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A B S T R A C T

In this work, we propose an algorithm performing short-term predictions of the flow and speed
of vehicles on a stretch of road, using past measurements of these quantities. This algorithm
is based on a physics-aware recurrent neural network. A discretization of a macroscopic traffic
flow model (using the so-called Traffic Reaction Model) is embedded in the architecture of
the network and yields traffic state estimations and predictions for the flow and speed of
vehicles, which are physically-constrained by the macroscopic traffic flow model and based
on estimated and predicted space–time dependent traffic parameters. These parameters are
themselves obtained using a succession of LSTM recurrent neural networks. The algorithm is
tested on raw flow measurements obtained from loop detectors.

1. Introduction

Using neural networks to produce short-term traffic predictions is a subject of growing interest, especially since advances in
transportation systems increased substantially the availability of large amount of traffic data from various sources (Zhu et al., 2018;
Zhang et al., 2011). We refer the interested reader to Lee et al. (2021) and Do et al. (2019) for surveys of neural networks-based
models that have been proposed for short-term traffic predictions. These methods have proven to be particularly fit to tackle the
challenges associated with traffic prediction such as the modeling of spatio-temporal dependencies in traffic data or the influence
of external factors (e.g. weather and road conditions, unpredictable traffic events) (Vlahogianni et al., 2014).

Particular architectures have been proposed to model the temporal dependencies present in traffic data (see Yin et al., 2020
for a comprehensive survey), which are due for instance to the fact that these data often consist of time series of measurements
of traffic-related quantities (such as the occupancy, speed and flow) made by sensors on a road. Consequently, algorithms taking
sequential data as input have been proposed to reflect for traffic predictions: the input then consists of a sequence of (possibly
multivariate) variables corresponding to measurements at some times 𝑡−(𝑁𝑝−1) ≤ ⋯ ≤ 𝑡−1 ≤ 𝑡0 and generates predictions of some
quantity of interest at times 𝑡1 ≤ ⋯ ≤ 𝑡𝑁𝑓

(where 𝑡1 ≥ 𝑡0). Examples of such algorithms include time-delayed neural networks
(e.g. Zhong et al., 2005; Abhishek and Misra, 2016; Lingras and Mountford, 2001), (graph) convolutional neural networks (e.g. Pan
et al., 2019; Yu et al., 2017) and recurrent neural networks (RNNs) (e.g. Xu et al., 2017; Ma et al., 2015; Wondimagegnehu and
Alemu, 2017), which will be of particular interest in this work.
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However, regardless of their great prediction performances, a caveat of these approaches is their black-box nature: indeed, due
o their complex nature and high number of parameters, these models lack interpretability as it is hard to understand how (and if)
hese algorithms manage to produce reliable traffic predictions (Vlahogianni et al., 2014; Do et al., 2019). Also, these algorithms
and their performance) depend on a number of hyperparameters (such as the number of hidden layers, the number of nodes, . . . )
hat must be tuned by the practitioner in order to achieve the best performances for a given dataset.

Bearing this in mind, we propose in this work a ‘‘grey-box’’ RNN architecture which aims at providing short-term flow and
peed predictions based on past flow and speed measurements along a stretch of road. The originality of this architecture is that
t combines a conventional RNN with a discretization of a macroscopic traffic flow model in an attempt to yield interpretable
redictions. Indeed, the space–time varying parameters of the traffic model are seen as a set of unobserved time series which are
earned from the measurements. In a first step, a conventional RNN is used to extract these time series of parameters from the
easurements and predict their evolution over a short period of time. The output of this first algorithm is then passed to the traffic
odel to yield both a traffic state estimation and prediction along the whole road. In short, the algorithm is able to both complete

nd predict the speed and flow variations along a road.
Note that the traffic predictions obtained with the proposed approach come directly from the (discretized) macroscopic traffic

odel, and therefore are bound to follow the associated physical model. The idea of constraining neural networks with physical
odels is receiving much attention in the context of solving forward and inverse problems for partial differential equations (PDEs).
hree main approaches have been proposed in this context:

• the physics-informed approach, which consists in using usual (deep) neural architectures to perform the prediction task, while
augmenting the cost function used to train the neural network with terms that describe the PDE and its possible boundary or
initial conditions (e.g. Raissi et al., 2019; Xu and Darve, 2019),

• the physics-regularized approach, which models the data by a Gaussian process (GP) and uses a generative component to
constrain the GP to the PDE model (Wang et al., 2022; Yuan et al., 2021b),

• the physics-aware approach, which consists in explicitly embedding the PDE within the neural architectures used to perform the
prediction task, by dedicating some parts of the network to the approximation of differential operators (e.g. Long et al., 2018,
2019) or to the numerical approximation of the PDE itself (e.g. Berg and Nyström, 2017; Dal Santo et al., 2020; Pakravan
et al., 2021).

For traffic-related problems, most of the focus has been put on the physics-informed approach (Rempe et al., 2021; Huang and
Agarwal, 2020; Liu et al., 2021; Shi et al., 2021). For instance, Huang and Agarwal (2020) proposed a physics-informed method
for density estimation, which was then extended by Liu et al. (2021) to support short-term prediction (assuming that the traffic
characteristics are maintained during the prediction horizon) and noise reduction. But since the knowledge of the PDE governing
the traffic flow is required, they either test their method on data simulated from a known PDE, or perform a preliminary model
identification step. Shi et al. (2021) then proposed to include the parameters of the traffic PDE model into the learning process, but
limited their study to density estimation.

The physics-regularized approach, on the other hand, extends the capabilities of the physics-informed approach by allowing
to exploit incomplete physics knowledge, i.e. allowing to work with partially unspecified PDE models (Wang et al., 2022). The
posterior distribution of the GP used to model the data in this setting is regularized through a prior distribution derived from the
physical PDE model. This Bayesian setting makes the physics-regularized approach robust to noise in the data and a great tool for
uncertainty quantification, as put in evidence by Wang et al. (2022), and more specifically for traffic data by Yuan et al. (2021a,b).
These studies however only focused on traffic state estimation, and not on short-term predictions. Besides, the traffic models they
used were assuming that the models parameters were constant, and not subject to possible changes in time (or space).

Contrary to these works, our method stems from the physics-aware approach: indeed, much like the method Pakravan et al.
(2021) proposed to solve inverse PDE problems, our method consists of using a neural network to learn the space–time varying
parameters of the traffic PDE, and then inputting these parameters into a numerical scheme designed to approximate the PDE. But
since we also learn how to predict the evolution of these parameters, our method can be seen as an extension of their approach for
prediction purposes. To the best of our knowledge, our work presents the first use of physics-aware neural networks for traffic state
estimation and prediction and in the presence of real (traffic) data.

The advantages of using a physics-aware approach are twofold. First, the traffic state estimates and predictions both directly arise
from the traffic model: we learn and predict the evolution of the model parameters, and then simply run the model under these
parameters to get the estimates and predictions. This ensures in particular that key properties of the traffic models (such as non-
negativeness, conservation, and boundedness) are always respected. In contrast, the estimates and predictions from physics-informed
methods are made by neural architectures that have no connection to the physics of the problem: the connection to the physics is
only made in the training phase, when the parameters of the neural network are tuned with a particular cost function. Second,
since we explicitly task our neural architecture with learning how to predict the space–time evolution of the parameters from past
observations, the resulting traffic state predictions can be interpreted as arising from a model with varying traffic characteristics.

Another original aspect of this research is the use of a particular discretization scheme for the macroscopic traffic model, the
so-called Traffic Reaction Model (Lipták et al., 2021), in the context of traffic state predictions. This scheme models flow dynamics
along a discretized road as a chain of chemical reactions happening between adjacent cells (now seen as compartments containing
‘‘fictional’’ chemical reactants). This scheme was shown to be able to reproduce complex traffic pattern observed when performing
2

state and parameter estimation from real-world traffic data (Pereira et al., 2021). It also allows to assimilate the space–time varying
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parameters of the macroscopic traffic model to dimensionless and bounded parameters that are interpreted as the reaction rates of
the chemical reactions mentioned above.

In addition to the interpretation that can be given to the parameters of our architecture and the origin of the predictions it
roduces, most of its hyperparameters are set by the configuration of the detectors along the road of interest, hence removing the
urden of tuning them. Moreover, our approach is particularly suited to high resolution data (i.e. data composed of measurements
ade with high frequency, for instance every minute or less). Such datasets are known to be problematic in prediction applications,
ue to the high level of noise they might have (Li and Rose, 2011). In such cases, noise reduction techniques, such as smoothing
r wavelet algorithms (e.g. Jiang and Adeli, 2004), or aggregation of the measurements are usually applied to the data before
roceeding to the predictions. But there is no consensus on which approach to select (and with which parameters), and besides,
hese techniques have be shown to impact and distort the properties of time series (Vlahogianni and Karlaftis, 2011). Our approach
n the other hand naturally incorporates a smoothing of the measurements inherited from the discretized macroscopic traffic model,
nd is therefore physically justified.

In summary, we propose a physics-aware algorithm for traffic estimation and short-term traffic predictions. Our algorithm uses a
discretization of) macroscopic traffic model to produce traffic state estimations and predictions, even on points of the road where no
easurements are taken. As the result, the architecture, the parameters and the outputs of our algorithm all find physical motivations

nd interpretations.
The outline of this paper is as follows. In Section 2, we present the macroscopic traffic model and its discretization used in out

eural network architecture. In Section 3, we provide some reminders on RNNs and present the architecture. Finally, in Section 4,
e present numerical experiments based on a dataset of flow and speed measurements taken on a Dutch motorway.

We use the following notations in the remainder of the text. We denote by 𝒂⊙ 𝒃 the entry-wise product between two vectors 𝒂
and 𝒃 of same size, and by 𝒂⊘ 𝒃 their entry-wise ratio. We start the indexation of vectors at 0, and given a vector 𝒂 of size 𝑁 , and

set of 𝑝 indices 𝐼 = {𝑖1,… , 𝑖𝑝} ⊂ {0,…𝑁 − 1}, we denote by 𝒂[𝐼] ∈ R𝑝 the vector formed by the entries of 𝒂 at the indices 𝐼 . In
particular, 𝒂[0∶𝑁−2] (resp. 𝒂[1∶𝑁−1]) is the vector containing the first (resp. last) 𝑁 − 1 entries of 𝒂, and for 𝑖 ∈ {0,… , 𝑁 − 1}, 𝒂[𝑖] is
simply the 𝑖th entry of 𝒂. Finally, we denote by ‖𝒂‖ the usual Euclidean norm of a vector 𝒂.

2. Traffic models and data

2.1. First order macroscopic traffic flow model

First order macroscopic traffic flow models link the evolution of two quantities describing the flow and state of the traffic at any
point in time and space: the flow of vehicles 𝑓 and the density of vehicles 𝜌. Both quantities can in particular be coupled through a
conservation law expressing a balance between the numbers of vehicles entering and exiting any section of the road and the number
of vehicles present in this same section. Such balance laws are common when studying for instance the flow of incompressible fluids
and take the following form:

𝜕𝑡𝜌(𝑡, 𝑥) + 𝜕𝑥𝑓 (𝑡, 𝑥) = 𝑞(𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ R, (1)

where 𝑞 is a function acting as a source term and describing for instance on- and off-ramps along the road.
One of the most popular macroscopic traffic flow model, the so-called Lighthill–Whitham–Richards (LWR) model (Richards, 1956;

Lighthill and Whitham, 1955), takes the additional assumption that the flow of vehicles can be expressed as a function (called flux
function) of the density of vehicles. A popular choice of flux function is the so-called Greenshields flux (Greenshields et al., 1935),
for which 𝑓 takes the form

𝑓 (𝑡, 𝑥) = 4𝑓𝑚(𝑡, 𝑥) ×
𝜌(𝑡, 𝑥)
𝜌𝑚

(

1 −
𝜌(𝑡, 𝑥)
𝜌𝑚

)

, 𝑡 ≥ 0, 𝑥 ∈ R, 𝜌 ∈ [0, 𝜌𝑚], (2)

here 𝜌𝑚 > 0 denotes the maximal value the density can take (i.e. the density value corresponding to a bumper-to-bumper traffic)
nd 𝑓𝑚 ≥ 0 denotes the (possibly space–time-dependent) maximal flow of vehicles. This choice follows naturally when enforcing
wo straightforward and physically meaningful conditions that a flux function should satisfy, namely that the flow should be 0 when
he road is empty (i.e. 𝜌 = 0) or at full capacity (i.e. 𝜌 = 𝜌𝑚).

Note that considering a space–time-dependent maximal flow 𝑓𝑚 allows to model for instance situations where the traffic flow
s impacted by road conditions or policies that may vary in time or space. For any given bounded and integrable initial condition
0 ≡ 𝜌(0, ⋅), and any 𝑇 > 0, the existence and uniqueness of (entropy) solutions of the resulting PDE in 𝐶([0, 𝑇 ), 𝐿1(R) ∩ 𝐿∞(R))
as been proven in the general case, where the maximal speed is taken to be a function (𝑡, 𝑥) ↦ 𝑓𝑚(𝑡, 𝑥) that is bounded and
ipschitz-continuous (Karlsen and Towers, 2004; Chen and Karlsen, 2005).

.2. Solving numerically the PDE: The traffic reaction model

In general, no closed-form solution of PDE (1) is available, and therefore, numerical methods must be used to approximate it.
n particular, finite volume schemes have been widely used to compute solutions to (hyperbolic) PDEs of the form (1) since these
olutions can develop discontinuities in finite time but remain locally integrable (LeVeque, 2002). For reasons which will be clarified
n subsequent sections of this paper, we focus on a particular scheme proposed by Lipták et al. (2021) and called Traffic Reaction
3
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Model (TRM). This scheme can be seen as a particular instance of the finite volume schemes investigated by Chainais-Hillairet and
Champier (2001).

Let us once again consider PDE (1) on (R+×R) and the following space–time discretization: in time we consider equidistant time
steps 𝑡𝑛 = 𝑛𝛥𝑡 (for some step size 𝛥𝑡 > 0 and 𝑛 ∈ N) and in space we consider equispaced cells of size 𝛥𝑥 > 0 with centroids 𝑥𝑗 = 𝑗𝛥𝑥
(for 𝑗 ∈ Z). We denote by 𝑥𝑗±1∕2 = 𝑥𝑗 ± 𝛥𝑥∕2 the boundary points of the 𝑗th cell. For each cell 𝑗 and time step 𝑡𝑛, a quantity 𝜌𝑛𝑗 is
defined as follows. At 𝑡 = 𝑡0,

𝜌0𝑗 =
1
𝛥𝑥 ∫

𝑥𝑗+1∕2

𝑥𝑗−1∕2
𝜌0(𝑥) d𝑥, 𝑗 ∈ Z,

where 𝜌0 denotes the initial condition associated with PDE (1), and is assumed to be known. Then, the TRM approximates the
solution of PDE (1) at (𝑡𝑛, 𝑥𝑗 ) by the quantity 𝜌𝑛𝑗 obtained through the following recurrence relation

𝜌𝑛+1𝑗 = 𝜌𝑛𝑗 + 𝜌𝑚
(

𝐶𝑛
𝑗−1𝐹 (𝜌𝑛𝑗−1, 𝜌

𝑛
𝑗 ) − 𝐶𝑛

𝑗 𝐹 (𝜌𝑛𝑗 , 𝜌
𝑛
𝑗+1)

)

+ 𝑞𝑛𝑗 , 𝑗 ∈ Z, 𝑛 ∈ N, (3)

where the quantities 𝐶𝑛
𝑗 and 𝑞𝑛𝑗 are given by

𝐶𝑛
𝑗 = 4

𝜌𝑚𝛥𝑥 ∫

𝑡𝑛+1

𝑡𝑛
𝑓𝑚(𝑡, 𝑥𝑗+1∕2) d𝑡, 𝑗 ∈ Z, 𝑛 ∈ N,

𝑞𝑛𝑗 = 1
𝛥𝑥 ∫

𝑡𝑛+1

𝑡𝑛
∫

𝑥𝑗+1∕2

𝑥𝑗−1∕2
𝑞(𝑡, 𝑥) d𝑥 d𝑡, 𝑗 ∈ Z, 𝑛 ∈ N,

and 𝐹 denotes the numerical flux defined by

𝐹 (𝑟, 𝑟′) = 𝑟
𝜌𝑚

(

1 − 𝑟′

𝜌𝑚

)

, 𝑟, 𝑟′ ∈ [0, 𝜌𝑚].

Note in particular that, in order to apply this recurrence relation, the maximal flow 𝑓𝑚 and the source term 𝑞 (or at least their
discretized counterparts 𝐶𝑛

𝑗 , 𝑞
𝑛
𝑗 ) must be known at any time and space location.

Remark 2.1. Note that the recurrence relation (3) actually stems from a stable forward Euler discretization of the system of ordinary
differential equations (ODEs) satisfied by a set of functions {𝜌𝑗}𝑗∈Z and given by

�̇�𝑗 (𝑡) =
1
𝛥𝑥

(

𝑓𝑚(𝑡, 𝑥𝑗−1∕2)𝐹 (𝜌𝑗−1, 𝜌𝑗 ) − 𝑓𝑚(𝑡, 𝑥𝑗+1∕2)𝐹 (𝜌𝑗 , 𝜌𝑗+1)
)

+𝑄𝑗 (𝑡), 𝑡 > 𝑡0,

where for 𝑗 ∈ Z, 𝑄𝑗 is given by

𝑄𝑗 (𝑡) =
1
𝛥𝑥 ∫

𝑥𝑗+1∕2

𝑥𝑗−1∕2
𝑞(𝑡, 𝑥) d𝑥, 𝑡 ≥ 0.

As defined, the quantity 𝜌𝑛𝑗 acts as an approximation of the cell average at time 𝑡𝑛 and on the 𝑗th cell of the solution 𝜌 of
DE (1) which is the ratio of the integral over the 𝑗th cell of the function 𝑥 ↦ 𝜌(𝑡𝑛, 𝑥) to the cell size. Assuming that 𝑓𝑚 is bounded
nd Lipschitz-continuous, Chainais-Hillairet and Champier (2001) proved the convergence, to the entropy solution of the PDE, of a
lass of finite volume schemes that includes the TRM as the step size 𝛥𝑡, 𝛥𝑥 → 0, provided that these quantities satisfy a so-called
ourant–Friedrichs–Lewy (CFL) condition given by

𝛥𝑡
𝛥𝑥

<
𝜌𝑚

8‖𝑓𝑚‖∞
, (4)

where ‖𝑓𝑚‖∞ = sup𝑡≥0,𝑥∈R |𝑓𝑚(𝑡, 𝑥)|. Note that since 𝑓𝑚 is nonnegative, this condition imposes that the coefficients 𝐶𝑛
𝑗 , 𝑗 ∈ Z, 𝑛 ∈ N,

satisfy

𝐶𝑛
𝑗 < 1

2
, 𝑗 ∈ Z, 𝑛 ∈ N. (5)

This condition is instrumental into proving the stability, monotonicity and ultimately convergence of the TRM scheme.

Remark 2.2. The TRM can be derived by assimilating the traffic flow dynamic (on the discretized road) to a chemical reaction
network (Lipták et al., 2021; Pereira et al., 2021). More precisely, each cell is modeled as a compartment containing two
(homogeneously-distributed) fictional chemical reactants: molecules of occupied space 𝑂𝑗 and molecules of free space 𝐹𝑗 . The density
of vehicles 𝜌𝑗 within a cell 𝑗 is then assimilated to the concentration of occupied space 𝑂𝑗 , and the variations in time of this density
is interpreted as resulting from chemical reactions happening at the boundaries of the cell. Namely, the chemical reaction happening
at the boundary between the cells 𝑗 and 𝑗 + 1 ‘‘transforms’’ a molecule of occupied space 𝑂𝑗 in 𝑗 and a molecule of free space 𝛷𝑗+1
in 𝑗 + 1 into a molecule of free space 𝛷𝑗 in 𝑗 and a molecule of occupied space 𝑂𝑗+1 in 𝑗 + 1 (cf. Fig. 2.1).

The TRM then falls from writing the kinetics of these reactions using the law of mass action (Feinberg, 2019) (assuming that the
reactions described above happen with some rate 𝑘𝑗 that can be time-dependent). As for the coefficients 𝐶𝑗 and 𝑞𝑗 , they are seen as
4

respectively reaction rates between compartments and external intakes or outtakes of reactants (cf. Pereira et al., 2021 for details).
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Fig. 2.1. Representation of the Traffic Reaction Model interpretation of traffic flow.

In practice, the modeled road is not infinite, and only a finite number of cells is used to discretize it. Hence, boundary conditions
must be supplied to define the evolution of the outer cells of the road. Indeed, assuming that the road is discretized using 𝑁𝑥 cells
(numbered from 1 to 𝑁𝑥), the recurrence relation (3) takes the form

𝜌𝑛+1𝑗 = 𝜌𝑛𝑗 + 𝜌𝑚
(

𝐹 𝑛
𝑗−1 − 𝐹 𝑛

𝑗

)

+ 𝑞𝑛𝑗 , 𝑗 ∈ {1,… , 𝑁𝑥}, (6)

where for the interior cells (cells 2 to 𝑁𝑥 − 1), the quantities 𝐹 𝑛
𝑘 are defined as the TRM numerical fluxes:

𝐹 𝑛
𝑘 = 𝐶𝑛

𝑘𝐹 (𝜌𝑛𝑘, 𝜌
𝑛
𝑘+1), 𝑘 ∈ {1,… , 𝑁𝑥 − 1}. (7)

For the boundary cells (cells 1 and 𝑁𝑥), the TRM numerical flux would require the quantities 𝜌𝑛0, 𝜌
𝑛
𝑁𝑥+1

∈ [0, 𝜌𝑚], which are no longer
defined. A natural approach would consist in considering these quantities as additional parameters of the model. Then, for instance,
the numerical flux 𝐹 𝑛

0 would be given by

𝐹 𝑛
0 = 𝐶𝑛

0𝐹 (𝜌𝑛0, 𝜌
𝑛
1) =

𝐶𝑛
0𝜌

𝑛
0

𝜌𝑚

(

1 −
𝜌𝑛1
𝜌𝑚

)

and is therefore parameterized only by the product of the independent parameters 𝐶𝑛
0 and 𝜌𝑛0 (divided by the maximal density 𝜌𝑚).

Therefore, we propose to directly consider the factor 𝐶𝑛
0𝜌

𝑛
0∕𝜌𝑚 ∈ (0, 1∕2) as a parameter of the model, and denote it, with a slight

abuse of notation, by 𝐶𝑛
0 . Using the same approach for the numerical flux 𝐹 𝑛

𝑁𝑥
, we end up with the following expressions:

𝐹 𝑛
0 = 𝐶𝑛

0

(

1 −
𝜌𝑛1
𝜌𝑚

)

= 𝐶𝑛
0𝐹 (𝜌𝑚, 𝜌𝑛1),

𝐹 𝑛
𝑁𝑥

= 𝐶𝑛
𝑁𝑥

𝜌𝑁𝑥

𝜌𝑚
= 𝐶𝑛

𝑁𝑥
𝐹 (𝜌𝑁𝑥

, 0),
(8)

where 𝑛 ∈ N0. Note that this setting is equivalent to considering that the road is full upstream (i.e. 𝜌𝑛0 = 𝜌𝑚) and empty downstream
(i.e. 𝜌𝑛𝑁𝑥+1

= 0). The reaction rates 𝐶𝑛
0 and 𝐶𝑛

𝑁𝑥
are then used to control the amount of vehicles allowed to enter or exit the road

between 𝑡𝑛 and 𝑡𝑛+1.

Remark 2.3. Multiplying the recurrence relation (6) by 𝛥𝑥 yields an equation describing the variation of the number of vehicles
inside the 𝑗th cell between 𝑡𝑛 and 𝑡𝑛+1:

𝜌𝑛+1𝑗 𝛥𝑥 − 𝜌𝑛𝑗𝛥𝑥 = (𝜌𝑚𝛥𝑥)𝐹 𝑛
𝑗−1 − (𝜌𝑚𝛥𝑥)𝐹 𝑛

𝑗 + 𝑞𝑛𝑗 𝛥𝑥.

In this last equation, the quantity 𝑞𝑛𝑗 𝛥𝑥 corresponds to the net volume of vehicles added or subtracted to the cell by the source term,
and the quantity (𝜌𝑚𝛥𝑥)𝐹 𝑛

𝑗 corresponds to the volume of vehicles exiting the cell 𝑗 and entering the cell (𝑗 +1). Hence, dividing this
last quantity by the time step 𝛥𝑡 then gives an approximation of the flow of vehicles 𝑓 (𝑡𝑛, 𝑥𝑗+1∕2) at the interface between the cells
𝑗 and (𝑗 + 1), and at time 𝑡𝑛:

𝑓 (𝑡𝑛, 𝑥𝑗+1∕2) ≈
𝜌𝑚𝛥𝑥
𝛥𝑡

𝐹 𝑛
𝑗 , 𝑗 ∈ {0,… , 𝑁𝑥}, 𝑛 ∈ N.

Hence, the numerical flux 𝐹 𝑛
𝑗 can be assimilated to an estimation of the flow of vehicles passing the point 𝑥𝑗+1∕2 at time 𝑡𝑛 by scaling

this flow by a factor 𝜌𝑚𝛥𝑥∕𝛥𝑡.
Recalling then that, according to the fundamental relations of traffic flow, the speed of vehicles can be obtained as the ratio

between the flow and the density of vehicles, we propose to approximate the speed of vehicles 𝑣(𝑡𝑛, 𝑥𝑗+1∕2) at the point 𝑥𝑗+1∕2 at
time 𝑡𝑛 as

𝑣(𝑡𝑛, 𝑥𝑗+1∕2) =
𝑓 (𝑡𝑛, 𝑥𝑗+1∕2) ≈

𝑓 (𝑡𝑛, 𝑥𝑗+1∕2)
𝑛 𝑛 ≈ 𝛥𝑥 𝐹 𝑛

𝑗
𝑛 𝑛 , 𝑗 ∈ {0,… , 𝑁𝑥}, 𝑛 ∈ N.
5
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In particular, we take 𝜌𝑛0 = 𝜌𝑛1 and 𝜌𝑁𝑥+1 = 𝜌𝑁𝑥
to treat the boundary cases. If we now denote by 𝑉 𝑛

𝑗 the so-called numerical speed
defined by

𝑉 𝑛
𝑗 =

𝐹 𝑛
𝑗

(𝜌𝑛𝑗∕𝜌𝑚 + 𝜌𝑛𝑗+1∕𝜌𝑚)∕2
, 𝑗 ∈ {0,… , 𝑁𝑥}, 𝑛 ∈ N,

we obtain that 𝑉 𝑛
𝑗 can be assimilated to an estimation of the speed of vehicles passing the point 𝑥𝑗+1∕2 at time 𝑡𝑛 by scaling it by a

factor 𝛥𝑥∕𝛥𝑡.

3. Traffic predictions using neural networks

3.1. Recurrent neural networks

Recurrent neural networks (RNN) are a particular type of neural networks designed to take sequential or time-ordered data as
inputs, and widely used in applications such as time series prediction, natural language processing, or speech recognition (Karpathy
et al., 2015). We now provide a short introduction on these algorithms, but refer the interested reader to Karpathy et al. (2015),
Sutskever (2013), Goodfellow et al. (2016) and Sherstinsky (2020) for more details on the matter.

Given an input sequence 𝑿 = (𝒙(1),… ,𝒙(𝑁seq)) (composed of vectors of size 𝑁in > 0), a RNN computes a sequence of so-called cell
states 𝑺 = (𝒔(1),… , 𝒔(𝑁seq)) (composed of vectors of size 𝑁state > 0) which are turned into a sequence of outputs 𝒀 = (𝒚(1),… , 𝒚(𝑁seq))
(composed of vectors of size 𝑁out > 0). Assuming that an initial state 𝒔(0) has been set, the operations performed by the RNN can
be summed up by the following recurrence relations:

{

𝒔(𝑛) = 1(𝒔(𝑛−1), 𝒙(𝑛)),

𝒚(𝑛) = 2(𝒔(𝑛), 𝒙(𝑛)),
(9)

where 𝑛 ∈ {1,… , 𝑁seq} and 1,2 are two nonlinear (vector-valued) functions depending on parameters determined during the
training of the RNN. For instance, in the so-called Simple RNN (SRNN), the functions 1 and 2 are MultiLayer Perceptrons (MLPs)
(cf. Appendix A).

A shortcoming of RNNs is the problem of vanishing and exploding gradients, which occur when backpropagation is used to
compute the gradient of the cost function used when training the algorithm. This can result in a training phase that fails to produce
adequate parameters for the model to yield low-error predictions. The Long Short-Term Memory (LSTM) architecture was proposed
to avoid this pitfall. In this setting, the state vectors 𝒔(𝑛) (𝑛 ∈ {1,… , 𝑁seq}) can be seen as composed by two subvectors 𝒄(𝑛) and 𝒉(𝑛)

of the same size 𝑁out, i.e. 𝒔(𝑛) = (𝒄(𝑛),𝒉(𝑛)) and 𝑁state = 2𝑁out. The nonlinear functions 1 and 2 defining the RNN in (9) then take
the form

⎧

⎪

⎨

⎪

⎩

𝒔(𝑛) =
(

𝒄(𝑛)
𝒉(𝑛)

)

=
(

1(𝒉(𝑛−1), 𝒙(𝑛))⊙ 𝒄(𝑛−1) + 2(𝒉(𝑛−1), 𝒙(𝑛))⊙ 3(𝒉(𝑛−1), 𝒙(𝑛))
4(𝒉(𝑛−1), 𝒙(𝑛))⊙ 𝜎(𝒄(𝑛)),

)

𝒚(𝑛) = 𝒉(𝑛),

where 𝑛 ∈ {1,… , 𝑁seq} and 𝑖, 𝑖 ∈ {1,… , 4} denote single layer perceptrons (cf. Appendix A) and 𝜎 denotes the application of a
nonlinear activation function (usually tanh) to all entries of a given vector and ⊙ denotes the component-wise product between two
vectors (cf. Fig. 3.1 for a visual representation of an LSTM). Note in particular that 𝑖, 𝑖 ∈ {1,… , 4}, takes as input a vector of size
𝑁in +𝑁out and gives as an output a vector of size 𝑁out. Hence, in total, a LSTM RNN has 4𝑁out(𝑁in +𝑁out + 1) parameters.)

3.2. The TRM as a RNN

Since the TRM can be seen as a forward Euler discretization of a system of ODEs (cf. Remark 2.1), it can also be interpreted as an
instance of RNN for which the successive states of the RNN represent successive states of the discretized system of ODEs (Ruthotto
and Haber, 2019; Sherstinsky, 2020). Hence, taking the notations introduced in the previous subsection, the state vector 𝒔(𝑛) of the
RNN associated with the TRM is no other than the vector containing the normalized numerical solution of PDE (1) at the 𝑘th time
step, i.e. 𝒔(𝑛) = (𝜌𝑛1∕𝜌𝑚,… , 𝜌𝑛𝑁𝑥

∕𝜌𝑚) ∈ R𝑁𝑥 , where 𝑁𝑥 is the number of road cells after discretization. As for the input 𝒙(𝑛), it is given
by the vector containing the reaction rates at the 𝑛th time step and each road interface, i.e. 𝒙(𝑛) = (𝐶𝑛−1

0 ,… , 𝐶𝑛−1
𝑁𝑥

) ∈ R𝑁𝑥+1.
Since our goal is to perform flow and speed predictions, we consider the TRM as a RNN with two outputs: the numerical fluxes

𝒚(𝑛)𝑓 = (𝐹 𝑛−1
0 ,… , 𝐹 𝑛−1

𝑁𝑥
) ∈ R𝑁𝑥+1 and the average speeds 𝒚(𝑛)𝑣 = (𝑉 𝑛−1

0 ,… , 𝑉 𝑛−1
𝑁𝑥

) ∈ R𝑁𝑥+1, as defined in Section 2.2. By definition of
the TRM recurrence (3), when omitting the source terms, the corresponding RNN Eqs. (9) are given, for any 𝑛 ∈ {1,… , 𝑁seq}, by

⎧

⎪

⎪

⎨

⎪

⎪

𝒔(𝑛) = 𝒔(𝑛−1) + 𝒇 (𝑛−1)
[0∶𝑁𝑥−1]

− 𝒇 (𝑛−1)
[1∶𝑁𝑥]

,

𝒚(𝑛)𝑓 = 𝒇 (𝑛−1),

𝒚(𝑛)𝑣 = 𝒗(𝑛−1),
6
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Fig. 3.1. LSTM architecture: 𝑖, 𝑖 ∈ {1,… , 4} denote single layer perceptrons, ⊙ denotes the component-wise product between two vectors, + denotes the sum
of two vectors and 𝜎 denotes the application of an activation function to the entries of a vector.

Table 3.1
Notations used to define the physics-aware neural network.
Notation Definition

𝛥𝑥 Space discretization step of the road (also used by the TRM)
𝛥𝑇 Time step between consecutive measurements
𝑃𝑡 Time subdivision factor of the TRM used to comply with the CFL condition (cf. Remark 3.1)
𝛥𝑡 Time step used by the TRM (𝛥𝑡 = 𝛥𝑇 ∕𝑃𝑡)
𝑁𝑥 Number of road cells after discretization (𝑁𝑥 = (Length of the road)/𝛥𝑥)
𝑁𝑖 Total number of road interfaces in the road (𝑁𝑖 = 𝑁𝑥 + 1)
𝑁𝑜 Number of interfaces for which measurements are available (𝑁𝑜 ≤ 𝑁𝑖)
𝑁𝑝 Number of past time steps used for the predictions
𝑁𝑓 Total number of predicted time steps

where the vectors 𝒇 (𝑛−1) ∈ R𝑁𝑥+1 and 𝒗(𝑛−1) ∈ R𝑁𝑥+1 are defined by

𝒇 (𝑛−1) = 𝒙(𝑛−1) ⊙

⎛

⎜

⎜

⎜

⎜

⎝

1

𝒔(𝑛−1)

⎞

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎝

1 − 𝒔(𝑛−1)

1

⎞

⎟

⎟

⎟

⎟

⎠

, 𝒗(𝑛−1) = 𝒇 (𝑛−1) ⊘

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝒔(𝑛−1)[0]

(𝒔(𝑛−1)[0∶𝑁𝑥−2]
+ 𝒔(𝑛−1)[1∶𝑁𝑥−1]

)∕2

𝒔(𝑛−1)[𝑁𝑥−1]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence, note that the densities approximated by the TRM define the internal state of the corresponding RNN, and not its output.
We therefore work with an approach similar to state-space models, where the state of the system is the density of vehicles, the
dynamics of the system are defined by the TRM (and therefore by extension, the macroscopic traffic flow model (1)) and the output
of the model are the numerical fluxes and average speeds of the TRM.

As a RNN, the TRM has a few particularities. First, and as described above, it has no tuning parameters, and its inputs, output and
states are interpretable as components of a traffic flow model. Second, one can note the nonlinearities that appear in the derivation
of the TRM are only polynomial, as the states and outputs can be written as polynomial expressions of the inputs and past states.

3.3. Physics-aware neural network for traffic state estimation and prediction

In our setting, we assume that traffic is observed on a stretch of road with no on/off-ramps, for sake of simplicity. We gather in
Table 3.1 all the notations used in this section.

The road is discretized into segments of length 𝛥𝑥 and the flow and speed of vehicles are recorded every 𝛥𝑇 > 0 seconds at some
locations inside the road. In particular, we assume that the data then consists of measurements of the flow and speed of vehicles
at some (or all) of the interfaces between the road segments (or ‘‘road interfaces’’ for short). We denote by 𝑁𝑜 the number of road
interfaces at which measurements are taken and by 𝑁𝑖 ≥ 𝑁𝑜 the total number of road interfaces in the road. In particular, the
number 𝑁𝑠 of segments used to discretize the road satisfies 𝑁𝑠 = 𝑁𝑖 − 1.

We propose to use RNNs to perform short term predictions of the flow and speed of vehicles based on the TRM. More precisely,
we start with measurements at 𝑁𝑝 consecutive time steps 𝑡−𝑁𝑝+1,… , 𝑡−1, 𝑡0 (where 𝑡𝑖+1 = 𝑡𝑖 + 𝛥𝑇 , 𝑖 ∈ {−𝑁𝑝 + 1,… ,−1}) at the 𝑁𝑜
observed interfaces of the road and wish to predict the flow and speed of vehicles at time 𝑡𝑁𝑓

= 𝑡0+𝑁𝑓𝛥𝑇 at both the observed and
unobserved interfaces of the road. Hence we aim at conjointly inpaint and forecast the flow and speed of vehicles along the road.
7
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Fig. 3.2. Detail of the architecture used for predictions. The circles stand for road interfaces and green if an observation or estimate is available, and black
therwise. The data, which consists a sequence of flow and speed measurements, is fed to a first LSTM RNN (the Extractor) tasked with estimating the reaction
ates that gave rise to the observations. These reaction rates are then extended to future time steps using a second LSTM RNN, the Predictor. All these reaction
ates then serve as input of a TRM RNN which produces a smoothed version of the observed traffic states, and extends them to future time steps. The blocks
LP 1 and MLP 2 correspond to the multilayer perceptrons used to initialize respectively the Extractor and the TRM.

We propose to use the TRM RNN in Section 3.2 to model the evolution of the traffic along the road between 𝑡−𝑁𝑝+1 and 𝑡𝑁𝑓
. We

ence consider a TRM defined on the discretized road, and to comply with the CFL condition (4), we follow the multilevel approach
roposed in Pereira et al. (2021) and consider a time step 𝛥𝑡 for the TRM given by 𝛥𝑡 = 𝛥𝑇 ∕𝑃𝑡 where 𝑃𝑡 is an integer such that

𝑃𝑡 >
8‖𝑓𝑚‖∞

𝜌𝑚
𝛥𝑇
𝛥𝑥

.

Such a choice ensures that 𝛥𝑡 and 𝛥𝑥 satisfy the CFL condition (4), and therefore the stability of the TRM (Pereira et al., 2021;
Lipták et al., 2021).

Remark 3.1. Recall then that 𝜌𝑚 and ‖𝑓𝑚‖∞ denote respectively the maximal values the density and flow of vehicles can take. The
former can be approximated by the ratio between the number of lanes in the road and the average length of the vehicles. As for the
latter, recall that the speed of vehicles can be identified with the ratio between the flow and the density. Assuming that this speed
is bounded by some value 𝑣𝑚 (for instance 180 km∕hour) and using (2), we can upper-bound ‖𝑓𝑚‖∞ by 𝑣𝑚𝜌𝑚∕4. Hence, we can take
𝑃𝑡 to be the smallest integer such that

𝑃𝑡 > 2𝑣𝑚
𝛥𝑇
𝛥𝑥

.

Then, the corresponding TRM RNN requires us to specify:

• an input sequence, taken as the sequence of (𝑁𝑓 +𝑁𝑝 − 1)𝑃𝑡 + 1 vectors, containing the values of the TRM reaction rates (at
every road interface) at times 𝑡 + 𝑘𝛥𝑡, for 𝑘 ∈ {0,… , (𝑁 +𝑁 − 1)𝑃 };
8
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T

Table 3.2
Sizes and number of parameters. Note that the Predictor LSTM has no inputs. The notations are defined in Table 3.1. The last column gives the
number of parameters for the architecture used in the numerical experiment of Section 4, as an example.

Input size State size Output size Number of trainable parameters Numerical experiment

MLP 1 2𝑁𝑜 – 2𝑁𝑖 4𝑁𝑖(𝑁𝑖 +𝑁𝑜 + 1) 14,144
Extractor 𝑁𝑝 × (2𝑁𝑜) 2𝑁𝑖 𝑁𝑝 ×𝑁𝑖 4𝑁𝑖(𝑁𝑖 + 2𝑁𝑜 + 1) 17,264
MLP 2 𝑁𝑜 – 𝑁𝑖 − 1 (𝑁𝑖 − 1)(𝑁𝑖 +𝑁𝑜 + 1) 3468
Predictor – 2𝑁𝑖 𝑁𝑓 ×𝑁𝑖 4𝑁𝑖(𝑁𝑖 + 1) 11,024
TRM

(

(𝑁𝑓 +𝑁𝑝 − 1)𝑃𝑡 + 1
)

×𝑁𝑖 𝑁𝑖 − 1
(

(𝑁𝑓 +𝑁𝑝 − 1)𝑃𝑡 + 1
)

× (2𝑁𝑖) 0 0
Total – – – (13𝑁𝑖 − 1)(𝑁𝑖 +𝑁𝑜 + 1) 45,900

• an initial state, taken as the vector containing the density of vehicles inside each road cell at time 𝑡−𝑁𝑝+1.

he TRM RNN then outputs two sequences of (𝑁𝑓 +𝑁𝑝 − 1)𝑃𝑡 + 1 vectors, containing respectively the values of the flow and of the
speed of vehicles at every road interface, between 𝑡−𝑁𝑝+1 and 𝑡𝑁𝑓

. In particular, at 𝑡0, we get a traffic state estimation for the flow
and speed of vehicles, available everywhere on the road. The next 𝑁𝑓 elements of the output sequences then give the desired flow
and speed predictions at times steps 𝑡1,… , 𝑡𝑁𝑓−1 (also everywhere on the road).

In order to specify the input sequence needed by the TRM RNN, we proceed as follows. Starting from the 𝑁𝑝 flow and speed
measurements at times 𝑡−𝑁𝑝+1,… , 𝑡0 and at the 𝑁𝑜 observed road interfaces, we use a LSTM RNN to estimate the reaction rates at
the same time stamps and at all of the road interfaces (including the unobserved ones). Namely, we consider a LSTM network whose
input sequence is given by the flow and speed measurements and whose outputs are used as estimates for the reaction rates at times
𝑡−𝑁𝑝+1,… , 𝑡0. We refer to this LSTM network as ‘‘Extractor’’ as it is in fact used to extract reaction rates estimates from flow and
speed measurements. The initial state of this RNN is obtained as the output of a 2-layer MLP taking as input the flow and speed
measurements at time 𝑡−𝑁𝑝+1.

Then, the reaction rates at times 𝑡1,… , 𝑡𝑁𝑓
are predicted using a second LSTM RNN with no inputs, and with initial state given

by the last state of the Extractor network (which corresponds to the state of Extractor at time 𝑡0). We refer to this second RNN as
‘‘Predictor’’, as it is in fact used to predict reaction rates beyond the time scope of the input measurements (i.e. for times greater
than 𝑡0).

Remark 3.2. Note that since the Extractor and Predictor are tasked with estimating and predicting reaction rates, their outputs
should take values in (0, 1∕2), in accordance with the CFL condition (cf. Eq. (5)). This is achieved by choosing the activation functions
of these RNNs to be sigmoid functions (hence ensuring that the output is in (0, 1)) and scaling the output by a factor 1∕2 before
using them.

Hence, we end up with reaction rates at times 𝑡−𝑁𝑝+1,… , 𝑡0, 𝑡1,… , 𝑡𝑁𝑓
and at every road interface. We then complete these

reaction rates by assuming that the reaction rates stay constant between these time steps, thus allowing us to have reaction rates
at any time 𝑡−𝑁𝑝+1 + 𝑘𝛥𝑡, for 𝑘 ∈ {0,… , (𝑁𝑓 +𝑁𝑝 − 1)𝑃𝑡} (as needed by the TRM RNN). These reaction rates are then used in the
TRM RNN described above and yield estimates for the flow and speed of vehicles at the same time steps. In particular, since the
TRM is nothing but the discretization of the continuous traffic model (1), the TRM RNN then recreates, under this traffic model,
the traffic dynamics during the time scope of the observations (i.e. between 𝑡−𝑁𝑝+1 and 𝑡0) and extends it to future times (i.e. 𝑡1 to
𝑡𝑁𝑓

) to yield predictions. As for the initial state of the TRM RNN, it is obtained as the output of a 2-layer MLP taking as input the
ratio between the flow and speed measurements at time 𝑡−𝑁𝑝+1.

In the end, our proposed architecture takes as input a sequence of past flow and speed observations, and outputs a re-estimation
of these observations under the assumption that they arise from the traffic flow model (1), and then uses this same model to extend
the traffic dynamics to future times, hence yielding the flow predictions. In particular, when the observations consist in noisy
(raw) measurements, their re-estimation by the TRM RNN can be seen as a smoothing of the measurements. This smoothing is a
consequence of the smooth nature of the TRM as a finite volume discretization of a PDE, and was already noted by Pereira et al.
(2021). Hence, it has a physical interpretation as resulting from the traffic flow model (1), and is integrated to the learning process.
We sum up in Fig. 3.2 the architecture used for predictions.

The number of free parameters to learn, as well as the size of the input, output and (when applicable) state vectors or sequences
of the different networks involved in our prediction approach are presented in Table 3.2. These parameters are determined through
training, in a supervised learning setting: hence, a cost function evaluating the discrepancy between ‘‘ideal’’ outputs of the network
and the actual outputs obtained is minimized to determine a set of optimal parameters.

In practice, we perform training as follows. We assume that we have at our disposal a ‘‘long’’,1 history of flow and speed
measurements. Note in particular that, following Remark 2.3 we scale the flow and speed measurements in order to make them
comparable to the outputs of the TRM RNN. From these (scaled) observations, we can form a large set of so-called training examples,
which consist of pairs (𝑿, 𝒀 ), where

1 ‘‘Long’’ here can be understood as having a total time scope for the observation much larger than (𝑁 +𝑁 )𝛥𝑡.
9

𝑝 𝑓



Transportation Research Part C 142 (2022) 103772M. Pereira et al.

r

N

F
a
a
s

Fig. 4.1. Road and detectors. The red ticks on the horizontal axis mark the actual position of the detectors on the road. Below this axis, we represent the
oad discretization we consider, obtained by dividing the road into segments of 160m: we use continuous red lines for the road interfaces for which data are

available, and black dashed lines for the others.

• 𝑿 = (𝑿𝑓 ,𝑿𝑣) is a set containing a sequence of 𝑁𝑝 consecutive flow measurements 𝑿𝑓 = (𝒇−𝑁𝑝+1,… ,𝒇 0) and a sequence
of 𝑁𝑝 consecutive speed measurements 𝑿𝑣 = (𝒗−𝑁𝑝+1,… , 𝒗0), both corresponding to some consecutive observation times
𝑡−𝑁𝑝+1,… , 𝑡0;

• 𝒀 = (𝒀 𝑓 , 𝒀 𝑣) is a set containing a sequence of 𝑁𝑝+𝑁𝑓 consecutive flow measurements 𝒀 𝑓 = (𝒇−𝑁𝑝+1,… ,𝒇𝑁𝑓
) and a sequence

of 𝑁𝑝+𝑁𝑓 consecutive speed measurements 𝒀 𝑣 = (𝒗−𝑁𝑝+1,… , 𝒗𝑁𝑓
), both corresponding to some consecutive observation times

𝑡−𝑁𝑝+1,… , 𝑡0,… , 𝑡𝑁𝑓
; note in particular that the first 𝑁𝑝 elements of 𝒀 𝑓 (resp. 𝒀 𝑣) are the same as the elements of 𝑿𝑓 (resp.

𝑿𝑣).

In an example (𝑿, 𝒀 ), 𝑿 is used as an input of the flow and speed prediction network  that we are training, and 𝒀 is used as the
ideal output we would like to get from  .

Let us denote by 𝒀 =  (𝑿,𝜽) = (𝒀 𝑓 , 𝒀 𝑣) the output of  with a set of parameters 𝜽, and when inputting 𝑿. In particular,
𝒀 𝑓 = (𝒇−𝑁𝑝+1,… ,𝒇𝑁𝑓

) is the sequence of estimated and predicted flows, and 𝒀 𝑣 = (�̂�−𝑁𝑝+1,… , �̂�𝑁𝑓
) is the sequence of estimated

and predicted speeds. Let us then consider a set of 𝑁ex examples {(𝑿(𝑗), 𝒀 (𝑗))}, 𝑗 ∈ {1,… , 𝑁ex}. We determine the optimal set of
parameters 𝜽 associated with these examples by minimizing the cost function 𝐿 given by

𝐿(𝜽) = 1
𝛼𝑓

𝓁(𝒀 𝑓 , 𝒀 𝑓 ) +
1
𝛼𝑣

𝓁(𝒀 𝑣, 𝒀 𝑣) +
1
𝛼𝑟

𝑅(𝜽), (10)

where 𝛼𝑓 , 𝛼𝑣, 𝛼𝑟 > 0 are scaling constants, 𝑅(𝜽) is a regularization term, and the term 𝓁(𝒀 𝑓 , 𝒀 𝑓 ) (resp. 𝓁(𝒀 𝑣, 𝒀 𝑣)) measures the
discrepancy, over the examples, between the network outputs and the flow (resp. speed) measurements. In particular, we evaluate
these discrepancies in the mean-squared sense, i.e. we take

𝓁(𝒀 𝑓 , 𝒀 𝑓 ) =
1

𝑁ex
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,

𝓁(𝒀 𝑣, 𝒀 𝑣) =
1

𝑁ex
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.

ote that the first two inner-sums defining 𝓁(𝒀 𝑓 , 𝒀 𝑓 ) and 𝓁(𝒀 𝑣, 𝒀 𝑣) have very particular roles: the first one assesses the capacity of
the TRM to recreate the dynamics of the observations, and the second one assesses its capacity to extend it to make predictions.

As for the regularization term, its role is to counteract the tendency the TRM might have to overfit the data through physically
unsound reaction rates. As proposed by Pereira et al. (2021), a regularization term limiting the spatial and temporal variations of
these reaction rates can be used for this purpose: we hence choose 𝑅(𝜽) to be defined as

𝑅(𝜽) = 1
2

(

1
𝑁𝑝 +𝑁𝑓

𝑁𝑓
∑

𝑛=−𝑁𝑝+1

1
𝑁𝑥

𝑁𝑥−1
∑

𝑖=0

(

𝐶𝑛
𝑖+1 − 𝐶𝑛

𝑖
)2 + 1

𝑁𝑥 + 1

𝑁𝑥
∑

𝑖=0

1
𝑁𝑝 +𝑁𝑓 − 1

𝑁𝑓−1
∑

𝑛=−𝑁𝑝+1

(

𝐶𝑛+1
𝑖 − 𝐶𝑛

𝑖
)2
)

.

inally, note that the scaling constants 𝛼𝑓 , 𝛼𝑣 and 𝛼𝑟 are chosen to normalize the errors computed in the terms 𝓁(𝒀 𝑓 , 𝒀 𝑓 ), 𝓁(𝒀 𝑣, 𝒀 𝑣)
nd 𝑅(𝜽): namely we take 𝛼𝑓 as an upper-bound for the square of flow values, 𝛼𝑣 as an upper-bound for the square of speed values,
nd 𝛼𝑟 as an upper-bound for the square of reaction rates. In practice, following Remarks 3.1 and 3.2 and the scaling of flow and
peed values discussed in Remark 2.3, we set:

√

𝛼𝑓 = (𝑣𝑚𝜌𝑚∕4)∕(𝜌𝑚𝛥𝑥∕𝛥𝑡),
√

𝛼𝑣 = 𝑣𝑚∕(𝛥𝑥∕𝛥𝑡),
√

𝛼𝑟 = 1∕2. (11)

4. Numerical experiments

4.1. Setup

The code used in this section was implemented in Python, using Tensorflow and Keras (2.4.0). We use a dataset which
consists of flow and speed measurements made by detectors placed along a stretch of freeway A12 in the Netherlands (courtesy
of Rijkswaterstaat – Centre for Transport and Navigation). This data was collected (almost) every day from January 5, 2006 to May
10

19, 2006. Each day, the flow and speed of vehicles at each station were recorded every minute, for a total duration of 5 h.
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Table 4.1
Prediction RMSE obtained when using our approach (TRM) and when repeating the last known
measurement. Note that the flow (resp. speed) RMSE values are scaled by a factor √

𝛼𝑓 (resp.
√

𝛼𝑣).

(a) Errors on flow prediction.

TRM Prediction Last known measurement

3-step prediction 4.24e−02 5.72e−02
5-step prediction 4.40e−02 6.07e−02
10-step prediction 4.90e−02 6.58e−02

(b) Errors on speed prediction.

TRM Prediction Last known measurement

3-step prediction 4.66e−02 6.34e−02
5-step prediction 5.16e−02 7.81e−02
10-step prediction 6.35e−02 9.88e−02

In the numerical experiment, we consider only a subsection of the road of length ≈ 8210m. This stretch of road and the position
of its 17 detectors is represented in Fig. 4.1, where we can notice that the detectors are approximately separated by (multiples of)
160m. This allows us to discretize the road into segments of length 𝛥𝑥 = 160m and have the detectors located at the interfaces of
these segments (cf. Fig. 4.1). Note in particular that the considered stretch of road contains an off-ramp (which starts at the location
of the interface 23) and an on-ramp (which ends at the location of the interface 29). Nevertheless, we do not explicitly include them
in the TRM as we have no information on the in- and out-fluxes of vehicles they generate.

The Dutch motorway dataset contains 129 days of measurements. We create a training dataset containing 93 days of measure-
ments, a validation set containing 18 days of measurements (used to choose the hyperparameters of the algorithm) and finally use
the remaining 18 days of measurements as a test set (used to check the performances of the algorithm). These measurements are
used as is, without any smoothing or preprocessing (besides a spatial linear interpolation when a sensor stopped working). Besides,
while training the algorithm, we hide the data from the detectors marked as 2 and 25 in Fig. 4.1 and which we refer to as validation
interfaces (or validation points), in order to assess the capacity of the algorithm to complete and predict the flow at unobserved
interfaces. In the end, we have 𝑁𝑜 = 15 observed interfaces (those marked 0, 4, 6, 9, 11, 15, 19, 23, 29, 32, 36, 39, 44, 48, 51 in Fig. 4.1),
for a total of 𝑁𝑖 = 52 road interfaces.

We consider the problem of predicting the flow and speed at a road interface up to 10 minutes in the future. Taking the notations
introduced in Section 3.3, we therefore consider the architecture yielding a prediction 𝑁𝑓 = 10 time steps in the future. The algorithm
will then return both a smooth estimate of the most recent measurements it received as an input, as well as predictions of what
the flow and speed might be 1, 2,… , 10 time steps in the future, one time step being equal to 𝛥𝑇 = 1 minute. Finally, note that the
subdivision factor 𝑃𝑡 of the time step is set according to Remark 3.1, and is equal to 𝑃𝑡 = 38.

4.2. Analysis of the results

In order to determine the number of past observations 𝑁𝑝, we perform a quick grid search: we train the algorithm with
𝑁𝑝 ∈ {5, 7, 10, 12, 15, 18, 20} and choose the value of 𝑁𝑝 yielding the smallest root-mean-square error (RMSE) and mean absolute
percentage error.2 (MAPE) over the validation dataset. These errors are reported in Appendix B Based on these results, we take
𝑁𝑝 = 18 as this value yields small values of both RMSE and MAPE. Once that the number of past observations is chosen, we apply
the associated training algorithm to the validation dataset to assess its performance.

4.2.1. Comparison of the prediction to the traffic state measurements
First, we look at how good the predictions 3, 5 and 10 minutes ahead are. Examples of such predictions are presented in Fig. 4.2,

where we show for two different days in the test dataset, a comparison between the 3-, 5- and 10-step flow and speed predictions
and the corresponding measurements. We also compute, over all the measurements in the test dataset (but considering only the road
interfaces used in the training phase), the RMSE between predictions and measurements (also called prediction RMSE). We compare
them to the RMSE obtained when we use the last known measurement (i.e. the measurement at time 𝑡0) as a predictor for the flow in
the future (i.e. at time 𝑡3, 𝑡5 or 𝑡10). These errors are reported in Table 4.1. We note that the TRM predictions show an improvement
of 25% to 27% for the flow, and of 26% to 35% for the speed, compared to the case where the last known measurement is used as
predictor.

We then take a closer look at how these prediction RMSEs distribute themselves along the road. To do so, we compute, on each
road interface, the RMSE between the TRM predictions and the measurements, and display these errors in Fig. 4.3. We note that
the errors on the trained interfaces are stable across the interfaces, and that therefore there is no major difference in the quality
of the predictions across space. As for the two validation interfaces 2 and 25 (which were hidden during training), we see that the
flow prediction RMSE takes values of the same order as the one obtained on the trained interfaces. For the speed prediction RMSE
however, we observe significantly higher RMSE on the validation interfaces (around twice as much). This raises the question of the
level of smoothing introduced by our approach, which we now investigate.

2 The mean absolute percentage error between a set of 𝑛 measurements 𝑦(1) ,… , 𝑦(𝑛) and some associated predictions �̂�(1) ,… , �̂�(𝑛) is defined as: MAPE =
∑𝑛 (𝑘) (𝑘) (𝑘)
11
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Fig. 4.2. Measured, smoothed and predicted flows (on the left) and speeds (on the right) on the road interface 11 on two different days of the test set. Note
that the flow and speed measurements are normalized according to Remark 2.3.

Fig. 4.3. Prediction RMSE on each road interface. Each circle marks the RMSE between prediction and measurements at a given interface, and the color of a
circle represents the location of the interface on the road. The symbol ⋄ marks the RMSE obtained on the validation points. As for the boxplot, the whiskers mark
the 5th and 95th quantiles and the box marks the 1st and 3rd quartiles. Finally, the red line marks the mean RMSE over the trained points. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2.2. Smoothing of the traffic states
Recall that our algorithm yields predictions by recreating, under a macroscopic traffic model, the traffic dynamics as observed

in the past observations (at times 𝑡−17,… , 𝑡0) and extending them to future times (𝑡1,… , 𝑡10). In particular, at 𝑡0, a smoothed version
of the most recent observation is available: we refer to it as smoothed or estimated flow/speed. These flow and speed estimates
are for instance represented in some particular cases in Fig. 4.2, and represent the current traffic state as seen by the macroscopic
traffic model. We perform in Fig. 4.4 a comparison between the measurements and these smoothed states, as well as between the
measurements and their predictions.
12
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Fig. 4.4. Distribution of the difference (also called error) between various quantities computed by the algorithms and the corresponding measurements. The
black (resp. gray) solid lines correspond to error densities computed on the trained (resp. validation) interfaces. The dashed lines present the result of fitting
Student 𝑡-distributions on these densities. Note that the flow (resp. speed) error values are scaled by a factor √

𝛼𝑓 (resp.
√

𝛼𝑣).

Regarding the smoothed and predicted flows, note that the errors (defined as the plain difference) between the estimated
quantities and the measurements, and represented in Figs. 4.4(a)–4.4(d), have approximately symmetric distributions, may it be
the errors computed on the trained interfaces or on the validation interfaces. We note that these distributions are approximately
centered around 0, with very slight biases around 0 that may be explained by the limited size of the samples used to compute
the densities. Hence, we can conclude that the algorithm does not tend to overestimate or underestimate the flows, and behaves
similarly whether or not the interface was trained (since in both cases, the distributions are very similar). This therefore hints that
the smoothing and predictions of the flow are robust to missing values.

We also fitted Student 𝑡-distributions onto these error densities, and obtained that they can be well approximated by Student
𝑡-distributions with a number of degrees of freedom between 4.5 and 6.5 (cf. Figs. 4.4(a)–4.4(d)). Hence, we have a non-Gaussian
distribution of these errors, with fatter tails than a Gaussian distribution. These fat tails reflect the ability of the algorithm to
propose smoothed and predicted flows that are robust to outliers in the measurements. Note however that since the number of
degrees of freedom of the fitted distributions are relatively high, they behave quite similarly to a Gaussian distribution, and hence
the over-smoothing of extreme measurements is limited.

Regarding now the smoothed and predicted speeds obtained on the trained interfaces, we can draw the same conclusions as
for the flow. The only difference is that the number of degrees of freedom of the fitted 𝑡-distributions now lies between 2 and 3
(cf. Figs. 4.4(e)–4.4(h)). This means that now, the tails of the error distribution are significantly fatter than the tails of a Gaussian
distribution. Hence, the algorithm tends to over-smooth extreme speed measurements.

As for the smoothed and predicted speeds obtained on the validated interfaces, their distributions can be approximated by
(nearly) centered 𝑡-distributions with a high degree of freedom (between 8 and 35), and therefore by Gaussian distributions. Note also
that they exhibit higher variances than the errors computed on the trained cells. This higher level of smoothing of the measurements
can be explained by the fact that the validation interface 25 is located in the section of the road that includes an on-ramp, but we did
not include on-ramps into our TRM (since no measurements were available). This hence seems to hint that our algorithms manage
to recreate the perturbation of flow dynamics by on-ramps, but struggle to do it accurately for the speed, proposing instead an
over-smoothed estimate. Such caveat could be resolved by actually including on-ramps into the architecture or resorting to PDE
models that allow more flexibility on the speed modeling (eg. second-order models).

In conclusion, our algorithm yields smoothed flows that are physics-aware (since they arise from the macroscopic traffic model)
and well-behaved (since they are robust to outliers and unbiased). Besides, these smoothed flows are available on all of the interfaces
dividing the road, and not only at the locations where measurements were taken. We give in Figs. 4.5 and 4.6 an example of the
full reconstruction of the flow and speed, as well as predictions of these variables for a given day of the test dataset. Besides the
smoothing and inpainting capabilities of our approach, we note that the method is also able to recreate waves propagating through
space time, thanks to the fact that the predictions arise from a macroscopic traffic model which incorporates them. Note also that
between the interfaces 23 and 29, we observe a discontinuity in the waves, which can once again be seen as a direct consequence
of the presence of an on-ramp between these interfaces which perturbed the traffic conditions.
13
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Fig. 4.5. Comparison between the space–time variations of the flow measurements with the reconstructed smooth flow and prediction on Day 2 of the test
dataset. The indices marked in red correspond to the observed interfaces, and those in black to the hidden interfaces. The grayscale represents the value of the
normalized flow at a given location and time.

Fig. 4.6. Comparison between the space–time variations of the speed measurements with the reconstructed smooth speed and predictions on Day 2 of the test
dataset. The indices marked in red correspond to the observed interfaces, and those in black to the hidden interfaces. The grayscale represents the value of the
normalized speed at a given location and time.

4.2.3. Comparison of the prediction to the traffic state estimates
If we now take the smoothed flows, which are available everywhere on the road, as ground truth when computing prediction

RMSEs (instead of using the raw flow measurements), we note that we get errors that are drastically reduced and less spread out
compared to the case where we compare our predictions to the raw measurements (cf. Fig. 4.7): indeed, reductions ranging from
40% to 70% can be observed on the considered prediction horizons when considering either the trained or validation interfaces (cf.
Appendix C). These observations are coherent with the fact that our algorithm was optimized to extend to the future the dynamics
that gave rise to the smoothed flow: hence, the predictions obtained by our algorithm can be seen as accurate predictions of a
physics-aware smoothing of the raw measurements.

4.3. Comparison to existing methods

Comparing the prediction performances obtained in the numerical experiment with other works is no easy task. Indeed, for the
comparison to be fair, our algorithm should be compared to approaches that take as input the same type of information, namely only
past raw flow measurements taken at a relatively high frequency (every minute in our case). Besides, the question of the metric used
to compare different studies is not straightforward. Indeed the prediction errors are compared based on a comparison between the
14
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Fig. 4.7. RMSE between the predictions and the smoothed flow or speed computed by the algorithm, over the entire road. Each circle marks the RMSE between
the prediction and the smoothed flow or speed computed by the algorithm at a given interface, and the color of a circle represents the location of the interface
on the road. As for the boxplot, the whiskers mark the 5th and 95th quantiles and the box marks the 1st and 3rd quartiles. Finally, the red line marks the
mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

prediction and what is assumed to be the ground truth. However, most of the studies apply some preprocessing on the raw data (e.g.
aggregation or smoothing) and use the result as ground truth. Since these steps usually differ from one study to the other, and are
not present at all in ours, comparing the performances becomes complicated. Finally, the question of the amount of parametrization
in a model and the amount of data used to train it play a central role in the performance of an algorithm, and are hard to compare
from one approach to the other.

Let us omit the above comments and compare anyway the prediction performances of our algorithm with other deep neural
network approaches. To the best of our knowledge, no physics-aware neural network has been proposed for traffic state prediction
and the physics-informed neural networks proposed up until now mainly focus on traffic state estimation (and in particular density)
rather than short-term prediction. We were only able to find the work of Liu et al. (2021), who proposed an architecture for density
(not flow or speed) estimation and prediction, and the work of Barreau et al. (2021) which focused on density reconstruction from
probe vehicles measurements. However both methods were not evaluated on real data or compared to other methods. On the other
hand, more studies have been conducted on the use of deep learning methods for short-term predictions, which is why we focused
on them. As noted in the review article of Do et al. (2019), such approaches were able to yield predictions MAPE ranging from 5%
to 10%. Compared to the MAPEs we computed from the smoothed flows (cf. Fig. 4.8) we retrieve similar values.

Hence, the takeway message we would like to convey is that it is possible to propose an architecture that takes care of both
traffic state estimation and prediction from raw data, yields physically-constrained estimates and predictions, and does not lose in
accuracy compared to the over-parameterized deep learning models.

5. Conclusion

In this work, we propose a physics-aware algorithm for short-term flow and speed predictions based a macroscopic traffic flow
model. This algorithm has two main components. The first one is a RNN which aims at extracting the space–time varying parameters
of the traffic flow model associated with a set of past observations and extending them to future time steps. These parameters are
then passed to the second component, which is a TRM discretization of the traffic flow model: we then obtain both flow and speed
estimates, at past and future time steps, that arise directly from the traffic flow model. A numerical experiment, conducted on a
dataset of raw flow and speed measurements taken along a stretch of freeway in the Netherlands, highlights the advantages of our
approach.

First, the algorithm outputs a traffic state estimation of the most recent time of measurement it got as input, which can be
used as a smooth estimate for the traffic state. This is particularly desirable when dealing with raw data, for which choosing and
justifying the right aggregation or smoother to reduce the noise can be cumbersome. In our case, the noise reduction is streamlined
with the prediction and is physically grounded by the macroscopic traffic flow model. As for the predictions, they arise from the
same traffic model and are therefore a simple continuation in time of the dynamics inferred from the past observations. Hence both
the smoothing of raw data and the subsequent predictions have a clear physical interpretation. Finally, the algorithm yields smooth
flow and speed estimates and predictions everywhere on the road (and not only at the locations where measurements are made).
Hence our algorithm also serves as a data augmentation tool.

Future work include the extension of the approach to networks, which can be made possible by extending the TRM part of the
architecture to networks. Besides, note that the TRM, as described by Lipták et al. (2021), can be used to model more complex
fundamental diagrams than the Greenshields flux, including for instance trapezoidal fundamental diagrams. Adapting our current
15
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Fig. 4.8. MAPE between the predictions and the smoothed flow or speed computed by the algorithm, over the entire road. Each circle marks the MAPE between
the prediction and the smoothed flow or speed computed by the algorithm at a given interface, and the color of a circle represents the location of the interface
on the road. As for the boxplot, the whiskers mark the 5th and 95th quantiles and the box marks the 1st and 3rd quartiles. Finally, the red line marks the
mean. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. A.1. Multilayer perceptron: 1 ,… ,𝑛 denote single layer perceptrons, 𝒉(1) ,… ,𝒉(𝑛−1) denote hidden layers, and circles are used to denote input and/or output
vectors.

architecture to such fundamental diagrams then provides an interesting outlook. Finally, proposing physics-aware architectures
based on more complex traffic flow models than the LWR model used in this work, like for instance second-order models, might
prove useful to improve some of the prediction performances, in particular on points of the road where no measurements are taken.
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Appendix A. Multilayer perceptrons

We provide in this section a short definition of the notions of single layer and multilayer perceptrons, and refer the interested
reader to Bishop (2006) for more details.

A (single layer) perceptron is an artificial neural network (ANN) which takes as input a vector 𝒙 ∈ R𝑁in (𝑁in ∈ N) and returns
an output vector 𝒚 ∈ R𝑁out (𝑁out ∈ N) whose entries 𝑦1,… , 𝑦𝑁out are given by:

𝑦𝑖 = 𝜎(𝑾 (𝑖)𝒙 + 𝑏𝑖), 𝑖 ∈ {1,… , 𝑁out},

where 𝑾 (𝑖) ∈ R𝑁in×𝑁out is a weight matrix, 𝑏𝑖 ∈ R is a bias term and 𝜎 is a nonlinear function called activation function. Examples
of activation functions commonly used in practice include the Heaviside function, the sigmoid function, the hyperbolic tangent and
the ReLu function. Hence each entry of the output of a perceptron is nothing but a linear combination of the entries of its input
vector to which we add a bias term and apply an activation function.

A MultiLayer Perceptron (MLP), also called feed-forward neural network, is the ANN obtained by stacking together multiple
(single layer) perceptrons: the output of each perceptron is used as input of the next one (cf. Fig. A.1). In such a configuration, the
layers between the input vector and the final output vector are called hidden layers, and single layer perceptrons can be seen as a
particular case of MLP with no hidden layer.
16
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Table B.1
Grid search results: prediction RMSE and MAPE on the validation dataset when predicting up to 𝑁𝑓 = 10 time steps ahead using 𝑁𝑝 past observations. Note
that the flow (resp. speed) RMSE values are scaled by a factor √

𝛼𝑓 (resp.
√

𝛼𝑣).

𝑁𝑝 = 5 𝑁𝑝 = 7 𝑁𝑝 = 10 𝑁𝑝 = 12 𝑁𝑝 = 15 𝑁𝑝 = 18 𝑁𝑝 = 20

RMSE Flow 5.01e−02 4.92e−02 4.94e−02 4.88e−02 4.86e−02 4.85e−02 4.87e−02
RMSE Speed 5.22e−02 5.16e−02 5.11e−02 5.05e−02 5.08e−02 5.11e−02 5.21e−02
MAPE Flow 18.99% 18.43% 18.26% 17.27% 17.26% 16.37% 16.72%
MAPE Speed 9.73% 9.53% 9.6% 9.38% 9.46% 9.57% 10.08%

Table C.1
RMSE between the predictions and either the measurements, or the smoothed flow or speed computed by the algorithm. Note
that the flow (resp. speed) RMSE values are scaled by a factor √

𝛼𝑓 (resp.
√

𝛼𝑣).

(a) Errors on flow prediction.

On training points On validation points

Prediction/Raw
measurement

Prediction/Smoothed
flow

Prediction/Raw
measurement

Prediction/Smoothed
flow

3-step prediction 4.24e−02 1.65e−02 4.76e−02 1.39e−02
5-step prediction 4.40e−02 2.04e−02 4.90e−02 1.88e−02
10-step prediction 4.90e−02 2.87e−02 5.20e−02 2.81e−02

(b) Errors on speed prediction.

On training points On validation points

Prediction/Raw
measurement

Prediction/Smoothed
Speed

Prediction/Raw
measurement

Prediction/Smoothed
Speed

3-step prediction 4.66e−02 2.82e−02 9.81e−02 1.44e−02
5-step prediction 5.16e−02 3.57e−02 9.92e−02 1.98e−02
10-step prediction 6.35e−02 5.09e−02 1.02e−01 3.15e−02

Appendix B. Results of the parameter search

We present here the results of the grid search performed to choose the number of past observations used by the prediction
lgorithm in the numerical experiment in Section 4. (See Table B.1).

ppendix C. Comparison of the prediction errors on the trained and validation interfaces

We present here the prediction errors obtained (on the test dataset) when comparing the predictions to either the raw
easurements or to the smooth states estimated by the algorithm. (See Table C.1).
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