
BlueSeer: AI-Driven Environment Detection via BLE Scans

Downloaded from: https://research.chalmers.se, 2022-11-19 13:29 UTC

Citation for the original published paper (version of record):
Poirot, V., Harms, O., Martens, H. et al (2022). BlueSeer: AI-Driven Environment Detection via BLE
Scans. 59th ACM/IEEE Design Automation Conference (DAC ’22),: 871-876.
http://dx.doi.org/10.1145/3489517.3530519

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

BlueSeer: AI-Driven Environment Detection via BLE Scans
Valentin Poirot 1,2, Oliver Harms 1,2, Hendric Martens 1, Olaf Landsiedel 1,2

1 Kiel University, Germany
2 Chalmers University of Technology, Sweden

{vpo,oha,ol}@informatik.uni-kiel.de,stu217810@mail.uni-kiel.de

ABSTRACT
IoT devices rely on environment detection to trigger specific actions,
e.g., for headphones to adapt noise cancellation to the surroundings.
While phones feature many sensors, from GNSS to cameras, small
wearables must rely on the few energy-efficient components they
already incorporate. In this paper, we demonstrate that a Bluetooth
radio is the only component required to accurately classify envi-
ronments and present BlueSeer, an environment-detection system
that solely relies on received BLE packets and an embedded neural
network. BlueSeer achieves an accuracy of up to 84% differentiating
between 7 environments on resource-constrained devices, and re-
quires only ~12 ms for inference on a 64 MHz microcontroller-unit.

KEYWORDS
environment detection, environment classification, embedded neu-
ral network, Bluetooth Low Energy, BLE
ACM Reference Format:
Valentin Poirot 1,2, Oliver Harms 1,2, Hendric Martens 1, Olaf Landsiedel
1,2. 2022. BlueSeer: AI-Driven Environment Detection via BLE Scans. In
Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC ’22),
July 10–14, 2022, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3489517.3530519

1 INTRODUCTION
Smartphones, wireless peripherals, and small wearables constantly
accompany us in our daily life: at home, in transit, while shopping,
or even at work. The ability to detect our surrounding environments,
known as Environment Detection or Classification [15], is a desir-
able trait in mobile systems: a smartphone can automatically enter
into silent mode when it detects that we enter a theater or airplane
mode once we board a plane; wireless headphones can adapt their
degree of noise cancellation to match the current environment: total
cancellation in offices, but limited cancellation in streets to ensure
that the user can still hear oncoming traffic and emergency vehi-
cles; fitness trackers can distinguish between indoor and outdoor
activities by checking the user’s surroundings; and smart speakers
can control their initial volume if they detect they are in public
spaces. Environment detection also enables informed decisions for
co-located systems: the performance of distance estimation and
localization algorithms relying on radio signal propagation can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530519

suffer from multi-path fading indoors [2, 8], environment detection
allows such algorithms to select the best propagation model based
on the current environment. While environment detection can aid
localization systems [13], it does not aim at pinpointing a device
position within a given area; instead, it classifies the surrounding
environment into general categories such as shopping center, office,
home, or street.

Modern smartphone systems feature many sensors that we can
use to infer surroundings, such as Global Navigation Satellite Sys-
tems (GNSS, e.g., GPS), cameras, microphones, or ultra-wideband
radios. In contrast, small wearables such as fitness trackers or in-ear
earphones often lack this luxury. While GNSS chips offer precise
localization and, with access to maps, provide environment de-
tection with high accuracy, they remain the most energy-hungry
on-device sensors [1], and would drain an unacceptable share of
the energy budget of a small IoT platform. Microphones are a more
energy-friendly alternative to perform environment detection [15],
but the presence of microphones on fitness trackers for the sake of
environment detection raises concerns on privacy.

Yet, most embedded wearables incorporate one common com-
ponent: a Bluetooth radio. With 4 billion new devices shipped in
2020 alone [4], Bluetooth and Bluetooth Low Energy (BLE) are the
go-to solutions for wireless communication on the most modest IoT
wearables. Although it seems incongruous at first that we can use a
BLE radio to infer its surroundings, this paper demonstrates that we
can classify environments with high accuracy solely from received
BLE packets. Specifically, we show that the density, diversity, and
dynamics of mobile devices, which we can infer from listening to
their periodic packet broadcasts, form a wireless fingerprint that
can be relied on to categorize surroundings. With this insight, we
are able to provide a new approach to accurate and energy-efficient
environment detection; any device, from the smallest BLE-enabled
sensors up to smartphones, can accurately infers the environment
by simply turning on its BLE radio periodically. If a device already
scans for BLE transmissions, no additional radio-on time is required;
the received packets are used as the basis for the classification.

Challenges. By default, many BLE devices announce their ser-
vices and thereby their presence so that other devices can connect
to them via packets called advertisements. BLE Advertisements con-
tain the different services offered by each equipment, for example
volume control for smart speakers or temperature for thermome-
ters. The presence of specific services influences the classification:
for example, more keyboards are found in offices than restaurants,
more smart assistants are located in homes than in transport. The
number of devices in proximity also discriminates between envi-
ronments: we receive many more BLE signals in a busy street than
deep in a forest. However, this wireless fingerprint highly evolves
with the time of day: crowded transport at rush-hour shares more
similarities with a concert venue than riding an empty bus. As the

https://doi.org/10.1145/3489517.3530519
https://doi.org/10.1145/3489517.3530519

DAC ’22, July 10–14, 2022, San Francisco, CA, USA V. Poirot, O. Harms, H. Martens and O. Landsiedel

number of advertisements and the number of services within pack-
ets highly vary with time and place, feature engineering is required.
We need to extract meaningful features over all received adver-
tisements to be able to pass it as input to, e.g., a neural network
classifier.

Approach. We present BlueSeer, an environment-detection sys-
tem specifically tailored for resource-constrained IoT platforms. To
work, BlueSeer only requires a BLE radio on the device: periodi-
cally, BlueSeer scans for BLE advertisements from nearby devices,
performs feature extraction from the raw data, and employs an
embedded neural network to predict the current surrounding envi-
ronment. We show that the knowledge extracted from BLE packets
is sufficient to infer the environment accurately.

Contributions. This paper makes the following contributions:
(1) We show that it is possible to categorize environments ex-

clusively from received BLE advertisements;
(2) We present BlueSeer, an Environment Detection system able

to classify environments solely using received BLE packets.
BlueSeer distinguishes between 7 categories: home, office,
shopping, transport, nature, street, and restaurant;

(3) We carry out extensive feature engineering and identify 23
features from BLE advertisements, ranging from number of
devices in proximity and RSS measurements, to the diversity
of offered services;

(4) We devise a neural network and show that its quantized,
embedded version classifies its environment with up to 84%
accuracy on a low-power platform with a 64 MHz MCU, and
uses 65 KB of memory. We make BlueSeer’s implementation
and its dataset open-source1.

Outline. The paper is structured as follows: §2 provides back-
ground on Bluetooth Low Energy advertisements, §3 dives into
the design of BlueSeer, §4 provides an in-depth evaluation of Blue-
Seer and its embedded neural network, §5 summarizes the related
literature and §6 concludes this paper.

2 BACKGROUND: BLUETOOTH LE
BLE. Introduced as part of Bluetooth 4.0 in 2010 [3], Bluetooth Low
Energy (BLE) is a short-range wireless technology in the 2.4 GHz
ISM band. BLE targets direct, one-hop communication and provides
datarates of up to 2 Mbit/s within 10-50 meters, typically. It uses
40 2-MHz wide frequency channels, 37 reserved for connection
exchanges, and 3 for advertisements and broadcasts.

Advertising. BLE has two operation modes: connected and non-
connected mode. The non-connected mode is used to disclose the
presence of connectable devices (for example after turning on head-
phones) or broadcast data to nearby devices (such as COVID contact
tracing keys). The advertiser, such as a small wearable, operates by
broadcasting an advertisement packet on all advertising channels
(cf. Fig. 1) and repeats the packet pseudo-periodically at a fixed
interval, plus a random delay to avoid collisions. On the receiving
end, a scanner, such as a smartphone, scans the medium for adver-
tisements by listening to a specific channel during a scan window.
The scanner iterates over all advertising channels by switching
channels after a period called scan interval. A device initiates a

1Available at: github.com/ds-kiel/blueseer

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

C
h.

 3
7

C
h.

 3
8

C
h.

 3
9

Ch. 37 Ch. 38

Scan Window

Scan Interval

Advertisement Interval

Sc
an

ne
r

A
dv

er
tis

er

Figure 1: BLE Advertisements. The advertiser pseudo-
periodically sends advertisement packets on all three ad-
vertising channels. The scanner periodically listens for ad-
vertisements.

BLE Radio

BLE Scanning &
Feature Extraction

Embedded Neural Network
& Environment Inference

B
lueSeerBLE Advertisements

…

5% 10% 1%80%

Figure 2: BlueSeer: System architecture. BlueSeer scans the
wireless medium for BLE packets and extract features from
them. An embedded neural network classifies the environ-
ment between 7 categories.

connection by responding to an advertisement: data exchange then
proceed on the remaining 37 channels.

Advertising data. The payload of BLE advertisements consists
of a list of optional fields called Advertising Data (AD). Advertis-
ers include AD to define, e.g., their device name, address, the list
of offered services (such as sound or heart rate sensor), or data
related to its specific manufacturer. Each AD is identified by its
universally unique identifier (UUID), defined in the standard [3].
For example, the COVID Exposure Notification AD has the UUID
0xFD6F [9]. The presence of specific AD fields (e.g., announcing
keyboard capabilities), the variety of advertised services, as well
as the variety of advertisements received within one scan form a
wireless fingerprint that we use to infer the current environment.

3 DESIGN: BLUESEER
With BlueSeer, we demonstrate that a BLE radio is the only com-
ponent required for a device to detect its environment. All BLE
advertisements received by a device compose a wireless fingerprint
of the surroundings. This fingerprint builds the basis for inferring
the environment’s category. We present the system architecture
of BlueSeer in §3.1, dive deep into the data collection and feature
extraction processes in §3.2, describe the embedded neural net-
work used by BlueSeer in §3.3, and precise implementation-specific
details in §3.4.

https://github.com/ds-kiel/blueseer

BlueSeer: AI-Driven Environment Detection via BLE Scans DAC ’22, July 10–14, 2022, San Francisco, CA, USA

3.1 Overview
Wireless Fingerprints. Different environments often exhibit dif-
ferent characteristics: multiple wireless keyboards are often found
nearby in offices, smart home assistants at home; buses driving
around town pass by many people and devices for a short duration;
and the occasional wireless speaker can be found in city parks when
the weather allows. We show in this paper that the devices found
within an environment, their density, variety, the motion of those
devices as well as the mobility of the receiver, all form a unique
composition specific to each environment. Further, since many of
these devices voluntarily disclose their proximity and services via
BLE advertisements, each environment has its own wireless finger-
print that we exploit for classifying the environment. Thus, the sole
presence of a BLE radio is the only requirement for IoT platforms
to classify their surroundings.

BlueSeer. BlueSeer consists of two main components: (1) the
scanning and feature extraction block, which produces data for a
classifier, and (2) the classification process that relies on an embed-
ded neural network, as we depict in Fig. 2. Periodically, BlueSeer
scans the wireless medium for BLE advertisements. From the raw
packets’ data, BlueSeer extracts features related to the device den-
sity, variety, as well as the dynamics of the environment (see §3.2).
We then feed these features into an embedded neural network,
whose weights are quantized to fit in the memory of small, con-
strained IoT platforms (see §3.3). Since many wearables do not
feature constant internet connectivity, we cannot rely on a complex
classifier on the cloud or nearby edge-device to infer the category
and must rely on a memory-efficient model. With its neural net-
work, BlueSeer discriminates between 7 different environments:

• Home (house, apartment)
• Office
• Shopping (such as supermarkets, malls)
• Transport (e.g., car, bus, train)
• Nature (city parks, forests, countryside)
• Street (both walking and standing)
• Restaurant

3.2 Feature Extraction
Raw data. Rather than pass the raw data to a classifier, we perform
feature extraction on the received packets to produce 23 informa-
tive features that we pass onto the embedded neural network. As
BLE scans return anything from a few results up to a hundred pack-
ets in crowded spaces such as restaurants, and the packet length
evolves with the number of services advertised, raw packets are
bad candidates as input features. In the following, we present a
selection of the most notable features produced by BlueSeer.

Dynamic environments. Since the device’s density and dynam-
ics are markers of an environment, we extract the number of unique
devices we encounter within a scan as our first feature. The number
of devices that left our vicinity since the previous scan, which we
call lost devices, and the number of new devices that we hear for
the first time serve as our second and third features. These metrics
represent both the density and dynamics of the environment.

During a single scan, a receiver might receive more than one
packet from the same source since every advertiser chooses its
own advertisement interval (see §2). This fact gives two kinds of

information about our surroundings: (1) the type of devices in
proximity, as low-power platforms tend to select long intervals
to save energy; and (2) how long devices stay nearby: we should
receive many packets from devices with short intervals unless
they quickly leave our vicinity. Therefore, we measure the average
interval between two transmissions from the same source, and
how long devices stay in our vicinity on average, and use both as
additional features.

Signal strength.Whenever the BLE radio receives a new adver-
tisement, it records the Received Signal Strength (RSS). We use the
RSS as a rough approximation of the distance between a sender and
receiver [7]. Successive measures also produce a simple estimation
of a device’s motion. When combined, the RSS datapoints repre-
sent the estimated device density of the current environment. We
collect the following statistics from raw RSS values and use them
as features: the highest and lowest RSS measures received as well
as the average RSS over all devices.

Device diversity. Along with the device density and environ-
ment dynamics, the device variety is an important factor in dis-
tinguishing between environments. While BLE lacks the device
class categories used by Bluetooth Classic, we deduce approximate
categories from the list of services advertised. For example, the
TX Power AD exposes the transmit power used by the sender;
larger devices such as laptops tend to transmit at high power, while
battery-powered sensors rely on low levels to operate longer. We
collect the following metrics as features: the lowest, highest, aver-
age, and count of TX Powers advertised by nearby devices to infer
information on their types.

We can further take advantage of the diversity of AD options
advertised by BLE packets. By counting how many unique ser-
vices are offered, we can infer the diversity of devices. By counting
the total number of services, we can infer the homogeneity. The
presence of manufacturer data is also a marker of specific environ-
ments; devices from different manufacturers send specific AD, and
different devices by the same manufacturer also send unique data.
We extract the average manufacturer data length to use it as an
additional marker for environment detection.

3.3 Embedded Neural Network
The feature extraction process produces a total of 23 unique features
that encompass the device density, variety, the radio conditions, as
well as the dynamics of the environment. As each scan generates
the same number of features, we directly feed them as input to an
embedded neural network.

Sliding-window. Yet, using the features from a single scan may
lead to inaccuracies, especially in highly dynamic environments.
For example, a car driving along a shopping street sees many adver-
tisements, but receives almost no packets a few seconds later as it
enters a residential district. We keep track of the last scans within
a sliding-window and concatenate the result of several BLE scans
together. We feed the resulting vector as input to BlueSeer’s embed-
ded neural network. Because we use several consecutive scans, the
neural network’s decisions are less subject to fluctuations in highly
dynamic environments. Importantly, BlueSeer performs inference
after each individual scan: BlueSeer does not require to refill the
window with fresh scans between two inferences entirely; instead,

DAC ’22, July 10–14, 2022, San Francisco, CA, USA V. Poirot, O. Harms, H. Martens and O. Landsiedel

earlier scans remain part of the sliding window for a number of
scans equal to its capacity. We set the sliding-window’s capacity to
the last 5 scans, see §4.2.

Neural architecture. With BlueSeer, we target constrained
devices, such as fitness trackers or in-ear earphones that feature a
<100 MHz MCU and ~200 KB memory. Thus, we devise a two-layer
dense neural network: the input features are fed into (1) a 500-
neuron dense layer with Rectified Linear Unit (ReLU); that feeds (2)
the dense output layer with softmax function and 7 output classes
(see §4.1). To ensure that the model’s weights do not monopolize
all memory, we employ quantization, fixing weights to integer
representations [6]. Our neural network takes 65 KB of memory
and requires ~12 ms to infer the environment on a 64 MHz MCU.

Collection and training.We collect 70 600 datapoints from 7
environments, using 62 000 for training and 8 600 for the test dataset
for the final evaluation. For each environment, we collect data from
different physical locations at different time, within the same city
and in nearby locations. For example, for Home, the training set
contains samples from 6 locations: three individual houses and
three apartments. For Shopping, we feature 5 environments: three
different grocery stores, one clothing store, and a shopping mall.
The test dataset consists of physically different recordings: we
do not separate one supermarket recording into training and test
data, but collect two recordings each at a different time, one for
training, one for testing. We train the network for 20 epochs, with
an exponentially decreasing learning rate initially set to 0.01. Once
the network is trained, we quantize its weights and retrain it for 10
additional epochs to mitigate the accuracy drop due to quantization.

3.4 Implementation
We implement BlueSeer for the Zephyr RTOS and use its open-
source BLE stack implementation [19]. We use Tensorflow for train-
ing and employ quantization-aware retraining for the second train-
ing step to ensure that the quantized model is on-par with the
original performance. We rely on Tensorflow Lite for Microcon-
trollers for on-device inference [6].

BlueSeer is platform-independent; we use the nRF52840 SoC
(nRF52) to collect data and evaluate the performance of the embed-
ded neural network. The nRF52 features a 64 MHz Cortex-M4 CPU
with FPU, 256 KB of RAM, and a Bluetooth 5.2 radio supporting
BLE. The nRF52 is a well-representative platform and depicts a
performance comparable to commercial fitness trackers.

4 EVALUATION
In this section, we experimentally demonstrate the effectiveness of
BlueSeer. We first evaluate the impact of the neural network archi-
tecture in terms of accuracy and memory usage. Then, we assess
the importance of the features produced by the feature extraction
process, as well as the impact of the number of scans used as input.
Finally, we evaluate the overall performance of BlueSeer on unseen
data and its on-device computation, memory, and energy footprint.

Metrics. We evaluate the following set of metrics: (1) Accuracy:
Top-1 accuracy obtained from the quantized neural network; (2)
Memory: Memory usage to store all weights and temporary compu-
tations, both in RAM and ROM (flash); (3) Energy: Energy consump-
tion of running BlueSeer, on the embedded device, including neural

network computation and BLE scanning; and (4) Compute-time:
Execution time of the neural network on the resource-constrained
device.

4.1 Neural Architecture
Scenario.We investigate the impact of the number of layers and
neurons on the accuracy of the system and the memory consumed
by the model. We evaluate different neural network architectures
and compare them to decision trees (DT), a memory and compute-
efficient machine learning alternative, as well as against random
forests, that are known to improve accuracy compared to DTs
while remaining compute-efficient. We limit the DT to a maximum
depth of 40 and the random forest to contain a maximum of 10
concurrent DTs. We average results over 10 models using k-fold
cross-validation.

Results. Fig. 3a depicts the accuracy and memory usage of dif-
ferent neural network models after quantization, as well as the
performance of decisions trees and random forests. The baseline
decision tree achieves 72.2% accuracy and consumes 15 KB of mem-
ory, while the random forest composed of ten DTs achieves 79.4%
accuracy with 161 KB memory usage, roughly 10× the size of a
single DT. An embedded neural network with a single hidden layer
achieves 82%, 82.8%, and 83.2% for 100, 250, and 500 neurons, re-
spectively. Memory-wise, these models consume 20 KB, 39 KB,
and 70 KB, respectively, where 5 KB are assumed for intermediary
results storage. Adding more layers does not improve accuracy
further but induces a significant memory overhead: 82.4% accuracy
and 103 KB of memory when using two layers of 250 neurons, 83.2%
and 318 KB with 2 layers of 500 neurons, and 82.5% and 167 KB
for three layers of 250 neurons. We select a neural network com-
prising one hidden layer of 500 neurons for BlueSeer. For the most
memory-constrained hardware, the model with 100 neurons is the
best trade-off between accuracy and memory.

4.2 Feature Analysis
Scenario: Features importance. The feature extraction process
produces 23 distinct features representing device density, variety,
and environment dynamics. We evaluate the importance of the
produced features and how they affect the performance of BlueSeer.
We withhold a subset of features from the training dataset and
compare the achieved accuracy with the model using all features.
For all models, we use a single BLE scan as input. We average results
over 10 models using k-fold cross-validation.

Results.With all features present and one BLE scan, the baseline
model achieves 81.5% accuracy. Removing features related to the en-
vironment’s variety, such as the number of services, decreases the
accuracy down to 77.6%, while removing RSS-related features drops
the accuracy to 77.1%, and removing the TX Power information
drops to 79.2%. Some redundancy is present in the feature set: re-
moving the number of devices only decreases the accuracy to 80.7%,
while removing the number of advertisements received achieves
80.8% accuracy. Device variety, represented by the available ser-
vices and TX Power, as well as the environment dynamics, with the
RSS measures, are important factors to distinguish between envi-
ronments. The combination of all features provided by the feature
extraction process enables the high accuracy of BlueSeer.

BlueSeer: AI-Driven Environment Detection via BLE Scans DAC ’22, July 10–14, 2022, San Francisco, CA, USA

70
75
80
85
90

Ac
cu

ra
cy

 [%
]

Decision Tree
Random Forest

BlueSeer

Tree
Forest[100]

[250]
[500]

2×[250]
2×[500]

3×[250]

Network Architecture

0

100

200

300

M
em

or
y

 u
sa

ge
 [K

B]

(a) Accuracy and memory costs of different mod-
els.

70

75

80

85

Ac
cu

ra
cy

 [%
]

Dynamic env. All env.

1 2 3 4 5
BLE Scans in Input

0

50

M
em

or
y

us
ag

e
[K

B]

(b) Number of BLE scans as input.

Tr
an

sp
or
t

Of
fic
e

Sh
op

pi
ng

St
re
et

Ho
m
e

Re
st
au

ra
nt

Na
tu
re

Predicted Class

Transport

Office

Shopping

Street

Home

Restaurant

Nature

Tr
ue

 C
la

ss

65.8 0.2 4.6 4.5 0.7 20.3 4.0

1.4 97.8 0.0 0.0 0.8 0.0 0.0

1.1 0.0 70.9 12.7 2.0 1.8 11.5

1.5 0.0 2.8 91.2 1.0 0.5 2.9

0.4 0.2 0.6 0.1 98.6 0.0 0.2

0.0 0.0 1.3 0.0 0.0 98.7 0.0

5.4 0.0 5.2 9.1 3.5 1.1 75.7

(c) Confusion matrix.

Figure 3: Evaluating BlueSeer. (a) A single hidden layer with 500 neurons is sufficient to classify environments accurately and
easily fits into memory-constrained devices. (b) By including multiple scans as input to the neural network, BlueSeer reduces
the risks of fluctuation in highly-dynamic environments. (c) BlueSeer is able to accurately classify restaurant, home and office
samples, but environments with high-mobility are harder to classify. The best out of 10 models achieves 85.5% accuracy.

All fe
atures

w/o Nb. Devices

w/o Nb. Services

w/o TX Power

w/o Nb. Adv.

w/o RSS
70

75

80

85

90

Ac
cu

ra
cy

 [%
]

Figure 4: Feature analysis. The number of services and RSS
measures play an important role in distinguishing environ-
ments. Some features provide redundancy in the input. The
dotted line represents the accuracy when all features are
present.

Scenario: Number of scans.We investigate how the number of
BLE scans used as input to themodel affects the overall accuracy, see
§3.3. More scans should avoid fluctuations due to highly dynamic
environments, but induce a larger input and slightly larger memory
footprint. We average results over 10 models using k-fold cross-
validation.

Results. Fig. 3b depicts the classification accuracy based on the
number of BLE scans used as input. The model achieves 82%, 80.7%,
81.2%, 82.5%, and 83.2% accuracy for the input ranging from 1 up to
5 scans, respectively. As the number of scans increases, the model
more accurately distinguishes between environments with high
dynamics such as transport. Interestingly, the street and shopping
categories perform slightly better with one scan than with two
scans (street drops from 86% with one scan to 82% with two) before

increasing again with three or more scans. Other environments
(nature, home, restaurant) always benefit from more scans. Over
all environments, it is more beneficial to include more scans; we
therefore always include 5 scans for BlueSeer.

4.3 Overall Performance
Scenario: Per-class accuracy.We dissect the performance of Blue-
Seer’s quantized neural network and look at the per-class accuracy
on the test dataset. Each class in the test set comprises 1200 ele-
ments. We take the model that produces the best accuracy out of
10 trained models using k-fold cross-validation.

Results. Fig. 3c depicts the confusion matrix of the quantized
model’s inference over the test set. BlueSeer is able to accurately
classify environments with low dynamics such as home, restaurant,
and office with 98% or more accuracy. However, BlueSeer is less
accurate when it comes to dynamic environments with devices
in motion. Shopping shares many similarities with a busy street,
where many passersby come and go. As transport covers trains,
buses and cars, the class might be too general and could be split into
sub-categories. Similarly, nature contains both city parks, where
many people visit on sunny days, with forests, where meeting a
passerby is less likely. Higher granularity in the categories could
improve accuracy but would require more training data.

Scenario: On-device execution. We now measure BlueSeer’s
footprint on resource-constrained devices. We use the Tensorflow
Lite for Microcontrollers for on-device inference. We measure the
ROM and RAM used by the neural network and the library, the
feature extraction and inference time, as well as the overall energy
cost for BlueSeer.

Results. Table 1 summarizes all resources used up when per-
forming BlueSeer’s inference on the nRF52 SoC (cf. §3.4). BlueSeer

DAC ’22, July 10–14, 2022, San Francisco, CA, USA V. Poirot, O. Harms, H. Martens and O. Landsiedel

Table 1: On-device requirements for BlueSeer.

Feat. Extr. Model Others Total

Flash 1.8 KB 65 KB 46.2 KB (TFLite) 113 KB
RAM 11.9 KB 2 KB 1 KB 15 KB
CPU <1 ms ~12 ms 3 sec (1 scan) 13 ms
Energy 6.4 µJ 111.3 µJ 56.8 mJ (1 scan) 57.9 mJ

uses 113 KB of storage: 65 KB to save the weights, 46 KB for Tensor-
flow Lite’s library. 2 KB of RAM are reserved for dynamic allocation
for the input, temporary results, and output, 1 KB for the library,
and 12 KB for the packet parsing. It takes less than 1 ms to extract
features and ~12 ms to run the inference step on the 64 MHz MCU.
Energy-wise, BlueSeer requires 57.9 mJ to perform one scan and
inference. Assuming BlueSeer executes one scan and inference ev-
ery 10 sec and uses an AAA battery with a capacity of 800 mAh,
we can run over 62 000 BlueSeer inferences. This represents over a
week of constant operation on a single AAA battery.

5 RELATEDWORK
Audio-based detection. Several works establish acoustic sensing
as an accurate enabler for environment detection. Ma et al. rely on
microphones and Hidden Markov Model classifiers to distinguish
between 12 environments such as bus, car, street, and office, from
3-second long audio recordings and achieve up to 93% accuracy [15].
However, the authors do not discuss the problems of privacy arising
from relying on microphones to infer surroundings. Heittola et
al. represent audio fingerprints as histograms and compare new
recordings with previous histograms to distinguish between ten
environments [10]. Choi et al. combine microphone and camera
inputs to detect the user position and activity [5]. Acoustic-based
systems are also proven to improve Human Activity Recognition
(HAR) [20].

Sensor-based detection. Accelerometers play a notable role in
transportation mode detection, as well as HAR. Liang and Wang
introduce a CNN to parse a smartphone’s accelerometer data and
distinguish which transport (such as bus, car, bike) the user is
using [14]. Kern et al. distribute accelerometers over the body to
perform HAR [12]. Sankaran et al. show that a barometer can also
help distinguish between idle, walking, and in-vehicle users [17].
Yang et al. rely on channel state information to detect building
occupancy with only a wifi radio [18]. However, they only detect if
people are present in a room and how many, but do not detect the
users’ activities.

Wireless-enabled localization. Several works investigate the
use of Bluetooth and BLE packets as a driver for localization and
distance estimation [2, 21]. Bertuletti et al. demonstrate that RSS
measures are noisy and lead to a 30% distance estimation error [2].
Zhuang et al. achieve <3m localization using BLE beacons [21].
Ultra-wideband radios aremuchmore accurate and typically achieve
<10 cm localization error, sometimes down to the centimeter [11, 16].
BlueSeer does not aim at solving localization but rather classifies
the general environment of the device.

6 CONCLUSION
Environment detection allows devices to react to their environ-
ments: smartphones can automatically switch to silent mode when
entering a theater, while headphones can adapt their noise cancel-
lation to their surroundings. Although modern phones can rely on
many sensors to infer their environments, such as GNSS chips and
cameras, small IoT wearables lack this diversity and must rely on
the few, energy-efficient components they already incorporate. This
paper shows that a Bluetooth radio is the unique component re-
quired to classify the current environment with high accuracy: the
BLE packets received by a device form awireless fingerprint, unique
enough to infer the correct environment. We present BlueSeer, an
AI-driven environment-detection system specifically tailored to
resource-constrained wearables: from BLE packets, BlueSeer ex-
tract 23 unique features that are fed to a quantized, embedded
neural network. Periodically, BlueSeer scans the wireless medium
for BLE advertisements and executes an embedded neural network
to classify between 7 categories: home, office, shopping, transport,
nature, street, and restaurant. We show that BlueSeer achieves up
to 84% accuracy on resource-constrained devices, while requiring
only 65 KB of memory, and takes ~12 ms to execute on a 64 MHz
microcontroller-unit.

REFERENCES
[1] Fehmi Ben Abdesslem, Andrew Phillips, et al. 2009. Less is More: Energy-Efficient

Mobile Sensing with Senseless. In ACM MobiHeld. 61–62.
[2] S. Bertuletti, A. Cereatti, et al. 2016. Indoor distance estimated from Bluetooth

Low Energy signal strength: Comparison of regression models. In IEEE SAS. 1–5.
[3] Bluetooth SIG. 2019. Bluetooth Core Specification v5.2.
[4] Bluetooth SIG. 2021. Bluetooth 2021 Market Update.
[5] Woo-Hyun Choi, Seung-Il Kim, et al. 2011. Acoustic and visual signal based

context awareness system for mobile application. In IEEE ICCE. 627–628.
[6] Robert David, Jared Duke, et al. 2021. TensorFlow Lite Micro: Embedded Machine

Learning for TinyML Systems. In MLSys, Vol. 3. 800–811.
[7] Bernhard Etzlinger, Barbara Nußbaummüller, et al. 2021. Distance Estimation

for BLE-based Contact Tracing – A Measurement Study. In Wireless Days (WD).
[8] Chiara Falsi, Davide Dardari, et al. 2006. Time of arrival estimation for UWB

localizers in realistic environments. EURASIP J. on Advances in Signal Processing
2006 (2006), 1–13.

[9] Google and Apple. 2020. Exposure Notification - Bluetooth Specification v1.2.
[10] Toni Heittola, Annamaria Mesaros, and Tuomas Virtanen. 2010. Audio con-

text recognition using audio event histograms. In European Signal Processing
Conference. 1272–1276.

[11] Benjamin Kempke, Pat Pannuto, et al. 2016. SurePoint: Exploiting Ultra Wide-
band Flooding and Diversity to Provide Robust, Scalable, High-Fidelity Indoor
Localization. In ACM SenSys. 137–149.

[12] Nicky Kern, Bernt Schiele, et al. 2003. Multi-sensor Activity Context Detection
for Wearable Computing. In Ambient Intelligence. Springer, 220–232.

[13] Patrick Lazik, Niranjini Rajagopal, et al. 2015. ALPS: A Bluetooth and Ultrasound
Platform for Mapping and Localization. In ACM SenSys. 73–84.

[14] Xiaoyuan Liang and Guiling Wang. 2017. A Convolutional Neural Network for
Transportation Mode Detection Based on Smartphone Platform. In IEEE MASS.

[15] Ling Ma, Ben Milner, et al. 2006. Acoustic Environment Classification. ACM
Trans. Speech Lang. Process. 3, 2 (July 2006), 1–22.

[16] Yunfei Ma, Nicholas Selby, et al. 2017. Minding the Billions: Ultra-Wideband
Localization for Deployed RFID Tags. In ACM MobiCom. 248–260.

[17] Kartik Sankaran, Minhui Zhu, et al. 2014. Using Mobile Phone Barometer for
Low-Power Transportation Context Detection. In ACM SenSys. 191–205.

[18] Jianfei Yang, Han Zou, et al. 2018. Device-Free Occupant Activity Sensing Using
WiFi-Enabled IoT Devices for Smart Homes. IEEE Internet of Things J. 5, 5 (2018).

[19] Zephyr Project. 2016. Zephyr Real-Time Operating System.
[20] Yi Zhan and Tadahiro Kuroda. 2014. Wearable sensor-based human activity

recognition from environmental background sounds. J. of Ambient Intelligence
and Humanized Computing 5, 1 (2014), 77–89.

[21] Yuan Zhuang, Jun Yang, et al. 2016. Smartphone-Based Indoor Localization with
Bluetooth Low Energy Beacons. Sensors 16, 5 (2016).

	Abstract
	1 Introduction
	2 Background: Bluetooth LE
	3 Design: BlueSeer
	3.1 Overview
	3.2 Feature Extraction
	3.3 Embedded Neural Network
	3.4 Implementation

	4 Evaluation
	4.1 Neural Architecture
	4.2 Feature Analysis
	4.3 Overall Performance

	5 Related Work
	6 Conclusion
	References

