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Abstract—Integrated sensing and communication (ISAC) aims
to unify radar and communication systems through a combina-
tion of joint hardware, joint waveforms, joint signal design, and
joint signal processing. At high carrier frequencies, where ISAC
is expected to play a major role, joint designs are challenging
due to several hardware limitations. Model-based approaches,
while powerful and flexible, are inherently limited by how well
the models represent reality. Under model deficit, data-driven
methods can provide robust ISAC performance. We present a
novel approach for data-driven ISAC using an auto-encoder
(AE) structure. The approach includes the proposal of the
AE architecture, a novel ISAC loss function, and the training
procedure. Numerical results demonstrate the power of the
proposed AE, in particular under hardware impairments.

Index Terms—Integrated sensing and communication, Joint
radar and communications, Auto-encoder, Machine learning.

I. INTRODUCTION

Progressive generations of mobile communication systems
have moved up in carrier frequency to unlock ever larger
bandwidths, starting with 5G in the mmWave band and 6G
envisioned to operate above 100 GHz [1]–[3]. The combina-
tion of large bandwidths and large arrays is reminiscent of
high-resolution radar, available, e.g., to support autonomous
driving (AD) and advanced driver-assistance system (ADAS)
applications in moderns vehicles [4]. This observation has led
to the introduction of integrated sensing and communication
(ISAC), where the same spectrum is used for both radar-like
sensing and high-rate communication [5]–[9].

According to [7], ISAC’s history can be traced back in the
radar community to the 1960s, an example of which is the
missile range instrumentation radar [10]. In the communication
community, ISAC has only recently found traction, after
the introduction of orthogonal frequency-division multiplex-
ing (OFDM) radar [11]. Unlike pulsed or continuous wave
radars, OFDM radars are resilient to wireless channels due to
the inherent frequency diversity which enhances the sensing
performance [12]. ISAC systems can be developed in a number
of ways, including (approximately) orthogonal designs (in
time [13], [14], frequency [15], or space [16], [17]) and joint
waveforms (referred to as unified designs in [7, Table III]).
Joint waveforms are attractive from an efficiency point of view
in monostatic1 sensing, as the entire communication signal can

1The ISAC literature has mainly focused on monostatic sensing, since for
bistatic or multistatic sensing a pilot signal is transmitted. Hence, waveform
design problems are different than in the monostatic case.

be used for radar sensing and vice versa.
The literature on joint waveforms for ISAC includes (i)

communication waveforms used for sensing, e.g., [11], [18];
(ii) sensing waveforms used for communication, e.g., [19],
[20]; and (iii) flexible designs that offer a trade-off between
communication or sensing [5], [21]–[29]. Existing approaches
in the latter category differ in terms of the ISAC objective
function (e.g., radar and communication information rates
[5], weighted radar peak-to-sidelobe level and communica-
tion signal-to-noise ratio (SNR) [21], transmit power with
interference constraints [22], radar SNR under communication
similarity constraint [23], generalized radar metrics under
communication error constraints [24], communication inter-
ference subject to a communication similarity constraint [25],
radar Cramér-Rao bound (CRB) under rate constraints [26],
communication rate under CRB [27] and radar similarity [29]
constraints) and the ISAC optimization variables (e.g., power
[5], [29], signal covariance [21], beamformers [22], [24], [26],
[27], transmit sequences across antennas [23], [25], weighted
multibeams [28]).

Since the optimization problem in joint waveform design is
often non-convex, approximate solution techniques are often
applied, including those based on machine learning (ML)
[27]. Data-driven ML methods are also useful under model
deficits, e.g., to mitigate effects of array calibration errors,
mutual coupling, power amplifier nonlinearity, quantization
effects etc., which are expected to be prevalent in 6G [9].
Hence, ML-based designs are a promising alternative to con-
ventional model-based approaches (see, e.g., [30], [31]). In
particular, end-to-end autoencoders (AEs) [32] are potentially
well-suited for ISAC problems because they allow for the
joint optimization of both the transmit waveforms as well
as the communication and radar receivers. While AEs have
been widely applied for communication [33]–[36] and radar
[37]–[39] systems separately, AE-based designs have not been
investigated in the ISAC literature.

In this paper, we propose a novel AE tailored to ISAC.
We study a simplified single-target narrowband setting and
generalize existing studies on end-to-end AE communication
to the ISAC setting. Our specific contributions are as follows:
(i) a novel AE architecture to perform joint sensing and
communication; (ii) a novel loss function for radar sensing
accounting for both target detection, target regression, and
uncertainty quantification, which is subsequently combined
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Fig. 1: Block diagram of the ISAC system model. The blocks highlighted in blue are implemented as trainable NNs as part of the proposed AE. The radar
receiver is assumed to be co-located with the transmitter, while the communication receiver is remote.

with the standard communication categorial cross-entropy
(CCE) loss; (iii) a detailed performance comparison to the best
known benchmarks, indicating similar performance; (iv) a case
study in the presence of hardware impairments, demonstrating
the robustness of the proposed AE over the model-based
benchmarks.

II. SYSTEM MODEL

A block diagram of the considered system model is shown
in Fig. 1. In the following, we first look at the radar and com-
munication systems separately and then describe the model to
perform the joint task of radar sensing and communication.

A. Single-target MIMO Radar

We consider a multi-input multi-output (MIMO) radar
transceiver, which sends a complex signal y ∈ CK across
K antennas, subject to E{∥y∥2} ≤ Etx. At the co-located
radar receiver, a signal zr ∼ pt(zr|y) across the K receive
antennas is observed, where t ∈ {0, 1} represents the absence
or presence of a target, with p(t = 1) = 1/2. In the absence
of a target zr = n, while in the presence of a target

zr = αarx(θ)a
⊤
tx (θ)y + n, (1)

where n ∼ CN (0, N0IK) with noise power spectral density
N0, [atx(θ)]k = [arx(θ)]k = exp(−ȷ2πkd sin(θ)/λ), with d =
λ/2. We further assume that α ∼ CN (0, σ2

r), following a
Swerling-1 model of the target, in which σ2

r captures the loss
of power due to path loss and the target’s radar cross section,
and that the target (if present) is known to lie in a certain angle-
of-arrival (AoA) interval (equivalent to the angle-of-departure
(AoD) interval) θ ∼ U [θmin, θmax], with −π/2 ≤ θmin ≤
θmax ≤ π/2.

The purpose of the radar receiver is to determine the
probability q ∈ [0, 1] that a target is present, and, if so,
determine an estimate θ̂ of the AoA with an uncertainty
estimate σθ̂.

B. MISO Communication

The transmitter sends a message m ∈ M, which should be
mapped onto a constellation and precoded to achieve high SNR
at the receiver. We denote the transmitted signal across the
K antennas by y(m) = vx(m) (again subject to E{∥y∥2} ≤
Etx), where v ∈ CK is the transmit beamformer and x(m) ∈ C

is the mapping of the message in the in-phase/quadrature (IQ)
plane. We consider a remote receiver with one antenna. The
observed signal is given by

zc = βa⊤
tx (ϑ)y(m) + n, (2)

where the channel is modeled as Rayleigh, with β ∼
CN (0, σ2

c ), and the communication receiver is known to lie
in a certain AoD range ϑ ∼ U [ϑmin, ϑmax], with −π/2 ≤
ϑmin ≤ ϑmax ≤ π/2.

The purpose of the communication receiver is to recover
the transmitted message m. In order to focus on the core
communication functionality, we assume that a pilot sequence
has been sent prior to data transmission, so that the communi-
cation receiver has access to channel state information (CSI)
κ = βa⊤

tx (ϑ)v (see, e.g., [40] for ML-based CSI estimation
methods).

C. Integrated Sensing and Communication

In the ISAC setting, the goal of the transmitter is to
design y(m) as well as the corresponding radar and com-
munication receivers to jointly optimize communication and
radar performance. The transmitter has knowledge of Θ =
[θmin, θmax, ϑmin, ϑmax], which accounts for the possible lo-
cations of the target and the communication receiver. Such a
joint optimization must account for trade-offs between sensing
and communication performance, as discussed in Section I.

Benchmark solutions for radar, communication, and ISAC
are deferred to Section IV-B.

III. ISAC END-TO-END LEARNING

To solve the ISAC problem, we propose to use an end-to-end
learning approach via a novel AE architecture and associated
loss functions, as described in the following.

A. AE Architecture

We implement each of the six highlighted blocks in Fig. 1 as
a feed-forward neural network (NN). In particular, we express
the encoder and beamformer as functions fε : M → C and
fµ : R4 → CK , respectively, where ε and µ are the learnable
parameters of each network. Similarly, the presence detector
fρ : CK → [0, 1], angle estimator fν : CK → [−π/2, π/2],
uncertainty estimator fσ : CK → R>0, and communication
receiver fη : C → [0, 1]|M| are a function of the learnable



parameters ρ, ν, σ, and η, respectively. The inputs and outputs
to each NN are shown in Fig. 1. The radar and communication
channel blocks are both instantaneously differentiable, which
means that they are differentiable under a realization of the
random variables linked to them. This enables supervised end-
to-end learning of all NNs, with training labels [m, t, θ].

B. Loss Functions

1) Target Detection: The output from the detector is an
estimate of the probability q ∈ [0, 1] that the target is present.
During testing, a threshold can then be applied to q. An
appropriate metric for this type of estimation is the binary
cross-entropy (BCE) loss, defined as

JTD(ε,µ,ρ) = −E[t log(q) + (1− t) log(1− q)], (3)

where the expectation is over the noise, the presence/absence
of a target, the radar channel gain, and the true target AoA.

2) Target Regression: If a target is present, a regression loss
can be used to assess how well the AE determines the target’s
AoA. Rather than simply using the mean squared error (MSE)
E[|θ̂ − θ|2], which only learns the target’s AoA, we propose
to use the negative log-likelihood (NLL)

JTR(ε,µ,ρ,σ) = −E[log(p(θ̂|θ)] (4)

= E
[
log(σθ̂) +

1

2σ2
θ̂

|θ − θ̂|2
]
, (5)

where we approximated the likelihood p(θ̂|θ) with a Gaussian
density θ̂ ∼ N (θ, σ2

θ̂
). Through this loss function, the receiver

learns both the target’s AoA θ̂ and the corresponding uncer-
tainty σθ̂, which can be useful for subsequent processing.

3) Overall Radar Loss Function: Combining the detection
and regression loss lead to a joint NLL loss, proposed in [41]

JNLL(ε,µ,ρ,ν,σ) = JTD + p(t = 1)JTR. (6)

4) Communication Loss Function: We apply the widely
used CCE loss. Let C = |M|, menc ∈ {0, 1}C be the one-
hot encoding [32] of m and m̂ ∈ [0, 1]C a C-dimensional
probability vector. Then, the CCE loss is

JCE(ε,µ,η) = −E

 C∑
j=1

menc
j log(m̂j)

 . (7)

5) ISAC loss: In order to combine the loss functions from
the radar and communication transceivers, we consider a joint
loss function as a linear combination of the individual losses

JISAC(ε,µ,ρ,σ,ν,η) = ωrJNLL + (1− ωr)JCE, (8)

where ωr ∈ [0, 1] is a hyper-parameter to trade off radar
performance for communication performance.

IV. RESULTS

In this section, we describe the simulation parameters,
the performance metrics, the benchmarks, and finally the
simulation results with discussion. Cases without and with
hardware impairments are considered.

A. Simulation Parameters and Metrics

We set |M| = 4, K = 16, and E{∥y∥2} = 1. The average
SNR in the communication is SNRc = σ2

c/N0 = 20 dB (both
for training and testing). The possible receiver locations lie in
the range (ϑmin, ϑmax) = (30◦, 50◦). The average SNR in the
radar model is SNRr = σ2

r/N0 = 0 dB, and the target can be
located in (θmin, θmax) = (−20◦, 20◦).

To evaluate the communication performance, we use the
symbol error rate (SER) E[p(m̂ ̸= m)]. To evaluate the radar
performance, we use the detection probability Pd = p(t̂ =
1|t = 1), false alarm probability Pfa = p(t̂ = 1|t = 0), and
root mean squared error (RMSE),

√
E[|θ̂ − θ|2] (only when

t̂ = t = 1, i.e., when a target is present and detected).

B. Benchmarks

1) Transmitter Benchmark: As communication constella-
tion, we use 4-QAM. For communication and radar beamform-
ing vector, we use the approach from [42], [43]. In particular,
given an certain angular range [θmin, θmax] (i.e., either for
communication or radar), let b ∈ CNgrid×1 denote the desired
beampattern at Ngrid angular grid locations {θi}

Ngrid

i=1 , with

[b]i =

{
∥atx(θi)∥2 , if θi ∈ [θmin, θmax]

0, otherwise
. (9)

Let A =
[
atx(θ1) . . . atx(θNgrid

)
]

∈ CK×Ngrid the trans-
mit steering matrix corresponding to those locations. Then,
the beampattern synthesis problem can be formulated as
min
y

∥∥b−ATy
∥∥2
2
, which has a simple closed-form least-

squares (LS) solution y = (A∗AT)−1A∗b. After normaliza-
tion, this provides us with a communication-optimal beam yc

and a radar-optimal beam yr. For the ISAC scenario, we apply
the approach from [28], and design the transmit ISAC beam
as

v(ρ, φ) =
√

Etx

√
ρyr +

√
1− ρeȷφyc

∥√ρyr +
√
1− ρeȷφyc∥

. (10)

where ρ ∈ [0, 1] is a trade-off parameter and φ ∈ [0, 2π) is a
phase that can be used to provide coherency between multiple
beams. Such a beam can then be optimized with respect to ρ, φ
in terms of different objectives [14], [28]. For our purpose, it is
sufficient to sweep over [ρ, φ] and for each value evaluate the
SER, RMSE, detection and false alarm probabilities for the
corresponding optimized communication and radar receiver
benchmarks, detailed next.

2) Radar Detection Benchmark: To derive a benchmark
for radar detection, we resort to the maximum a-posteriori
(MAP) ratio test (MAPRT) detector [44], which generalizes
the generalized likelihood ratio test (GLRT) detector [45]
to the case with random parameters and thus can take into
account the prior information on α and θ. Details can be found
in Appendix A.



TABLE I: Summary of the NN architectures.

Network Input layer Hidden layers Output layer

Encoder fε |M| (K,K, 2K) 2 (linear)
Beamformer fµ 4 (K,K, 2K) K (linear)
Presence det. fρ 2K (2K, 2K,K) 1 (sigmoid)

Angle est. fν 2K (2K, 2K,K) 1 (tanh)
Uncertainty est. fσ 2K (2K, 2K,K) 1 (ReLU)
Comm. receiver fη 2 (K, 2K, 2K) |M| (softmax)

3) Communication Receiver Benchmark: We apply the
maximum likelihood detector

m̂(zc) = arg min
m∈M

∥∥zc − βa⊤
tx (ϑ)vx(m)

∥∥2 , (11)

which minimizes the SER.

C. AE Training

In terms of the NN architectures, Table I shows the size of
the layers in each network, as well as the activation functions
for the output layer. The activation function for the hidden
layers is the Rectified Linear Unit (ReLU) function. Complex-
valued inputs are converted to real-valued by concatenating
their real and imaginary parts. In the transmitter, after com-
puting y, we apply a normalization layer, which scales the
transmitted signal to meet the power constraint, as proposed
in [32]. To train the AE, we employed the widely used
Adam optimizer [46] with learning rate 0.01 and mini-batch
size 10000. The data samples in each mini-batch are drawn
independently from the corresponding distribution (source or
channel). Thus, no data is reused between training and testing,
preventing overfitting issues. We utilized a total of 20 million
samples to train each NN.

Given the losses in (3)–(8), we could train all six NNs
from Table I at the same time. However, we found that
sequentially training the radar receiver NNs yielded better
performance. We maintain the joint training structure of (8),
but with slight changes to JNLL. Namely, we first train
fε, fµ, fη, fν substituting JNLL in (8) by a modified MSE
error, JMSE = p(t = 1)E[|θ̂− θ|2]. Secondly, we freeze ν and
train fε, fµ, fη, fσ using just the second term of (6) in (8).
Finally, we freeze σ,ν and train fε, fµ, fη, fρ by substituting
JNLL with JTD.

D. Simulation Results without Hardware Impairments

We show the ISAC trade-off results in Fig. 2 (a) (SER
vs. detection probability) and Fig. 2 (b) (SER vs. target
RMSE). In the test stage, we established a fixed false alarm
probability of Pfa = 10−2 and computed the empirical value
of Pfa during testing to obtain these results.Both figures
indicate that the trade-off between radar and communication
performance for the end-to-end learning approach based on
different values of the hyper-parameter ωr in (8) is close to
the baseline. This confirms that ML approaches can perform
as good as standard baselines for our particular scenario. The
values of the hyper-parameters used in those simulations are
ωr ∈ {0, 0.01, 0.014, 0.015, 0.03, 0.09, 0.15, 0.4, 0.6, 0.7, 1}.
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Fig. 2: Results (without hardware impairments) for a fixed empirical false
alarm probability of Pfa = 10−2, SNRc = 20 dB, and SNRr = 0 dB.
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Fig. 3: Learned beampatterns (without hardware impairments) generated by
the AE for different values of the hyper-parameter ωr , where the commu-
nication receiver and the radar target reside, respectively, in the intervals
(30◦, 50◦) and (−20◦, 20◦). The function E(ϕ) = |atx(ϕ)⊤y|2 accounts
for how much energy is transmitted in a certain direction.

We also observe a sharp degradation of communication per-
formance when ωr → 1, as the beamformer mainly illu-
minates the target and not the communication receiver, as
seen in Fig. 3. Conversely, when ωr → 0, the beamformer
illuminates the communication receiver, leading to severe radar
performance degradation (i.e., low detection probability and
high RMSE). Nevertheless, there is a ’sweet spot’ around
ωr ≈ 0.09, where both radar and communication achieve
good performance, as the resulting beampattern points towards
both angular sectors at the same time. Finally, in Fig. 4, we
assess the quality of the AoA uncertainty estimate σθ̂. The
RMSE increases monotonically with σθ̂ as ωr varies, though
we slightly under-estimate the RMSE.

E. Simulation Results under Hardware Impairments

We now study the impact of a specific hardware impairment:
the inter-element spacing, which up to now was assumed
to be exactly d = λ/2. Following [47], we apply a Gaus-
sian perturbation, so that the distance between the k-th and
(k + 1)-th antenna elements is dk ∼i.i.d. N (λ/2, σ2

λ). We set
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Fig. 4: Results (without hardware impairments) of the RMSE
of the AoA against the associated standard deviation σθ̂ for
ωr ∈ {0.01, 0.014, 0.015, 0.03, 0.09, 0.15, 0.4, 0.6, 0.7, 1}. The dashed
line shows RMSE = σθ̂ as a reference.
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Fig. 5: Results (with hardware impairments) for a fixed empirical false alarm
probability of Pfa = 10−2, SNRc = 20 dB, and SNRr = 0 dB.

σλ = λ/30 and show the ISAC trade-off results for a single
realization of dk (k = 0, . . . ,K − 2) in Fig. 5. Note that the
baseline assumes dk = λ/2, ∀k. We observe that end-to-end
learning can adapt to these hardware impairments, whereas
standard model-based approach without a perfect model in-
curs significant performance penalties (despite the very small
deviations from the nominal model). In this case the hyper-
parameter was selected to be ωr ∈ {0, 10−6, 10−4, 10−2, 1.5 ·
10−2, 0.03, 0.05, 0.15, 0.4, 0.9, 1}.

V. CONCLUSIONS

In this work, we have proposed a novel end-to-end AE ap-
proach for ISAC, and we have compared the AE performance
with standard benchmarks for sensing and communications.
Our results demonstrate that the trained AE performs close
to the baseline. Moreover, we have shown the robustness
of the proposed end-to-end learning approach to account for
hardware impairments in the antenna array of the transmitter.

Among possible future works, some natural extensions to
this study include: (i) incorporate multiple targets to the sens-
ing environment, (ii) use a MIMO communication system, (iii)

provide ωr to the AE input, (iv) learn across multiple angular
ranges, and (v) make the channel more realistic towards 6G.
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APPENDIX A
RADAR DETECTION BENCHMARK

For the hypothesis testing problem where H0 and H1 denote
the absence or presence of a target, the MAPRT corresponding
to (1) can be written as [44]

L(zr) =
maxα,θ,y p(α, θ,y,H1 | zr)

p(H0 | zr)
H1

≷
H0

η̃ . (12)

Notice that different from the Bayesian detector, we do not
marginalize over α and θ in the MAPRT [44]. Applying the
Bayes’ theorem to (12) yields

L(zr) =
maxα,θ,y p(zr |α, θ,y,H1)p(α)p(θ)p(H1)

p(zr |H0)p(H0)

H1

≷
H0

η̃ .

(13)

Assuming p(H0) = p(H1) = 1/2 and taking the logarithm in
(13), we obtain

Llog(zr) =
∥zr∥2

N0
(14)

− min
α,θ∈[θmin,θmax]

∥y∥2=Etx

{∥∥zr − αarx(θ)a
⊤
tx (θ)y

∥∥2
N0

+
|α|2

σ2

}
H1

≷
H0

η ,

where Llog(zr) ≜ logL(zr), η ≜ log η̃+ log(θmax − θmin) +
log(πσ2), and the equality constraint on the transmit power is
enforced to remove the ambiguity in estimating the channel
gain α. The optimal α in (14) can be computed for given θ
and y as

α̂ =
yHa∗

tx(θ)a
H
rx(θ)zr∥∥arx(θ)a⊤

tx (θ)y
∥∥2 + N0

σ2

=
yHa∗

tx(θ)a
H
rx(θ)zr

K|a⊤
tx (θ)y|2 + N0

σ2

. (15)

Plugging (15) back into (14) yields (after some algebraic
manipulations)

Llog(zr) = max
θ∈[θmin,θmax]

∥y∥2=Etx

∣∣a⊤
tx (θ)y

∣∣2∣∣aH
rx(θ)zr

∣∣2
N0

(
K
∣∣a⊤

tx (θ)y
∣∣2 + N0

σ2

) H1

≷
H0

η .

(16)

From (16), we can express the optimal y as a function of θ
as

ŷ =

√
Etx

K

a∗
tx(θ)a

H
rx(θ)zr∣∣aH

rx(θ)zr
∣∣ . (17)



Since
∣∣a⊤

tx (θ)ŷ
∣∣2 = EtxK, inserting (17) into (16) yields the

final detection test ∣∣aH
rx(θ̂)z

∣∣2 H1

≷
H0

η (18)

for some threshold η set to ensure a given false alarm
probability, where θ̂ ≜ argmaxθ∈[θmin,θmax]

∣∣aH
rx(θ)z

∣∣2.
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