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Sketch of support vector regres-
sion (SVR). Data point inside
(•) and outside (�) the tube
(gray area). The gray dashed
line is the hyperplane (regres-
sion plane) predicted by svr-
LINEAR.

Colored surface is the hyperplane. I get
non-physical (negative) friction veloci-
ties, uτ , predicted by svrLINEAR be-
cause I use too small “slack” (i.e. too
large C). Thick blue line: uτ = 0.
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Abstract

Machine learning is used for developing wall functions for Large Eddy
Simulations (LES). I use Direct Numerical Simulation (DNS) of fully-developed
channel flow at frictional Reynolds number of 800 to create a database. This
database is using as a training set for the machine learning method (support
vector regression). The input data (i.e. the influence parameters) are the
local Reynolds number, the non-dimensional velocity gradient and the time-
averaged y+ value. The machine learning method is trained to predict the
wall shear stress.

The support vector regression methods in Python are used. The trained
machine learning model is saved to disk and it is subsequently uploaded into
the Python CFD code pyCALC-LES (Davidson, 2021). LES is carried out
on coarse – and semi-course – near-wall meshes and the wall-shear stress is
predicted using the developed machine learning models.
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Figure 1: Sketch of support vector regression. Data point inside (•) and outside
(�) the tube (gray area). The gray dashed line is the predicted solution which is
called the hyperplane which may be linear (svrLINEAR) or non-linear (svr).
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Figure 2: Sketch of vector regression. A large C enlarges the area of the tube (blue
area).

1 Introduction

Machine learning is a method where known data are used for teaching the algo-
rithm to classify a set of data. The data may be photographs where the machine
learning algorithm should recognize, for example, traffic lights or traffic signs (Rao
and Desai, 2021). Another example may be ECG signals where the machine learn-
ing algorithm should recognize certain unhealthy conditions of the heart (Lindholm
et al., 2022). A third example is detecting fraud for credit card payments (Rachana
et al., 2021). Machine learning methods such as Support Vector Machines (SVM)
and neural networks are often used for solving this type of problems.

The examples above are classification problems using supervised learning (i.e.
learning to recognise a traffic light, an unhealthy heart, learn what a customers
usual credit card payment looks like). However, in the present work input and out-
put are numerical values. In this case, machine learning in the form of regression
methods should be used (Lindholm et al., 2022); I will use support vector regres-
sion (SVR) methods available in Python.

In SVR a regression mult-dimensional “surface” is created which has as many
dimensions as number of influence parameters (in the present work I use one, two
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Figure 3: DNS database.

or three influence parameters). Let’s make a simple example. In Fig. 1 there is one
influence parameter, x, and one parameter to predict, y. Two main input parameters
may be given to the SVR methods. The first is ε which determines the width of the
tube around the hyperplane 1. Points that lie inside this tube are considered as
correct predictions and are not penalized by the algorithm. The support vectors are
the points that lie outside the tube The second parameter given to SVR models is
the C value. It controls the “slack” (ξ ), see Fig. 1, which is the distance to points
outside the tube. If C is increased the size of the tube is increased so that some or
all of the data points are located inside the tube. It will be shown in Section 5 that
the parameter C may have a large influence on the form of the hyperplane.

There are not many studies in the literature on machine-learning for improving
wall functions. In (Tieghi et al., 2020) they use a time-averaged high-fidelity LES
simulation which is used to train a neural network for improving the predicted
modeled turbulent kinetic used in wall functions in RANS. Ling et al. (2017) use
neural network to improve the predicted wall pressure to be used in fluid-structure
interactions. They target it the wall pressure spectrum and the input parameters are
the pressure power spectra above the wall. In (Dominique et al., 2022) they use
neural network to predict the wall pressure spectra. Their input data include are
boundary-layer thicknesses (physical, displacement and momentum), streamwise
pressure gradient and wall shear stress which are taken from experiments and high-
fidelity DNS/LES in the literature.

2 Direct Numerical Simulations (DNS)

To create a database which can be used for training the SVR I will carry out a DNS
of fully-developed channel flow. The Navier-Stokes equations read

∂vi
∂xi

= 0 (1)

∂vi
∂t

+
∂

∂xj
(vivj) = − ∂p

∂xi
+ ν

∂2vi
∂xjx. j

(2)

1A hyperplane is a plane whose number of dimension is the same the number of influence param-
eters. For example, a two-dimensional hyperplane has two influence parameters.



2. Direct Numerical Simulations (DNS) 6

(a) Velocity. (b) 〈u′u′〉.

(c) 〈v′v′〉. (d) 〈w′w′〉.

Figure 4: Channel flow at Reτ = 800. : Present DNS; : DNS data (Tana-
hashi et al., 2004).
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〈∆y+〉
Location 1 5
Location 2 13
Location 3 24
Location 4 39
Location 5 58
Location 6 85

Table 1: DNS database for high y+ wall functions. ∆y is defined in Fig. 3. The
locations of the second and the third cell is obtained from Fig. 3.

An incompressible, finite volume code is used (Davidson and Peng, 2003; David-
son, 2018) to solve Eqs. 1 and 2. The convective terms in the momentum equations
are discretized using central differencing. The Crank-Nicolson scheme is used for
time discretization of all equations. The numerical procedure is based on an im-
plicit, fractional step technique with a multigrid pressure Poisson solver (Emvin,
1997) and a non-staggered grid arrangement.

The size of the channel is xmax = 2π (streamwise, x or x1), ymax = 2 (wall
normal, y or x2) and zmax = 1.6 (spanwise, z or x3). The mesh has 386×258×386
and the Reynolds number is 800 based on the friction velocity, 〈uτ 〉 (〈·〉 denotes
average in time, x1 and x3), and the half-channel width, δ.

Figure 4 presents comparison of the predicted velocity field and RSM fluctua-
tions with DNS by Tanahashi et al. (2004) and – as can be seen – the agreement is
very good.

When creating the instantaneous velocity, Ū ,, for the database, I integrate over
a distance in y direction (see Fig. 3). The streamwise velocities for the 1st, 2nd and
3rd cells are computed as

Ū1st =
1

2∆y

∫ 2∆y

0
udy, Ū2nd =

1

2∆y

∫ 4∆y

2∆y
udy, Ū3rd =

1

2∆y

∫ 6∆y

4∆y
udy (3)

where ∆y is representative of a typical cell size in a LES simulation using wall
functions. The six locations of the first cell are given in Table 1. The locations of
the second and third cells are shown in Fig. 3.

3 Large Eddy Simulation (LES)

The LES equations read

∂v̄i
∂xi

= 0

∂v̄i
∂t

+
∂

∂xj
(v̄iv̄j) = − ∂p̄

∂xi
+

∂

∂xj

[
(ν + νsgs)

∂v̄i
∂xj

]
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〈∆y+〉
Location 1 3
Location 2 9
Location 3 16
Location 4 25
Location 5 37
Location 6 52

Table 2: DNS database for low y+ wall functions. ∆y is defined in Fig. 3. The
locations of the second and the third cell is obtained from Fig. 3.

where the Smagorinsky model is used

νsgs = (CS∆)2
√

2s̄ij s̄ij ≡ (CS∆)2 |s̄|

s̄ij =
1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
with CS = 0.1. The SGS viscosity near the wall is dampened by using the RANS
length scale as an upper limit, i.e.

∆ = min
{

(∆VIJK)1/3 , κn
}

where n is the distance to the nearest wall.
The finite volume code pyCALC-LES (Davidson, 2021) is used. It is written

in Python and is fully vectorized (i.e. no for loops). The solution procedure is
based on fractional step. Second-order central differencing is used in space and
the Crank-Nicolson scheme in time. All discretized equation are solved on the
GPU using the Algebraic MultiGrid (AMG) solver pyAMGx (Olson and Schroder,
2018). The reason why pyCALC-LES is not used for the DNS simulations in
Section 2 is that the memory of the GPU on the author’s desktop is too small.

4 Standard wall functions

The machine-learning wall functions will be compared to the standard wall func-
tions which are based on log-law, i.e.

v̄1

uτ
=

1

κ
ln

(
Euτ∆y

ν

)
≡ 1

κ
ln
(
Ey+

)
, E = 9.0 (4)

where ∆y is given by Fig. 3 and subscript P denotes wall-adjacent cell. I compute
the friction velocity from Equation 4 as

uτ =
κv̄1,P

ln(Euτ∆y/ν)
(5)
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which is solved by iterating a couple of times. If y+ < 11.63, the linear law is used

uτ =

(
ν
∂v̄1

∂x2

∣∣∣∣
y=0

)1/2

(6)

5 The machine learning methods

As indicated in the introduction, I will use SVR (Support Vector Regression). Two
different packages are used, svr and svrLINEAR, both available in Python. The
former method is non-linear and the latter is linear. The machine learning method
consists of a learning part and a testing part. In the learning part, the machine
learning method is trained and in the testing part it is tested.

First, I need to determine which input variable (influence parameters) that
should be used. In standard wall functions, the input parameters are wall-parallel
velocity, v̄1,P and the non-dimensional wall distance, y+ (which includes the fric-
tion velocity, uτ ); the output is the friction velocity. Hence, the friction is both
input and output. In a machine learning method, it is probably not a good idea to
let a parameter be included in both an input and output parameter. In order to make
the machine learning method as general as possible, the input variables should be
non-dimensional. The following influence (i.e. input) parameters are evaluated:

• the local Reynolds number,
Ū1st∆y

ν

• the velocity gradient,
∂Ū

∂y
=
Ū2nd − Ū1st

2∆y
; it is made non-dimensional by ν

and Ū1st as (
∂Ū

∂y

)
non

=
∂Ū

∂y

ν

Ū2
1st

(7)

• the averaged non-dimensional wall distance,
〈uτ 〉∆y

ν

where Ū1st and Ū2nd are computed from Eq. 3. It may be noted that the velocity at
the third point, see Fig. 3, is not used when computing these three input parameters.

Next, I will train the machine learning method using the DNS data created in
Section 2. I start with svrLINEAR. 100 000 independent samples of Ū1st and
Ū2nd are used at each of the six locations, see Table 1 and Fig. 3 together with
the output parameter, uτ . I have also evaluated to use 10 000 samples and I get
identical results. I could probably use even fewer samples. I pick 80% of the data
randomly and define that as the training set. The remaining 20% is then used for
testing, i.e. predicting.

Figure 5 shows predicted friction friction velocities and the hyperplanes for
svrLINEAR using the velocity gradient and local Reynolds number as influence
(i.e. input) parameters for different C and ε (these two parameters determines the
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(a) ε = 0.01, C = 0.01. (b) ε = 0.001, C = 1.

(c) ε = 0.001, C = 0.01.

Figure 5: Predicted friction velocity with svrLINEAR using high y+ data. � :
predicted friction velocity; 3D surface: hyperplane colored with uτ

.
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(a) ε = 0.1, C = 0.1. Thick blue line:
uτ = 0.

(b) ε = 0.1, C = 0.01.

Figure 6: Predicted friction velocity with svr using low y+ data, see Table 1. 3D
view. � : Predicted friction velocity; 3D surface: hyperplane colored with uτ

.

(a) ε = 0.1, C = 0.1. (b) ε = 0.1, C = 0.01.

Figure 7: Predicted friction velocity with svr using low y+ data, see Table 2. 2D
view. � : Predicted friction velocity; colored surface: uτ < 0.

.
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width of the tube around hyperplane and the “slack”, respectively, see Section 1).
Please recall that svrLINEAR is a linear method which gives a linear hyperplane.
As can be seen in Fig.5, the predictions are not sensitive to C and ε. The RMS
error, e, between the predicted friction velocity and the DNS database

e =
std (uτ,pred − uτ,DNS)

mean
(
u2
τ,pred

)1/2
mean

(
u2
τ,DNS

)1/2
(8)

is slightly below 20% for all svr and svrLINEAR cases (also for the standard
wall functions). This error is rather high and it is discussed in Section 7. For
svrLINEAR, I choose to use C = 1 and ε = 0.001.

Figure 6 presents the friction velocities and the hyperplanes for two sets of C
and ε, namely ε = 0.1 and C = 0.1 (Fig. 7a) and ε = 0.1 and C = 0.01 (Fig. 7b).
First, we note that the hyperplanes are no longer linear since svr is a non-linear
method. Second, the predicted friction velocities are strongly negative for C = 0.1
which is clearly unphysical (the smallest instantaneous friction velocity in the DNS
database is uτ,min = 0.11). Decreasing C by a factor of 10 gives a much more
reasonable hyperplane. As mentioned above, the RMS error (Eq. 8) is slightly
below 20% also for this case which at first is somewhat surprising. However, when
looking at the data in a 2D view we get the explanation: the area spanned by (Re
and (∂Ū/∂y)non) in which the hyperplane for uτ goes negative does not include
any DNS values, see Fig. 7a. Figure 7b does not show any negative values of the
hyperplane which we already observed in Fig. 7b. I choose to use C = 0.1 and
ε = 0.01.

It may be noted that Fig. 7 indicates a strong correlation between Re and(
∂Ū
∂y

)
non

. This is indeed the case. It turns out that the correlation coefficient
(Eq. 10) is −0.45; this is further discussed in Section 7.

5.1 Python code

Here I present some of the Python commands. First, I scale the input data

scaler_dudy=StandardScaler()
scaler_re=StandardScaler()
scaler_yplus=StandardScaler()
dudy_in=scaler_dudy.fit_transform(dudy_in)
re_in=scaler_re.fit_transform(re_in)
yplus_in=scaler_yplus.fit_transform(yplus_in)

Then I put the input and output data on generic form

y=ustar_out # output
X=np.zeros((n_svr,3))
X[:,0]=re_in[:,0] # 1st indata
X[:,1]=dudy_in[:,0] # 2nd indata
X[:,2]=yplus_in[:,0] # 3rd indata
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Then I choose the model

C=1
eps=0.001
model = LinearSVR(max_iter=10000,epsilon = eps, C = C)

I train the model

svr = model.fit(X, y.flatten())

Now comes the testing part. I scale my test data

# Use MinMax scaling
dudy_in_test=dudy_in_test.reshape(-1, 1)
re_in_test=re_in_test.reshape(-1, 1)
yplus_in_test=yplus_in_test.reshape(-1, 1)
dudy_in_test=scaler_dudy.transform(dudy_in_test)
re_in_test=scaler_re.transform(re_in_test)
yplus_in_test=scaler_yplus.transform(yplus_in_test)

Then I predict friction velocities

y_svr = model.predict(X_test)

Now I want to find how accurate my predictions are. I compare with DNS data

# find difference
scale==np.mean(y_svr)*np.mean(ustar_out_test)
ustar_rms=np.std(y_svr-ustar_out_test)/scale
print(’ustar_rms’,ustar_rms)

Finally I store the model on disk.

# save the model to disk
dump(model, ’model-svrLINEAR.bin’)
dump(scaler_re,’model-svrLINEAR_scaler-u.bin’)
dump(scaler_dudy,’model-svrLINEAR_scaler-dudy.bin’)
dump(scaler_yplus,’model-svrLINEAR_scaler-yplus.bin’)
np.savetxt(’min-max-model-svrLINEAR.txt’, \
[dudy_min,dudy_max,re_max,re_min,yplus_max,yplus_min])

When I do the LES simulations with pyCALC-LES I load the model. Then
when I predict the friction velocities, I do as in the testing phase above, except that

dudy_in_test
re_in_test
yplus_in_test
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LES with svr LES with svrLINEAR
one time step 1.64 0.045

svr or svrLINEAR prediction 1.6 1.2 · 10−4

Table 3: Elapsed time in seconds.

at both walls are given by pyCALC-LES .
As you see above, I store min and max of all indata parameters. As a precau-

tion, I limit the indata given by pyCALC-LES so that they stay within the limits
of the DNS database, e.g.

dudy=np.minimum(dudy,dudy_max)
dudy=np.maximum(dudy,dudy_min)

6 Results

Here I evaluate svr and svrLINEAR in fully-developed channel flow at two dif-
ferent Reynolds numbers, namely Reτ = 2 000 and Reτ = 5 200. For the lower
Reynolds number I use a proper wall functions grid (i.e. wall-adjacent cells at
〈y+〉 = 55) whereas I for the higher Reynolds also use grids i.e. which are not
really suitable for wall functions (wall-adjacent cells at 〈y+〉 = 15 and 〈y+〉 = 8).

The extent of the domain in the x and z direction is 3.2 and 1.6, respectively,
covered by 32 cells in each direction. The Python code pyCALC-LES is used for
all simulations together with the Smagorinsky model, see Section 3.

6.1 Reτ = 2000

36 cells (Ny = 36 , constant grid spacing) are used in the wall-normal direction
which gives 〈y+〉 = 55 for the wall-adjacent cells. The DNS database defined in
Table 1 is used. Figure 8 presents the predicted velocities. The svrLINEAR –
using one, two or three influence parameters (see p. 9), svr and the standard wall
functions are compared with Reichardt’s law

U+ =
1

κ
ln(1−0.4y+)+7.8

[
1− exp

(
−y+/11

)
− (y+/11) exp

(
−y+/3

)]
(9)

The agreement is excellent for all cases except for svrLINEAR when only one
influence parameter (Re) is used. The resolved stresses are compared with DNS in
Fig. 9 and the agreement is reasonable.

The conclusion for this test case is that both svr and svrLINEAR (and the
standard wall functions) give excellent agreement with benchmark data. However,
the required CPU time for svr and svrLINEAR differ greatly. Table 3 presents
the elapsed time. As can be seen, the required time for the svr is five orders of



6.1. Reτ = 2 000 15

(a) Standard wall functions. (b) svrLINEAR. With 〈y+〉, with
(
∂Ū
∂y

)
non

(c) svrLINEAR. With 〈y+〉, no
(
∂Ū
∂y

)
non

(d) svrLINEAR. No 〈y+〉, with
(
∂Ū
∂y

)
non

(e) svrLINEAR. No 〈y+〉, no
(
∂Ū
∂y

)
non

(f) svr. No 〈y+〉, with
(
∂Ū
∂y

)
non

Figure 8: Channel flow. Reτ = 2 000. Velocity. Ny = 36. Re is used as influence
parameters for all svr and svrLINEAR cases. •: Reichardt’s law, Eq. 9.
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(a) Standard wall functions. (b) svrLINEAR.

(c) Standard wall functions. (d) svrLINEAR.

Figure 9: Channel flow. Reτ = 2 000. Ny = 36. Reynolds stresses. Re, 〈y+〉 and(
∂Ū
∂y

)
non

are used as influence parameters for svrLINEAR.
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(a) Standard wall functions. (b) svrLINEAR.

Figure 10: Channel flow. Reτ = 5, 200. Velocity. Ny = 70. All three influence
parameters are used for svrLINEAR. •: Reichardt’s law, Eq. 9

(a) Standard wall functions. (b) svrLINEAR.

Figure 11: Channel flow. Reτ = 5 200. Ny = 70. Reynolds stresses. All three
influence parameters are used for svrLINEAR.

magnitude larger than svrLINEAR. As I mentioned in Section 5, I use 10 000
samples in each of the six locations (i.e. 10 1000). This number could most likely
be reduced. But let’s wait until we have looked at the results of the other channel
flow simulations below.

6.2 Reτ = 5200

70 cells (Ny = 70, constant grid spacing) are used in the wall-normal direction
which gives 〈y+〉 = 74 for the wall-adjacent cells. The DNS database defined in
Table 1 is used. Figure 10 presents the predicted velocity profile and the agreement
with Reichardt’s lawis very good (slightly better for svr than the standard wall
function). The Reynolds stresses are shown in Fig. 11 and both method give fairly
good agreement with DNS.



6.2. Reτ = 5 200 18

(a) Standard wall functions. (b) svrLINEAR with 〈y+〉, with
(
∂Ū
∂y

)
non

.

(c) svrLINEAR with 〈y+〉, no
(
∂Ū
∂y

)
non

. (d) svr with 〈y+〉, no
(
∂Ū
∂y

)
non

.

Figure 12: Channel flow. Reτ = 5 200. Ny = 70. Velocity. Stretching in y
direction: 1.08. Re is used as influence parameters for all svr and svrLINEAR
cases. •: Reichardt’s law, Eq. 9.
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(a) Standard wall functions. (b) svrLINEAR.

Figure 13: Channel flow. Reτ = 5 200. Ny = 70. Stretching in y direction: 1.08.

Reynolds stresses. Re, 〈y+〉 and
(
∂Ū
∂y

)
non

are used as influence parameters for
svrLINEAR. •: DNS data (Lee and Moser, 2015)

6.3 Reτ = 5200 with a stretching of 1.08.

Here I will present LES simulation at Reτ = 5 200 with Ny = 70 and a stretching
of the grid in the wall-normal direction of 1.08. This gives 〈y+〉 = 15 at the
wall-adjacent cells. The DNS database defined in Table 2 is used.

Figure 12 show predicted velocities with the standard wall functions, svr and
svrLINEAR. svrLINEAR including

(
∂Ū
∂y

)
non

(Fig. 12b) gives poorest agree-

ment with Reichardt’s law. svrLINEAR with Re and 〈y+〉 shows best perfor-
mance (Fig. 12c), slightly better than the standard wall functions. Figure 13 com-
pares the normal stresses with the DNS stresses. The stresses obtained with both
methods gives too large streamwise stresses and too small wall-normal and span-
wise stresses.

6.4 Reτ = 5200 with a stretching of 1.11.

Here I present the last LES simulations; the Reynolds number is Reτ = 5 200
with Ny = 70 and a stretching of the grid in the wall-normal direction of 1.11.
This moves the wall-adjacent cells even closer to the wall so that 〈y+ = 8〉. The
DNS database defined in Table 2 is used. The predicted velocities are shown in
Fig. 14; The best agreement is shown by svrLINEAR with Re and 〈y+〉 as in-
fluence parameters (Fig. 14c); standard wall functions give almost as good agree-
ment (Fig. 14a). The non-linear svr gives poor agreement. The Reynolds stresses
(Fig. 15) predicted show the same pattern as in Fig. 13: too large streamwise
stresses (slightly larger for svrLINEAR) and 〈v̄′v̄′〉 and 〈w̄′w̄′〉 too small.



6.4. Reτ = 5 200 with a stretching of 1.11. 20

(a) Standard wall functions. (b) svrLINEAR with 〈y+〉, with
(
∂Ū
∂y

)
non

.

(c) svrLINEAR with 〈y+〉, no
(
∂Ū
∂y

)
non

. (d) svr. With 〈y+〉, no
(
∂Ū
∂y

)
non

.

Figure 14: Channel flow. Reτ = 5 200. Ny = 70. Velocity. Stretching in y
direction: 1.11. Re is used as influence parameters for all svr and svrLINEAR
cases. •: Reichardt’s law, Eq. 9.

(a) Standard wall functions. (b) svrLINEAR with 〈y+〉, no
(
∂Ū
∂y

)
non

.

Figure 15: Channel flow. Reτ = 5 200. Ny = 70. Stretching in y direction: 1.11.
Reynolds stresses. •: DNS data (Lee and Moser, 2015)
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(a) svr with Re as influence parameter.
Location 6

(b) svr with Re and
(
∂Ū
∂y

)
non

as influence
parameter. Location 6

(c) svrLINEAR with Re and
(
∂Ū
∂y

)
non

as
influence parameter. Location 6

(d) svrLINEAR with Re and
(
∂Ū
∂y

)
non

as
influence parameter. Location 1

Figure 16: Testing of svrLINEAR and svr at Location 1 and 6, see Table 1. :
uτ from svrLINEAR or svr; : uτ from the standard wall functions; •: DNS
database; : Ū1st ; : ∂Ū1st/∂y.

Figure 17: Averaged streamwise velocity from the DNS database and predicted by
svr.
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7 Conclusions

Machine learning methods have been used to develop new wall functions. Sup-
port Vector Regression methods are employed, both non-linear, svr, and linear,
svrLINEAR, which are available in Python. A DNS database created from fully-
developed channel flow has been used for training and testing the svr and the
svrLINEAR. When the wall-adjacent cells are located in the log-law region, both
svr and svrLINEAR give perfect agreement with the Reichardt’s law (as does
the standard wall functions). When the wall-adjacent cells are located in the buffer
layer, svrLINEAR gives better agreement with the Reichardt’s law than the stan-
dard wall functions, but the agreement is not perfect. It is found that svrLINEAR
gives better agreement with the Reichardt’s law than svr, in some cases much bet-
ter. Furthermore, svr requires computer times that is orders of magnitude larger
than svrLINEAR; it is found that the svr may dominate the CPU/GPU time for
one time step, see Table 3. This problem could probably be reduced by using a
smaller training set, but since svrLINEAR anyway is more accurate than svr, no
such attempt has been made.

I find in Section 5 that the error (Eq. 8) of all svr and svrLINEAR meth-
ods – and the standard wall functions – is close to 20%. That is rather high. The
predicted friction velocity for 20 time steps using svrLINEAR and svr are com-
pared with the DNS database at Location 6, see Table 1. I also show uτ obtained
from the standard wall functions. Start by looking at Fig. 16a. We find that uτ
obtained from the wall functions closely follows the variation of Ū1st . This ap-
plies also for the svr predicted friction velocity which is not surprising since Re
(which is linearly related to Ū1st) is used as influence parameter. Next, we turn to
Fig. 16b where the influence parameter

(
∂Ū
∂y

)
non

is also used. It is somewhat sur-
prising that the prediction by svr is virtually identical to that in Fig. 16a (there is
a small difference at time step 16). Closer inspection of Fig. 16b reveals that there
is a negative correlation between Ū1st and ∂Ū1st/∂y. Computing the correlation
coefficient, ec,

ec
(
Ū ′1st , ∂Ū

′
1st/∂y

)
=

dot
(
Ū ′1st , ∂Ū

′
1st/∂y

)
mean

(
Ū ′

2

1st

)1/2
mean

((
∂Ū ′1st/∂y

)2)1/2
(10)

(dot is Python’s element-wise multiplication command) gives ec = −0.45. The
corresponding correlation coefficient between Ū1st and the uτ predicted by svr is
0.41. Hence, it can be concluded that since Ū1st and ∂Ū1st/∂y are fairly strongly
correlated it does not make sense to use both as influence parameters. Now, let’s
look at the third figure (Fig. 16c) we find that the friction velocity by svrLINEAR
is very similar to svr (Fig. 16b). A general observation in Fig. 16 is that the agree-
ment between DNS data and svr (and svrLINEAR) in Fig. 16 is poor. Why?
We can see that the time scales of the friction velocity from the DNS database is
much smaller than in those by svr and svrLINEAR. The reason is that the fric-
tion velocity in the DNS database‘is computed over only one DNS cell for which
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∆x+
DNS = 13 and ∆z+

DNS = 6.5 which should be compared with 2∆y = 170
at Location 6 (see Fig. 3 and Table 1). However, the predicted friction velocity
with svrLINEAR at Location 1 (Fig. 16d) for which 2∆y = 10 (which is close
to ∆x+

DNS and ∆z+
DNS) agrees well with the DNS database. This is a strong in-

dication that the friction velocity in the DNS database should be integrated over
∆x ' 2∆y and ∆z ' 2∆y. This means that the friction velocity in the DNS
database will be different for the six different locations, see Tables 1 and 2.

The averaged filtered velocities (see Eqs. 3 and 7) are shown in Fig. 17. It is
seen that Ū1st does not agree with the DNS velocity profile whereas the agreement
for Ū2nd and Ū3rd is perfect. The reason is that the gradient of the DNS data near
the wall is very large and since Ū1st is computed by integrating from the wall to
2∆y the integrated value differs much from the local (i.e. DNS) value. Maybe
it is best to avoid using the first cell, Ū1st , and instead rely on Ū2nd and Ū3rd as
proposed by Kawai1 and Larsson (2012); Mukha et al. (2021).

I have here presented – as indicated in the title – my first attempt. In my
next attempt I will create the DNS database by integrating the friction velocities
over suitable ∆x and ∆z (I’ve already started). It would also be interesting to
develop machine-learning wall functions for heat transfer. To extend the method to
recirculating flow is the next – but very challenging – step.
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