SAT-solvers can deal with large combinatorial prob-
lems by efficiently exploiting their structure and generate a valid model in
a reasonable time, even when the problem happens to be NP-complete. Of
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course this does not mean that there are not NP-complete problems that will
take exponential time also for SAT-solvers, but that many man-made models
are no longer intractable.

On the other hand, Boolean logic is in many cases not expressive enough for
representing many real-world problems where first-order logic is used together
with integers and reals. To handle this type of models and at the same time
take advantage of the very performant SAT-solvers, a new approach, called
Satisfability Modulo Theory (SMT), [13], [14] has been developed. SMT-
solvers implements special decision procedures, so called theories, to extend
to the original Boolean satisifiability problem.

Both SAT and SMT are employed to prove satisfability of formulas; it is
often the case that not only one but several satisfable solutions exist for a given
formula and each of them has a cost referring to some parameter related to
the problem itself. It is therefore possible to turn the satisfability problem
into an optimization one by setting an objective function where one not only
wants to find a satisfable solution, but the optimal one in respect of the cost
we assign to the variables.

Ever since SAT and SMT solvers started spreading and being employed in
real-world applications, users have built their own custom loops to achieve
optimality, often based on heuristics tuned for their specific problems. Lately,
some of these solvers have been extended by including optimizing tools that
make use of state-of-the-art algorithms to deal with a list of different problems
on SMT formulas with linear objective functions on Boolean, rational and
integer domain (or a combination of them).

The performance of SMT-solvers are evaluated annually in a benchmark
competition. The latest competition was the The 12th International Satisfi-
ability Modulo Theories Competition (SMT-COMP 2017). The SMT-solvers
compete in different categories in which Z3 [15], MathSAT5 [16], and CVC4
[17] have shown consistently good performance. Among these solvers Z3 and
MathSat5 have versions that support optimization as well. The optimizing
version of Z3 is described in [18] and is included in the latest version of Z3.
MathSat5 optimizing tool is a special version of it named OptiMathSAT [19].
CVC4 does not have support for optimization and is thus excluded from this
benchmark.

In order to have a valid comparison with the current technology, we also
tested the models on a MILP solver. We chose Gurobi, since it is considered
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to be among the state-of-the-art solvers in such field.
The contributions in this paper are. (i) Adapting three existing formulations

of the classical job-shop problem to make them suitable for SMT-solvers. (ii)
Benchmarking two optimizing SMT-solvers on a set of benchmark job-shop
problems.

In the next section the problem is described in detail, providing all nec-
essary information to understand the models. In section three, we describe
Z3 implementation for such models, we compare Z3 performance with Gurobi
and OptiMathSAT using the Disjunctive model and we discuss the results.
Finally we draw conclusions in section four.

2 Problem Description
The JSP problem consists of a set of n jobs J = {ji}n

i=1, where each job has its
own processing order through a set of k machines, M = {mi}k

i=1. Operations
are defined as the execution of a job on a certain machine and, as each job
has to visit each machine, the total number of operations in the problem is
n · k. Each job will go through all machines sequentially. Let oj

i model the
index of the machine to be used for job j executing operation i in sequence.
The index of the machines for each step in the job sequence is thus given by
(oj

1, . . . , oj
i , . . . , oj

k). Also, let dj
i model the duration of the execution of the

same operation.
Finding a solution to the job-shop scheduling problem means to assign op-

erations to machines so that all jobs are completed. The constraints in this
kind of problem are two:

• as there exist a sequence of operations for each job, operations belonging
to the same job must be executed in the right order;

• operations requiring the same machine and belonging to different jobs
cannot overlap in time.

Given these two constraints, the target is to find a feasible schedule such
that the overall make-span is minimized. Finding an optimal schedule is an
NP-complete problem, [20].

We now present the three model formulations, (i) the Disjunctive model,
(ii) the Time-Index model, and (iii) the Rank-Based model for the classical
JSP, based on [4]. They are adapted to fit the SMT language.
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2.1 Time-Index Model
In this model the execution time is split into steps, whose length is the mini-
mum time unit. For instance, if the duration of an operation is n-seconds (or
minutes), n steps will be taken since it starts and until it is completed. In or-
der to create a model with such feature, we need to have a guess of the overall
execution time, in other words, an upper bound H. A trivial upper bound is
the sum of all operations duration as if they were executed in a sequence (the
worst case scenario). The greater the upper bound, the longer it takes to cre-
ate the model and therefore the slower the overall execution. Nevertheless, as
finding good upper bounds for such model is beyond the scope of this paper,
the trivial one is used. In this model the decision variable is:

• smjt is a Boolean variable that is true if job j starts on machine m at
time t.

minimize Tmax subject to
H∨

t=0
smjt ∀m ∈M, j ∈ J (A.1)

smjt →
t−1∧
t′=0
¬smjt′ ∧

H∧
t′=t+1

¬smjt′

∀t = 1, . . . , H, m ∈M, j ∈ J (A.2)

smjt →
t+pmj∧

t′=t

¬smj′t′

∀j, j′ ∈ J, j ≤ j′, t = 1, . . . , H, m ∈M (A.3)
smjt → Tmax ≥ t + dmj

∀m ∈M, j ∈ J, t = 1, . . . , H (A.4)

xoj
i−1jt →

t+dj
i−1∧

t′=0
¬xoj

i−1jt′

∀i = 2, . . . , k, t = 1, . . . , H, j ∈ J (A.5)

Equation (A.1) and (A.2) are needed to make sure that one and only one
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operation is executed on a machine per each time step. Equation (A.3) allows
each machine to execute only one operation at a time. Equation (A.4) sets
the objective function as larger than operations completion times. Equation
(A.5) takes care of the precedence constraint among operations of the same
job.

2.2 Disjunctive Model
The decision variables in this model are as follows:

• smj is an integer variable and models the start time of job j on machine
m.

minimize Tmax subject to
smj ≥ 0 ∀j ∈ J, m ∈M (A.6)
Tmax ≥ soj

k
,j + doj

k
,j ∀j ∈ J (A.7)

soj
i
,j ≥ soj

i−1,j + doj
i−1,j ∀j ∈ J, i = 2, . . . , k (A.8)

smj ≥ smj′ + dmj′ ∨ smj′ ≥ smj + dmj

j, j′ ∈ J, j ≤ j′, m ∈M (A.9)

In this model equation (A.6) restricts variables domain to be larger than
or equal to zero, as they represent the start time of operations and thus
they can not be negative. Equation (A.7) impose the objective function to
be lager than or equal to the start time of the last operation of each job
plus its duration. Equation (A.8) is about precedence constraints among the
operations belonging to the same job: one can not start until the previous
one is over. Equation (A.9) takes care of resource sharing by stating that
two operations sharing the same resource cannot take place at the same time:
either one starts once the other is over or the other way around.

2.3 Rank-Based Model
In this model the focus is on the machine side: each machine has as many
positions as operations in a job or, in other words, a position is the cardinal
step in the execution sequence of all jobs. Finding a schedule for this model
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means to find in which position a job is executed on a certain machine. The
decision variables are defined as follows:

• xmjt is a Boolean variable indicating whether job j is executed on ma-
chine m at the t-th position

• smt is an Integer variable representing the starting time of position t of
machine m

minimize Tmax subject to
smt ≥ 0 ∀m ∈M, t = 1 . . . k (A.10)
xoj

k
jt → Tmax ≥ soj

k
t + doj

k
j

∀j ∈ J, t = 1 . . . k (A.11)
xmjt → smt + dmj ≤ sm,t+1

∀t = 1 . . . k, m ∈M, j ∈ J (A.12)
(xoj

i−1jt1
∧ xoj

i
jt2

)→ soj
i−1t1

+ doj
i−1j ≤ soj

i
t2

∀t1, t2 = 1 . . . k, i = 2 . . . k, j ∈ J (A.13)(
xmjt →

t−1∧
t′=0
¬xmjt′ ∧

k∧
t′=t+1

¬xmjt′

)
∧

k∨
k=0

xmjt

∀t = 1 . . . k, m ∈M, j ∈ J (A.14)(
xmjt →

j−1∧
j′=0
¬xmj′t ∧

n∧
j′=j+1

¬xmj′t

)
∧

k∨
t=0

xmj′t

∀t = 1 . . . k, m ∈M, j ∈ J (A.15)

Equation (A.10) restricts the start variable domain to the natural numbers.
Equation (A.11) sets the objective function. Equation (A.12) ensures the
precedence constraint among the operations executed on a machine, while
equation (A.13) takes care of the operations precedence within the same job.
Equation (A.14) ensures that each job can be assigned only once to a certain
machine, while equation (A.15) states that a position can be assigned only to
one job.
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Figure 1: Performance comparison between Disjunctive, Time-Index and Rank-Based models
over the benchmark instances. The maximum time allowed for each instance is 600
seconds.

3 Experiments
The solvers whose performance were compared are Z3-4.6.0, Gurobi-7.5.2 and
OptiMathSAT-1.5.0. The time limit is 600 seconds. Solvers are run in their
default setting. The instances used for the comparison are either generated
through an instance generator or taken from benchmark sets. All the exper-
iments were performed on an Intel Core i7 6700K, 4.0 GHZ, 32GB RAM
running Ubuntu-16.04.

An instance is a matrix of integers where each row represents a job; for each
row the odd elements represent the machine needed to execute the operation
whose duration is pointed out by the next even element. The execution order
is given by the position within the row. The instances used in the experimental
phase are:

• Generated instances: instances generated according to Taillard instance
generator[21] of small-medium size (from 3x3 to 9x9);

• Lawrence [22]: forty instances of increasing size from 10x5 to 30x10;

• Applegate and Cook [23]: ten instances of size 10x10;
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Table 1: Comparison of models implemented using Z3. The time showed in the table is the
geometric mean calculated over all the instances belonging to the category they refer
to. For each class the number of solved instances (out of the total number of instances
belonging to such class) is given. The symbol ’-’ means that no instance has been solved.
The symbol ’*’ means that the time limit for the model translation into SMT-lib2 has
been exceeded.

Disjunctive Rank-Based Time-Index
Problems Time Opt Time Opt Time Opt

Generated Instances
3x3 0.01 5/5 0.18 5/5 3.66 5/5
4x4 0.01 5/5 0.110 5/5 32.76 5/5
5x5 0.02 5/5 1.196 5/5 164.67 5/5
6x6 0.04 5/5 38.904 5/5 528.31 2/5
7x7 0.12 5/5 535.25 1/5 - 0/5
8x8 0.27 5/5 - 0/5 * *
9x9 0.18 5/5 - 0/5 * *

Applegate Instances
10x10 7.28 10/10 - 0/5 * *

Taillard Instances
15x15 240.84 7/10 - 0/5 * *

• Storer [24]: five instances of size 20x10;

• Taillard [21]: ten instances of size 15x15 and ten of size 20x15.

• Fisher&Thompson [25]: one instance of size 20x5.

3.1 Models Comparison
In this phase the three models presented in the previous section are compared
Z3 (Figure 1). We decided to employ the geometric mean to reduce the effect of
outliers. The instance generation has been carried out by randomly assigning
values belonging to the interval [1, 20] to the operations. Five instances have
been generated per each class going from the size 3x3 to 9x9.

The models have been created through the Python API for Z3 and then
translated into the SMT-lib2 format [26] to be run directly and avoid possible
delays due to the conversion while measuring the execution time. Since the
Time-Index model scales up very bad in size an additional timeout has been
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set for the model translation into SMT format and the * symbol in the table
denotes that such time limit has been exceeded. The results show that the
Time-Index model can easily solve very small-size instances but it scales bad
and provides no solution for problems larger than 6x6. The Rank-Based model
is more efficient in terms of time but it can solve only some instances more
than Time-Index.

The Disjunctive model, on the other hand, takes only few milliseconds to
solve the smaller instances and it stays far below one second while dealing
with instances up to 9x9 size. The average time increases by over forty times
for solving Applegate instances due to some outliers that take over one minute
but the result is still remarkable if compared to the other two models, even
when it comes to Taillard Instances, although only seven out ten instances
can be solved within ten minutes.

An additional test has been run on some hard-to-solve instances, to check
how the best solution increases over time, as shown in Figure 2. Usually a
solution close to the optimal is found quickly but then it is hard to improve
it. This might be due to the solver getting stuck in some local optimum.

3.2 Solvers Comparison

The second phase is about comparing different solvers using the Disjunctive
model. When running the Disjunctive model on Applegate instances, Opti-
MathSAT could solve six out of ten of them and it was on average four times
slower than Gurobi, which could solve seven. Z3 could solve all of them in less
than eight seconds each. All the solvers could easily deal with the 10x5 in-
stances from Lawrence and while Z3 solution was almost instantaneous Gurobi
and OptiMathSAT had similar performance taking around twenty seconds to
produce a solution. The only other class of instances Gurobi and OptiMath-
SAT were able to find a solution for is Lawrence 10x10 and also in this case
Gurobi was quite faster than OptiMathSAT (around ten times) and both much
slower than Z3, which was also able to solve some of Lawrence instances 15x10
in less than five minutes, 15x15 in less than three, and seven of the Taillard
instances 15x15, as shown also in the previous section. No other solution was
found within the given time.
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Table 2: Comparison of SMT and MILP solvers running the Disjunctive Model over the bench-
mark instances. The time showed in the table is the geometric mean calculated over
all the instances belonging to the category they refer to. For each class the number of
solved instances (out of the total number of instances belonging to such class) is given.
The symbol ’-’ means that no instance has been solved.

Z3 OptiMathSAT Gurobi
Problems Time Opt Time Opt Time Opt

Applegate Instances
10*10 7.28 10/10 276.14 6/10 60.13 7/10

Lawrence Instances
10x5 0.43 5/5 18.41 5/5 16.21 5/5
15x5 - 0/5 - 0/5 - 0/5
20x5 - 0/5 - 0/5 - 0/5
10x10 0.56 5/5 215.85 5/5 18.20 5/5
15x10 263.61 3/5 - 0/5 - 0/5
20x10 - 0/5 - 0/5 - 0/5
30x10 - 0/5 - 0/5 - 0/5
15x15 156.37 2/5 - 0/5 - 0/5

Storer Instances
20x10 - 0/5 - 0/5 - 0/5

Taillard Instances
15x15 240.84 7/10 - 0/10 - 0/10
20x15 - 0/10 - 0/10 - 0/10

3.3 Results Discussion

The results presented in the previous section show a big difference in per-
formance between the two SMT solvers. When compared to Gurobi, Z3 is
typically faster and can provide an optimal solution to larger instances within
the given time limit. OptiMathSAT, although employing the same technology,
is considerably slower than Z3 and, in most cases, also than Gurobi. Since
Z3 and OptimathSAT have shown comparable performance in previous works
[19], it might be the case that Z3 heuristic and linear optimization algorithms
suits better the JSP problem than OptiMathSAT’s. By having a look under
the hood of νZ we found out it employs a portfolio of different approaches
to solve optimization problems [18]. Among them are some very efficient
algorithms to deal with linear arithmetic using Simplex over non-standard
numbers to find unbounded objectives, as explained by Z3 developers in [27].
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Figure 2: Relation between time and best value found for benchmark instances ’ta05, ’ta06’,
’ta07’, ’ft20’, ’swv01’ running the Disjunctive model in Z3 during 3600 seconds.

This method allows to find the solution in one call without need for iterating
over potentially many of them.

Unlike νZ, that uses Z3 has a black box and it is built on top of it, Opti-
MathSAT has an inline architecture that calls the SMT solver only once and
within it the SAT solver is then modified to handle the optimization. An
insight about the optimizing algorithms running within the solver is given
in Sebstiani’s work [28]. Improved versions of the Branch&Bound algorithm
are developed to exploit the features of MathSAT5 when dealing with linear
algebra over Reals (LRA), integers (LIA) or a combination of both (LRIA).

4 Conclusions
In this paper we have compared three models for JSP suitable for optimizing
SMT-solvers. We also compared the disjunctive model formulation in Z3 and
OptiMathSAT with Gurobi, a state-of-the-art commercial MILP solver. On
the benchmark examples Z3 outperforms Gurobi, and Gurobi outperforms Op-
tiMathSAT. The results are very interesting because SMT-solvers are general
purpose solvers that can easily

include additional constraints that are relevant in industrial applications
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Figure 3: Performance comparison between SMT solvers Z3 and OptiMathSAT and MILP solver
Gurobi over the benchmarck instances. The maximum time allowed for each is 600
seconds.

making them an attractive choice for real applications. There exist options
such as dedicated algorithms based on CP and local search that provide better
performance; nevertheless the results shown in this paper classify SMT-solvers,
and Z3 in particular as a good alternative, especially since it is available under
an open-source license (MIT License) and hence it is possible to use it for com-
mercial purpose. Today, the licensing costs for commercial MILP-solvers can
be substantial, something that will restrict the numbers of applications where
scheduling can be motivated. Since optimization was added very recently
to SMT-solvers and the research on SMT-solvers is a very active field with
rapid progress it is reasonable to expect that the performance of optimizing
SMT-solvers will continue to improve.
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Abstract

Bin packing and bin covering are important optimization prob-
lems in many industrial fields, such as packaging, recycling,
and food processing. The problem concerns a set of items,
each with its own value, that are to be sorted into bins in such
a way that the total value of each bin, as measured by the sum
of its item values, is not above (for packing) or below (for cov-
ering) a given target value. The optimization problem concerns
minimizing, for bin packing, or maximizing, for bin covering,
the number of bins. This is a combinatorial NP-hard problem,
for which true optimal solutions can only be calculated in spe-
cific cases, such as when restricted to a small number of items.
To get around this problem, many sub-optimal approaches ex-
ist. This paper describes formulations of the bin packing and
covering problems that allows to find the true optimum for
instances counting hundreds of items using general purpose
MILP-solvers. Also presented are sub-optimal solutions that
come within less than 10% of the optimum, while taking sig-
nificantly less time to calculate, even ten to 100 times faster,
depending on the required accuracy.

Note to Practitioners
A typical case for bin covering is in food processing where food items are
automatically sorted into trays of similar weight, so that the overweight is
minimized. Another application is in recycling, where items like batteries
should be put in crates of similar weight, so that the crates do not exceed a
target weight, due to later manual handling, but at the same time we want as
few crates as possible. This is a bin packing problem. On an industrial scale
these tasks are fully automated. Though modern software tool’s efficiency
to solve bin sorting problems have increased significantly in later years, the
problems are inherently tough in the sense that the solution time grows ex-
ponentially with the number of items. This limits the problem sizes that can
be solved to optimality within reasonable time. Therefore, much research has
focused on heuristic rules that give reasonable solving times while not giving
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the true optimal number of bins. However, in many cases the true optimal
solution is preferable, and sometimes even necessary, so this is an industrially
interesting problem. This paper describes an approach to solve the bin pack-
ing and covering problems to the true optimum that increases the limit of the
number of items that can typically be handled. This is done by observing
that items of same value need not be distinguished. Instead, we can formu-
late packing/covering problems over item values rather than individual items,
and sort integer numbers of these values into bins, which allows to solve to
optimum for more than 500 hundred items in reasonable time. In addition,
by redefining what we mean by same value, we can consider more items to
have the same value and achieve even better computational efficiency.

1 Introduction
The (one-dimensional) bin sorting problem concerns sorting items with given
values into bins such that the value of a bin, counted as the sum of its included
values, conforms to a specified target value, while at the same time optimizing
the total number of bins. Two (dual) variants of this problem exist, bin
packing [1] where the bin values cannot go over, and bin covering [2] where
the bin values cannot go under, respectively, the target value.

The problems are NP-hard [1] combinatorial optimization problems, mean-
ing that there is no general algorithm that can solve either problem for an
arbitrary number of items in reasonable time.

Due to this, different heuristic algorithms to provide sub-optimal solutions
while guaranteeing a bound from the optimum and having polynomial com-
plexity have been a long-time active field of research. Recent surveys of related
problems are presented in [1] for approximative algorithms and in [3] for exact
algorithms.

Recent work on bin sorting is based on branch-and-price based algorithms,
see e.g. [4]. Pseudo-polynomial formulations, [5]–[7], allow a more compact
formulation and avoid the complexity introduced in the implementation of
branch-and-price based algorithms. Of interest in some practical applications
is also temporal extensions, [8], where the capacity of a bin must be consumed
within a given time window.

In our previous work on the subject [9], we presented a model to solve
the bin covering problem to optimality by means of Mixed Integer Linear
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Programming (MILP), and we showed through a computational analysis of
more than 800 problem instances that a MILP solver is able to handle quickly
large sized instances. In this work we extend the analysis to also bin packing,
and we provide mathematical proof of the validity of our claims on top of
which we implemented the above-mentioned formulation. We also present a
sub-optimal approach based on a simplification of the original instances that
exploits the feature of our new formulation and guarantees close to optimal
results.

In industrial problems there are often additional constraints that are not
included in text book formulations of the sorting problems. An example from
an industrial application: for bin covering problems it might be allowed to go
a few percent below the target weight for certain bins as long as the average
bin value is on or above target. Algorithms that are tailor made for textbook
formulations of the sorting problems might have problems to generalize to such
modified versions of the problem. In industrial applications general purpose
solvers are thus often preferred due to their ability generalize to new problem
formulations. So, though we in this paper treat only the text book versions
of bin sorting, we do so by focusing on formulations that can be given as
input to general-purpose MILP solvers, and we evaluate the efficiency of these
formulations.

First is presented the standard formulation that can be found in most text
books. This formulation was first introduced by [10] and is typically useful
only for a small number of items. Then is given the “subset” formulation,
which removes the identities of the bins and thus allows to solve for a much
larger number of items and bins. Thirdly is given the “equivalence class” for-
mulation, which further removes the identities between items of same values,
and hence allows to solve for even larger numbers of items and bins. As ex-
plained later on in the paper, the idea of equivalence classes leads to define
combinations of items that meet the target requirement (i.e. the cumulative
value of such items is below the target for the bin packing and above it for the
bin covering); such combinations are given the name of packages in this paper
and, to the best of our knowledge, they have first been introduced by [11] to
implement a specific purpose algorithm to solve bin covering problem, and
then used in [12] to implement a branch and price algorithm, while we use
it to develop a linear-integer model for a general purpose solver. Also, we
improve the concept by defining a subset of packages among which bins can
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be selected that still leads to the optimal solution. In other words, we do
not need to enumerate all possible combinations of items in order to find the
optimal solution, but only a rather small portion of it.

The contributions to this paper are: (i) improving the concepts of equiv-
alence classes by introducing the notion of skinny and fit bins for the bin
covering and the bin packing respectively; proving that the the optimal so-
lution of an instance of the bin packing (covering) is only composed by fit
(skinny) bins; (iii) develop a heuristic method for both the bin covering and
bin packing problem, based on equivalence classes, that significantly reduces
the computation time while still guaranteeing close to optimum results; (iiii)
evaluating the method against other algorithms for bin sorting problems by
running it over different sets of benchmark instances.

In the next section the general bin sorting problem is described, giving
three different MILP formulations, two of which exploit the fact that prospec-
tive bins can be pre-calculated to make the MILP solver’s job easier. Then
Section 3 presents how the combinatorial explosion can be further mitigated
by restricting the number of pre-calculated bins, while still guaranteeing op-
timal solutions. Section 4 then describes how the number of pre-calculated
bins can be made even smaller, but then not guaranteeing optimal solutions.
The experimental results of Section 5 shows the computational benefits of
both the optimal formulations, and the sub-optimal formulation that comes
within less than 10% of the optimum, while achieving a significant reduction
in computation time. The paper is concluded in Section 6.

2 Bin Sorting
Bin sorting is a generic term for the two (dual) problems of bin packing and bin
covering. The bin sorting problem concerns a set of items V = {v1, v2, . . . , vn},
each with a value so that there can be defined an ordering between the items,
such that v1 ≥ v2 ≥ · · · ≥ vn. For notational simplicity, except for in a
few places, the distinction between an item and its value will not be made;
note though that items are unique, whereas two items can have the same
values. Given a subset V ′ ⊆ V we denote its minimum and maximum values
as min(V ′) and max(V ′), respectively.

A bin bj ⊆ V is a subset of V . For a bin bj we can define its value Bj as
the sum of the item values it contains, that is, Bj =

∑
vi∈bj

vi.
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The bin sorting problem can now be defined as a tuple ⟨V, t, ▷◁⟩, where
t is a target value that defines a bound on the bin values, and ▷◁ is ≤ for
bin packing, and ≥ for bin covering. The problem is now to find an optimal
solution Bopt = {b1, b2, . . . , bm}, which is a partition of V with the minimum,
for packing, or maximum, for covering, number m of bins, such that ∀bj ∈
Bopt, Bj ▷◁ t. It is assumed that

∑
vi∈V vi > t, and ∀vi ∈ V vi < t.

Since we in large parts of the paper simultaneously deal with both covering
and packing, we have introduced a non-standard notation of our own (such as
“target” t instead of “capacity” c). This so, since the communities dealing with
the respective problems do not always agree on the notation. Furthermore, the
term “bin covering” is sometimes used to denote a different problem, where
the number of bins is fixed and the problem is maximizing the number of
packed items while not exceeding the target value for any bin [13].

2.1 The Standard Formulation
One way to formulate the bin sorting problem is as a mixed linear integer
programming (MILP) problem, where the decision variables represent bins
and the allocation of items to the bins. Let bj (j = 1, . . . , n) be 0-1-variables
representing whether a certain bin is used (bj = 1) or not (bj = 0), and
let xij (i, j = 1, . . . , n) be 0-1-variables representing whether the value vi is
assigned to the j’th bin (xij = 1), or not (xij = 0). The MILP problem can
then be formulated as:

min / max
n∑

j=1
bj subject to (B.1)

n∑
j=1

xij = 1 ∀i = 1, . . . , n (B.2)

n∑
i=1

xij · vi ▷◁ bj · t ∀j = 1, . . . , n (B.3)

xij ∈ {0, 1} ∀i, j = 1, . . . , n (B.4)
bj ∈ {0, 1} ∀j = 1, . . . , n (B.5)

The objective function (B.1) is the sum over all the variables representing
whether a certain bin is used or not, and since these are binary 0-1-variables,
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the sum is the number of used bins; this sum is to be minimized for bin packing
and maximized for bin covering. Constraint (B.2) guarantees that each item
is assigned to exactly one bin. Constraint (B.3) guarantees that the value of
each used bin is on or below (▷◁ is ≤) the target value t for bin packing, and
on or above (▷◁ is ≥) the t for bin covering. Constraints (B.4) and (B.5) define
the domains of the decision variables.

For bin covering, Constraint (B.2) can actually be relaxed to ≤ 1, since not
all values are necessarily placed in some bin. However, such surplus values
(see below) cannot constitute a bin on their own, and since there is no upper
bound on the bins, the surplus values may be put on any bin without altering
the optimal solution. In fact, with a rigorous definition of the surplus values,
we can always remove the surplus values from the optimal solution, and the
surplus-free solution will still be optimal.

2.2 The Subset Formulation

A less trivial approach to formulate the bin sorting problem as a MILP prob-
lem is to enumerate the prospective bins by sort the items into packages that
fulfill the target constraint, and then formulate a problem of choosing the
smallest or largest number of such packages. If we generate all possible such
packages, the MILP-solver will have freedom enough to find the optimal num-
ber of packages.

Let pj ⊆ V be a package such that
∑

vi∈pj
vi ▷◁ t. Note that contrary to

bins, different packages may share items, that is, for some packages pi and pj

with i ̸= j it may hold that pi ∩ pj ̸= ∅. Let Pi = {pj |vi ∈ pj} be the set of
all packages that include the item vi. We call the elements of Pi overlapping,
and there are n such sets.

Given the set of k generated packages, and with a slight abuse of notation
we use pj to denote a 0-1-variable representing whether the package pj is used
(pj = 1) or not (pj = 0), we can formulate the MILP problem as:
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min / max
k∑

j=1
pj subject to (B.6)

∑
pj∈Pi

pj = 1 ∀i = 1, . . . , n (B.7)

pj ∈ {0, 1} ∀j = 1, . . . , k (B.8)

Similarly to (B.1), the objective function (B.6) sums over all the vari-
ables representing whether a package is used or not, and since these are 0-1-
variables, the sum is the number of used packages; this sum is to be minimized,
or maximized, for bin packing and bin covering, respectively. Constraint (B.7)
guarantees that exactly one of the overlapping packages is used, which pro-
hibits multiple inclusion of the same item into the optimal solution, and so
guarantees that the chosen set of packages partition V (this is what makes
the chosen packages bins). Again for the bin covering the constraint may be
relaxed into a less then equality, since the maximisation will make sure that
as many packages as possible are chosen; on the other hand, without the more
restrictive constraint, the bin packing problem would always yield a solution
counting zero bins. Constraint (B.8) simply defines the domains of the pj

variables.

2.3 Equivalence class formulation

Though the subset formulation of Section 2.2 goes a long way to mitigate the
computational complexity, observing that for large bin sorting problems we
can have, and typically do have, many items with equal values, we can give an
even more compact problem formulation, where equal values are not viewed
as distinct items, but rather as a single item with a multiplicity equal to the
number of actual such same-valued items. This is done by collecting equal
items into equivalence classes, and instead of enumerating each item of such
a class, formulate the optimization problem over integer decision variables
related to the number of items in each equivalence class.

Consider a bin sorting problem ⟨V, t, ▷◁⟩. Let an equivalence class Eq be a
subset of equal valued items of V ; that is, Eq = {vi ∈ V |vi = w} for a fixed
value w. Obviously, min(Eq) = w. Let p denote the number of all equivalence
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classes. The set of p equivalence classes partition V .
We call a tuple ⟨Eq, fq⟩ of an equivalence class Eq and a factor fq, a selec-

tion. The factor is used to denote the number of items from the equivalence
class that are selected in a certain situation. Of course, 0 ≤ fq ≤ |Eq|, and
obviously there is a finite number of distinct selections.

Let a package class PC i = {⟨E1, f1,i⟩, . . . , ⟨Ep, fp,i⟩} be a set of selections
over all equivalence classes, such that∑

⟨Eq,fq,i⟩∈PCi

min(Eq) · fq,i ▷◁ t, (B.9)

where ▷◁ is ≤ for bin packing and ≥ for bin covering, and the objective is to
minimize and maximize, for packing and covering, respectively. Let k denote
the number of all possible package classes.

Since all package classes contain all equivalence classes, albeit many with a
zero factor, all package classes overlap, which then becomes an uninteresting
observation (contrary to Section 2.2).

Given a set of k generated package classes, and with some abuse of notation
let PC i be an integer that represents how many “instances” of the package
class PC i that are included in the optimal solution, then the optimization
problem can be formulated as:

min / max
k∑

i=1
PC i subject to (B.10)

k∑
i=1

fq,i · PC i = |Eq| ∀q = 1, . . . , p (B.11)

PC i ≥ 0 ∀i = 1, . . . , k (B.12)

The objective function (B.10) sums over all the variables representing the
number of each package class instance; this sum is to be minimized for bin
packing and maximized for bin covering. Constraint (B.11) sums for each
equivalence class over all the package classes and multiplies with the factor for
each respective package class, to get the total number of used values from the
specific equivalence class. Naturally, this number cannot exceed the number
of values in the equivalence class for the package class, and has to be exactly
equal to the number of values in the equivalence class in order to avoid trivial
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solutions with zero bins. Constraint (B.12) simply sets zero as the lower bound
for the number of instantiations of the respective package classes.

An upper bound for PC i could be pre-calculated, but it is not clear whether
this will have any impact on the computational complexity, and this has not
been investigated.

For brevity, we will in the following use the term package in place of package
class.

3 Optimal Solutions

Though theoretically possible, generating all packages is practically intractable;
we can do this only for small n. And though generating all possible package
classes is more tractable than generating all packages, it still amounts to a
huge computational effort for large bin sorting problems. However, we can cal-
culate the packages in a more clever way, by observing that the optimization
criterion really means that the resulting bins of an optimal solution should be
as close to the target value as possible. Calculating such packages saves a lot
of computational effort, as is shown in Section 5.

In this section we will argue for why and how we can calculate a specific
subset of all possible packages, but still get an optimal solution from the subset
and equivalence class formulations of Section 2. For clarity, we will here treat
packing and covering separately in their own subsections.

In both cases, we have a bin sorting problem ⟨V, t,≤⟩ for packing, and
⟨V, t,≥⟩ for covering. The total value over all n items of V is W = v1 + v2 +
· · ·+ vn. A feasible solution ft = {b1, b2, . . . , bm} to a bin sorting problem, is
a solution where for each bin, Bj ≤ t for packing, and Bj ≥ t for covering,
and an optimal solution is a feasible solution where the number of bins m is
minimized for packing, and maximized for covering.

Let us also note the distinction between bins and packages. Bins partition V

so that no item in V can be in more than one bin, whereas packages can share
items; it is the task of the bin sorting solver to select among the packages so
that a single item does not appear in more than one bin.
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3.1 Bin Packing
A feasible solution ft = {b1, b2, . . . , bm} for a bin packing problem ⟨V, t,≤⟩ is
said to be true if all items of V are sorted.

For a feasible solution, all bins bj are on or below target, that is Bj ≤ t. For
bin packing we want to minimize the number of bins. Thus, it seems to make
sense to have bins that are as close to the target (but not above) as possible.

Definition 1: A bin (or package) is said to be fit if adding the least valued
item from V gets it above the target value. That is, a bin bj is fit if

Bj + min(V ) > t.

Definition 2: Let V v be a set of virtual items, such that V v ∩V = ∅ and
vk = min(V ) for all vk ∈ V v.

The virtual items are not in the original problem formulation but are intro-
duced as possible items that can be put in bins to complete a bin into a fit bin,
in order to guarantee fit solutions. However, we show later that virtual items
can be removed from a solution and thus a true solution can be generated.

A feasible solution ff = {b1, b2, . . . , bm} for a bin packing problem ⟨V, t,≤⟩
is said to be fit if all items of V , plus an arbitrary number of virtual items,
are sorted, and all bins in ff are fit.

Lemma 1: For a bin packing problem ⟨V, t,≤⟩, a feasible true solution ft

exists if and only if a feasible fit solution ff exists.

Proof. First we show that to a feasible true solution ft we can add virtual
items to non-fit bins to make a feasible fit solution ff .

Assume a non-fit bin bj , thus Bj +min(V ) ≤ t. Add ⌊(t−(Bj+min(V )))/min(V )⌋
number of virtual items to bj , the bin is now fit by definition since adding one
additional virtual item makes the value of the bin be larger than the target
value t. This can be done for any non-fit bin in ft.

Second, we show that we can remove (virtual) items from the bins of ff

and get feasible true solution.
Assume a fit solution ff . Let Bf be the sum of the values of all bins for

a feasible fit solution ff . Then the total number of virtual items is equal to
⌊(Bf −W )/min(V )⌋. If this number of virtual items are removed from the bins in
ff , the total number of items of value min(V ) in all bins will be equal to |En|
and thus the modified solution will be true. Note that removing virtual items
from a bin can only decrease its value, and since a fit bin is by definition
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already below the target, so will the reduced bin be. The total number of
items of value min(V ) will be equal to or larger than ⌊(Bf −W )/min(V )⌋, thus it
is possible to remove ⌊(Bf −W )/min(V )⌋ items of value min(V ). Consider any set
of bins that is the result of removing ⌊(Bf −W )/min(V )⌋ items of value min(V )
from the bins of the fit solution ff . The set of reduced bins result in a feasible
solution for the true problem, since all bins have a value less than the target
value and the number of items for every value will be equal to the number of
values in the equivalence class for the same value.

Theorem 1: Let Bt
opt be an optimal true solution to the bin packing prob-

lem ⟨V, t,≤⟩, and let Bf
opt be an optimal fit solution to the same problem.

Then
|Bt

opt| = |B
f
opt|.

Proof. If there exists a feasible solution for the fit problem that is optimal,
then no better solution than that exists and, according to Lemma 1, there
must exist a feasible solution for the true problem that yields the same result
and thus no better solution can exist.

3.2 Fit package generation

As mentioned, a major issue with the equivalence classes approach to solve bin
packing problems is the computation of all package classes that might form
part of the optimal solution. Computing and then filtering the power set of
V is computationally heavy even for relatively small size problems, therefore
a less demanding procedure is required. Given the aforementioned notions,
the computation of all fit package classes can be formulated as a Constraint
Satisfaction Problem (CSP).

Regard the bin packing problem ⟨V, t,≤⟩, with the equivalence classes Eq

(q = 1, . . . , p). Let fq (q = 1, . . . , p) be the factor for Eq, that is, an integer
variable representing how many values from Eq that are chosen to form a
package class. Let F be an integer number such that F = ⌊t/min(V )⌋. The
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CSP formulation is as follows:

0 ≤ fq ≤ F ∀q = 1, . . . , p (B.13)
p∑

j=1
q ̸=j

(
min(Ej) · fj + (fq + 1) ·min(Eq)

)
> t

∀q = 1, . . . , p (B.14)

Constraint (B.13) limits the factor for each equivalence class to be at most as
large as the value F ; constraint (B.14) states that the sum of values contained
in a fit package goes above the target value as soon as we increase the value
of any factor by one.

Finding a satisfiable solution to this CSP problem means to find a combi-
nation of values that, together will result in a fit package class. To obtain
the whole set of fit package classes, it is possible to set up another problem
with the same constraints, plus one constraint ruling out the solution just
found. Let S = {f∗

1 , . . . , f∗
p } be the solution of the CSP problem, where

f∗
i ∀i = 1, · · · , p is the factor selected for the equivalence class p, then the

additional constraint is:
¬
( ∧

f∗
i

∈S

(fi = f∗
i )
)

(B.15)

Constraint B.15 ensures that the solution found in the previous iteration
cannot be selected in the current one, so that the solver has to find a new
one. In order to find the complete set of fit package classes, one has to set up
a loop and, for each iteration, add the constraint to rule out the last solution
found for the new CSP problem. The loop goes on until the problem becomes
unsatisfable, which means that all package classes have been found.

Example of Equivalence Class Formulation Consider the bin packing prob-
lem ⟨V, t,≤⟩, with V = ⟨50, 50, 40, 40, 10, 10⟩ and t = 100.

There are three equivalence classes, all of size 2:

E1 = ⟨50, 50⟩

E2 = ⟨40, 40⟩

E3 = ⟨10, 10⟩
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And there will also be 8 virtual items of value 10. We need to be able to form
feasible packages by using the CSP model in Section 3.2 and, since we only
have two items of value 10 and the target is 100 we need 8 virtual items.

The CSP will now yield all packages that are “just below the target”, mean-
ing that if the smallest items from V is added, namely item of value 10, the
total value will outreach the target value 100

PC 1 = {⟨E3, 10⟩}

PC 2 = {⟨E2, 1⟩, ⟨E3, 6⟩}

PC 3 = {⟨E2, 2⟩, ⟨E3, 2⟩}

PC 4 = {⟨E1, 1⟩, ⟨E3, 5⟩}

PC 5 = {⟨E1, 1⟩, ⟨E2, 1⟩, ⟨E3, 1⟩}

PC 6 = {⟨E1, 2⟩}

For readability, only the equivalence classes Eq with factors fq > 0 have been
included above. Now, regarding only the non-zero factors for each equivalence
class in the package classes, constraint (B.11) becomes:

PC 4 + PC 5 + 2 PC 6 ≥ 2

PC 2 + 2 PC 3 + PC 5 ≥ 2

10 PC 1 + 6 PC 2 + 2 PC 3 + 5 PC 4 + PC 5 ≥ 2

We only have two items of value 10 and, in PC4 and PC5, E3 has multi-
plicity 1, while in PC6 E3 has multiplicity 2, hence the coefficients in the first
inequality. The bin packing requires that all items are placed into bins, there-
fore there should be an equality sign; when we generated packages though,
we used virtual bins also, therefore now we need to allow for more items than
actually available in V , but not less, hence the "≥" sign. The same procedure
applies to the other two equivalence classes as shown in second and third in-
equality. Since the problem is a minimization, most of the virtual items will
not be used (the ones left are not enough to form another bin), therefore the
solution will be optimal with respect to V (as explained in detail later on).
Then, the objective is:

min PC 1 + PC 2 + PC 3 + PC 4 + PC 5 + PC6.

B15



Paper B

3.3 Bin Covering
For bin covering we want to maximize the number of bins, and hence it seems
to make sense to have bins that are as close to the target (but not below) as
possible.

Definition 3: A bin (or package) is said to be skinny if removing from it
its least valued item gets it below the target value. That is, a bin bj is skinny
if

Bj −min(bj) < t.

A feasible solution fs = {b1, b2, . . . , bm} for a bin covering problem ⟨V, t,≥⟩
is said to be skinny if all bins in fs are skinny, and an arbitrary number of
items of V is sorted. The items of V that are not sorted are called the surplus
items. A feasible solution ft = {b1, b2, . . . , bm} to a bin covering problem
⟨V, t,≥⟩, is said to be true if all items are sorted.

Lemma 2: For a bin covering problem ⟨V, t,≥⟩, a feasible true solution ft

exists if and only a feasible skinny solution fs exists.

Proof. Regard a true feasible solution ft = {b1, b2, . . . , bm}. For each non-
skinny bin bj , we can iteratively remove its least valued item min(bj) until bj

becomes skinny. Obviously, the resulting skinny solution will have the same
number of bins as ft.

Regard a skinny feasible solution fs = {b1, b2, . . . , bm}. This has a set of
non-sorted surplus items, Vsur. These items can be put on arbitrary skinny
bins to make the bins non-skinny. Doing so for a bin bj ∈ fs will increase the
value Bj which means that it is still on or above target. Thus, we can from
the skinny feasible solution generate a true solution ft.

For both implications, the number of bins is preserved.

Theorem 2: Let Bt
opt be an optimal true solution to the bin covering prob-

lem ⟨V, t,≥⟩, and let Bs
opt be an optimal skinny solution to the same problem.

Then
|Bt

opt| = |Bs
opt|.

Proof. If there exists a feasible solution for the skinny problem that is optimal,
then no better solution than that exists and, there must exist a feasible solu-
tion for the true problem that yields the same result and no better solution
can exist.
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3.4 Skinny package generation
As for the bin covering, it is possible to setup a Constraint Satisfaction Prob-
lem based on the definition of Fit Bin and run it multiple time to produce, at
each iteration, a different valid package, until the problem becomes unfeasible;
then we know we have found all feasible packages.

Regard the bin covering problem ⟨V, t,≥⟩, with the equivalence classes Eq

(q = 1, . . . , p). Let fq (q = 1, . . . , p) be the factor for Eq, that is, an integer
variable representing how many values from Eq that are chosen to form a
package class. The CSP formulation is as follows:

0 ≤ fq ≤ |Eq| ∀q = 1, . . . , p (B.16)

fq > 0⇒
p∑

j=1
q ̸=j

(
min(Ej) · fj + (fq − 1) ·min(Eq)

)
< t

∀q = 1, . . . , p (B.17)

Constraint B.16 limits the factor for each equivalence class to be at most as
large as the size of the equivalence class itself; constraint B.17 states that the
sum of values contained in a skinny package goes below the target value as
soon as we reduce the value of any factor by one. Unlike the corresponding
constraint for the bin packing problem, in this case it is necessary to specify
that we can only reduce a value if it is larger than zero.

Let S = {f∗
1 , . . . , f∗

p } be the solution of the CSP problem, where f∗
i ∀i =

1, · · · , p is the factor selected for the equivalence class p, then the additional
constraint is:

¬
( ∧

f∗
i

∈S

(fi = f∗
i )
)

(B.18)

Example of Equivalence Class Formulation Consider the bin covering prob-
lem ⟨V, t,≥⟩, with V and t as in section 3.2 and so are the equivalence classes.

We can generate four skinny package classes:

PC 1 = {⟨E1, 2⟩}

PC 2 = {⟨E1, 1⟩, ⟨E2, 2⟩}

PC 3 = {⟨E1, 1⟩, ⟨E2, 1⟩, ⟨E3, 1⟩}
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PC 4 = {⟨E2, 2⟩, ⟨E3, 2⟩}

For readability, only the equivalence classes Eq with factors fq > 0 have been
included above.
Now, looking only at the non-zero factors for each equivalence class in the
package classes, constraint (B.11) becomes:

2 PC 1 + PC 2 + PC 3 ≤ 2

2 PC 2 + PC 3 + 2 PC 4 ≤ 2

PC 3 + 2 PC 4 ≤ 2

Since the the bin covering does not require all items to be allocated to binsl,
the equality constraint can be relaxed, hence the inequalities above.

Finally, the objective is:

max PC 1 + PC 2 + PC 3 + PC 4.

One optimal solution is to select PC 1 once (PC 1 = 1) and PC 4 once (PC 4 =
1). However, another optimal solution is to select two "instances" of PC 3
(PC 3 = 2). Both of these are of course skinny solutions.

So, we really only need to generate fit (for packing) and skinny (for covering)
packages and package classes to get optimal solutions from the subset and
equivalence class formulations. This saves a lot of computational effort, as
shown in Section 5.

4 Sub-Optimal Solutions
The equivalence class formulation significantly improves the runtime perfor-
mance of the optimizer compared to the naïve formulation, as shown in Sec-
tion 5. Nevertheless, BC is still a combinatorial NP-hard problem and for
some problems, calculating the true optimum might be expensive in terms of
computational effort. The alternative is to consider heuristic methods that
can provide a sub-optimal solution in a shorter time. Based on the equiv-
alence classes approach, a heuristic method was developed to simplify the
problem and calculate a suboptimal solution faster. One hypothesis that led
to the heuristic is that the number of package classes related to a BC prob-
lem ⟨V, t,≥⟩ does not depend entirely on |V |, but rather on the number of
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equivalence classes and their cardinality; the more different values, the more
possible combinations, the more package classes.

Therefore, the goal of such method is to provide a set of approximated
equivalence classes, C∗, where a certain number of consecutive exact equiv-
alence classes are merged together. We call the approximated equivalence
classes chains.

Let E = ⟨E1, E2, . . . , Ep⟩ be the set of p number of equivalence classes over
the values of V , ordered so that min(Ei) < min(Ei+1) (for i = 1, . . . , p − 1).
Let C be a set of chains, sets of one or more consecutive equivalence classes
from E, C =

⋃p−l+1
i=1 {Ei, Ei+1, . . . Ei+l−1} for l = 1, . . . , p, and let the size of

a chain be the sum of the sizes of the equivalence classes it is composed of;
for Cj ∈ C, ∥Cj∥ =

∑
Ei∈Cj

|Ei|.
Note that chains will have common elements (equivalence classes), just as

packages, therefore it is possible to define the set Oi of all chains containing
a certain value.

Example of Chains Generation

E = ⟨E1, E2, E3, E4⟩, p = 4, with min(Ei) < min(Ei+1) for i = 1, . . . , 3,

C =
⋃p−l+1

i=1 {Ei, Ei+1, . . . Ei+l−1} for l = 1, . . . , p

{E1}, {E2}, {E3}, {E4}, l = 1, i = 1, . . . , p

{E1, E2}, {E2, E3}, {E3, E4}, l = 2, i = 1, . . . , p− 1
{E1, E2, E3}, {E2, E3, E4}, l = 3, i = 1, . . . , p− 2
{E1, E2, E3, E4} l = 4, i = 1, . . . , p− 3

4.1 Heuristic for the bin packing problem
When it comes to the bin packing problem, a way to generate the above
mentioned chains is to merge exact equivalence classes as explained in the
above section and to assign to all the values of the resulting approximated
equivalence class the largest value of all classes that have been merged. This
is done so that the solution generated when solving the simplified problem is
valid: if a value smaller than the one belonging to the largest class merged
were to be assigned to the approximated class, the optimal solution to the
simplified problem might be smaller than the optimal solution to the original
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problem and, therefore, unfeasible.
Definition 4: Let define the minimum theoretical number of bins M as

the number of bins we could achieve if we could break down the items into
smaller ones and reallocate the overweight from each bin to form other ones:
M = W/t. Such value can be achieved by relaxing the integrality constraint in
the initial problem, as pointed out in [11] where such value is defined as lower
bound.

Let the chain El−m be the result of merging the equivalence classes El,
Em, where min(El) < min(Em). Then min(El−m) = min(Em), |El−m| =
|El|+ |Em|.

|El−m| ·min(El−m) = (|El|+ |Em|) ·min(Em) >

|El| ·min(El) + |Em| ·min(Em)

The gain γ is then:

min(Em) · (|El|+ |Em|)−
|El| ·min(El) + |Em| ·min(Em) =
|El| · (min(Em)−min(El))

The new minimum theoretical number of bins is M ′ = (W +γ)/t. The gain
can be used to decide which classes is better to merge when simplifying an
instance. Using a greedy algorithm it is possible to quickly generate all chains
and calculate γ for each of them. It is then possible to formulate a MILP
model to select the chains that produce the minimum loss, given a desired
number of equivalence classes d.

Let xi (i = 1, . . . , k) be 0-1-variables representing whether the chain Ci is
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chosen (xi = 1) or not (xi = 0). The MILP formulation is as follows:

min
k∑

i=1
xi · γi (B.19)

p∑
i=1

xi = d (B.20)∑
xi∈Oj

xi = 1 ∀j = 1, . . . , p (B.21)

xi ∈ {0, 1} ∀i = 1, . . . , k (B.22)

The objective function (B.19) is the sum of all gains for the chains that
are chosen. Constraint B.20 states that exactly d chains have to be chosen.
Constraint (B.21) states that overlapping chains are mutually exclusive. Fi-
nally, (B.22) sets the variable domains to be binary.

Note that the heuristic has been developed bearing in mind that, with a
normal distribution, there are only a few values at the edges of the bell curve,
while most of the values appear in the middle of it. Therefore, while containing
the same number of values, the chains that are closer to the edges will contain
more classes from E, involving a larger loss than the ones closer to the centre.
However, as those values are smaller in number compared to the ones in the
middle, the overall loss seems not to be significant.

4.2 Heuristic for the bin covering problem
Once again it is possible to draw inspiration from the results achieved for
the bin packing problem to develop a working heuristic method for the bin
covering problem too. By merging equivalence classes it is in fact possible to
generate a simplified problem that provides a sub optimal solution. This time
it is required to assign to the resulting equivalence class the value of the items
from the class with the smallest values, in order to generate a valid solution.
Since this is a maximization problem, it makes more sense to talk about loss
σ (rather than a gain) that affects the maximum (instead of minimum) theo-
retical number of bins. Once again this value corresponds to the optimum of
the cost function for the bin covering when relaxing the integrality constraint.

It is possible to calculate the loss σ related to the merging of two or more
equivalence classes in terms of decrease in the total value W and, therefore,
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of the maximum theoretical number of bins M.
Let the chain El−m be the result of merging the equivalence classes El, Em,

where min(El) < min(Em)). Then min(El−m) = min(El), |El−m| = |El| +
|Em|.

|El| ·min(El) + |Em| ·min(Em) >

|El−m| ·min(El−m) = min(El) · (|El|+ |Em|)

The loss σ is then:

|El|·min(El) + |Em| ·min(Em)−
min(El) · (|El|+ |Em|) =
(min(Em)−min(El) · |Em|)

The new maximum theoretical number of bins is M ′ = (W −σ)/t. Setting
up exactly the same MILP model as in 4.1 it is possible to find the set of
merged classes that minimizes the gain while guaranteeing a desired number
of equivalence classes for the simplified problem.

Example of Chain Optimization

Consider the example shown in Section 4, and assume that the values and
sizes of the equivalence classes are respectively min(E1) = 13, |E1| = 10,
min(E2) = 15, |E2| = 7, min(E3) = 20, |E3| = 12, min(E4), |E4| = 3. If
the desired number of classes is d = 2 we can compute the loss for each chain
based on (B.19)–(B.22):

C1 = {E1} σ(C1) = 0
C2 = {E2}, σ(C2) = 0
C3 = {E3}, σ(C3) = 0
C4 = {E4}, σ(C4) = 0
C5 = {E1, E2}, σ(C5) = 7 · (15− 13) = 14
C6 = {E2, E3}, σ(C6) = 12 · (20− 15) = 60
C7 = {E3, E4}, σ(C7) = 3 · (25− 20) = 15
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C8 = {E1, E2, E3},
σ(C8) = σ(C5) + 12 · (20− 13) = 98

C9 = {E2, E3, E4},
σ(C9) = σ(C6) + 3 · (25− 15) = 90

C10 = {E1, E2, E3,E4},
σ(C10) = σ(C8) + 3 · (25− 13) = 134

According to constraint (B.20) only d chains can be selected:

C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 = 2

According to constraint (B.21) some chains are mutually exclusive, so each
equivalence class must be picked exactly once. As stated before, chains are
sets, but with some abuse of notation, we here use them as binary variables
to state whether a chain is selected (Ci = 1) or not (Ci = 0).

C1 + C5 + C10 = 1
C2 + C5 + C6 + C8 + C9 + C10 = 1
C3 + C6 + C7 + C8 + C9 + C10 = 1
C4 + C7 + C9 + C10 = 1

Finally, the objective function to minimize is:

C1 · σ(C1) + C2 · σ(C2) + C3 · σ(C3)
+C4 · σ(C4) + C5 · σ(C5) + C6 · σ(C6) + C7 · σ(C7)
+C8 · σ(C8) + C9 · σ(C9) + C10 · σ(C10)

5 Computational Analysis

We ran an extensive analysis over 1500 generated problems, comparing both
the standard and the equivalence class formulations for both the bin packing
and bin covering problem; we also compare the standard and equivalence
classes formulations for the bin packing problem over different benchmark
sets from the literature:
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Table 1: Comparison of the standard formulation and the equivalence class formu-
lation over the benchmark instance sets, showing the number of solved
instances within one minute and the average time calculated over the in-
stances that did not time out. For each instance set it is reported the total
number of instances and the number of instances that generate less than
ten million packages. The ’-’ is used when no instance is solved, while the
’*’ means that the package generation algorithm run out of memory.

Instances STD EQU
Complete Set ≤ 1.0× 107 solved average solved average

Falkenauer U 80 80 16 34.11 80 1.64
Falkenauer T 80 80 10 30.07 80 0.76

Scholl 1 720 313 185 26.92 294 1.29
Scholl 2 480 54 50 6.86 48 7.69
Scholl 3 10 7 0 - 0 -

Schwerin 1 100 100 51 32.23 26 48.49
Schwerin 2 100 100 40 37.72 5 53.66
Wäscher 17 0 0 - * *

Schoenfield 28 0 0 - * *

• Falkenauer [14]: two sets with 80 instances each;

• Scholl [15] three sets with 720, 480 and 10 instances respectively;

• Schwerin [16] two sets with 100 instances each;

• Wäscher [17] a set with 17 instances;

• Schoenfield [18] a set with 28 instances.

All instances have been solved using the state-of-the-art MILP solver Gurobi 9
[19]. The time limit is 1200 seconds and the solver has been used with its de-
fault setting. All the experiments were performed on an Intel Core i7 6700K,
4.0 GHZ, 32GB RAM running Ubuntu-16.04. The implementation of all the
models presented in this paper, as well as the benchmark instances. The in-
stance generator is available on https://github.com/sabinoroselli/bin_
covering-packing.git

To generate the instances we approximated a normal distribution. The
parameters to generate instances are the number of items, the range of values,
the average value of such range (which is the mean of the distribution) and the
standard deviation. Since the results show a skewed distribution, we reported
the median and upper and lower quartile for each category.
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The first set of tests, reported in Table 2 has been run using the standard
formulation to solve both the covering and the packing problem. The number
of items ranges from 10 to 70 and the target value ranges from 300 to 900.
The values of the items range from 130 to 170 and the value of the deviation
ranges from 10 to 90; finally, five different instances are generated for each
set of parameters by changing the random generation seed. Results show that
different values for the deviation do not affect the running time significantly
so they are not shown explicitly in the table: for each size and target value,
the average over 25 instances is shown (five different values of deviation times
five different random seeds).

Results from this first simulation show that, as expected, an increasing
number of items makes the problem harder to solve. It is interesting though,
to notice that even for relatively high number of items, there are still many
instances that can be solved almost instantly which means that also large
problems can have trivial solutions. What does affect the complexity of the
instance, according to the results, is the target value t; though there are some
outliers, most of the unsolved instances for the covering problem have a target
value of 500, while for the packing problem it is 700.

In the second set of tests the number of items ranges from 60 to 500, while
the other parameters are the same as in the previous tests. For the instance
classes counting 200 to 500 items and with a target value of 800 and 900 it was
only possible to solve one instance, therefore it was not possible to calculate
the quartiles. The results, summarized in Table 3 show, as for the tests run
for the standard formulation, an increasing amount of time required to find
the optimal as the number of items and the target value increases (given a
certain distribution and, thus, a certain number of equivalence classes). Unlike
the standard approach though, the equivalence classes formulation seems to
have a more steady trend: the former’s performance is heavily affected by the
intrinsic hardness of a specific instance, being able sometimes to immediately
solve large size instances with a large target value, while getting stuck on
relatively small sized instances; on the other hand, the latter’s behaviour
is more predictable and steadily increases with the instances parameters, as
shown in Figure 1. Also, the comparison of Table 2 and Table 3 show tighter
values of the quartiles for the equivalence classes formulation; this mean that
the solving time for a given class of instances (in terms of generated packages
for example) is more predictable.
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Figure 1: Comparison of model formulations (STD stands for standard and EQU
for equivalence classes) and sorting type over generated problems.

Another conclusion we can draw from the data is the strong correlation
between the solving time and the number of packages, which in turn is affected
by the target value and, to a lesser extent, by the number of objects. A larger
target value means an exponentially higher number of possible combinations
to form skinny (or fit) packages; also having a higher number of items in each
equivalence class means that it is possible to form more combinations of them
that make valid packages, though this is true only up to a certain value. For
instance, if the target value is 300, having two or 200 items of value 200 does
not make any difference.

For this reason, an instance with 60 items and a target value of 300 only
yields a few thousand packages, while the same instance with a target value
of 900 can count millions of them. As mentioned before, the increase in the
number of items also causes an increase in the number of packages, which
seems nonetheless to happen within the same order of magnitude.

Though the number of packages has a direct impact on the solving time,
the equivalence class formulation still proves to be efficient to solve very large
sized problems, being scalable in terms of number of items (which is usually the
limitation for the standard approach). Even so, the package generation time
via a greedy algorithm and the model generation time are directly proportional

B26



5 Computational Analysis

Figure 2: Evaluation of package generation time (in seconds) against number of
generated packages (log scale).

to the number of generated packages and for very hard instances they might
not be negligible. Figure 2 shows how the package generation time increases
with respect to the number of packages (benchmark instances from the Scholl
set have been employed to evaluate the package generation efficiency): it is still
close to one minute for instances leading to four million packages but it goes up
to about fifteen minutes for instances of around ten million packages. Though
we have not investigated the subject for this work, we believe that there is quite
some room for improvement in the implementation of the package generation
algorithm (changing the programming language to begin with, since now it
is written in Python). While solving the benchmark instances, the largest
instances we could solve before running out of memory counted circa thirty
million packages; memory overflow is another matter we plan to address in
our future work.

The third set of instances, summarized in Table 1, shows the performance of
the equivalence classes method over different sets of benchmark instances. In
order to compare our formulation to the other relevant algorithms we found in
the literature, we refer to Table I and Table II of [3], where such algorithms are
evaluated using the same benchmark sets listed above, and setting the time
limit to one minute (the implementation for such algorithms is available at the
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authors web page [20]. Though the computers used are different, we believe
that the comparison still gives a hint of the methods potentials. Nonetheless,
we decided to run the benchmark instances again for the standard formulation
(called Basic ILP in [3], since the authors used a different solver). Moreover,
the algorithms listed in those tables, are specifically tailored to solve the bin
packing problem, while our formulation provides a linear program that can
be fed to any solver (or extended with additional constraints) and so can be
done with the standard formulation. Therefore we decided to make a more
rigorous comparison between the standard formulation and the equivalence
classes formulation.

As already discussed when commenting on Table 3, the number of gener-
ated packages directly affects the solving time when using the equivalence
classes approach; therefore we only considered instances counting less than
ten millions packages. Table 1 shows the number of instances in each set and,
next to it, the number of instances that lead to generate less than ten million
packages. The equivalence class formulation is much faster than the standard
formulation for the Falkenauer sets and can deal with all instances in less than
2 seconds each. When it comes to the Scholl instances, in the first set the
equivalence classes formulation is still much faster and can deal with almost
twice as many instances before the time limit while it performs very similarly,
though slightly worse in the second set. Neither method can deal with any
of the instances in the third set. The standard formulation performs consid-
erably better than the equivalence classes one in both Schwerin sets, both in
terms of instances solved and average time. Finally, the standard formulation
cannot solve any of the instances from either the Wäscher or the Schoen-
field set within the time limit, while the equivalence class formulation cannot
even get started, since the computer ran out of memory while generating the
packages.

A possible remedy to handle such hard instances is to reduce the number of
classes by merging them into chains as explained in sections 4.2 and 4.1. The
heuristic does not guarantee an optimal value to the original problem, but it
can drastically reduce the number of packages, thus speeding up the model
generation tremendously, while producing very close-to-optimal results. Table
4 shows an example for both the covering and the packing problem where
the number of equivalence classes is progressively reduced from the original
one, shown on the first line (the one that would lead to the true optimal
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solution). The instance is evaluated considering two different target values:
450 is an exact multiple of 150 (the mean value of the items) while 525 is as
far as possible from being an exact multiple. Also, two different values for the
deviation are selected: 10 (corresponding to the data shown in the upper part
of Table 4) and 90 (corresponding to the remaining data); neither of the two
parameters seems to largely affect the accuracy. What we can see though, is
a dramatic reduction in the number of generated packages as the number of
classes decreases, while the optimal value for the simplified instances is still
very close to the optimum for the original one.
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6 Conclusions
In this paper we have presented alternative formulations to solve both the bin
covering and the bin packing problem; we have shown that these formulations
perform particularly well when the number of different values in the problem
instance is limited. In such cases, our formulations allow to to solve problem
counting hundreds of items in a considerably short time. This feature can
prove useful for industrial applications where the number of items is high
but the range of values is limited, such as battery recycling (for bin packing)
or fixed tray weight sorting in food processing (bin covering). When this
is not the case, our formulations allow for problem simplification by means
of merging equivalence classes that still provides a close to optimal solution,
while dramatically reducing the computation time. Moreover, the concept of
skinny/fit packages can constitute a solid base to improve existing specific-
purpose algorithms such as those given by [3], which we intend investigate
further.

B29



Paper B

T
able

2:
Set

of
generated

instances
solved

using
the

standard
form

ulation
for

both
the

packing
and

the
covering

problem
.

T
he

size
of

the
instances

ranges
from

10
to

70
item

s
and

the
target

value
from

300
to

900.
T

he
m

edian
tim

e
isreported

(calculated
overthe

solved
instances)asw

ellasthe
low

erand
upperquartile

and
the

num
ber

ofinstances
that

tim
ed

out.
T

he
tim

eout
is

set
to

1200
seconds.

Ifno
instance

for
a

given
category

is
solved,the

cellis
m

arked
w

ith
the

sym
bol’-’.
C

O
V

ER
IN

G
STA

N
D

A
R

D
300

400
500

600
700

800
900

m
ed.

low
upp

T
O

m
ed.

low
upp

T
O

m
ed.

low
upp

T
O

m
ed.

low
upp

T
O

m
ed.

low
upp

T
O

m
ed.

low
upp

T
O

m
ed.

low
upp

T
O

10
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
20

0.00
0.00

0.02
0

0.00
0.00

0.00
0

0.00
0.00

0.02
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

30
0.01

0.01
1.16

4
0.01

0.01
0.01

0
8.59

0.09
9.58

4
0.01

0.01
0.01

0
0.01

0.01
0.01

0
0.01

0.01
0.01

0
0.01

0.01
0.02

0
40

0.06
0.02

0.16
7

0.01
0.01

0.01
0

18.57
13.95

22.74
12

0.01
0.01

0.02
0

0.01
0.01

0.01
0

0.04
0.01

0.08
0

0.01
0.01

0.01
0

50
0.07

0.03
0.15

3
0.46

0.35
0.54

0
35.50

26.22
54.81

11
0.02

0.02
0.02

0
0.02

0.01
0.02

0
0.42

0.12
24.89

6
0.02

0.01
0.02

0
60

0.17
0.12

0.27
15

0.03
0.03

0.03
0

90.25
32.75

116.26
13

0.03
0.02

0.03
0

0.03
0.03

0.10
0

-
-

-
25

0.02
0.02

0.03
0

70
0.17

0.15
0.25

6
0.90

0.04
2.74

0
65.83

12.89
236.56

11
0.04

0.03
0.04

0
0.03

0.03
0.07

4
-

-
-

25
0.03

0.03
0.03

0
PA

C
K

IN
G

STA
N

D
A

R
D

300
400

500
600

700
800

900
m

ed.
low

upp
T

O
m

ed.
low

upp
T

O
m

ed.
low

upp
T

O
m

ed.
low

upp
T

O
m

ed.
low

upp
T

O
m

ed.
low

upp
T

O
m

ed.
low

upp
T

O
10

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

0.00
0.00

0.00
0

20
0.06

0.01
0.10

0
0.05

0.03
0.08

0
0.02

0.00
0.03

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
0.00

0.00
0.00

0
30

0.01
0.01

0.23
0

0.18
0.12

0.26
0

0.08
0.00

0.14
0

0.00
0.00

0.01
0

0.01
0.01

0.04
0

0.00
0.00

0.00
0

0.00
0.00

0.02
0

40
3.85

0.40
30.68

0
0.76

0.49
1.98

0
1.13

0.33
2.09

0
0.01

0.01
0.06

0
1.95

0.12
5.14

15
0.01

0.01
0.01

0
0.01

0.01
0.01

0
50

18.33
8.97

82.04
6

6.76
1.15

21.46
0

3.75
1.00

4.95
0

0.02
0.02

0.02
4

4.56
3.06

9.69
16

0.01
0.01

0.01
0

0.01
0.01

0.01
0

60
39.58

0.10
170.01

11
21.77

3.08
40.42

7
7.61

5.44
13.96

0
0.07

0.04
0.22

0
79.61

18.25
124.53

15
0.01

0.01
0.01

0
0.05

0.03
0.16

0
70

1.02
0.10

44.92
13

473.65
53.34

560.20
8

19.92
16.06

27.06
0

0.04
0.04

0.04
3

153.92
20.90

343.86
13

0.02
0.02

0.02
0

0.02
0.02

0.03
4

B30



6 Conclusions

T
ab

le
3:

Se
t

of
ge

ne
ra

te
d

in
st

an
ce

s
so

lv
ed

us
in

g
th

e
eq

ui
va

le
nc

e
cl

as
se

s
fo

rm
ul

at
io

n
fo

r
bo

th
th

e
pa

ck
in

g
an

d
th

e
co

ve
rin

g
pr

ob
le

m
.

T
he

si
ze

of
th

e
in

st
an

ce
s

ra
ng

es
fo

rm
60

to
50

0
ite

m
s

an
d

th
e

ta
rg

et
va

lu
e

ra
ng

es
fr

om
30

0
to

90
0.

T
he

m
ed

ia
n

tim
e

is
re

po
rt

ed
as

w
el

la
s

th
e

lo
w

er
an

d
up

pe
r

qu
ar

til
e

an
d

av
er

ag
e

nu
m

be
r

of
pa

ck
ag

es
ge

ne
ra

te
d

(u
p

to
te

ns
of

th
ou

sa
nd

s,
nu

m
be

rs
ar

e
sh

ow
n

in
re

gu
la

rn
ot

at
io

n,
af

te
rw

ar
ds

th
e

sc
ie

nt
ifi

c
no

ta
tio

n
is

em
pl

oy
ed

.
T

he
tim

eo
ut

is
se

t
to

12
00

se
co

nd
s.

T
he

sy
m

bo
l’

-’
m

ea
ns

th
at

on
ly

on
e

in
st

an
ce

fo
r

th
at

cl
as

s
w

as
so

lv
ed

,t
he

re
fo

re
it

w
as

no
t

po
ss

ib
le

to
ca

lc
ul

at
e

th
e

up
pe

r
or

lo
w

er
qu

ar
til

e.
C

O
V

ER
IN

G
EQ

U
IV

A
LE

N
C

E
C

LA
SS

ES
30

0
40

0
50

0
60

0
70

0
80

0
90

0
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
60

0.
01

0.
01

0.
02

17
27

0.
06

0.
05

0.
06

55
34

0.
38

0.
29

0.
44

44
56

6
1.

02
0.

79
1.

38
1
×

10
5

7.
39

3.
91

8.
73

3
×

10
5

39
.3

0
29

.9
6

56
.1

1
1
×

10
6

10
6.

04
65

.8
5

14
4.

22
3
×

10
6

70
0.

02
0.

01
0.

02
19

48
0.

06
0.

05
0.

07
63

21
0.

46
0.

37
0.

52
53

64
3

1.
34

0.
97

1.
96

1
×

10
5

8.
51

6.
39

10
.8

5
4
×

10
5

53
.7

9
41

.7
9

68
.3

2
2
×

10
6

15
8.

50
11

0.
38

21
0.

63
5
×

10
6

80
0.

02
0.

02
0.

02
22

10
0.

07
0.

05
0.

07
72

94
0.

57
0.

47
0.

64
65

30
1

1.
94

1.
75

2.
31

2
×

10
5

12
.4

8
7.

52
13

.5
1

5
×

10
5

82
.5

3
69

.7
5

98
.7

0
3
×

10
6

26
6.

01
22

4.
57

35
9.

33
6
×

10
6

10
0

0.
02

0.
02

0.
03

26
55

0.
07

0.
06

0.
07

86
52

0.
80

0.
66

0.
86

82
79

4
3.

03
2.

37
3.

56
2
×

10
5

18
.5

4
14

.4
3

23
.3

5
7
×

10
5

16
0.

79
12

7.
88

17
8.

73
4
×

10
6

46
2.

48
37

6.
44

51
7.

59
1
×

10
7

15
0

0.
03

0.
02

0.
03

31
28

0.
09

0.
08

0.
10

10
26

1
0.

97
0.

78
1.

11
1
×

10
5

5.
28

4.
17

5.
55

3
×

10
5

26
.4

8
19

.2
4

33
.5

0
9
×

10
5

21
5.

04
12

1.
05

24
8.

88
5
×

10
6

67
9.

03
-

-
2
×

10
7

20
0

0.
02

0.
02

0.
03

33
40

0.
10

0.
09

0.
10

10
93

6
0.

99
0.

91
1.

01
1
×

10
5

5.
30

4.
73

5.
77

4
×

10
5

27
.3

9
24

.4
1

29
.0

1
1
×

10
6

32
4.

04
-

-
7
×

10
6

11
15

.6
5

-
-

2
×

10
7

30
0

0.
01

0.
01

0.
02

34
32

0.
09

0.
08

0.
10

11
33

0
0.

96
0.

93
1.

01
1
×

10
5

6.
04

5.
63

6.
96

4
×

10
5

27
.7

1
27

.0
7

29
.1

8
1
×

10
6

30
1.

28
-

-
8
×

10
6

10
84

.2
1

-
-

2
×

10
7

50
0

0.
01

0.
01

0.
01

34
77

0.
06

0.
05

0.
08

11
46

9
0.

80
0.

77
0.

90
1
×

10
5

5.
66

5.
15

6.
02

4
×

10
5

27
.4

8
25

.9
0

31
.2

0
1
×

10
6

35
6.

01
-

-
8
×

10
6

11
09

.4
6

-
-

2
×

10
7

PA
C

K
IN

G
EQ

U
IV

A
LE

N
C

E
C

LA
SS

ES
30

0
40

0
50

0
60

0
70

0
80

0
90

0
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
m

ed
.

lo
w

up
p

#
pa

ck
60

0.
00

0.
00

0.
00

28
1

0.
00

0.
00

0.
00

52
4

0.
03

0.
02

0.
03

55
55

0.
33

0.
25

0.
38

25
85

3
0.

64
0.

47
0.

81
50

51
8

8.
01

4.
83

15
.8

6
3
×

10
5

32
.8

0
17

.1
7

48
.8

4
1
×

10
6

70
0.

00
0.

00
0.

00
30

3
0.

00
0.

00
0.

01
56

9
0.

04
0.

03
0.

04
63

27
0.

37
0.

29
0.

45
30

50
5

0.
73

0.
67

0.
86

60
84

9
9.

56
8.

01
10

.3
4

4
×

10
5

43
.8

1
25

.1
9

64
.8

8
1
×

10
6

80
0.

00
0.

00
0.

00
32

9
0.

00
0.

00
0.

01
62

5
0.

04
0.

04
0.

04
72

99
0.

48
0.

36
0.

56
36

76
5

0.
96

0.
89

1.
10

74
90

9
13

.3
8

10
.3

2
15

.2
2

5
×

10
5

73
.3

5
45

.2
6

81
.9

5
2
×

10
6

10
0

0.
00

0.
00

0.
00

37
0

0.
01

0.
01

0.
01

69
9

0.
05

0.
04

0.
06

86
44

0.
49

0.
38

0.
61

46
85

4
1.

19
1.

10
1.

80
1
×

10
5

18
.6

1
15

.1
5

33
.6

1
6
×

10
5

10
2.

59
86

.1
9

14
0.

68
3
×

10
6

15
0

0.
00

0.
00

0.
00

41
2

0.
01

0.
01

0.
01

78
6

0.
04

0.
04

0.
05

10
23

7
0.

56
0.

49
0.

62
58

95
0

1.
47

0.
96

3.
07

1
×

10
5

21
.6

4
15

.0
6

26
.1

6
9
×

10
5

14
5.

84
10

6.
05

18
2.

35
3
×

10
6

20
0

0.
00

0.
00

0.
00

42
9

0.
01

0.
01

0.
01

82
1

0.
07

0.
06

0.
08

10
90

4
0.

60
0.

53
0.

79
64

41
6

1.
82

1.
56

3.
59

1
×

10
5

26
.5

0
-

-
1
×

10
6

16
2.

30
-

-
5
×

10
6

30
0

0.
00

0.
00

0.
00

43
6

0.
01

0.
01

0.
01

84
1

0.
05

0.
04

0.
05

11
28

6
0.

71
0.

59
0.

81
67

16
3

2.
59

1.
64

3.
16

1
×

10
5

30
4.

40
-

-
1
×

10
6

16
2.

70
-

-
5
×

10
6

50
0

0.
00

0.
00

0.
00

44
0

0.
01

0.
01

0.
01

84
9

0.
09

0.
08

0.
10

11
41

7
0.

73
0.

61
0.

89
68

21
3

2.
81

2.
17

4.
46

2
×

10
5

67
3.

20
-

-
1
×

10
6

15
4.

10
-

-
5
×

10
6

B31



Paper B

Table 4: Comparison of the optimal solution and solving time (in seconds) with
respect to the number of generated packages for an instance of 200 items
solved with both packing and covering method when varying the number of
classes (Cl.) by simplifying the original instance. The instance is evaluated
for target values of 450 and 525 and deviation values of 10 (top part of
the table) and 90 (bottom part).

Cl. COVERING PACKING
Standard Deviation: 10

450 525 450 525
Packages Optimum Time Packages Optimum Time Packages Optimum Time Packages Optimum Time

45 62999 65 0.47 181800 50 2.10 8964 67 0.08 15969 65 0.26
40 44616 65 0.35 118894 50 1.43 6768 67 0.07 11525 65 0.20
35 26057 65 0.19 72368 50 0.50 4437 67 0.04 7814 65 0.12
30 15931 65 0.10 39935 50 0.28 2486 67 0.03 4955 66 0.03
25 8154 65 0.08 19788 50 0.13 1566 67 0.02 2925 66 0.02
20 3742 65 0.03 8621 50 0.05 807 67 0.00 1540 66 0.01
15 1512 65 0.01 3061 50 0.02 411 67 0.00 681 66 0.00
10 445 64 0.00 715 50 0.00 106 68 0.00 220 66 0.00

Standard Deviation: 90
450 525 450 525

Packages Optimum Time Packages Optimum Time Packages Optimum Time Packages Optimum Time
80 540384 66 9.09 2151942 56 53.90 47068 67 0.52 219327 57 3.77
75 438155 66 6.40 1683682 56 41.53 38926 67 0.37 173769 57 5.44
70 315242 65 3.77 1222000 56 33.51 33502 67 0.25 143324 57 2.24
65 214423 65 1.89 825952 56 15.09 25168 67 0.18 99023 57 6.27
60 181567 65 1.90 647241 56 13.17 18370 67 0.09 67044 57 2.02
55 130228 65 1.26 450641 56 8.11 14857 67 0.08 52659 57 1.19
50 82868 65 0.69 293594 56 2.56 10848 67 0.07 36831 57 0.73
45 67720 65 0.44 216105 56 3.28 7912 67 0.07 25138 57 0.47
40 40267 65 0.23 128418 56 1.95 5988 67 0.04 18789 57 0.16
35 25224 65 0.19 77416 56 0.76 3583 67 0.02 10421 57 0.21
30 14716 65 0.09 42137 56 0.46 2579 67 0.02 7217 57 0.13
25 7903 65 0.05 21239 56 0.26 1491 67 0.02 3650 57 0.03
20 3635 65 0.03 8834 56 0.05 826 67 0.01 1904 58 0.01
15 1437 65 0.01 3149 55 0.02 310 68 0.00 674 58 0.01
10 344 64 0.00 677 54 0.00 112 69 0.00 213 59 0.00
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1 Introduction

Abstract

The vehicle routing problem is a combinatorial optimization
problem of computing routes to serve customers while mini-
mizing a cost function, typically the traveled distance or the
number of vehicles required. Industrial applications of the
problem in manufacturing plants are the scheduling and rout-
ing of Automated Guided Vehicles (AGVs) to deliver mate-
rial between storage areas and assembly stations. For in-plant
transportation it is necessary to take the limited space of the
plant floor into account during scheduling and routing in or-
der to limit the number of AGVs that are at certain areas at
a given time. In addition, AGVs are most often powered by
batteries and therefore have limited operating range and non-
negligible charging time that will also affect the scheduling
and routing decisions. In this paper we provide a monolithic
model formulation for the scheduling and routing of AGVs with
given time-windows for delivering material, restricted by ca-
pacity constraints on the path network, and with the need for
battery recharge. The problem is modelled and solved using
optimizing Satisfiability Modulo Theory (SMT) solvers. The
approach is evaluated on a set of generated problem instances,
showing that the solver can handle medium size instances in a
reasonable amount of time.

1 Introduction
Nowadays automation is increasingly used for material handling and deliv-
ery [1] and many companies are implementing automated, just-in-time deliv-
ery systems [2]. One option is to deploy a fleet of automated guided vehicles
(AGVs) that pick up and deliver material and components to the due work-
station just-in-time for being used. Just-in-time delivery benefits from using
optimization to solve the scheduling and routing of the AGVs in order to min-
imize the traveled-distance and using as few vehicles as necessary while still
delivering all material within the given time-windows.

The standard vehicle routing problem (VRP) [3] is the combinatorial opti-
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mization problem of designing routes for vehicles to serve customers so that
a cost function, typically either the number of vehicles or the total travelled
distance, or a combination of them, is minimized. As the delivery of compo-
nents to the assembly line has to be done just-in-time, vehicles cannot arrive
too late or too early to the workstation. The vehicle routing problem with
time windows (VRPTW) [4] is a variation of the standard VRP that accounts
for these additional constraints. AGVs are often powered by batteries with
limited capacity and thus need to recharge during service. The electric vehi-
cle routing problem (E-VRPTW) [5] is a variant of the standard VRP that
accounts for limited operating range of the vehicles and the use of charging
stations. Another practical aspect of the fleet management system to con-
sider, is the capacity of the road segments, i.e. the simultaneous number of
vehicles a segment can accommodate. For example, if a segment is too small,
multiple vehicles cannot operate in it simultaneously without the time used to
travel through that segment being significantly longer than if fewer vehicles
were operating in the same segment. As for the previous cases, there exists
a variation of the standard VRP that accounts for limited capacity of the
road segments; the dispatch and conflict-free routing problem (DCFRP) [6].
Recent contributions on the DCFRP are presented in [7], [8].

To our best knowledge, the combined problem of VRP with time-windows,
the need to recharge vehicles and taking the limited capacity constraints have
not been defined and solved previously. In this paper we therefore define the
conflict-free electric vehicle routing problem (CF-EVRP) where we address all
these features in one problem definition. We consider the cost function to be
defined by the total traveled distance although other cost criteria can also be
used.

For all the previously defined variants of the VRP problem, there exist
Mixed Integer Linear Programming (MILP) models. Using MILP to handle
the problem offers high flexibility in terms of extending the model as new
constraints are required. On the other hand, the computational complex-
ity increases as the model grows (in terms of number of customers and/or
vehicles and, therefore, variables and constraints), especially when the new
requirements involve combinatorial logical constraints. For this reason MILP
solvers do not scale well to larger problems and specific-purpose algorithms
involving local search [9], column generation [10] or stochastic methods [11],
[12] are used instead. However, these methods are typically tailor-made for
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solving specific types of problems and extending them to new problem variants
might not be possible or non-trivial. The need to add constraints that are not
part of the textbook problems, result in MILP still being used for industrial
applications, or simple heuristic rules are used when MILP fails to scale.

In our previous works [13], [14] we showed that optimizing Satisfiability
Modulo Theory (SMT, [15], [16]) solvers outperformed MILP solvers on com-
binatorial scheduling problems (job-shop problems) involving many logical
constraints. The natural abilities of SMT solvers to handle combinatorial
constraints natively make it an interesting candidate for solving CF-EVRP
problems.

The contributions of this paper are: (i) Designing a model for the CF-EVRP
in order to represent a just-in-time material handling system based on AGVs
that takes into account time windows for delivery, limited operating range of
the vehicles and distributed charging stations, as well as limitations in the
road segments capacity. (ii) Design of problem instances to test the model’s
correctness and performance. (iii) Benchmark of a state-of-the-art SMT solver
over the generated problem instances.

The paper is organized as follows: in Section 2 a formal description of
the problem is provided, together with a mathematical model and detailed
descriptions of its constraints. In Section 3, the results of the analysis over
the set of generated problem instances is presented. Finally, conclusions are
drawn in Section 4.

2 Problem Formulation
In the variations of the VRP mentioned in Section 1, the real-world map is
abstracted and it is possible to travel directly from any customer to any other
customer. For this reason it is possible to represent the problem as a complete
undirected graph, where each customer is a node and two nodes are connected
with each other by a weighted edge representing their distance. Customers
are located at specific coordinates and the weight of the edge connecting two
customers is their Euclidean or Manhattan distance.

However, in the CF-EVRP the capacity constraints on the road segments
are taken into account and therefore, it is necessary to know where every
vehicle is located at each time. Moreover, there can be several ways to travel
from one customer to another, each with a different length. For these reasons
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it is not possible to make an abstraction of the real world map. Instead, a
weighted, directed graph represents the plant’s actual layout; the nodes are
the customers or the depot stations (as in the classical VRP), but they can
also be intersections between road segments, while the edges represent the
road segments and the edges’ bi-dimensional weight represents their length
and their capacity in terms of vehicles that can travel through it at the same
time.

The following definitions are provided:

• Time Horizon: a fixed point in time in the future when all jobs will be
assumed to end.
h = maxn,n′∈N (dnn′): the value of the longest road-segment
B: an upper bound representing the time when all jobs should be fin-
ished
T = B + h: the time horizon 1

• Task: either a pickup or a delivery operation. A task is always associated
with a node (see below) where the task is executed. Each and every task
has a time window as an attribute, indicating the earliest and latest time
at which a vehicle can execute the task. Unless explicitly stated, the time
window for a task is the time horizon.
Kj , ∀j ∈ J : the set of tasks of job j

Ljk,∈ N ∀j ∈ J , k ∈ Kj : the location of task k of job j

Pjk ⊂ Kj , ∀j ∈ J , k ∈ Kj : the set of tasks to execute before task k of
job j

ljk, ∀j ∈ J , k ∈ Kj : time window’s lower bound for task k of job j

ujk, ∀j ∈ J , k ∈ Kj : time window’s upper bound for task k of job j

• Job: one or more pickup tasks and one delivery task. Pickup may have
precedence constraints among them, while the delivery task for a job
always happens after all pickups for that job are completed.

J : the set of jobs

• Vehicle: a transporter, e.g. an AGV, that is able to move between
locations in the plant and perform pickup and delivery operations.

1The need to increase the value B is discussed on page C12.
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V: the set of all vehicles
Vj ⊆ V, ∀j ∈ J : set of vehicles eligible for job j

OR: the maximum operating range of the vehicles
C : the charging coefficient
D: the discharging coefficient

• Node: a location in the plant. A node can only accommodate one vehicle
at the time unless otherwise specified.
N : the set of nodes
An ⊂ N, ∀n ∈ N : set of nodes with an incoming edge from node n

• Hub: a node that can accommodate an unbounded number of vehicles
at the same time; nodes that are not hubs can only accommodate a
single vehicle.
NH ⊆ N : set of hub nodes

• Depot: a node at which one or more vehicles start and must return
to after completing the assigned jobs. The depot can by definition ac-
commodate an arbitrary number of vehicles at the same time, hence it
is a hub node. Moreover, the depot is the only charging station of its
vehicles.
F : the set of charging stations
si ∈ N , ∀i ∈ V : starting node of vehicle i

• Edge: a road segment that connects two nodes.
E ⊆ N ×N : the set of edges
dnn′ , ∀n, n′ ∈ N : the length of the edge connecting nodes n and n′ 2

gnn′ ,∀n, n′ ∈ N : the capacity of the edge connecting nodes n and n′

The requirements of the problem are summarized as follows:

• all jobs have to be completed; for a job to be completed a vehicle has to
be assigned to it and visit the locations of the job’s tasks within their
respective time windows.

2It is assumed that one unit of distance is covered in one time-step, hence distance and
duration are interchangeable
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• when a vehicle is assigned to more than one job, it has to execute the
job’s tasks sequentially; all tasks of a job must be completed before it
can execute any task of another job.

• there can be an arbitrary number of depots; vehicles have to return to
the depot they were dispatched from.

• vehicles are powered by batteries with limited capacity but with the
ability to recharge at a charging station. It is assumed that charging
and discharging of the batteries is linear with respect to distance.

• different road segments in the plant have different capacities in terms of
number of vehicles they can accommodate.

• pickup and delivery duration (the time when the pickup and delivery
tasks respectively are executed) are considered to be zero, as these times
can be considered negligible compared to the travelling time.

• not all vehicles are eligible to execute all jobs.

The set of variables used to build the model are:

xij : Boolean variables that evaluate to true if the i-th vehicle is assigned
to the j-th job

yijk: Boolean variables that evaluate to true if the i-th vehicle is assigned
to the k-th task of the j-th job

zijkt: Boolean variables that evaluate to true if the i-th vehicle serves
the k-th task of the j-th job at time t

rcit: Integer positive variables that keep track of the remaining operating
range of vehicle i at time t

atint: Boolean variables that evaluate to true if the i-th vehicle is at the
n-th node at time t

moveint: Boolean variables that evaluate to true if the i-th vehicle de-
cides to move to the n-th node at time t

The following logical operators are used to express cardinality constraints [17]:

AMO(a) : at most one variable of the set a evaluates to true;
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AMN(a, n) : at most n variables of the set a evaluate to true;

If(c, o1, o2) : if condition c is true returns o1, else returns o2.

For further clarity, the constraint sets have been divided into sections, de-
pending on the features of the system they model. The job assignment is con-
cerned with the allocation of the vehicles to the jobs; the vehicle movements
defines the rules for the vehicles to move through the plant; the conflict-free
routing deals with the capacity constraints on the road segments; the bat-
tery management defines how the vehicles’ batteries discharge and recharge
according to their state.
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2.1 Jobs Assignment

The following constraints are about assignment of jobs to vehicles, making
sure that all jobs are assigned one and only one vehicle according to the
specifications, and that such vehicle performs service to the job’s tasks:

zijkt =⇒ atiLjkt

∀i ∈ V, j ∈ J , k ∈ Kj , t = 0, . . . , T (C.1)

xij =⇒
∧

i′∈V
i ̸=i′

¬xi′j ∀i ∈ V, j ∈ J (C.2)

yijk =⇒
∧

i′∈V
i ̸=i′

¬yi′jk ∀i ∈ V, j ∈ J , k ∈ Kj (C.3)

yijk =⇒
T∨

t=0
zijkt ∀i ∈ V, j ∈ J , k ∈ Kj (C.4)

zijk1t =⇒
∧

k2∈Pjk1
t′=t,...,T

¬zijk2t′

∀i ∈ V, j ∈ J , k ∈ Kj , t = 0, . . . , T (C.5)

xij =⇒
∧

k∈Kj

yijk ∀i ∈ V, j ∈ J (C.6)

yijk =⇒
∨

t=ljk,...,ujk

zijkt ∀i ∈ V, j ∈ J , k ∈ Kj (C.7)

¬xij ∀i /∈ Vj , j ∈ J (C.8)

(C.1) states that in order to serve a task at time t, a vehicle has to be at the
task location at time t; (C.2) states that only one vehicle can be assigned to a
job; similarly, (C.3) states that only one vehicle can be assigned to a task; (C.4)
states that, in order to execute a task, a vehicle must be at the task location
at some point in time; (C.5) enforces the precedence constraint among tasks
of the same job; (C.6) states that, when assigned to a job, a vehicle must
execute all tasks of the job; (C.7) states that a vehicle must execute tasks
within their time windows; (C.8) states that only eligible vehicles can execute
the corresponding job.
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2.2 Vehicles’ Movements
The following constraints are related to the vehicles’ movements, specifying
where vehicles can go given their current location, how long it will take to
reach the next location, and how being at a location relates to performing a
service at that location:

atisi0 ∀i ∈ V (C.9)
atisiB ∀i ∈ V (C.10)

AMOn∈N (atint) ∀i ∈ V, t = 0, . . . , T (C.11)
AMOi∈V(atint) ∀n ∈ N \ NH , t = 0, . . . , T (C.12)

AMOn∈N (moveint) ∀i ∈ V, t = 0, . . . , T (C.13)
atint =⇒ ¬moveint ∀i ∈ V, n ∈ N , t = 0, . . . , T (C.14)

atint =⇒
∧

n′ /∈An

¬movein′t

∀i ∈ V, n ∈ N , t = 0, . . . , T (C.15)

(atint ∧
∧

n′∈N
¬movein′t) =⇒ atint+1

∀i ∈V, n ∈ N , t = 0, . . . , T − 1 (C.16)
(atint ∧movein′t) =⇒

(
∧

n′′∈N
t′=t+1,...,t+dnn′ −1

¬atin′′t′ ∧ atin′t+dnn′ )

∀i ∈ V, (n, n′) ∈ E , t = 0, . . . , T − dnn′ (C.17)

(zij1k1t1 ∧ zij1k2t2) =⇒
∧

j2∈J,j1 ̸=j2
k′∈Kj2

t′=t1+1,...,t2

¬zij2k′t′

∀i ∈ V, j2 ∈ J ,k1, k2 ∈ Kj1 , k1 ̸= k2,

t1 = 0, . . . , T , t2 = t1, . . . , T (C.18)

(C.9) states that all vehicles are at their respective depots at time zero; (C.10)
states that all vehicles are at the depot at time B, these constraints force the
vehicles to return to the depot after they execute the jobs they are assigned
to; (C.11) states that a vehicle can be at most in one location at a time.
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Normally, it would make sense to state that a vehicle should be exactly in one
place at a time. However, given the way the vehicle movement is modeled,
this constraint needs to be relaxed because moving can take more than one
time-step; (C.13) states that a vehicle can move to at most one location at
a time; (C.14) forbids a vehicle to move to the node where it already is, and
(C.15) states that if vehicle i at time-step t is at node n, it cannot move to any
non-adjacent node; (C.12) states that at most one vehicle can, at the same
time-step, be at a node that is not a hub; (C.16) states that, if a vehicle is not
moving at a certain time-step, it will be at the same location at the next time-
step; (C.17) states that, if a vehicle moves to a new location, it will be at no
node while it is transiting on the edge connecting the start and arrival nodes,
and it will be at the arrival node after as many steps as it takes to traverse the
edge, defined by the edge’s weight. It is for this reason that constraint (C.11)
needs to be relaxed. Also, in (C.17) t′ = t + 1, . . . , t + dnn′ − 1, therefore
t = 0, . . . , T − dnn′ . This means that there are no constraints applying to
events taking place in the interval [T−dnn′ , T ]. For this reason it is necessary
to extend the time horizon to T = B + h, the steps B, . . . , h are not actually
used in the model but this way it is guaranteed that all constraints apply for
T = 0, . . . , B; (C.18) states that if a vehicle is executing two tasks k1 and k2
of job j, then the vehicle cannot execute a task of any other job different from
j in between. This constraints is used to make sure that if a vehicle is selected
for multiple jobs, it has to execute them in sequence (i.e., finish all tasks of a
job before executing any other task).
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2.3 Conflict-Free Routing
The following constraints are related to the conflict-free routing, specifying
how one or more vehicle’s location affects the other vehicles’ movements:∧

i∈V̄

atint =⇒
∧

n′∈An

AMNi∈V̄(movein′t, gnn′)

{V̄ ∈2V ∣∣ |V̄| > gnn′}, n ∈ N , t = 0, . . . , T (C.19)∧
i1∈V̄1

ati1nt ∧
∧

i2∈V̄2

ati2n′t ∧
∧

i1∈V̄1

movei1n′t =⇒

t+dnn′∧
t′=t

AMNi2∈V̄2

(
movei2nt′ , gnn′ − |V̄1|

)
{V̄1 ∈ 2V ∣∣ |V̄1| ≤ gnn′}, t = 0, . . . , T − dnn′

{V̄2 ∈ 2V ∣∣ |V̄2| ≥ gnn′ − |V̄1|}, (n, n′) ∈ E (C.20)

(C.19) states that if n vehicles are on the same node, they cannot transit
on the same edge having capacity n− 1 at the same time-step; (C.20) states
that if n vehicles are on two adjacent nodes and decide to traverse the edge
connecting them and whose capacity is n+m, at most m vehicles can traverse
the edge from the other node before the n vehicles are done transiting.
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2.4 Battery Management
The following constraints are related to the battery management, i.e., where
the vehicles can charge, how fast, and how far they can travel before needing
to recharge:

rcit ≥ 0 ∧ rcit ≤ OR ∀i ∈ V, t = 0, . . . , T (C.21)
(atint ∧movein′t) =⇒∧

t′=t+1,...,t+dnn′ +1
rcit′ = rcit′−1 −D

∀i ∈ V, (n, n′) ∈ E ,t = 0, . . . , T − dnn′ (C.22)

(atint ∧
∧

n′∈N
¬movein′t) =⇒ rcit+1 = rcit

∀i ∈ V, n ∈ N \ F , t = 0, . . . , T − 1 (C.23)

(atint ∧
∧

n′∈N
¬movein′t) =⇒ rcit+1 = rcit + C

∀i ∈ V, n ∈F , t = 0, . . . , T − 1 (C.24)

(C.21) defines the domain of the rcit variables; (C.22) states that, if a vehicle
is moving, its energy decreases at each time-step according to the discharge
coefficient; (C.23) states that if a vehicle is not moving, its energy level does
not change. It is necessary to specify that the vehicle is at some node because
if the vehicle is at no node, it is moving; (C.24) states that if a vehicle is at a
charging station, its energy level increases at each time-step according to the
charging coefficient.

2.5 Objective Function
Finally, the cost function to minimize (C.25) is the total travelled distance,
calculated as the cumulative distance travelled by each and every vehicle:∑

If((atint ∧movein′t), dnn′ , 0)

∀i ∈ V, n ∈ N , t = 0, . . . , T − 1 (C.25)

C14



3 Computational Analysis

3 Computational Analysis

a b

c

d e

Job 1: 
     - vehicle: a
     -task 1: R, TW [0,T]
     -task 2: I, TW [20,25]
Job 2: 
     - vehicle: b
     -task 1: L, TW [0,T]
     -task 2: W, TW [20,25]
Job 3: 
     - vehicle: c
     -task 1: N, TW [0,T]
     -task 2: Q, TW [20,25]
Job 4: 
     - vehicle: d
     -task 1: A, TW [0,T]
     -task 2: H, TW [20,25]
Job 5: 
     - vehicle:e
     -task 1: F, TW [0,T]
     -task 2: T, TW [20,25]
Job X1: 
     - vehicles: a,b,c,d,e
     -task 1: V, TW [0,T]
     -task 2: B, TW [20,25]

A B

F G

K L

P Q

U V W X Y

TSR

M N O

JIH

C D E

1,1

1,2 
[20,25]

2,1

2,2 
[20,25]

3,1

3,2 
[20,25]

4,1

4,2 
[20,25]5,1

5,2 
[20,25]

X1,2 
[20,25]

X1,1

Figure 1: Test Case with five vehicles a to e that have to execute six jobs 1 to
5 and X1, each consisting of a pickup with time window [0,T] and a
delivery with time window [20,25].

In order to evaluate the model presented in Section 2 we generated a set
of problem instances, defined by a weighted, directed graph that represents a
hypothetical plant layout; The number of nodes is in this case a parameter
that affects the problem size, as well as the number of edges. In this work
we restricted the capacity of all road-segments to be one. For the graph it
is specified which nodes are hubs. Another parameter of the instance is the
number of vehicles available; to each vehicle a starting node is assigned; more
vehicles can start from the same node (in this case the node must be a hub). A
list of jobs to execute is given; each job is characterized by a number of tasks
and the vehicle(s) eligible to execute it. In turn, each task is characterized by
a location (node), a precedence list, and a time window. Other parameters
of the instance are the charging and discharging coefficients, as well as the
operating range of the vehicles and the time horizon, by when all jobs should
be finished and the vehicles should be back at their starting locations.

Figure 1 shows what a problem instance may look like; there are five depot
stations located at nodes A, E, M, U, and Y, which are also the charging
stations in the problem. There is no hub. Vehicles are initially located as
indicated in the figure and they have to return to their initial location before
the last time-step. All edges in this problem have weight one, the charging
and discharging coefficients are both one, the time horizon T is equal to 35,
and the vehicles operating range is 15. Tasks are reported in the figure next
to their location; for instance, task 2 of job 1 is at node I. Time windows,
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5/5

5/5
5/5

5/5
G

T
22

31
34

117
148

133
149

241
246
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12

2
22

4
-

169
281

34
1517

107
-

1669
1619

37
2375

144
-

818
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4
1

4
1

0
5

3
2

2
3

0
5

2
3

1
4

0
5

25
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5/5

4/5
5/5

4/5
2/5

2/5
4/5

5/5
G

T
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47
55

192
222

233
257

295
391
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29
69

61
204

39
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292
3327

246
1046

100
1911

-
2801

2551
7754

2826
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4
1

4
1

2
2

4
1

3
1

1
1

2
0

1
3

1
4

30
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5/5
5/5

3/5
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3/5
2/5

1/5
2/5

2/5
G

T
64

71
97

371
339

414
568

591
607

ST
557

-
549

-
987

1152
5995

-
3916

-
9325

3414
6052

-
9812

703
9503

629
SC

5
0

5
0

2
1

4
0

3
0

1
1

1
0

1
1

1
1
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3 Computational Analysis

if they exist, are reported below the task name, in between square brackets;
for instance, the time window for task 1 of job 2 is [20,25]. In this problem
jobs 1 to 5 can only be executed by vehicles a to e respectively, while Job
x1 can be executed by any vehicle. For this particular instance the solver
took about 90 seconds to generate the model and 540 seconds to find the first
feasible solution, which correspond to a total travelled distance of 102. Jobs
1 to 5 are executed by vehicles a to e respectively, while Job x1 is executed
by Vehicle d after executing Job 4 and recharging at Node A.

In the computational analysis we evaluated 160 problem instances struc-
tured as explained in the previous paragraphs. The parameters we used for
the problems generation are:

• N-V-J (nodes, vehicles, and jobs, respectively). N-V-J can be either
15-3-5, or 25-4-7, or 35-6-8. The corresponding layouts are grids of size
5 × 3, 5 × 5 (as in Figure 1), and 5 × 7. Each job is composed by one
pickup and one delivery;

• Edge Reduction can be either 0, or 25 or 50. The value 0 correspond
to a complete grid, as in Figure 1; the value 25 corresponds to a grid
where 3, 6, and 9 pairs of edges (i.e. (A, B) and (B, A)) are removed
for N equal to 15, 25, and 35 respectively; the value 50 corresponds to
a grid where 6, 12, and 18 pairs of edges are removed for N equal to 15,
25, and 35 respectively.

• Time Horizon can be either 15, 20, 25, or 30.

• All edges have weight equal to one.

For each combination of the above-mentioned parameters, five different prob-
lems are generated by randomly assigning the starting node for each type of
vehicle, the operating range, the charging coefficient, the number of vehicles
available per each type, the type of vehicle required for each job, and the
location of the jobs’ tasks.

Problem instances are designed to be on average satisfiable if the capacity
constraints are not included. This can be achieved by acting on the operating
range of the vehicles and on the time windows of the jobs. The goal is to pro-
duce both satisfiable and unsatisfiable problem instances in order to evaluate
the performance of the solver in both cases. Moreover, unsatisfiability can
be caused by different factors, such as too tight time windows and/or time
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horizon, not sufficient operating range, or too low connectivity of the graph
(in this case there are not enough paths to reach the desired locations without
getting into another vehicle’s way). By tuning the previously defined param-
eters it is possible to trigger different type of unsatisfiability and evaluate the
solver performance accordingly.

For the analysis we used Z3 4.8.9. The time limit is set to 10800 seconds
(three hours); the model generation time is measured separately, since it is
implementation-dependent and can be dealt with using more efficient for-
mulations, as discussed in our previous work [18]. All the experiments were
performed on an Intel Core i7 6700K, 4.0 GHZ, 32GB RAM running Ubuntu-
18.04 LTS. Though Z3 allows for optimization of the objective function, the
size of the problems evaluated is such that no optimum is expected to be
found in any reasonable time. Therefore Z3 is set to find satisfiable (hence
sub-optimal) solutions 3.

In Table 1 the results of the computational analysis are summarized. For
each combination of the values introduced in the previous paragraph, it is
reported the number of solved problems (out of five), the average model gen-
eration time, and the average solving time, both for the instances that turned
out to be satisfiable and for the ones that did not; the amount of satisfied
and unsatisfied instances is also reported. As expected, all the parameters
are directly proportional to the model generation time, since the model size
increases as they increase. The solving time is also directly affected by the
increase of the parameters’ value. In general, given problems of the same
class, proving unsatisfiability seems to be faster than finding a feasible solu-
tion; there are exceptions, especially for values of edge reduction of 25 and 50.
Even when the problem is satisfiable, finding a solution is harder for a smaller
number of edges, since the number of possible conflict-free routes decreases.
For N-V-J equal to 25-4-7 and 36-6-8 and a time horizon of 15 time units all
problems turn out to be unsatisfiable; this result does not come unexpected,
since the graph and the gap between number of vehicles and number of jobs
are too large to execute all jobs and go back to the starting point in time.
We assumed that an obvious unsatisfiability could be faster to prove, but the
results seem to contradict our hypothesis.

3The implementation of the model presented in Section 2, as well as the problem instances
are available at https://github.com/sabinoroselli/VRP.git.
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4 Conclusion

4 Conclusion
In this paper we formulated a model to represent just-in-time material han-
dling systems based on AGVs that takes into account limited operating range
and road segments capacity. We also designed a set of problem instances
to test the model, implemented for the state-of-the-art SMT solver Z3. The
solver turned out to be able to handle medium and large models; however,
given their complexity, these models correspond to relatively small systems.
The approach presented can nonetheless be used to solve simplified problems
to provide initial feasible solutions or as a part of a compositional algorithm.
Also, it can be used to test the correctness of alternative approaches because,
given enough running time, it can provide the true optimum. Finally, the
benchmark set we generated can be used to compare performance of different
approaches.
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Abstract

The Conflict-Free Electric Vehicle Routing Problem
(CF-EVRP) is an extension of the Vehicle Routing Problem
(VRP), a combinatorial optimization problem of designing
routes for vehicles to visit customers such that a cost function,
typically the number of vehicles or the total travelled distance,
is minimized. The problem finds many logistics applications,
particularly for highly automated logistic systems for material
handling. The CF-EVRP involves constraints such as time
windows on the delivery to the customers, limited operating
range of the vehicles, and limited capacity on the number of
vehicles that a road segment can accommodate at the same
time. In this paper, the compositional algorithm ComSat
for solving the CF-EVRP is presented. The algorithm
iterates through the sub-problems until a globally feasible
solution is found. The proposed algorithm is implemented
using an optimizing SMT-solver and is evaluated against an
implementation of a previously presented monolithic model.
The soundness and completeness of the algorithm are proven,
and it is benchmarked on a set of generated problems and
found to be able to solve problems of industrial size.

Note to Practitioners
The need to define and solve the CF-EVRP relates to an industrial application
where a fleet of autonomous robots navigate in a heterogeneous environment,
shared with humans and other vehicles and obstacles. To allow for a low-level
trajectory controller to handle dynamic obstacles, like humans and fork-lifts,
the CF-EVRP includes capacity constraints on the road segments. This in-
creases the problem complexity, and thus requires to trade off optimality for
feasability; this so to get solutions in reasonable time with respect to how long
ahead the jobs to schedule are known. The overall problem is to find feasible
solutions that satisfy all constraints while avoiding travelling unnecessarily
long routes, and at the same time meet the stipulated time-windows to de-
liver material just-in-time. The compositional algorithm (ComSat) presented
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in this work is based on the idea to break down the overall scheduling prob-
lem into sub-problems that are easier to solve, and then to build a schedule
based on the solutions of the sub-problems. ComSat is designed to work well
for industrial scenarios where there are good reasons to believe that feasible
solutions do exist. This seems a reasonable assumption as in an industrial
setting a sufficient number of mobile robots can typically be assumed to be
available.

1 Introduction
The use of mobile robots for just-in-time deliveries is of considerable interest
for modern manufacturing facilities [1]. The problem treated in this paper
originates from an industrial need to use a fleet of Automated Guided Vehicles
(AGVs) that run through the plant to deliver components to workstations just-
in-time for them to be used. In this scenario, the scheduler needs to consider
several types of constraints in addition to the time constraints. (i) AGVs have
a limited operating range and need to recharge their battery when the state-
of-charge becomes low. (ii) Jobs have specific requirements on the AGV to
execute them where only some AGVs can handle some jobs. (iii) The plant
layout may limit the AGV’s freedom of movement; for instance, a passage may
not be large enough to accommodate more than a fixed number of AGVs at
a time. Thus, we define the capacity of the road segments, intersections, and
workstations and include capacity constraints in the problem formulation. A
schedule is conflict-free if it fulfills the capacity constraints.

The constraints discussed above increase the complexity of the problem,
and even finding feasible solutions can take a long time. A solution to a
standard Vehicle Routing Problem (VRP) can be computed within minutes
for up to 100 customers and just as many vehicles [2]. On the other hand,
when charging times, capacity constraints, and multiple assignments of routes
to vehicles come into play, a problem involving 10 vehicles and 20 customers
can be considered large, and may take hours to find a feasible solution for.

In industrial applications there often occur changes that require re-scheduling,
and a new schedule must be found quickly, else it may be outdated once com-
puted. At the same time, production cannot be put on hold while a new
schedule is computed. For these reasons, the compositional algorithm pre-
sented in this work aims to find feasible solutions quickly, rather than optimal
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ones.
There exist both approximate and exact algorithms to solve the VRP.

For relatively small-size problem instances, mixed-integer linear program-
ming (MILP) [3] solvers can find feasible or even optimal solutions in rea-
sonable time. However, standard MILP-solving techniques do not scale well,
so specific-purpose algorithms involving local search [4], Benders decompo-
sition [5], or stochastic methods [6], [7] have been proposed. Recent work
focusing on fleets of electric vehicles [8], as well as conflict-free routing [9]
show applications of such approaches to real-world problems.

In [10] a comparison of using MILP as an exact method, and a set-based
particle-swarm optimization algorithm as an approximate method, is made for
solving the VRP with time windows (VRPTW [11]). The comparison shows
that neither method dominates the other in terms of running time and quality
of the solutions. On the other hand, the advantage of using general-purpose
MILP-solvers is that additional constraints can be easily added to handle
extensions of the original problem. At the same time this may be non-trivial,
if at all possible, for a tailor-made algorithm.

The specific scheduling and routing problem treated in this paper, called
the Conflict-Free Electric Vehicle Routing Problem (CF-EVRP), does involve
additional constraints such as limited operating range of the robots, and ca-
pacity constraints, thus a general-purpose solver is used. In [12], [13] opti-
mizing Satisfiability Modulo Theory (SMT [14], [15]) solvers outperformed
MILP solvers on combinatorial scheduling problems such as Job Shop Prob-
lems (JSP) involving many logical constraints. The natural abilities of SMT
solvers to natively handle combinatorial constraints make them well suited to
handle CF-EVRP.

A monolithic model of the CF-EVRP is presented in [16] and solved using
the SMT-solver Z3 [17]. Already relatively small problems, with only a few
vehicles and jobs, result in hundreds of thousands of variables and constraints
due to the discretization of time used to model capacity constraints.

In order to avoid time discretization and be able to quickly find feasible
solutions to large problems of the CF-EVRP, [18] presents a compositional
algorithm for a slightly restricted CF-EVRP. This algorithm scales better
than the monolithic one. However, it does not account for typical industrial
features such as service time and multiple depots.

This work introduces ComSat (Compositional Satisfiability), an extension
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of the compositional algorithm presented in [18]. The contributions of this
paper are: (i) a description of CF-EVRP, a problem that tackles both the
issue of limited operating range of the vehicles, and the limited capacity of
the segments in a road network; the CF-EVRP from [18] is also generalized
so that vehicles can be located at multiple depots, and service times at the
customers are accounted for; (ii) a decomposed mathematical formulation of
CF-EVRP; (iii) the ComSat algorithm designed for the decomposed problem
formulation; (iv) a proof of ComSat’s soundness and completeness under given
restrictions; (v) an evaluation of ComSat on a set of generated instances of
the CF-EVRP.

The paper is organized as follows. Section 2 introduces previous works on
the topic and puts this work in context. Section 3 provides a formal description
of the problem. In Section 4, ComSat is introduced. Proof of soundness and
completeness is given in Section 5. In Section 6, the results of the analysis
over a set of problem instances are presented. Finally, conclusions are drawn
in Section 7.

2 Literature Review
The VRP [19] is a classical problem, formulated by Dantzig and Ramser, that
searches for optimal routes for a fleet of robots to visit a set of customers. A
large number of studies have introduced variations on the original problem,
as well as techniques to solve them. The vehicle routing problem with time-
windows (VRPTW) is an extension of the VRP where customers have to be
visited within given time windows [11]. A related problem is discussed in [20]
where the routes to visit customers are dynamically designed based on the cur-
rent state of the other vehicles. Another variation of the problem involves the
possibility of Multiple Depots (MDVRP). In [21], the MDVRP is decomposed
into assignment of vehicles to customers, and design of routes for vehicles to
visit their assigned customers. In [22], the MDVRP is solved by means of ge-
netic algorithms. In [23] the problem of limited capacity of the road segments
is tackled and conflict-free routes for AGVs are computed by means of column
generation. The work in [24] presents one of the first and most relevant works
involving conflict-free routing in combination with scheduling of jobs for flex-
ible manufacturing systems. Similarly to [21], the authors break down the
problem into a scheduling problem, solved by constraint programming, where
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vehicles are assigned to jobs, and a routing problem, solved by MILP, where
routes for the vehicles are designed. We took inspiration from this approach
and further broke down the problem into more sub-problems to be able to
handle the different constraints, in particular the limited operating range of
the vehicles.

For electric vehicles, model formulations need to take into account the vehi-
cle’s limited operating range and non-negligible charging time as well. In [25]
a branch and cut algorithm to solve a VRP with satellite facilities is presented,
vehicles can stop to replenish their cargo and continue delivering goods until
the end of their shift. Satellite facilities are also treated by [26], that mod-
els these intermediate points as charging stations and solves the problem by
means of a combination of neighborhood and tabu search.

Autonomous vehicles are increasingly used to deliver material across man-
ufacturing plants. In [27], AGVs are scheduled for jobs and routed through
a plant by means of Petri net decomposition. In [28], a hybrid evolutionary
algorithm is implemented to solve a multi-objective AGV scheduling problem
in a flexible manufacturing system. In this work, the authors consider the
vehicles’ battery charge, but do not take into account road segments’ capac-
ity. In [29], a multi-objective AGV scheduling problem is solved by means
of adaptive-genetic algorithms. Unlike standard genetic algorithms, these ad-
just the hyperparameters, improving convergence accuracy and speed. The
authors consider a plant with a grid-like road network, but road segment
capacities are not considered. In [30] an integrated approach to deal with
line balancing and material handling by means of AGVs is presented. A
stochastic algorithm is used to assign jobs to the workstations and AGVs
are scheduled to deliver the components to execute the jobs. However, road
segment capacity constraints are not considered. In [31], a matheuristic (a
combination of metaheuristics and mathematical programming) to schedule
a heterogeneous fleet of AGVs is presented, having different travel speed and
cost, charging/discharging rate, and capability to serve different customers.
But again, road capacity constraints are not treated.

As AGVs are used in manufacturing plants with limited capacity of the
road segments, a growing attention has been paid to the problem of designing
conflict-free routes. In [32], an ant colony algorithm is applied to the problem
of job shop scheduling and conflict free routing of AGVs. While road segment
capacity constraints are considered the limited operating range of the vehicles
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is not considered. In [33], a collision-free path planning for multi AGV sys-
tems based on the A∗ algorithm is presented. In this work, the environment
is modeled as a grid, and conflicts can originate from vehicles occupying the
same spot on the grid at the same time; the vehicles’ operating range and
ability to recharge is not considered. In [9], a heuristic approach to solve
the conflict-free routing problem with storage allocation is presented; in this
work limited operating range and battery charge are not considered. In [34], a
MILP formulation to design conflict-free routes for capacitated vehicles is pre-
sented. This is an exact method, but it can only solve relatively small problem
instances. In [35] a hybrid evolutionary algorithm to deal with conflict-free
AGV scheduling in automated container terminals is presented. In this work,
only a limited portion of the map is prone to conflicts, with all road segments
allowing to travel in both directions simultaneously; also, charging of the ve-
hicles’ batteries is not considered. In [36] the authors present a new model
formulation for the VRPTW that restricts the problem to only difference logic
(a fragment of linear arithmetic) constraints, in order to exploit the strength
of Z3 in dealing with this particular fragment.

From the literature review it emerges that over the last two decades there
has been a growing number of studies dedicated to AGV-based material han-
dling systems. There is usually a large overlap of features tackled in each
work, and approximate methods are likely to be used to solve large problem
instances, due the problem being too complex to be solved by exact algorithms.
We apply a graph-based concept similar to [33], with nodes and edges of the
graph representing the plant. Similarly to [36] we do exploit the strength of
Z3 in dealing with difference logic by turning the Assignment Problem and the
Capacity Verification Problem (see Section 4) into JSPs, that can be described
using difference logic. However, to the best of our knowledge, there is no work
that tackles within the same formulation both the limited operating range,
with the necessity to recharge the vehicles’ batteries, and the limited capacity
of the road segments, requiring to schedule conflict-free routes. Industrially,
both limitations are required to be included. The CF-EVRP includes all these
limitations and ComSat exploits the decomposed formulation of the CF-EVRP
to find feasible solutions.
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3 Problem Definition and Notation
In the CF-EVRP the plant layout is represented by a finite, strongly con-
nected, weighted, directed graph, where edges represent road segments and
nodes represent either intersections between road segments or locations of cus-
tomers. A customer is defined by a unique (numerical) identifier, a location,
and a time window, i.e., a lower and an upper bound that represent the earli-
est and latest arrival time allowed to serve the customer. The word customer
is typically used to denote a location where a vehicle is to pick up or drop off
goods. The word task will be used synonymously. Edges have two attributes
representing a road segment’s length and its capacity in terms of number of
vehicles that it can simultaneously accommodate.

The following definitions are provided:

• Node: a location in the plant. A node can only accommodate one vehicle
at a time unless it is a hub node.

N : a finite set of nodes.

NH ⊆ N : the set of hub nodes, nodes that can accommodate an
arbitrary number of vehicles.

• Edge: a road segment that connects two nodes.

E ⊆ N ×N : the finite set of edges.

ē, ∀e ∈ E : the reverse edge of an edge e.

dnn′ ∈ R, ∀⟨n, n′⟩ ∈ E : the length of the edge connecting nodes n

and n′.

gnn′ ∈ {1, 2}, ∀⟨n, n′⟩ ∈ E : the capacity of the edge connecting
nodes n and n′

• Time horizon: a fixed point of time in the future when all jobs are
assumed to have ended.

T : the time horizon.

• Job: a set of tasks that must be executed within the same route and
without executing any task belonging to a different job in between. Typ-
ically, a job is the pickup of parts from the warehouse and the delivery
to the due workstation; however, in general a job can have an arbitrary
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number of tasks. No task belonging to another job should be executed in
the same route until all tasks belonging to the current job are completed.

J : the finite set of jobs.

• Task: either a pickup or a delivery operation (there is no need to dis-
tinguish between them, as both are modelled in the same way). A task
is always associated with a node where it is executed, and has a time
window indicating the earliest and latest time at which it can be exe-
cuted. Unless explicitly given, the time window spans the entire time
horizon [0, T ]. Also, each task is associated with a precedence list that
states what tasks have to be executed before it. This list may include
any other task in the problem definition. Finally, for each task a service
time is defined.

K the finite set of all tasks.

Kj ⊆ K, ∀j ∈ J : the finite set of tasks of job j. (note that the tasks
set is partitioned into subsets based on the jobs, i.e., Ki∩Kj = ∅ ∀i ̸=
j, i, j ∈ J )

Lk ∈ N , ∀j ∈ J , k ∈ Kj : the location of task k.

Pk ⊂ Kj , ∀j ∈ J , k ∈ Kj : the set of tasks to execute before task k.

lk ∈ R, ∀j ∈ J , k ∈ Kj : the time window’s lower bound for task k.

uk ∈ R, ∀j ∈ J , k ∈ Kj : the time window’s upper bound for task k.

Sk ∈ R, ∀j ∈ J , k ∈ Kj : the service time of task k.

• Depots: nodes at which one or more vehicles start and must return
to after completing the assigned jobs. A depot can accommodate an
arbitrary number of vehicles at the same time, thus all depots are hubs.

∅ ⊂ O ⊆ NH: the set of depots.

S = { so | o ∈ O }: the set of dummy tasks representing the start
from depot o.

F = { f o | o ∈ O }: the set of dummy tasks representing the arrival
at depot o.

The sets S and F are disjoint with each other and with all task sets
Kj , ∀j ∈ J .
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• Vehicle: a transporter, e.g. a mobile robot, that is able to move between
locations in the plant and perform pickup and delivery operations.

V: the finite set of all vehicles.

Vj ⊆ V, ∀j ∈ J : set of vehicles eligible for job j.

OR ∈ R+: the vehicles’ maximum operating range (constant).

C ∈ R+: the charging coefficient (constant).

D ∈ R+: the discharging coefficient (constant).

ρ ∈ R+: a coefficient to scale remaining charge into remaining
operating range (constant).

v ∈ R+: vehicle speed (constant) while moving.

The requirements of the problem are:

• All jobs have to be completed; for a job to be completed a vehicle has
to be assigned to it and visit the locations of the job’s tasks according
to the tasks’ sequence and within their respective time windows.

• Vehicles are not allowed to arrive at the task’s location before the time
window’s lower bound and wait there (many other VRP formulations,
allow such waiting).

• Vehicles are powered by batteries with limited capacity but with the
ability to recharge at the depots. It is assumed that state of charge
increases proportionally to the time spent at the depot and decreases
proportionally to the travelled distance. Also, vehicles travel at constant
speed v or they are stationary.

• Multiple depots; vehicles have to return to the depot they were dis-
patched from and can only recharge their batteries there (without queu-
ing).

• A non-empty subset of vehicles is eligible for each job.

• All vehicles have the same operating range and start at full charge;
whenever they return to the depot they charge to full before becoming
available again;
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• Two additional jobs are added for each depot: start and end; they are
needed in the Routing Problem to make sure that routes begin and end
at the depot. Both start and end have only one task located at the depot
they represent, service time equal to zero, and the entire time horizon
as time window.

• Road segment capacities constrain the number of vehicles a road segment
can simultaneously accommodate.

• Only (non-cyclic) paths, that is, finite sequences of edges that join se-
quences of distinct vertices, are considered.

3.1 Example of the CF-EVRP

j1-1

j1-2

j2-1

j4-1

j3-1

j2-2

j4-2

j3-2

17,51 4252 152

12,51 12,51 17,51

302

12,52 12,52

17,52 42,52 152

27,52

12,52 1502

501

401

151

27,52

12,51

152

12,52

102

37,52

102

1 2 3 4

5 6 7 8

9 10

11 12 13

14

15 16

17 18 19 20

D2

D1

Figure 1: Problem instance of the CF-EVRP picturing a hypothetical plant (left)
where two depots (D1, D2) accommodate four vehicles (v1, v2, and v3,
v4 respectively), available to execute four jobs (j1, j2, j3, j4), each
composed by two tasks (1, 2). The plant road segments are abstracted
into a strongly connected, directed, weighed graph (right).

Fig. 1 shows an example of the CF-EVRP, where four AGVs are available
to execute four jobs, each composed by two tasks (the squares distributed over
the plant). Each task is marked by a numeric code where the first digit refers
to the job and the second digit indicates the task number. On the right is
shown how the plant layout is abstracted into a strongly connected, directed,
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weighted graph (more on this below). The nodes represent the intersections
of road segments in the plant; if a task’s location is close enough to an in-
tersection, then the task will be assigned that location, otherwise a new node
is added to the graph (e.g., Node 14 for task j3-2 ). Also, nodes 4 and 17
represent both an intersection between road segments and the depots. The
numbers on the edges represent the segments’ length (regular font), and their
capacity (subscript).

The problem, using the above defined notation, is then:

N = {1, . . . , 20}, NH = {4, 17},O = {4, 17}

E = {(1, 2), (2, 3), (3, 4), (5, 6), (6, 7), (7, 8), (9, 10),

(1, 12), (12, 13), (17, 18), (18, 19), (19, 20), (1, 9),

(2, 5), (3, 8), (6, 10), (7, 13), (8, 16), (9, 17), (11, 15),

(15, 18), (16, 19), (14, 21)}

J = {j1, j2, j3, j4}

K = {i1, i2 | ∀i ∈ J }

Lj11 = 15, Lj12 = 10, Lj21 = 11, Lj22 = 8,

Lj31 = 6, Lj32 = 14, Lj41 = 2, Lj42 = 16

Pj11 = ∅,Pj12 = j11,Pj21 = ∅,Pj22 = j21

Pj31 = ∅,Pj32 = j31,Pj41 = ∅,Pj42 = j41

lj11 = 0, lj12 = 70, lj21 = 0, lj22 = 300,

lj31 = 0, lj32 = 180, lj41 = 0, lj42 = 200

uj11 = T , uj12 = 120, uj21 = T , uj22 = 330,

uj31 = T , uj32 = 250, uj41 = T , uj42 = 300

Sj11 = 10, Sj12 = 30, Sj21 = 20, Sj22 = 30,

Sj31 = 10, Sj32 = 30, Sj41 = 30, Sj42 = 20,

V = {v1, v2, v3, v4}
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Vj1 = {v1, v2}, Vj2 = {v1},

Vj3 = {v2, v4}, Vj4 = {v3, v4}

OR = 270, C = 3, D = 1, ρ = 1, v = 1

T = 500

First, ComSat will compute the distance for each pair of nodes where either
a task or a depot is located. Using the distances, as well as the speed of the
vehicles, and all the other parameters, a set of routes CR is computed. In this
specific problem, a possible set of routes is:
R1: D1-j11-j12-D1; Total length: 135; latest start: 42.5; Eligible vehicles:
v1, v2
R2: D1-j21-j22-D1; Total length: 220; latest start: 200; Eligible vehicles: v1
R3: D2-j31-j32-D2; Total length: 257.5; latest start: 102.5; Eligible vehicles:
v2, v4
R4: D2-j41-j42-D2; Total length: 195; latest start: 195; Eligible vehicles: v3,
v4

Note that for each route the latest start time is computed based on the
strictest time window. Subsequently vehicles are assigned to the routes and
an actual start time for the route is given. A possible assignment for the
current routes would be R1: v2; R2: v1; R3: v4; R4: v3. The start time of
all routes is 0.

Finally, the routes are capacity checked, and this also produces a node-by-
node schedule, i.e., the arrival time of a vehicle at each node that is included
in the route:
v1: v1-17:0; v1-18:18.5; v1-15:40.5; v1-11:53; v1-12:85.5; v1-13:98; v1-7:153;
v1-8:300; v1-7:347.5; v1-6:360; v1-10:372.5; v1-9:402.5; v1-17:440;
v2: v2-17:0; v2-18:19.5; v2-15:29.5; v2-11:52; v2-12:64.5; v2-10:79.5; v2-9:139.5;
v2-17:177;
v3: v3-4:0; v3-3:16; v3-2:58.5; v3-1:76; v3-2:103.5; v3-5:116; v3-6:128.5; v3-
7:141; v3-8:170.5; v3-16:210.5; v3-8:270.5; v3-3:285.5; v3-4:300.5;
v4: v4-4:0; v4-3:15; v4-8:30; v4-7:142; v4-8:169.5; v4-3:184.5; v4-4:199.5; v4-
14:250; v4-4:330.

If the charging coefficient C is increased from 3 to 9, both R1 and R2 could
be assigned to vehicle v1, since the charging time would be short enough to
allow the vehicle to execute the first route, go back to the depot, recharge and
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execute the second route without breaking any time windows. In this case
there would still be four routes but three vehicles would be enough to execute
them. Moreover, if the operating range of the vehicles were increased to 290,
all customers could be served with only three routes:
R1: D1-j21-j22-D1; Total length: 220; latest start: 200; Eligible vehicles: v1
R2: D2-j11-j12-j31-j32-D2; Total length: 280; latest start: 100; Eligible
vehicles: v2
R3: D2-j41-j42-D2; Total length: 195; latest start: 195; Eligible vehicles: v3,
v4

The solutions presented in this section have been computed using ComSat; a
discussion on the algorithm’s solving procedure is provided in the next section,
after the algorithm itself has been described.

3.2 State Space Analysis

Although the state space size of CF-EVRP is not directly proportional to
the solving time, analyzing the state space growth provides an idea of the
complexity of the problem itself. The parameters needed to analyze the state
space are the number of tasks |K|, the number of nodes |N | in the graph
representing the plant, the number of vehicles |V|, the time horizon T , and
the operating range of the vehicles OR. To be able to compute the state space
size, the domains of the real valued variables are, in this analysis, restricted
to integers.

Based on the model formulation from [26], if capacity constraints are re-
laxed, the size of the state space is upper bounded by

OR|V|·|K| · T |V|·|K| · 2|V|·|K|2
, (D.1)

which can be rewritten as

2|V|·|K|·(|K|+log2 (OR·T))). (D.2)

Based on the monolithic model of CF-EVRP from [16], if capacity con-
straints are considered, the size of the state space is upper bounded by

2|V|·|K| · 2|V|·|K|·T ·OR|V|·T · 22·|V|·|N |·T , (D.3)
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which can be rewritten as

2|V|·(|K|+T(2·|N |+log2 (OR)+|K|)). (D.4)

Assuming that, for a fixed number of vehicles there exists a correlation
between the number of tasks and the time horizon, we can define β ∈ [0, 1]
such that |K| = β ·T . The ratio between (D.4) and (D.2) then has a dominant
factor of 22·|V|·|N |·T that arises due to the capacity constraints. Even for small
problem instances, this number can be very large. A compositional approach
that iteratively solves smaller sub-problems potentially avoids such state space
explosion.

4 Problem Decomposition and Solving Procedure
This section describes how the CF-EVRP is decomposed into sub-problems.
The first step is a computation of the shortest paths to connect each pair of
tasks. In the Routing Problem the paths are used to compute routes that
start and end at the depots and serve all tasks within their time windows.
Once the routes are computed, the Assignment Problem matches them with
the vehicles, which determines their execution times. Finally, the Capacity
Verification Problem checks the routes and their execution times against the
capacity constraints. It may be required to explore different paths to connect
two tasks of a route; this is done by solving the Paths Changing Problem that,
based on the paths used so far, will find new unexplored paths to connect
the tasks. When new paths are computed, the algorithm verifies whether the
routes still meet the time windows by solving the Routes Verification Problem.
Table 1 summarizes inputs and outputs of the algorithms developed to solve
each of the sub-problems presented in the following sections.
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Table 1: Algorithms to solve the sub-problems of Section 4. Given within paren-
theses next to the name of the algorithm is the problem that it solves.

Router (Routing Problem)
Input: CP, PR
Output: CR
Define optimization problem using (D.5)-(D.19)
Optimize and extract CR from the solution
Assign (Assignment Problem)
Input: CR, PA
Output: CA
Define feasibility problem using (D.20)-(D.25)
Solve and extract CA from the solution
CapacityVerifier (Capacity Verification Problem)
Input: CA
Output: CVS
Define feasibility problem using (D.26)-(D.32)
Solve and extract CVS from the solution
PathsChanger (Paths Changing Problem)
Input: PP
Output: NP
Define optimization problem using (D.33)-(D.39)
Optimize and extract NP from the solution
RoutesVerifier (Routes Verification Problem)
Input: CR, NP
Output: True or False
Define feasibility problem using (D.40)-(D.43)
Solve problem and return True if feasible, else False
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4.1 Computation of Shortest Paths
In the first step, the shortest path between any two tasks is computed. This
is done because the Routing Problem is a VRPTW plus additional constraints
on tasks precedence and routes length; in a VRP there exist exactly one path
between any two tasks. On the other hand, in the CF-EVRP there may
be several ways to travel from one task to another. Moreover, computing the
shortest paths (instead of any non-cyclic path) is required for the algorithm to
be sound and complete (see Section 5). The shortest paths SP are computed
using Dijkstra’s algorithm [37] and assigned to the set CP. Since each task’s
location is reachable from any other task’s location, a path always exists; also,
in case more solutions with the same cost exist, these will be explored in the
Paths Changing Problem, if needed.

4.2 Routing Problem
Solving the Routing Problem means to find a set of routes, i.e., a sequence
of tasks’ locations that begins and ends at the same depot, such that every
task is served within its time windows and the length of each route does not
exceed the operating range. This way, once vehicles are assigned to routes in
the Assignment Problem, they can execute them without having to recharge.
Additionally, the routes have to meet the constraints on the tasks’ precedence,
as introduced above and described below. At this stage capacity constraints
are not considered, nor is the actual plant layout. Also, upper bounds on the
number of available vehicles are neglected, i.e., there can be more routes than
vehicles, since one vehicle can be assigned to more than one route.

With some abuse of notation we can define the distance between two arbi-
trary tasks’ locations as dk1k2 instead of dLk1 Lk2

, ∀k1 ∈ Kj1 , k2 ∈ Kj2 , j1, j2 ∈
J . Also, let Mj be the set of mutually exclusive jobs for job j (i.e. vehicles
eligible for job j are not eligible for any of the jobs in Mj due to requirements
on the vehicle type); let Permj be the set of permutations of tasks belonging
to job j, where each element ord in Permj is an ordered list of tasks and let
knext be the task coming after task k in ord.
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The set of decision variables used to build the model for the Routing Problem
are:

θk1k2 : Boolean variable that is true if a vehicle travels from the location
of task k1 to the location of task k2, false otherwise.

γk: non-negative real variable that models the arrival time of a vehicle
at the location of task k.

ϵk: non-negative real variable that models the remaining charge of a
vehicle when it arrives at the location of task k.

If the solution of the Routing Problem turns out to be inconsistent with
the vehicles’ assignments or the capacity constraints, a new solution must
be computed in order to find alternative routes for the same combination of
paths. Therefore it is necessary to keep track of the combinations of routes
that have already been generated so these can be ruled out when solving the
Routing Problem again. Let the optimal solution to the Routing Problem
found at iteration h be CR =

⋃
k1,k2∈K {θ∗

k1k2
}, where θ∗

k1,k2
, ∀k1, k2 ∈ K, is

the value of θk1,k2 in the current solution; also, let PR be the set containing
the optimal solutions found until the (h − 1)-th iteration.

The following logical operators are used to express cardinality constraints
[38] in the sub-problems:

EN(a, n) : exactly n variables in the set a are true;

If(c, o1, o2) : if c is true returns o1, else returns o2.

To shorten the notation we will write ENm∈M (m, n) to denote EN(
⋃

m∈M

{m}, n).

The model formulation for the Routing Problem is as follows:
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min
k∈Kj , j∈J , s∈S

∑
If(θsk, 1, 0) (D.5)

ϵk · ρ ≤ OR, ∀k ∈ Kj , j ∈ J (D.6)
¬θkk, ∀k ∈ Kj , j ∈ J (D.7)
¬θks, ∀k ∈ Kj , s ∈ S, j ∈ J (D.8)
¬θf k, ∀f ∈ F , k ∈ Kj , j ∈ J (D.9)
θk1k2 =⇒ γk2 ≥ γk1 + Sk1 + dk1k2/v,

∀k1 ∈ Kj1 , k2 ∈ Kj2 , j1, j2 ∈ J (D.10)
θk1k2 =⇒ ϵk2 ≤ ϵk1 −D · dk1k2/v,

∀k1 ∈ Kj1 , k2 ∈ Kj2 , j1, j2 ∈ J (D.11)
ENk2∈Kj2 ,

j2∈J
(θk1k2 , 1), ∀k1 ∈ Kj1 , j1 ∈ J , j1 ̸= j2 (D.12)

ENk1∈Kj1
j1∈J

(θkk1 , n) =⇒ ENk2∈Kj2
j2∈J

(θk2k, n),

∀j ∈ J , k ∈ Kj , n = 1, . . . , |J | (D.13)
ENk1∈Kj2

j2∈J
(θk1k, n) = ENk2∈Kj2

j2∈J
(θkk2 , n),

∀k ∈ S ∪ F , n = 1, . . . , |J | (D.14)
γk ≥ lk ∧ γk ≤ uk, ∀k ∈ Kj , j ∈ J (D.15)
¬θk1k2 , ∀k1 ∈ Kj1 , k2 ∈ Kj2 , j1 ∈ J , j2 ∈Mj1 (D.16)∨
ord∈Permj

( ∧
k∈ord

θkknext

)
, ∀j ∈ J (D.17)

∧
k′∈Pk

γk ≥ γk′ , ∀k ∈ K (D.18)

∨
θk1k2 ∈λ

¬θk1k2 , ∀λ ∈ PR (D.19)

The cost function to minimize (D.5) is the total number of routes. This is
done by minimizing the number of direct travels from the tasks representing
the depots; (D.6) restricts the remaining charge to be lower than or equal to
the maximum operating range; (D.7) forbids to travel from and to the same lo-
cation; (D.8) and (D.9) express that a vehicle can never travel to the start, nor
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travel from the end: start and end referring to the same depot are physically
located at the same node, but they play different roles in the Routing Prob-
lem, hence two different tasks; (D.10) constrains the difference in arrival time
based on the distance for a direct travel between two points; (D.11) models
the decrease of charge based on the distance travelled. For (D.10) and (D.11)
distances are computed using the current paths CP; (D.12) expresses that
each task’s location must be visited exactly once; (D.13) guarantees the flow
conservation between start and end; (D.14) ensures that all vehicles leaving
the depots return after visiting the tasks’ locations; (D.15) enforces the time
on the routes; (D.16) expresses that there cannot be direct travel among mu-
tual exclusive jobs. This constraint does not always guarantee that mutually
exclusive jobs will never be executed in the same route. Some corner cases are
not covered, but the inconsistency will be spotted in the Assignment Problem
so there is no need to further complicate the constraint (there would be need
to enumerate a large number of task sequences and rule out the inconsistent
ones by adding one constraint for each of them), since it would slow down
the whole sub-problem solution; (D.17) expresses that if a number of tasks
belong to one job, they have to take place in sequence; (D.18) guarantees that
precedence constraints among tasks are enforced. Constraint (D.19) allows
to rule out the previously computed sets of routes as a solution. This is nec-
essary as this optimization sub-problem may be called multiple times during
the execution of ComSat.

Based on the model described above, the algorithm Router is defined, that
takes the set of current paths CP and the set PR, and returns a set of routes
CR that have not been selected yet; if the problem is infeasible, CR is empty.
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4.3 Assignment Problem
The routes CR are generated in the Routing Problem based only on the time
windows and on the vehicles’ operating range. The Assignment Problem now
allocates vehicles to the routes based on the actual availability of each type
of vehicle. Moreover, even though constraint (D.16) partially prevents it,
CR may contain routes that involve mutually exclusive jobs and, while it
would be possible to avoid this by adding additional constraints, it would be
inconvenient to do so in the Routing Problem, since there is no information
about the vehicles assigned to the routes. On the other hand, once a set of
routes is given, it is verified in the Assignment Problem whether a vehicle is
actually eligible for a route.

Therefore for each route r ∈ CR, we can define a list of jobs J r ⊆ J that
are executed by the vehicle assigned to r, and the list of eligible vehicles for
r, Elr =

⋂
j∈J r Vj . Also, based on the time windows and service times of the

jobs forming the routes, it is possible to work out the latest start of a route
later. Since a route can include more than one job, the strictest time window
will define the latest start for the route. Finally, for each route we can define
the cumulative service time Sr =

⋃
k∈j

j∈J r
Sk.

The Assignment Problem is formulated as a JSP where routes are jobs
(whose durations depend on their lengths lengthr) and vehicles are resources,
with some additional requirements on the jobs’ starting time. The set of
decision variables used to build the model are:

αir: Boolean variable that is true if vehicle i is assigned to route r, false
otherwise;

sr: non-negative real variable that models the start time of route r;

er: non-negative real variable that models the end time of route r.

It may be necessary to have different assignments for the same set of routes
CR, since two vehicles located at the same depot may have different states of
charge and, therefore, lead to different outcomes when solving the Capacity
Verification Problem. Thus, let the optimal solution to the Assignment Prob-
lem found at iteration h be CA =

⋃
i∈V

r∈CR
{α∗

ir}, where α∗
ir, ∀i ∈ V, r ∈ CR,

is the value of αir in the current solution; also, let PA contain the optimal
solutions found until the (h − 1)-th iteration.
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The model formulation for the Assignment Problem is:

ENi∈V (αir, 1), ∀r ∈ CR (D.20)
er = sr + lengthr/v + Sr, ∀r ∈ CR (D.21)
sr ≤ later, ∀r ∈ CR (D.22)∨
i∈Elr

αir, ∀r ∈ CR (D.23)

(αir ∧ αir′), =⇒
(sr ≥ er′ + C · lengthr) ∨ (sr′ ≥ er + C · lengthr′),

∀i ∈ V, r, r′ ∈ CR, r ̸= r′ (D.24)∨
αir∈λ

¬αir ∀λ ∈ PA (D.25)

Constraint (D.20) guarantees that exactly one vehicle is assigned to each route;
(D.21) connects the start and end variables based on the route’s length and
their cumulative service time; (D.22) constrains the latest start time of a route
to the strictest time window of its jobs; (D.23) expresses that one (or more)
among the eligible vehicles must be assigned to a route; (D.24) expresses that
any two routes assigned to the same vehicle cannot overlap in time; one must
end before the other starts. Finally, constraint (D.25) guarantees to find an
assignment different from the already found ones.

Based on the model described above, the algorithm Assign is defined, that
takes the set of current routes CR from the routing problem as input, and
returns the current assignment CA that specifies which vehicle that will use
each route (and execute its jobs) and when it starts; if the Assignment Problem
is infeasible, CA = ∅.
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4.4 Capacity Verification Problem
In this phase the goal is to find a feasible schedule for the vehicles, if it exists,
meaning that the routes they are assigned to are evaluated to verify that
capacity constraints are fulfilled. To do this, an ordered list of nodes NLr and
an ordered list of edges ELr, ∀r ∈ CR, respectively, are generated, that each
route visits. Let nre be the node visited before edge e on route r and let ern
be the node visited before node n on route r. Similarly, let nre be the node
visited after edge e on route r and let ern be the node visited after node n on
route r. Also, for each node in NLr it is necessary to specify whether there
exists a time window, since some of the nodes are only intersections of road
segments in the real plant, while others are actual pickup or delivery points.
Let lrn and urn be the earliest and latest arrival time, respectively, at node
n on route r; let Srn be the service time at node n on route r, if such exists,
zero otherwise. Let n∗

r be the starting node of route r. Finally, let e(1) and
e(2) be the source and sink node of edge e respectively.

This phase is also treated as a JSP, where routes are jobs, while nodes and
edges are the resources. Also, each route has a starting time sr defined by
solving the Assignment Problem.

The decision variables in the Capacity Verification Problem are:

xrn: non-negative real variables to model when route r is using node n;

yre: non-negative real variable to model when route r is using edge e;
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The model for the Capacity Verification Problem is:

xrn∗
r
≥ startr, ∀r ∈ CR (D.26)

yre ≥ xrnre + Srnre , ∀r ∈ CR, e ∈ ELr (D.27)
xrn = yrern

+ dern
, ∀r ∈ CR, n ∈ NLr (D.28)

xrn ≥ lrn ∧ xrn ≤ urn, ∀r ∈ CR, n ∈ NLr (D.29)
xr1n ≥ yr2er1n + 1 ∨ xr2n ≥ yr1er2n + 1,

∀r1, r2 ∈ CR, r1 ̸= r2,

n ∈ NLr1 ∩NLr2, n /∈ NH (D.30)
yr1e ≥ yr2e + 1 ∨ yr2e ≥ yr1e + 1,

∀r1, r2 ∈ CR, r1 ̸= r2, e ∈ ELr1 ∩ ELr2 , g(e) = 1 (D.31)
yr1e1 ≥ yr2e2 + de2 ∨ yr2e2 ≥ yr1e1 + de1 ,

∀r1, r2 ∈ R, r1 ̸= r2, e1 ∈ ELr1 ,

e2 ∈ ELr2 , e1 = ē2, ge1 = ge2 = 1 (D.32)

(D.26) constraints the start time of a route; (D.27) and (D.28) define the
precedence among nodes and edges to visit in a route; (D.29) enforces time
windows on the nodes that correspond to the tasks; (D.30) prevents vehicles
from using the same node at the same time (the +1 in the constraints forbids
swapping of positions between a node and the previous or following edge);
(D.31) and (D.32) constrain the transit of vehicles over the same edge. If two
vehicles are using the same edge from the same node, one has to start at least
one time-step later than the other and if two vehicles are using the same edge
from opposite nodes, one has to be done transiting, before the other one can
start.

Based on the model described above, the algorithm CapacityVerifier is de-
fined, that takes the CA from the Assignment Problem as input and returns
CVS , a list that expresses where each vehicle is at each time-step and, as for
the previous phases, is empty if the problem is infeasible.
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4.5 Paths Changing Problem

In this phase, alternative paths are computed to connect the consecutive tasks
of each route. Finding alternative paths may be necessary when, for a given
set of routes CR, it is not possible to find any feasible schedule CVS . The
infeasibility of the Capacity Verification Problem may be due to the current
set of paths CP that connect the tasks’ locations, therefore a different set may
lead to a feasible solution. We have previously defined a route as a sequence of
tasks’ locations and for any two consecutive tasks there is a path (a sequence
of edges) connecting them. Therefore, for a route counting i + 1 tasks we
will have i paths and for each path we can define a start and an end node,
respectively ξi and πi. Finally, we define the sets of outgoing and incoming
edges for a certain node n as Un and In, respectively.

Variables used to build the model are:

wrin: Boolean variable that represents whether the i-th path of route r

is using node n;

zrie: Boolean variable that represents whether the i-th path of route r

is using edge e;

We could split this problem into r · i problems (assuming all routes have
i+1 tasks) and find paths for each route separately; simpler models are faster.
Unfortunately it may be necessary to explore different combinations of paths
and so to retain the information we need we have only one model. Therefore,
let the optimal solution to the Path Changing Problem found at iteration h
be

CP =
⋃

r∈CR
i=1,...,|r|

e∈E

{z∗
rie},

where z∗
rie, ∀i = 1, . . . , |r|, r ∈ CR, e ∈ E , is the value of zrie in the current

solution; also, let PP be the set containing the optimal solutions found until
the (h − 1)-th iteration.
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The model, similar to [39], is as follows:

min
i=1,..,|r|, r∈CR, n∈N

∑
If(wrin, 1, 0) (D.33)

wriξi
∧ wriπi

, ∀i = 1, . . . , |r|, r ∈ CR (D.34)
ENe∈Uξi

(zrie, 1), ∀i = 1, . . . , |r|, r ∈ CR (D.35)

ENe∈Iξi
(zrie, 1), ∀i = 1, . . . , |r|, r ∈ CR (D.36)

zrie =⇒ ¬zriē, ∀i = 1, . . . , |r|, r ∈ CR, e ∈ E (D.37)∧
n∈N ,n̸=ξi,n̸=πi

If(wrin,

ENe∈Un(zrie, 1) ∧ ENe∈In(zrie, 1),
ENe∈Un

(zrie, 0) ∧ ENe∈In
(zrie, 0)),

∀i = 1, . . . , |r|, r ∈ CR (D.38)∨
zrie∈CP

¬zrie, ∀CP ∈ PP (D.39)

The cost function (D.33) to minimize is the total number of used edges;
(D.34) guarantees that, for each path of each route, the start and end nodes
are used; (D.35) and (D.36) make sure that exactly one outgoing (incoming)
edge is incident with the start (end) node of a route; (D.37) makes sure that
a path cannot use both an edge and its reverse; (D.38) guarantees that if a
node (different from the start or end) is selected, exactly one of its outgoing
and one of its incoming edges will be used. On the other hand, if a node is
not used, none of its incident edges will be used; finally, (D.39) rules out all
the previously found solutions.

Based on the model described above the algorithm PathsChanger is defined,
that takes the previous paths PP as input and returns a new set of paths NP,
such that NP∩PP = ∅. If the Paths Changing Problem is infeasible NP = ∅.
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4.6 Routes Verification Problem
The Routes Verification Problem is a simplified version of the Routing Prob-
lem, where a set of routes CR already exists and it is verified whether these
meet the requirements on the tasks’ time windows and the vehicles’ operating
range. As described in Section 4.2, routes are designed based (among other
things) on the distance between tasks’ locations; paths are computed between
any two tasks’ locations to have a uniquely defined distance and the routes
designed accordingly in the Routing Problem. However, as soon as the paths
used to connect the tasks’ locations are changed, there is no guarantee that
the routes still meet the requirements, hence the need to verify the routes.

Let Kr = {k1, . . . , k|r|} be the set of task for route r ∈ CR, the variables
used to build the model for the routes verification problem are:

σrk: non-negative real variable that models the time when task k of
route r is served

ωrk: non-negative real variable that models the remaining charge of a
vehicle assigned to route r when it reaches task k

The model is as follows:

ωrk · ρ ≤ OR, ∀k ∈ Kr, r ∈ CR (D.40)
σrki+1 ≥ σrki + dkiki+1 + Ski ,

∀i = 1, . . . , |r|, r ∈ CR (D.41)
σrk ≥ lk ∧ σrk ≤ uk, ∀k ∈ Kj , j ∈ J (D.42)
ωrki+1 ≤ ωki −D · dkiki+1 ,

∀i = 1, . . . , |r|, r ∈ CR (D.43)

(D.40) restricts the domain of the remaining charge to be smaller than or
equal to the operating range of the vehicles; (D.41) connects the arrival time
at the task based on the distance between them; (D.42) forces the arrival time
at a task’s location to be within its time window; (D.43) relates the remaining
charge when reaching a task’s location to the distance from the previous task’s
location.

Based on the model described above the algorithm RoutesVerifier is defined,
that takes the current routes CR and the current paths CP and returns true
if the problem is feasible, false otherwise.
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4.7 Solving the CF-EVRP using the ComSat algorithm

The ComSat algorithm, Figure 2, connects the above described sub-problems
to find a feasible solution to the full problem. The Router and PathsChanger
algorithms are in Figure 2 put in rounded corner boxes, to show that they are
optimization problems.

The algorithm begins with the computation of the shortest paths between
each pair of tasks. This step is only executed once to provide unique paths for
the Routing Problem, which is then solved. In this step neither the vehicles’
availability nor the segment capacities are considered; the goal is simply to
design routes to serve tasks within the time windows. Therefore, if the Routing
Problem is infeasible, the whole problem is infeasible, because there is no
possible routing such that tasks are served within their time windows. The
information about the previous routes will be stored so that each time this
algorithm is called, it will provide a new solution to the Routing Problem.

If the Routing Problem is feasible the next step is to verify whether the
available vehicles can execute the routes. This matching is based on the routes’
requirements for specific types of vehicles, on their latest start time, and on
the vehicles’ operating range and charge rate. This is done by solving the
Assignment Problem; also in this case there can be more feasible solutions,
therefore it is important to store the current one to be able to rule it out
the next time the Assignment Problem is solved. If the Assignment Problem
is infeasible the algorithm backtracks and runs the Routing Problem again,
otherwise, it proceeds to the Capacity Verification Problem.

At this point, routes have been assigned an actual vehicle to execute them
and start times have been restricted to meet the vehicles’ need for charging.
Hence it is possible to verify if the execution of the routes is possible without
breaking the capacity constraints. If that is the case, the overall problem is
feasible and the algorithm terminates and returns a feasible schedule. On the
other hand, if this step is infeasible, the algorithm will try to find alternative
paths for the vehicles to execute the routes.

This step is split in two parts. The PathsChanger algorithm finds new paths
and the RoutesVerifier makes sure the Routing Problem is still solvable (i.e.
tasks can still be served within time windows) using these new paths. If the
Paths Changing Problem is infeasible, all paths from one task to the following
one have been checked for each route. Therefore the algorithm backtracks
and looks for a assignment. Otherwise if the Paths Changing Problem is
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feasible, the algorithm moves forward to the Routes Verification Problem. If
this problem is feasible the algorithm backtracks to verify whether it is feasible
against the capacity constraint by solving the Capacity Verification Problem;
if not, the PathsChanger algorithm is called again.

Whenever the Assignment Problem is infeasible, all possible assignments
for the current set of routes CR have been explored. Thus, before calling
the Router algorithm again, CR is added to PR. In the same way, whenever
the Paths Changing Problem is infeasible, all possible paths for the current
assignment CA have been explored, hence CA is added to PA. Also, the set
of previous paths PP is emptied because these paths are only eligible for the
current assignment, and the shortest paths are set as current paths to compute
the next assignment.

Table 2: Glossary for the sets of the sub-problems.

CP: set of current paths
SP: set of shortest paths
NP: set of new paths
PP: set of previous paths
CR: set of current routes
PR: set of previous routes
CA: set of current assignment of vehicles to routes
PA: set of previous assignment of vehicles to routes
CVS : set of conflict-free routes (pairs of nodes and arrival times for each
route)
RVF : Boolean variable representing the feasibility of the Routing Problem

On the other hand, when exploring different paths the current assignment is
not changed, it is only checked whether it is feasible with the new paths; thus,
CA is not added to PA. Finally, as ComSat loops through PathsChanger and
RoutesVerifier to find a feasible set of paths, NP is assigned to CP, which in
turn is added to PP after every unsuccessful iteration. The glossary of Table 2
contains the names of the sets used to store and exchange information among
the sub-problems presented in Section 4.
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Start

SP = ComputeShortestPaths(N , E)

CP← SP; PP.add(CP)

CR = Router(CP, PR)

CR = ∅No Solution
PR.add(CR)

PA = ∅

CA = Assign(CR, PA)

CA = ∅

CVS = CapacityVerifier(CA)

CVS = ∅ CVS

PA.add(CA)

CP← SP ; PP.add(CP)

PP = ∅

NP = PathsChanger(PP)

NP = ∅

CP← NP ; PP.add(CP)

RVF = RoutesVerifier(CR,NP)

RVF = True

Yes

No

No

Yes

No

No

Yes

Yes

No

Yes

Figure 2: Flowchart of ComSat algorithm.
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Start

SP = ComputeShortestPaths(N , E)

CP← SP

CR = Router(CP, PR)

CR = ∅No solution PR.add(CR)

CA = Assign(CR, ∅)

CA = ∅CA

Yes

No

No Yes

Figure 3: Flowchart of C-ComSat.

4.8 Solving the Example using ComSat
To illustrate the performance of ComSat the example of Section 3 is used.
Below are reported the function calls to solve the sub-problems, whether they
are feasible or infeasible, and their running times:

Router : feasible, 0.45 s

Assign: feasible, 0.05 s

CapacityVerifier : feasible, 0.08 s

The implementation of ComSat has the ability of manually setting the so-
lution to a sub-problem to be infeasible. We set the solution to the Capacity
Verification Problem to be infeasible to evaluate the performance of the algo-
rithm when conflicts arise due to capacity constraints. We also set a limit of
50 on the number of alternative sets of paths to generate. Of these 50 sets,
29 were declared infeasible by the RoutesVerifier. The average running time
to solve the Path Changing Problem is 0.7 s; as for the Routes Verification
Problem, it took on average 0.01 s to solve it, regardless of the feasibility of
the sub-problem.

D32



5 Soundness and Completeness of ComSat

For the larger problem instances discussed in Section 6 counting up to 11
vehicles and 15 jobs, the Router and the PathChanger calls take roughly 10 s
each, while the CapacityVerifier takes about 1.5 s, Assign takes less than 0.5 s,
and RoutesVerifier takes between 0.01 s and 0.1 s.

5 Soundness and Completeness of ComSat
This section provides proof of ComSat’s soundness and completeness. We
start by relaxing the capacity constraints on the segments. We refer to the
relaxed version of ComSat as the Capacity Relaxed-ComSat (C-ComSat). This
turns the problem into a combination of routing and assignment. We use the
conclusions from C-ComSat as a starting point to prove the soundness and
completeness of ComSat.

When we do not have to deal with capacity constraints we can simplify
ComSat, as shown in Fig. 3; we essentially have to solve the Routing Problem
and then verify that the solution found has a feasible assignment by solving
the Assignment Problem. If that is the case, the algorithm terminates and
returns a feasible solution, else it tries to design different routes. If no routing
solution has a feasible assignment, the algorithm terminates with No Solution.

Observation 1. All the problems solved in ComSat are decidable. This is
true because they are all combinations of decidable first-order theories and
therefore the Nelson-Oppen theory combination method [40] applies. In fact
the Routing Problem is a combination of linear arithmetic and propositional
logic, the Assignment Problem, Capacity Verification Problem, and Routes
Verification Problem all fall into the category of difference logic (a fragment
of linear arithmetic), and the Paths Changing Problem is a propositional logic
problem.

Observation 2. The optimization problems solved in ComSat, i.e., the Rout-
ing Problem and the Paths Changing Problem, are bounded. The Routing
Problem involves a finite number of decision variables that are either Booleans
with a finite domain, or non-negative integers and the objective is minimiza-
tion. The Paths Changing Problem involves only Boolean variables, so the
domain is finite.

Lemma 1: Given a problem instance of the CF-EVRP, if a feasible so-
lution to the Routing Problem cannot be found using the shortest paths to
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connect any two tasks, no feasible solution can be found using any other set
of paths.

Proof. The Routing Problem can be infeasible for two reasons (or a combi-
nation of them): there exist no routes such that all tasks’ time windows can
be met; there exist no routes shorter than or equal to the vehicles operating
range such that all tasks are served.

When it comes to the time windows, the lower bound does not affect the
feasibility of an instance, because vehicles are allowed to wait at the task’s
location before starting the service. On the other hand, if there is no way
a vehicle can reach a task’s location before the time window’s upper bound
the instance is infeasible. Since it is assumed that vehicles travel at constant
speed, the distances among tasks’ locations are directly proportional to the
time required to travel between them; therefore, if time windows cannot be
met travelling along the shortest paths, neither can they using any other set
of paths.

As for the routes maximum length, restricted by the vehicles operating
range, the same reasoning applies. If it is not possible to design routes to
serve all tasks that are shorter than or equal to the vehicles operating range
using the shortest paths, neither will it be using longer paths.

Lemma 1 is required both for C-ComSat and ComSat. When relaxing the
capacity constraints, before ruling out a set of routes it needs to be made sure
that they are infeasible. If arbitrarily long paths were used, there would still
be a chance that using other paths could make the Routing Problem feasible.
As for ComSat, if a set of routes is infeasible using the shortest paths, there
is no need to try to replace paths and check for feasibility.

5.1 Relaxed Problem: Capacity constraints not included
When relaxing the capacity constraints the problem boils down to designing
the routes, which is taken care of by the Routing Problem, and the assignment
of the available vehicles, handled by solving the Assignment Problem.

Lemma 2: The Routing Problem has a finite number of feasible solutions.

Proof. Let φ be the conjunction of constraints (D.7)-(D.18), let φr be the
conjunction of constraints (D.7)-(D.14), and let φs be the conjunction of con-
straints (D.15)-(D.18). φr does not take into account tasks, jobs, operating
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range, or time windows; it only guarantees that routes are closed and that each
task is visited exactly once. Let k = |K| and let a route r be an ordered subset
of K. Then, a solution to the routing problem R = { r1, . . . , rm |m ≤ k} is a
partition of the set K. The number of partitions of the set Kis

∑k
q=0

(
k
q

)
<∞,

which corresponds to the number of possible solutions for φr, S(φr). Since
φ = φr ∧ φs, then S(φ) ≤ S(φr) <∞

Lemma 3: Repeated calls to Router will enumerate all feasible solutions
before returning infeasible.

Proof. Let φ0 be a relaxation of the Routing Problem, not including constraint
(D.18), and let CR0 be a solution to φ0. Then, if another solution CR1 for φ0
exists, it can be found by solving φ0∧¬CR0 = φ1. In general, the n-th solution
can be found by solving φ0∧¬CR0∧. . .∧¬CRn−1 = φn. Because of Lemma 2,
we know that S(φ) <∞ and we enumerate all by solving φ0, . . . , φS(φ)−1

Theorem 1: C-ComSat in Fig. 3 is sound and complete.

Proof. For a problem where |K| tasks are to be executed and |V| vehicles are
available, a solution is an assignment CA = {(v, r1)1, . . . , (v, ri)i} v ∈ V, i ≤
|K| that satisfies the Assignment Problem and

⋃
i≤|K| ri is a feasible solution

to the Routing Problem. Because of Lemma 2 we know there is only a finite
number of solutions to the Routing Problem, and because of Lemma 3 we know
we can enumerate them all. In the algorithm, for each solution CR we check
whether it satisfies the Assignment Problem; hence, if the overall problem
has a feasible solution, the algorithm will eventually find it, otherwise it will
declare the problem infeasible.

5.2 Full Problem
When including the capacity constraints, the paths chosen to move from one
task’s location to another become crucial. For ComSat to be sound and com-
plete, we need to prove that it can explore all possible paths for a given set of
routes and a given assignment. Note that we have restricted the problem to
forbid cycles in the paths; however, in some instances of the CF-EVRP cycles
may be required. We are going to show that, if we use a different model to
change paths such that also cycles are allowed, the algorithm is sound and
complete for any instance of the CF-EVRP.
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Lemma 4: Given a directed, weighted graph with a finite number of nodes,
the number of paths that connect two arbitrary nodes is finite.

Proof. By definition, a path is a sequence of edges that joins a sequence of
nodes and no node appears more than once. If the number of nodes in the
graph is finite, there cannot be an infinite number of sequences of nodes to
connect to arbitrary nodes.

Lemma 5: For a given set of routes CR and a given assignment of vehicles
CA, repeated calls to the PathsChanger algorithm will enumerate all feasible
solutions before returning infeasible.

Proof. Let φ0 be the conjunction of constraints (D.34)-(D.38), a relaxation
of the Paths Changing Problem, and let CP0 be a solution to φ0. Then, if
another solution CP1 for φ0 exists, it can be found by solving φ0∧¬CP0 = φ1.
In general, the n-th solution can be found by solving φ0 ∧ ¬CP0 ∧ . . . ∧
¬CPn−1 = φn. Because of Lemma 4, we know that the number of solutions
to the Paths Changing Problem S(φ) < ∞ and we enumerate all by solving
φ0, . . . , φS(φ)−1.

When considering the capacity constraints, different assignments may lead
to different solutions; for instance one vehicle may not be available until a
certain time because it is still recharging after executing a route while another
is available earlier. Both assignments are feasible but they will execute the
routes at different time, hence the road segments will be occupied by the
vehicles at different times, which in turn may lead to different schedules.
Therefore it is necessary to explore all possible assignments.

Lemma 6: The Assignment Problem has a finite number of feasible solu-
tions.

Proof. In an instance of the CF-EVRP we assume to have a finite number
of vehicles v = |V|. We know from Lemma 2 that, given a finite number
of tasks, a solution to the Routing Problem has at most as many routes as
tasks. Let φ be the conjunction of constraints (D.20)-(D.24), let φr be the
conjunction of constraint (D.20), and let φs be the conjunction of constraints
(D.21)-(D.24). φr is a relaxation of the Assignment Problem that does not
take into account routes length, charging time or vehicle eligibility, it only
guarantees that exactly one vehicle is assigned to each route. A solution to
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the Assignment Problem, represented by φr, is therefore a partition of the
routes set CR. Let c = |CR|, then the number of partitions of the set CR is∑c

q=0
(

c
q

)
<∞, which corresponds to the number of possible solutions for φr,

S(φr). Since φ = φr ∧ φs, then S(φ) ≤ S(φr) <∞

Lemma 7: For a given set of routes CR, repeated calls to Assign will
enumerate all feasible solutions before returning infeasible.

Proof. Let φ0 be the conjunction of constraints (D.21)-(D.24), a relaxation of
the Assignment Problem, and let CA0 be a solution to φ0. Then, if another
solution CA1 for φ0 exists, it can be found by solving φ0∧¬CP0 = φ1. In gen-
eral, the n-th solution can be found by solving φ0∧¬CA0∧. . .∧¬CAn−1 = φn.
Because of Observation 6, we know that the number of solutions to the Assign-
ment Problem S(φ) <∞ and we enumerate all by solving φ0, . . . , φS(φ)−1.

Theorem 2: ComSat is sound and complete.

Proof. For a problem with |K| tasks, |V| vehicles, and a graph G(N , E), let r

be the sequence of nodes visited to execute route r and τrn the arrival time
at node n of route r; a solution is a schedule for each vehicle v ∈ V,

CVS = {(v, ((n11, τ11), . . . , (n1r1 , τ1r1)))1, . . . ,

(v, ((ni1, τi1), . . . , (niri
, τiri

)))i}, ∀i ≤ |K|,

that satisfies the Capacity Verification Problem. From Lemma 3 we know that
we can enumerate all possible routes and from Lemma 7 we know that, for
each set of routes we can enumerate all assignments. For each assignment
(v, r) the arrival time of vehicle v at a node depends on the paths chosen
to travel from one task of route r to the following one. Since we know from
Lemma 5 that for a current set of routes CR, and an assignment CA of vehicles
to it, we can enumerate all paths from one task of each route to the following
one, if there exists a solution to the problem, ComSat will eventually find it;
otherwise it will correctly declare the problem infeasible.

As mentioned before, the PathsChanger can only return (non-cyclic) paths.
We know that there is a finite number of paths in a graph to go from one
node to another, this is not true if cycles are allowed. On the other hand,
even if cycles were allowed, if we limited the paths’ maximum length, we
could enumerate them all. Since we have time windows on the tasks and a
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limited operating range for the vehicles, we can compute an upper bound for
the length of the pahts.

Therefore, if we were to modify the PathsChanger to allow for cycles, the
algorithm would still be complete without restricting the problem to non-cyclic
paths. This feature is currently under investigation as future work.

6 Evaluation
In order to evaluate ComSat, a set of benchmark problems is proposed. The
parameters for generating the benchmark problems are the number of nodes,
vehicles, and jobs (grouped into the parameter N-V-J), as well as the time
horizon, and the edge reduction value, which is inversely proportional to the
connectivity of the graph (the higher the value, the fewer edges). Vehicles
can be of type A, B, or C, and jobs come with a set of types that are eligible
to execute them. For each combination of these parameters, five different
problems were randomly generated. Problems belonging to the same category
differ from each other in terms of tasks locations (including the additional
tasks representing the depots), service time, time window (generated as a
function of the time horizon), and vehicles eligible to execute them; other
parameters that differ within the same category are the vehicles’ operating
range, the charging coefficient, and the number of vehicles available per type.
Both MonoMod (see below) and the algorithms called by ComSat used Z3
4.8.9 to solve the models. All the experiments1 were performed on an Intel
Core i7 6700K, 4.0 GHZ, 32GB RAM running Ubuntu-18.04 LTS.

As mentioned in Section 2, to the best of our knowledge, the CF-EVRP
presented in [16] and further developed in this work is novel. The experimen-
tal evaluation compares the monolithic model, MonoMod, presented in [16]
against ComSat. Both the running time and quality of solutions are evaluated
with respect to the problem parameters.

The first set of experiments compare the monolithic model (MonoMod)
of the CF-EVRP presented in [16] , to ComSat on a set of relatively small
problems, with up to four vehicles, seven jobs, and a time horizon of 60 time-
steps; the time limit set for both methods was 1200 s. For this comparison
MonoMod has been adapted to account for non-negligible service times and

1The implementation of the algorithm presented in Section 3 and the problem instances
are available at https://github.com/sabinoroselli/VRP.git.
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the the cost function is not included in the model, so that MonoMod returns
the first feasible solution found. The choice of 1200 s is motivated by the
industrial application the algorithm is designed for; while some schedules may
be computed hours before they actually take place, last minute changes may
happen and it is useful to know what size of problems can be solved within
minutes. For MonoMod the model generation time may not be negligible;
however, the comparison with ComSat is for the solving time.

Table 4 shows the results of the comparison. For smaller problems and a
small time horizon, MonoMod is performing well, often outperforming Com-
Sat, especially when the problems are infeasible. As the problems grow larger
though, ComSat performs better both in terms of solving time, and in terms
of number of problems solved within the time limit. As expected, a larger
time horizon has a negative impact on the solving time of MonoMod, since
the model is based on time discretization, and a larger T means more vari-
ables and more constraints. On the other hand, the time horizon does not
seem to affect the performance of ComSat significantly; instances having the
same value of N-V-J and edge reduction, and increasing time horizon show
similar solving time. There are exceptions, but they may also be due to the
different time windows, since these are generated based on the time horizon.
The increase of the parameter edge reduction generally corresponds to an in-
crease in the solving time for both MonoMod and ComSat, probably because
having fewer edges makes it harder to find a solution if it exists, or prove
infeasibility otherwise, though there are exceptions. Finally, the increase of
the N-V-J parameter, as expected, corresponds to longer solving time in most
cases. The reason behind the outliers, i.e. when a problem is immediately
declared feasible/infeasible, is often the triviality of the problem itself. For
example, when deadlines are too strict and there is no solution to the Routing
Problem then ComSat will terminate early.

The second set of experiments evaluate the performance of ComSat on a
set of larger problems, with up to eleven vehicles, fifteen jobs and a time
horizon of 300 time units. Again the time limit was set to 1200 s. As for the
previous set of instances, the increase in the value of N-V-J corresponds to an
increase in the average solving time and a decrease in the number of solved
instances per category. This time, infeasible instances are generally easier to
solve, probably because of the higher number of jobs compared to the number
of available vehicles (trivial infeasibility).
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Overall, the evaluation showed that ComSat’s performance highly depends
on the problem instance; there have been rather small instances that took a
long time to solve, while other relatively large instances were solved almost
immediately. In general, infeasibility seems to be harder to show than feasibil-
ity. This behaviour does not come unexpected, since for ComSat, a problem
cannot be declared infeasible till all solutions have been explored. Moreover,
as the number of PR stored grows, finding a new solution becomes harder.
For some problems, infeasibility may be trivial to prove, when the operating
range is not large enough or the time windows are too strict, for instance. In
other cases it may take several attempts before declaring a problem infeasible.

As for feasible problems, a similar reasoning applies. Sometimes it took
many attempts to find a set of routes that actually led to a feasible schedule
and, in general, the likelihood of finding one decreases as the number of vehi-
cles and jobs increases. Nevertheless, even for large problems, a solution can
be found rather quickly, given that enough vehicles are available.

Discussion on Optimality
So far, the focus of the experiments was on the running time required by
MonoMod and ComSat to solve instances of the CF-EVRP but no on the qual-
ity of the solutions. This section focuses on the quality of the solutions pro-
duced by ComSat for a set of problem instances by comparing them to a lower
bound manually computed by relaxing the capacity constraints. MonoMod
has been set up to find optimal solutions by including a cost function rep-
resenting the total travelled distance. To make the comparison possible, the
parameters of the problem instances have been scaled down to make the prob-
lems simple enough so that the optimal solution can be found by MonoMod
in reasonable time. Table 3 shows the running time and cost function value
for a set of CF-EVRP instances. The problems are sorted by size, in terms
of the parameters previously discussed2. For the instances 1 to 6, both Com-
Sat and MonoMod have the same total travelled distance. Hence, for these
instances, ComSat indeed returns the optimal solution. For the instances 7 to
9, MonoMod was not able to return a solution after 24 hours and was therefore
timed out. However, the cost function value returned by ComSat matches the
lower bound, hence the solutions are optimal. For the instances 1 to 3, both

2Details of the problem instances are available at https://github.com/sabinoroselli/
VRP.git in the file Optimality_test_instances.pdf.
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ComSat and MonoMod return a value higher than the lower bound, implying
that the capacity constraints forced the vehicles to travel through paths longer
than the shortest ones in order to serve the customers.

Table 3: Comparison of the Cost Function Value (CFV), and running time (in
seconds) required to solve problem instances of the CF-EVRP. For each
instance, a Lower Bound (LB) on the cost function is also provided. The
time limit is set to 24 hours and “-” means that this limit was exceeded.

Instance LB
ComSat MonoMod

CFV Time CFV Time
1 10 12 0.13 12 0.40
2 18 22 10.72 22 1.21
3 26 30 45.40 30 2.30
4 20 20 0.53 20 3.24
5 48 48 0.30 48 4.00
6 48 48 0.44 48 4.31
7 62 62 0.79 - -
8 72 72 0.93 - -
9 76 76 0.95 - -
10 10 12 0.15 10 0.19

However, ComSat is not guaranteed to find the optimal solution, as shown
by instance 10 above. This is due to the way the sub-problems are structured.
For a given set of routes ComSat will try to find a feasible set of paths that
satisfies the capacity constraints. If such set of paths exists, ComSat termi-
nates with a feasible solution. Nevertheless, there could exist another set of
routes for which there exists a set of paths that are cumulatively shorter and
satisfies the capacity constraints. This is clarified with the following example,
depcited in Fig. 4.

N = {1, . . . , 7}, NH = ∅,O = {1, 6}

E = {(1, 2), (2, 3), (2, 5), (3, 4), (4, 7), (5, 6), (6, 7)}

J = {j1, j2}, K = {i1, i2 | ∀i ∈ J }

Lj11 = 5, Lj21 = 2, Lj31 = 4

Pj11 = ∅,Pj21 = ∅,Pj31 = ∅
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Figure 4: Finite, strongly connected, weighted, directed graph representing the
plant layout for a problem instance of the CF-EVRP that cannot be
solved to optimality by ComSat.

lj11 = 2, lj21 = 2, lj31 = 2

uj11 = 2, uj21 = 5, uj31 = 7

Sj11 = 2, Sj21 = 1, Sj31 = 1

V = {v1, v2}, Vj1 = {v1}, Vj2 = {v2}, Vj3 = {v2}

OR = 10, C = 1, D = 1, ρ = 1, v = 1, T = 13

Vehicle v1 needs to travel from node 1 to node 5 in order to execute task j11;
vehicle v2 will be assigned to both task j21 and j31, respectively located at
nodes 2 and 4. Since these tasks are equidistant from v2’s location (node 6),
serving one before the other or the other way around would result in the
same cost for a route, hence ComSat may choose one as well as the other.
Assuming that task j21 is served before j31, there will be a conflict; in fact,
vehicle v1 occupies node 5 to serve task j11, due to its time window and service
time. If ComSat had come to such a situation, it would call the PathChanger
function. There is no different path for v1 that would be feasible against the
time window of task j11; however, v2 could reach node 2 by passing through
nodes 7, 4, and 3 and still meet the time window of task j21. It would then
go back to node 4 and execute task j31. The total length of such a route
will be 8. However, serving task j31 before j21 would not result in a conflict
with v1, so there would be no need to look for alternative paths; the route
length in this case would only be 6. Thus, as long as a solution can be found
without needing to change paths, ComSat will return an optimal solution, else
optimality is not guaranteed.
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7 Conclusions
This paper presents the compositional algorithm ComSat to solve the CF-EVRP.
It is proven that the algorithm is sound and complete if there are no cycles in
the paths. ComSat was compared to the performance of a monolithic model
for the CF-EVRP, which showed that as the problems’ size grows ComSat
outperforms the monolithic model. ComSat’s performance was also evalu-
ated over a set of larger generated problem instances, which showed that it
can solve problems counting up to 11 vehicles and 15 jobs in a reasonably
short time. Experimental data shows that the solving time for similar-sized
problems can be very different.

For problems whose feasibility is not straightforward to achieve, it is an
open research question on how to avoid a large number of iterations but
at the same time not increase the sub-problems complexity. The composi-
tional structure of ComSat allows to replace the algorithms that solve the
sub-problems without affecting the overall soundness and completeness, as
long as the requirements in Section 3 are met. Experiments show the Router
and the PathsChanger to be bottlenecks when a problem instance is hard to
solve. Therefore future work will focus on improving these algorithms. As for
the Router, there exist several algorithms to solve VRPs that could be adapted
to solve the Routing Problem described in Section 4.2; as for the PathsChanger,
extraction of Unsat-Core when the Capacity Verification Problem is infeasible
could provide useful information to guide the search for alternative paths.

However, for industrial scenarios, feasibility is typically straightforward to
achieve, due to a sufficient number of available vehicles and sufficient capacity
of the road segments. In such scenarios, ComSat can find feasible solutions
with few iterations, being therefore useful for many industrial applications.
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1 Introduction

Abstract

The Conflict-Free Electric Vehicle Routing Problem
(CF-EVRP) is a combinatorial optimization problem of
designing routes for vehicles to visit customers such that a
cost function, typically the number of vehicles or the total
travelled distance, is minimized. The CF-EVRP involves
constraints such as time windows on the delivery to the cus-
tomers, limited operating range of the vehicles, and limited
capacity on the number of vehicles that a road segment can
simultaneously accommodate. In previous work, the compo-
sitional algorithm ComSat was introduced and that solves
the CF-EVRP by breaking it down into sub-problems and
iteratively solve them to build an overall solution. Though
ComSat showed good performance in general, some problems
took significant time to solve due to the high number of
iterations required to find solutions that satisfy the road
segments’ capacity constraints. The bottleneck is the Path
Changing Problem, i.e., the sub-problem of finding a new set
of shortest paths to connect a subset of the customers, disre-
garding previously found shortest paths. This paper presents
an improved version of the PathsChanger function to solve
the Path Changing Problem that exploits the unsatisfiable
core, i.e., information on which constraints conflict, to guide
the search for feasible solutions. Experiments show faster
convergence to feasible solutions compared to the previous
version of PathsChanger .

1 Introduction
We consider scheduling a fleet of mobile robots, in the sequel referred to as
Automated Guided Vehicles (AGVs), that pick-up and deliver components to
workstations within specified time-windows. The AGVs move on a predefined
road network, where each road segment has a maximum number of AGVs
it can accommodate at a specific time. The problem is motivated by an
industrial need to develop more flexible logistic systems to deliver components
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just-in-time to an assembly line.
In this scenario, in addition to time-windows in which the components

should be delivered, a scheduler needs to consider additional constraints.
First, AGVs have a limited operating range and need to recharge their battery
when the state-of-charge becomes low. Second, jobs have specific requirements
on the AGV eligible to execute them. Finally, the number of AGVs on road
segments and workstations are limited to allow low-level trajectory planning
problems to be feasible. Thus, we define the capacity of the road segments,
intersections, and workstations and include capacity constraints. A schedule
is said to be conflict-free if it fulfills the capacity constraints at all times.

The problem of computing conflict-free routes was first introduced in [1] and
tackled by means of column generation. In [2], conflict-free routing in combi-
nation with scheduling of jobs for flexible manufacturing systems is discussed.
An ant colony algorithm is applied to the problem of job shop scheduling
and conflict free routing of AGVs by [3]. In [4], a collision-free path plan-
ning for multi AGV systems based on the A∗ algorithm is presented. Another
heuristic approach to solve the conflict-free routing problem with storage al-
location is presented by [5]. In [6], a MILP formulation to design conflict-free
routes for capacitated vehicles is presented. In [7] is presented a hybrid evo-
lutionary algorithm to deal with conflict-free AGV scheduling in automated
container terminals, and [8] handles the problem of conflict-free routing of
AGVs by a meta-heuristic improvement strategy based on large neighbour-
hood search. Hence, conflict-free routing and scheduling has been addressed
previously, but to the best of our knowledge, there is no work in the literature
that tackles all above mentioned constraints at once. Therefore, [9] intro-
duced the Conflict-Free Electric Vehicle Routing Problem (CF-EVRP). The
CF-EVRP is an extension of the vehicle routing problem (VRP) [10], involv-
ing the additional constraints. In [11] a compositional algorithm, ComSat,
for solving the CF-EVRP is proposed. ComSat breaks down CF-EVRP into
sub-problems and iteratively solves these to find a feasible solution to the
overall problem. Experimental and analytical evaluation shows that ComSat
generates high-quality but not necessarily optimal solutions. Briefly, ComSat
computes routes to serve the customers, and assigns vehicles to the routes
attempting to make the execution of the system conflict-free. In a plant there
can be several ways to travel from one customer’s location to another. Ini-
tially, ComSat uses the shortest paths among the customers’ locations when
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designing the routes. However, if a feasible schedule cannot be achieved using
the shortest paths, alternative paths have to be found, which is handled by the
Conflict-free Paths Search (CFPS). CFPS is composed of two main functions;
the PathsChanger function, that finds alternative sets of paths if the current
schedule violates the capacity constraints, and the CapacityVerifier function,
that checks whether the schedule is conflict-free or not.

Experiments show that when a solution computed using the shortest paths
violates the capacity constraints, finding alternative paths using the Path-
sChanger function may require multiple iterations. This does not come un-
expected, since the number of possible paths in a graph can be high, and
minimizing the cumulative length while looking for alternative paths does not
guarantee that the schedule will be conflict-free. In this paper we focus on the
CFPS and present improved versions of the PathsChanger and CapacityVer-
ifier that, in many cases, find feasible solutions faster.

The sub-problems in ComSat are modelled as Satisfiability Modulo Theory
(SMT) problems [12], [13], as SMT solvers have shown to be efficient in solving
combinatorial problems [14].

Moreover, some SMT solvers come with algorithms that allow them to deal
with optimization problems [15]. Two sub-problems in ComSat, marked by
the round boxes in Fig. 1 (see below) are optimization problems.

For the CFPS polynomial time algorithms exist to find paths in graphs, [16].
However, modelling the Path Changing Problem as an SMT problem is benefi-
cial as it allows to define problem-specific requirements, such as not returning
solutions that are already proven infeasible because they violate the capac-
ity constraints. Moreover, when a problem is infeasible, SMT solvers have
the ability to return a Minimal Unsatisfiable Core (MUC ) [17], i.e., one of
the (possibly many) smallest subsets of constraints that make the problem
infeasible. The MUC can provide useful information about why a problem
is infeasible and can therefore be used to guide the search towards a feasible
solution [18].

When dealing with the CF-EVRP, the MUC can be extracted when the
Capacity Verification Problem is infeasible and used to define additional con-
straints for the Path Changing Problem, to increase the chances of finding a
feasible schedule.

The contributions in this paper are: (i) exploitation of SMT solvers’ MUC
to extract information about the infeasibility of an SMT formula representing
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a conflicting schedule for a VRP; (ii) use of such information to find conflict-
free schedules; (iii) performance comparison between the unguided and MUC
guided paths search over a set of CF-EVRP problem instances.

The remainder of the paper is organized as follows. Preliminaries are pre-
sented in Section 2. Section 3 presents the mathematical models of the sub-
problems that form the CFPS and how it is improved using the MUC from
the Capacity Verification Problem. Proof of soundness and completeness of
the procedure is provided in Section 4. In Section 5, the results of the analysis
over a set of problem instances are presented. Finally, conclusions are drawn
in Section 6.

2 Preliminaries
In the CF-EVRP the plant layout is represented by a finite, strongly con-
nected, weighted, directed graph, where edges represent road segments and
nodes represent either intersections between road segments or customers’ lo-
cations. A customer is defined by a unique (numerical) identifier, a location,
and a time window, i.e., a lower and upper bound that represent the earli-
est and latest arrival time allowed to serve the customer. Edges have two
attributes, the first representing the road segment’s length, and the second
its capacity. The capacity is 2 if two vehicles can simultaneously travel in
opposite directions, 1 otherwise.

The following definitions are provided:

• Node: a location in the plant. A node can only accommodate one vehicle
at a time unless it is a hub node that can accommodate an arbitrary
number of vehicles.

N : a finite set of nodes.

NH ⊆ N : the set of hub nodes.

• Edge: a road segment that connects two nodes.

E ⊆ N ×N : the finite set of direct edges.

ē: the reverse edge of edge e ∈ E .

de ∈ R+: the length of edge e ∈ E .

ge ∈ {1, 2}: the capacity of edge e ∈ E .
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• Time horizon: a fixed, continuous point of time when all jobs have
ended, assuming they start at time 0.

T : the time horizon.

• Customer : Entity representing a task to be executed by a vehicle, e.g.,
a pickup or delivery of material, that needs to be visited exactly once
by the vehicle. A customer is always associated with a node where the
pickup/delivery operation is executed, and has a time window indicating
the earliest and latest time at which it can be visited. Unless explicitly
given, the time window is the entire time span [0, T ].

Let K be the finite set of all customers, and let

lk, uk ∈ R+, k ∈ K be the time window’s lower (lk) and upper (uk)
bound for customer k such that uk > lk.

Also let sk ∈ R+ and Lk ∈ N , for k ∈ K, be the service time and
location of customer k, respectively.

• Route: an ordered set of unique customers.

rj = ⟨kj1, . . . , kjm⟩, m ≤ |K|, kji ∈ K,

i = 1, . . . , m, kjl ̸= kji for i ̸= l.

A route can at most include all customers, therefore m ≤ |K|.

• Route set: a set of routes such that each customer belongs to exactly
one route, thus guaranteeing that all customers are served.

R = {r1, . . . , rm}, m ≤ |K|

A route contains at least one customer, hence m ≤ |K|.

• Route start: the starting time τ r of route r, computed by the function
Assign. Γ is the set that contains the route start of each route.

Γ = {τ r ∈ R | r ∈ R}

• Pair Set of route r: set containing the sequence of customers of a route
r = ⟨k1, . . . , km⟩, grouped as pairs in sequence.

Pr = {⟨k1, k2⟩, ⟨k2, k3⟩, . . . , ⟨km−1, km⟩}
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• Path: ordered set of unique nodes. It is used to keep track of how
vehicles are travelling among customers of routes, since each pair of
customers in a route is connected by a path.

θp = ⟨n1, . . . , nm⟩, p ∈ Pr, m ≤ |N |,
ni ∈ N , i = 1, . . . , m

• Edge sequence: ordered set of unique edges for a given path θp.
δp = ⟨e1, . . . , em⟩, p ∈ Pr, m = |θp| − 1,

ei ∈ E , i = 1, . . . , m

In order to clarify which part of ComSat is analyzed and improved in this
work, let us recap briefly how the algorithm works. Fig. 1 shows a simplified
flowchart of ComSat that illustrate the concepts of this paper. The first step of
ComSat is to design a set of routes R to serve all the customers; at this point,
the shortest path between any two customers is computed using Dijkstra’s
algorithm [19].
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Start

Router

feasible?Infeasible

Assign

feasible?

Capacity
Verifier

feasible? Schedule

PathsChanger

feasible?
Conflict-free Paths Search

No

Yes

No

Yes

Yes

No

YesNo

Figure 1: Flowchart of ComSat.

This optimization problem is handled by the function Router and must
guarantee that the routes meet specific requirements such as maximum length,
specific ordering among the customers and time windows. If this step is infea-
sible the CF-EVRP instance has no solution and the algorithm terminates. If
this step is feasible, the function Assign will try to allocate available vehicles
to the routes and compute a start time τr, ∀r ∈ R, to the routes. If this step
is infeasible then Router will try to find different routes, but if it is feasible,
the CapacityVerifier checks if the current set of routes is conflict-free. More
details on the functions Router and Assign can be found in [11].
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2.1 The minimal Unsat Core
For infeasible problems, there can be identified a subset of the constraints that
conflict, meaning they cannot all simultaneously be satisified. Such a subset
is called an Unsat Core. An Unsat Core with the property that removing any
one of the constraints makes the Unsat Core feasible, is said to be minimal.

Formally, given an SMT formula φ and set of conflicting constraints C ⊆ φ,
C is a MUC of φ if removing any constraint Ci ∈ C makes C \ Ci no longer
infeasible; removing C removes the particular conflict represented by the MUC .
Consequently, for an infeasible problem with a MUC C, adding to the problem
a constraint that prevents all the constraints in C to be simultaneously active
will resolve this particular conflict.

The naïve approach to MUC extraction, [20], successively removes con-
straints and solves the problem again; if the problem is still infeasible after
a constraint has been removed that constraint does not belong to a MUC .
There exist more efficient approaches though; the MUC [21] algorithm based
on efficient manipulation of Binary Decision Trees guarantees the extraction
of a minimal Unsat Core. [22] presents an algorithm based on the resolution
graph [23] for MUC extraction. [24] improves the resolution based algorithm
using model rotation and path strengthening.

3 The Conflict-free Paths Search
In this section the two sub-problems that form the CFPS are presented. The
Capacity Verification Problem is modelled as a job shop problem (JSP), in
order to exploit the good performance of the SMT solver Z3 [25] in dealing
with JSPs, as demonstrated in [26]. The model formulation for the Path
Changing Problem is inspired by [27].

The following logical operators are used as a shorthand to express cardinal-
ity constraints [28] in the sub-problems:

EN(A, n) : exactly n variables in the set A are true;

If(c, o1, o2) : if c is true returns o1, else returns o2.

We will write ENm∈M (m, n) to denote EN(
⋃

m∈M

{m}, n) in order to shorten

the notation.
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3.1 The Capacity Verification Problem
The Capacity Verification Problem aims to find a feasible schedule for the
vehicles, where the routes that the vehicles are assigned to satisfy the capacity
constraints of the edges.

In this work the Capacity Verification Problem, as defined in [11], has been
extended to account for pairs as well, since the information about conflicts
must be related to a specific pair to define additional constraints in the Path-
sChanger .

Let nrpe be the node visited before edge e of pair p of route r, and let erpn
be the node visited before node n on pair p of route r. Similarly, let nrpe be
the node visited after edge e of pair p of route r, and let erpn be the edge
visited after node n on pair p route r. Let p0

r be the first pair of route r and
n∗

r be its starting node.

Example of Routes, Pairs, Nodes, and Edges

Let K = {k1, . . . , k7}, N = {n1, . . . , n20}, and Lk1 = n1 and Lk2 = n7, and
assume two routes designed to serve all customers: r1 = ⟨k1, k2, k5, k7⟩, r2 =
⟨k3, k4, k6⟩. In order to clarify the notation introduced above, let us analyze
r1. First, the set of pairs for r1 is defined as Pr1 = {⟨k1, k2⟩, ⟨k2, k5⟩, ⟨k5, k7⟩}.
Then, let us assume that the path and edge sequence for pair ⟨k1, k2⟩ are the
following:

θ⟨k1,k2⟩ = ⟨n1, n2, n4, n5, n7⟩,
δ⟨k1,k2⟩ = ⟨⟨n1, n2⟩, ⟨n2, n4⟩, ⟨n4, n5⟩, ⟨n5, n7⟩⟩.

Then p0
r1

= ⟨k1, k2⟩ and n∗
r1

= n1. Also, let p = ⟨k1, k2⟩; then for e = ⟨n1, n2⟩,
nr1pe = n1, and nr1pe = n2; for n = n1, er1pn = ⟨n1, n2⟩, and for n = n2,
er1pn = ⟨n1, n2⟩.

For each node it must also be specified whether there exists a time window,
since some of the nodes are only intersections of road segments in the real
plant, while others are actual customers. Let lrpn and urpn be the earliest
and latest arrival time, respectively, at node n of pair p of route r; let srpn be
the service time at node n of pair p of route r. Finally, let γ > 0 be a small
real constant used to prevent swapping of vehicles’ positions between a node
and the previous or following edge.
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The Capacity Verification Problem decision variables are:

xrpn: non-negative real variable that models when a vehicle executing
route r starts using node n in pair p;

yrpe: non-negative real variable that models when a vehicle executing
route r starts using edge e in pair p;

The model for the Capacity Verification Problem is:

xrp0
rn∗

r
≥ τ r, ∀r ∈ R (E.1)

yrpe ≥ xrpnrpe
+ srpnrpe

, ∀r ∈ R, p ∈ Pr, e ∈ δp (E.2)
xrpn = yrperpn

+ derpn , ∀r ∈ R, p ∈ Pr, n ∈ θp (E.3)

xrpn ≥ lrpn ∧ xrpn ≤ urpn,

∀r ∈ R, p ∈ Pr, n ∈ θp (E.4)
xr1p1n ≥ yr2p2er1p1n + γ ∨ xr2p2n ≥ yr1p1er2p2n + γ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2

n ∈ θp1 ∩ θp2, n /∈ NH (E.5)
yr1p1e ≥ yr2p2e + γ ∨ yr2p2e ≥ yr1p1e + γ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2 ,

e ∈ δp1 ∩ δp2 (E.6)
yr1p1e1 ≥ yr2p2e2 + de2 ∨ yr2p2e2 ≥ yr1p2e1 + de1 ,

∀r1, r2 ∈ R, r1 ̸= r2, p1 ∈ Pr1 , p2 ∈ Pr2 ,

e1 ∈ δp1 , e2 ∈ δp2 , e1 = ē2, ge1 = ge2 = 1 (E.7)

(E.1) constrains the start time of a route; (E.2) and (E.3) define the precedence
among nodes and edges to visit in a route; (E.4) enforces time windows on the
nodes that correspond to the customers; (E.5) prevents vehicles from using the
same node at the same time; (E.6) and (E.7) constrain the transit of vehicles
over the same edge. If two vehicles are using the same edge from the same
node, one has to start at least γ after the other and if two vehicles are using
the same edge from opposite nodes, one has to fully transit before the other
one can start.

Based on the model described above, the algorithm CapacityVerifier (CV )
is defined, that takes a set of routes R, the start times in Γ, and the current
set of paths CP as input and returns:
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• CFS , a list that expresses where each vehicle is at each time; this is
empty if the problem is infeasible.

• C̄, the Unsat Core relative to constraints (E.5)-(E.7) (see Section 3.3);
this is empty if the problem is feasible.

3.2 Paths Changing Problem
In the Paths Changing Problem, alternative paths are computed to connect
the consecutive customers of each route. Finding alternative paths may be
necessary when, for a given set of routes R and starting times Γ, no feasible
schedule exists. The Capacity Verification Problem may be infeasible due
to the current set of paths that connect the customers’ locations, therefore a
different set may lead to a feasible solution. A route is defined as a sequence of
customers, and for any two consecutive customers there is a path (a sequence
of edges) connecting them. Therefore, for a route containing i + 1 customers
we will have i paths and for each path we can define a start and an end node,
ξi and πi, respectively. The sets of outgoing and incoming edges for a certain
node n are denoted On and In, respectively.

Decision variables used to build the model are:

wrpn: Boolean variable that represents whether the pair p of route r is
using node n;

zrpe: Boolean variable that represents whether the pair p of route r is
using edge e;

This problem can be split into r · i sub-problems (assuming all routes have
i+1 customers) that find paths for each route separately; simpler and smaller
models are faster to solve. Unfortunately it may be necessary to explore
different combinations of paths, so to retain the information we have only
one model. Therefore, let the optimal solution to the Path Changing Problem
found at iteration h be

CP =
⋃

r∈R
p∈Pr

e∈E

{z∗
rpe},

where z∗
rpe is the value of zrpe in the current solution; also, let PP be the set

containing the optimal solutions found until the (h − 1)-th iteration.
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The model is then:

min
r∈R, p∈Pr, n∈E

∑
If(zrpe, de, 0) (E.8)

wrpξp
∧ wriπp

, ∀p ∈ Pr, r ∈ R (E.9)

ENe∈Oξp
(zrpe, 1), ∀p ∈ Pr, r ∈ R (E.10)

ENe∈Iξp
(zrpe, 1), ∀p ∈ Pr, r ∈ R (E.11)

zrpe =⇒ ¬zrpē, ∀p ∈ Pr, r ∈ R, e ∈ E (E.12)∧
n∈N ,n̸=ξp,n̸=πp

If(wrpn,

ENe∈On
(zrpe, 1) ∧ ENe∈In

(zrpe, 1),
ENe∈On

(zrpe, 0) ∧ ENe∈In
(zrpe, 0)),

∀p ∈ Pr, r ∈ R (E.13)∨
zrpe∈CP

¬zrpe, ∀CP ∈ PP (E.14)

The cost function (E.8) to minimize is the cumulative length of the used
edges; (E.9) guarantees that, for each path of each route, the start and end
nodes are used; (E.10) and (E.11) make sure that exactly one outgoing (in-
coming) edge is incident with the start (end) node of a route; (E.12) makes
sure that a path is not allowed to use both an edge and its reverse; (E.13)
guarantees that if a node (different from the start or end) is selected, exactly
one of its outgoing and one of its incoming edges will be used. On the other
hand, if a node is not used, none of its incident edges will be used; finally,
(E.14) rules out all the previously found solutions.

Based on the model described above the function PathsChanger (PC ) is
defined, that takes the previous paths PP as input and returns a new set of
paths NP. If the Paths Changing Problem is infeasible then NP = ∅.

Up to this point, unless specified otherwise, the models presented are taken
from [11].
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3.3 Exploiting the MUC

Experiments reported in [11], show that ComSat performs well for many prob-
lem instances, however, for some specific instances ComSat failed to find fea-
sible solutions in reasonable time. Investigations revealed the PC to be the
culprit. The reason is that it searches blindly through the possible paths that
connect any two customers, while minimizing the paths’ cumulative length. A
conflict-free solution may involve paths that are quite longer than the current
ones though, and the PC will have to explore many shorter solutions before
finding the right one. Improving the performance of the PathsChanger would
be beneficial for the overall performance of ComSat, and letting the MUC
guide the paths changing is such an improvement.

When extracting the MUC , it is possible to only track specific constraints.
This feature can be exploited to focus only on the capacity constraints vio-
lations. In fact, since time windows and service time are not flexible, it is
of little to no use to track constraints represented by (E.1)-(E.4). Also, an
infeasible formula φ may have multiple MUCs; in the CF-EVRP this means
that conflicts may arise at different locations in the plant. In order to catch all
of them, it is possible to iteratively relax the conflicting constraints from the
initial formula and solve it again, until it becomes feasible. The formula will
indeed become feasible eventually, since it is based on a feasible solution R
and only the capacity constraints can make it infeasible; in the worst case all
such constraints will be removed during the iterations. Note that, since not all
constraints are tracked, the set of constraints C̄ returned is not an actual Un-
sat Core, since C̄ would only make the problem infeasible in conjunction with
the untracked constraints. Nonetheless, it provides the information about the
conflicts needed to guide the search of paths.

Let φ0 be the conjunction of constraints (E.1)-(E.7). Assume that φ0 is
infeasible, and let C̄0 be the subset of a MUC retrieved by tracking constraints
(E.5)-(E.7). Then let φ1 = φ0 \ C̄0, also infeasible, and let C̄1 be the subset of
a MUC retrieved by tracking constraints defined by (E.5)-(E.7), not including
the ones in C̄0. In general, the constraints in C̄i−1 can be iteratively relaxed
to obtain a new formula φi, until a feasible φn = φ0 \ (C̄0 ∪ . . . ∪ C̄n−1) is
found. Then C̄ = C̄0 ∪ . . .∪ C̄n−1 contains all the conflicts due to the capacity
constraints.

Each constraint represented by (E.5)-(E.7) is defined over two routes r1 and
r2 and their pairs p1 and p2 for a specific node n or edge e; therefore, if the
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constraint is part of C̄, the routes and pairs that caused the conflict over n or
e can be identified. If the conflict was generated by a constraint from (E.5),
then the following constraint is added to (E.8)-(E.14):

¬(wr1p1n) ∨ ¬(wr2p2n). (E.15)

On the other hand, if the conflict was caused by constraint from (E.6) or
(E.7), the following constraint is added to (E.8)-(E.14):

¬(zr1p1e) ∨ ¬(zr2p2e). (E.16)

Constraints (E.15) and (E.16) force at least one of the routes involved in
the conflict to avoid the specific node (edge, respectively) when computing a
path for the pairs involved in the conflict. The constraint is formulated so that
the choice of the route to change is left to the solver, including the possibility
of changing both routes; since the problem is an optimization, the solver will
choose the change that leads to the shortest cumulative paths length.

Based on the model described by (E.8)-(E.16), the function MUC-Guided-
Paths-Changer (GPC ) is defined, that takes the previous paths PP and C̄ as
input and returns a new set of paths NP. If the Path Changing Problem is
infeasible NP = ∅.

Since for each constraint in C̄ a new constraint is added to the GPC , it is
imperative that the Unsat Core returned when the CV is infeasible is minimal.
This is so because if the Unsat Core is not minimal, it could contain constraints
that are not actually causing capacity conflicts. These constraints would in
turn lead to defining constraints (E.15) and (E.16) in the GPC that may
remove feasible solutions.

Fig. 2 summarizes the steps required to find a conflict-free schedule CFS ,
if such exists, using the improved paths searching algorithm GPC . As men-
tioned, it is assumed that routes R and their start times Γ have already been
computed. The shortest paths between any two customers are computed us-
ing Dijkstra’s algorithm and then set as the current paths CP to travel among
customers. Also, CP are added to the list of previous paths PP.

Then the CV will check such routes against the capacity constraints; if this
sub-problem has a feasible solution the algorithm terminates and a conflict-
free schedule is returned. Otherwise C̄ is extracted as described in the previous
paragraph and the the GPC algorithm is invoked. GPC will use the informa-
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Start

CP← SP; PP.add(CP)

C̄, CFS = CapacityVerifier(R, Γ, CP)

CFS ̸= ∅ CP← NP; PP.add(NP)Schedule

NP = GuidedPathsChanger(PP, C̄)

NP ̸= ∅Infeasible

Yes

No

No Yes

Figure 2: Flowchart of the MUC -Guided-CFPS.

tion about previously computed paths PP and the information about conflicts
from C̄ to compute new paths NP, which will be set as the current paths and
stored in PP. At this point the CV is run again using the new paths. The
iterations between the two algorithms continue until either the CV is feasi-
ble, or the GPC is infeasible, i.e., there are no feasible, conflict-free paths to
execute the routes R with the start times Γ.

4 Proof of Soundness and Completeness
In this section, proof of soundness and completeness of the Unsat Core Guided
CFPS is provided. The underlying idea for the proof is the following. There
exists a finite number of solutions to the Path Changing Problem; the GPC
can enumerate at least all feasible solutions to the Path Changing Problem;
if a solution that satisfies the Capacity Constraints does exists, the GPC will
eventually find it, otherwise it will declare the problem infeasible.

Let S be the set of possible solutions to a Path Changing Problem; let us
divide S into the set of conflict-free solutions F and the set of conflicting
solutions U . In other words a solution to the Path Changing Problem from F
will make the Capacity Verification Problem feasible, while a solution from U
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will not. If the CFPS is infeasible, then S = U and F = ∅. In this case, even
if the GPC is not able to find all feasible solutions F , there is none to find.

In case the CFPS is feasible though, in order to prove completeness it is
necessary to guarantee that at least all feasible solutions F can be found by
GPC . This is proven for the PC , since each call of the PC function will find
the next optimal solution to the Path Changing Problem, whether it belongs
to F or not, until all solutions are enumerated. However in the GPC there
are additional constraints that may remove feasible solutions. In the proof it
is shown that such additional constraints only remove infeasible solutions.

Observation 3. The Path Changing Problem is a satisfiability problem in
propositional logic. The Capacity Verification Problem falls into the category
of difference logic (a fragment of linear arithmetic). Thus, both problems are
decidable.

Observation 4. The Path Changing Problem is bounded. In fact, the Path
Changing Problem involves only a finite number of Boolean variables, so its
domain is finite.

Lemma 1: Given a finite, directed, weighted graph, the number of paths
that connect two arbitrary nodes is finite.

Proof. By definition, a path is an ordered set of nodes such that no node
appears more than once. If the number of nodes in the graph is finite, there
cannot be an infinite number of paths.

Lemma 2: For a given set of routes R and start times in Γ, repeated calls
to the PC function will enumerate all feasible solutions to the Path Changing
Problem, either belonging to F or U , before returning infeasible.

Proof. Let φ0 be the conjunction of constraints (E.9)-(E.13), a relaxation of
the Paths Changing Problem, and let CP0 be a solution to φ0. Then, if another
solution CP1 for φ0 exists, it can be found by solving φ0 ∧ ¬CP0 = φ1. In
general, the n-th solution can be found by solving φ0∧¬CP0∧. . .∧¬CPn−1 =
φn. Because of Lemma 1, we know that the number of solutions to the Paths
Changing Problem, |S|, is finite and we can enumerate them all by solving
φ0, . . . , φ|S|−1.

Lemma 3: Using the PC and CV is a sound and complete procedure to
solve the CFPS
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Proof. Because of Observation 1 we know there is a finite number of solutions
to the Path Changing Problem, and because of Lemma 2 we know that the
PC function can enumerate them all. If a solution that belongs to F exists
the PC will find it, otherwise it will return all solutions belonging to U ; the
CV will then check whether they are conflict-free. Therefore, using the PC
and CV in combination will correctly solve the CFPS.

Lemma 4: For a given set of routes R, the GPC is able to find at least
all solutions in F .

Proof. For each set of current paths CP, C̄ only contains constraints defined
by (E.5), (E.6), and (E.7). The constraints in C̄ are iteratively retrieved from
minimal Unsat Core and therefore represent combinations of nodes and edges
in the graph where the conflicts happen. Since each constraint defined by
(E.15) and (E.16) addresses one constraint from C̄, (E.15) and (E.16) only
define constraints over nodes or edges that cause conflicts. Hence these con-
straints only remove solutions of the Path Changing Problem that belong to
U .

Theorem 1: Using the GPC and CV is a sound and complete procedure
to solve the CFPS.

Proof. The PC and the GPC are identical, except for constraints (E.15)-
(E.16), and because of Lemma 4, we know that the addition of these con-
straints only removes solutions from U . Thus, since the CFPS using the PC
is sound and complete (Lemma 3), so is the CFPS using the GPC .

5 Experiments
In order to evaluate the goodness of the proposed method and its performance
against the previous version of the CFPS algorithm, a set of problem instances
is designed and used for testing. Both the PC and GPC are embedded in the
ComSat algorithm. However, since the goal is to compare the search for
alternative paths, problems are designed in such a way that there is only one
feasible set of routes R to serve the customers; also, only the running time for
search of conflict-free paths is measured. The algorithms called by ComSat
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used the SMT solver Z3 4.8.9 to solve the models. All the experiments1 were
performed on an Intel Core i7 6700K, 4.0 GHZ, 32GB RAM running Ubuntu-
18.04 LTS.

Table 1 shows the results of the evaluation of five problem instances of the
CF-EVRP solved using ComSat. Each instance was solved twice, once using
the PC and once using the GPC ; in each case the number of iterations and
the time (in seconds) required to find a feasible solution is reported. The
problem instances presented are increasingly hard to solve, in terms of plant
size (represented by the number of nodes), number of routes and number of
customers in each route. The customers’ locations and time windows so that
conflicts will arise due to the capacity constraint when the shortest paths are
used and a search for alternative paths will be necessary in order to find a
conflict-free schedule.

For instances 1 through 4 it took only one iteration to the GPC to find
a feasible solution, while the PC required an increasing number of iterations
to find a feasible solution, as the instances grew more complicated. The gap
in the running time between the GPC and the PC follows the same trend;
for instance 1 it only takes 2 iterations to the PC to find a feasible solution,
while it takes 24 and 54 iterations to find a solution to instances 2 and 3. This
number drops to 15 iterations for instance 4. On average, a single iteration of
the PC takes less time than an iteration of the GPC , but due to the larger
number of iterations required, the overall running time for the PC is always
larger.

Instance 5 is the odd one out, as it only takes one iteration of the PC to
find a feasible solution, and, as for the other instances, the running time for
the single iteration is shorter.

Results and Discussion
The experiments show that for most of the instances the GPC performed bet-
ter than PC in terms of running time and number of iterations. To be more
specific, one iteration of the GPC is slower than one iteration of the PC ,
but the number of iterations required by the PC is always higher, and there-
fore the overall execution time is longer. As the instances become larger, the
gap between the running time for one iteration of each method increases too.

1The implementation of the GPC presented in Section 3.3 and the problem instances are
available in the UNSAT_Core folder at https://github.com/sabinoroselli/VRP.git.
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However, since the number of iterations required for more complex instances
grows as well, the GPC shows increasing good performance for harder-to-solve
instances. On the other hand, Instance 5 shows a different result, since both
the PC and the GPC take only one iteration. As for the other instances, a
single iteration of the PC is faster, hence the PC beats the GPC on Instance
5. We can conclude that for some instances, the PC may be able to quickly
find feasible solutions and outperform the GPC . However this is behaviour
is highly dependent on the instance and as instances grow larger the chances
could grow smaller, as the number of possible paths available increases. More-
over, a detailed analysis of the solutions to the Path Changing Problem for
each instance2 confirms that, for the PC , there is no convergence to a feasible
solution as the number of iterations increases, since the number of conflicts
does not always decrease at the following iteration. On the other hand, the
GPC shows a consistent behaviour as it always takes only one iteration to
find feasible solutions.

Table 1: Comparison of the PC and GPC over a set of instances of the CF-EVRP.
For each instance the number of iterations and the total running time (in
seconds) required to find a feasible solution is reported.

Inst. |N | |R| |K|
Iterations Time

PC GPC PC GPC
1 3 2 4 2 1 0.25 0.16
2 8 3 6 24 1 8.81 0.40
3 5 4 8 54 1 35.92 1.08
4 64 4 28 15 1 643.40 184.60
5 64 4 28 1 1 21.20 128.40

6 Conclusions
This paper presents an algorithm to search for conflict-free paths for a set
of routes to serve customers in a conflict-free electric vehicle routing prob-
lem (CF-EVRP). The algorithm exploits the SMT solvers’ ability to return a

2Details of the problem instances are discussed in the file Instances_Results.pdf in the
UNSAT_Core folder of the Github repository.
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MUC when a formula is infeasible, to guide the search for paths. Soundness
and completeness of the algorithm are proved, and preliminary experimental
data based on a set of generated CF-EVRP problem instances are provided.
The experiments show that the new MUC based algorithm consistently finds
feasible paths taking only one iteration and significantly shorter time than
the previous naive method. Future work includes to run extensive compu-
tational analyses to strengthen the claims made in this paper, and further
development of the MUC guided paths search by improving the information
extraction from the MUC .
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