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ABSTRACT
Data Flow Diagrams (DFDs) are primarily used for modelling func-
tional properties of a system. In recent work, it was shown that
DFDs can be used to also model non-functional properties, such as
security and privacy properties, if they are annotated with appropri-
ate security- and privacy-related information. An important privacy
principle one may wish to model in this way is purpose limitation.
But previous work on privacy-aware DFDs (PA-DFDs) considers
purpose limitation only superficially, without explaining how the
purpose of DFD activators and flows ought to be specified, checked
or inferred. In this paper, we define a rigorous formal framework for
(1) annotating DFDs with purpose labels and privacy signatures, (2)
checking the consistency of labels and signatures, and (3) inferring
labels from signatures. We implement our theoretical framework
in a proof-of concept tool consisting of a domain-specific language
(DSL) for specifying privacy signatures and algorithms for check-
ing and inferring purpose labels from such signatures. Finally, we
evaluate our framework and tool through a case study based on a
DFD from the privacy literature.

CCS CONCEPTS
• Social and professional topics→ Systems analysis and de-
sign; • Security and privacy→ Usability in security and pri-
vacy.
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1 INTRODUCTION
The European General Data Protection Regulation (GDPR) entered
into force in 2016 after passing European Parliament, and all or-
ganizations are required to comply since May 25, 2018. The regu-
lation imposes stringent constraints on the collection and use of
individuals’ personal data, stipulating heavy penalties in case of
violations [11]. Yet, complying with the regulation is challenging
for software engineers trying to meet the requirements [18].

Note that privacy does not refer to one particular property but
rather to a set of properties, including confidentiality, user consent,
the right to be forgotten, purpose limitation, and more. Verifying
privacy compliance (even for specific properties) is in general un-
decidable [19, 21].

In this paper we extend previous work in the area following the
Privacy by Design (PbD) principle [7], in which any (computerized)
personal data processing environment should be designed taking
privacy into account from the very beginning of the (software) de-
velopment process. PbD has been identified as being more tractable
than “adding privacy” to already deployed software (or program-
ming only targeting functional properties and add privacy on a
later stage of development) [9].

In particular, we are here interested in data flow diagrams (DFDs),
a graphical representation of how data flows among software com-
ponents primarily used for modeling functional properties of a
system. DFDs can also be used to model non-functional properties,
such as security and privacy properties, if they are annotated with
appropriate security- and privacy-related information, as shown
in [1, 2, 22, 23].

In this paper we enhance DFDs with purpose limitation. Antignac
et al. [4, 5] proposed an approach to automatically add privacy
checks at the design level by means of model transformations and
enhancing DFDs with checks for specific privacy concepts. They
focused on privacy policies at a very high-level of abstraction. The
enhanced diagram is called a Privacy-Aware Data Flow Diagram (or
PA-DFD for short). In that proposal, the software engineer designs a
DFD, pushes a button to obtain a PA-DFD, inspects it manually, and
then generates a program template from the PA-DFD that guides
the programmer in the concrete implementation of the privacy
checks. Antignac et al. describe their transformation from DFDs to
PA-DFDs through high-level graphical “rules”. Alshareef et al. [2]
further extend the approach by providing an algorithm for the
transformations and a reference implementation.
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In this paper, we extend the above mentioned work and define
a rigorous formal framework, algorithms and a proof-of-concept
implementation for modeling purpose limitation in DFDs.

In more detail, our contributions are:
(1) In §3, we define a rigorous mathematical framework for (i)

annotating DFDs with purpose labels and privacy signatures,
(ii) checking the consistency of labels and signatures, and
(iii) inferring labels from signatures.

(2) In §4.3, we describe a proof-of-concept tool implementing
features (i–iii) of our theoretical framework. Concretely, we
design and implement a domain-specific language (DSL) to
be used by domain-experts for specifying privacy signatures.
These signatures can then be used by designers to annotate
DFDs (i). We also describe and implement algorithms to au-
tomatically check (ii) and infer (iii) purpose labels consistent
with such annotated DFDs.

(3) In §5, we evaluate our framework and tool through a case
study based on a DFD from the privacy literature.

We cover relevant background information in §2, discuss related
work in §6 and draw conclusions in §7.

2 PRELIMINARIES
2.1 GDPR
Regulation (EU) 2016/679, better known as the European General
Data Protection Regulation (GDPR), stipulates rules concerning “the
protection of natural persons with regard to the processing of per-
sonal data and rules relating to the free movement of personal data”,
and it “protects fundamental rights and freedoms of natural persons
and in particular their right to the protection of personal data” [11].
It contains 99 articles regulating personal data processing, and it is
organized around a number of key concepts, most notably its seven
principles of personal data processing. Relevant to this paper is the
principle of purpose limitation.

According to Article 5 of the regulation, “Personal data shall be,”
among other things, “collected for specified, explicit and legitimate
purposes and not further processed in a manner that is incompatible
with those purposes; further processing for archiving purposes in
the public interest, scientific or historical research purposes or
statistical purposes shall, in accordance with Article 89(1), not be
considered to be incompatible with the initial purposes (’purpose
limitation’)[.]”

In order to check, and eventually enforce, that data assets are
used for their intended purpose in a computer system, one must
track the flow of both the data as well as its associated purpose
through the system.

2.2 Data Flow Diagrams
A data flow diagram (DFD) is a graphical representation used to
model the flow of information among software components. Based
on the “data flow graph” computation models, DFDs were popular-
ized in the late 1970s, starting with the software engineering trend
on structured design.

Fig. 1 shows two simple examples of DFDs (we will handle more
complex cases later). The terminology we use is as follows: the
diagrams are composed of activators and flows. Activators can be
external entities (rectangles, representing for instance end users and
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third party systems), processes (circles, computation applied to the
data in the system) and data stores (double-lined entities).

Processes may represent detailed low-level operations or be high-
level, representing complex functionalities that could be refined
into more detailed processes. Composite processes are represented
by a double-lined circle or ellipse. The flow of data is represented
by data flow arrows.

As already mentioned, though DFDs have originally introduced
for functional properties, some extensions have been done in order
to incorporate privacy (and security) concepts. For that, Antignac et
al [4, 5] extended the standard notation of DFDs with data deletion
type of flow, to indicate specific piece of data is to be deleted from
a database. This extension is referred to as Business-oriented DFD
(B-DFD).

2.3 DFDs as Graphs
Following our previous work on PA-DFDs [1, 2], we formally rep-
resent DFDs as attributed multigraphs with activators as nodes and
flows as edges. For the benefit of the reader, we reproduce the rele-
vant definitions in this section. In the following, we use “harpoon”
arrows (⇀) to denote partial maps.

Definition 2.1. An attributed multigraph (or simply graph) G is
a tuple G = (N,F,A,V, s, t , ℓN, ℓF) where N, F, A and V are
sets of nodes, edges, attributes and attribute values, respectively;
s, t : F → N are the source and target maps; ℓN : N → (A⇀V)
and ℓF : F → (A⇀V) are attribute maps that assign values for
the different attributes to nodes and flows, respectively.

Examples of attributed multigraphs are shown in Fig. 1. The
graphG1 has nodesN = {E1,E2,CP1} and edgesF = {d.1, . . . , d.4}.
G1 is a multigraph since both edges d.1 and d.2 connect the same
source and target nodes: s(d.1) = s(d.2) = E1 and t(d.1) = t(d.2) =
CP1. Attributes allow us to specify properties of activators and
flows, such as their type or associated privacy information.

For example, the graph G1 has two kinds of nodes, external
entities and composite processes. We formalize this by defining its
attribute and value sets as A = {type} andV = {ext, cproc}, and
its node attribute map as ℓN(E1)(type) = ℓN(E2)(type) = ext and
ℓN(CP1)(type) = cproc. Note that the attribute maps are partial, i.e.
nodes and edges may lack values for certain attributes. If we extend
the value setVwith types for processes (proc) and data stores (db),
we can encode the graph G2 shown in Fig. 1 similarly.

Henceforth, we use the letters n,m to denote nodes and e , f to
denote edges. We write e : n ⇝ m to indicate that e has source
s(e) = n and target t(e) =m. For example, we have d.1 : E1⇝ CP1
inG1. We use “.” to select attributes, writingn.a for ℓN(n)(a) and f .a
for ℓF(f )(a). For example, E1.type = ext in G1. The set S(G) ⊆ N
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for ℓF(f )(a). For example, E1.type = ext in G1. The set S(G) ⊆ N
of source nodes inG is defined as S(G) = {n | ∃e .s(e) = n}; similarly,
T (G) denotes the set of target nodes in G. The set in(n) of input
flows of a node n is defined as in(n) = { f | t(f ) = n}, and similarly
for the set of output flows out(n).

DFDs. A DFD is an attributed multigraph with a fixed choice of
attributes A = {type} and valuesV = Tdn ⊎ Tdf . The sets of data
node types Tdn and data flow types Tdf are defined as

Tdn = {ext, proc, db, cproc} Tdf = {pf, df}.
We adopt Antignac et al.’s notion of business-oriented DFDs (B-
DFDs) [4] and distinguish between two types of flows: plain flows
(pf) and deletion flows (df).1

Since the type attribute plays an important role in B-DFDs, we
introduce shorthands for typing activators and flows. We write n : t
to abbreviaten.type = t , and f : n⇝t m to indicate that f : n⇝ m
and f .type = t .

We require that DFDs be well-formed. We adopt the standard
rules from the DFD literature for well-formed DFDs: diagrams
should not contain loops (flows with identical source and target
activators), activators cannot be isolated (disconnected from all
other activators), and processes must have at least one incoming
and outgoing flow (see e.g. [10, 12]).

Definition 2.2. A B-DFD (or simply DFD) is an attributed multi-
graphG , whereAG = {type} andVG = Tdn ⊎ Tdf . In addition, for
all flows f and activators n,m,
• n.type ∈ Tdn and f .type ∈ Tdf ;
• if f : n⇝df m thenm : db;
• if f : n⇝ m then n ,m;
• if n : cproc or n : proc then n ∈ S(G) and n ∈ T (G)
• if n : ext or n : db then n ∈ S(G) or n ∈ T (G)

For more details about DFDs, see [1].

3 MODELING PURPOSE IN DFDS
As a first step towards our goal of modeling privacy properties,
and in particular purpose limitation, in DFDs, we define a rigorous
mathematical framework for annotating DFDs with purpose labels
and privacy signatures. This framework will serve as the theoretical
basis for developing the concrete DSL and algorithms presented
in §4.3 as well as our proof-of-concept tool. The framework is
graph-theoretic and builds on the definitions of DFDs and their
refinements recapitulated in §2.3.

To define our theoretical framework, we must first identify a
formal notion to represent the informal concept of purpose used in
the GDPR. Recall, from §2.1, that the GDPR mandates that personal
data shall be collected and process only for “specified, explicit and
legitimate purposes” [11]. This is the principle of purpose limitation.
Let us concede immediately that purpose limitation and the notion
of “purpose” itself are legal concepts, and that it is not possible, in
general, to express such concepts in a fully formal way. The best
we can hope for is to formalize a useful approximation.

1 Alshareef et al. [1, 2], use a more fine-grained notion of flow types, distinguishing
flows based on their source and target activators. There is no need for such detailed
flow typing in the present paper, but our theoretical framework readily generalizes to
Alshareef et al.’s definitions.

With this caveat in mind, our goal is to map the legal concepts
underlying the principle of purpose limitation to corresponding
primitives in the graphical language of DFDs, and to extend that
language with new primitives where necessary. It is very natural
to model data via flows, and data processing and collection via
activators (such as processes and data stores), but there is no obvious
counterpart to the concept of “purpose” in the language of DFDs.
To address this shortcoming, we introduce two additional notions
in our graph-theoretic treatment of DFDs: purpose labels on data
flows to represent the intended purpose for which a piece of data is
to be used, and privacy signatures on activators to model the impact
of processing and storage on these purpose labels.

3.1 Purpose Labels
Since DFDs are a very general modeling tool with applications
in many contexts, we wish to keep our formal notion of purpose
equally general and widely applicable. We take the view that there
are many possible ways to represent purpose mathematically, and
that themost appropriate choice depends on the domain and context
of a given model.

We therefore assume that we are given, for each DFD G, a pre-
ordered set (PG ,⊑G ) of purpose labels (or simply purposes) that is
used to annotate the flows of G. To avoid clutter, we will usually
omit the superscripts and just write P and ⊑. The concrete choice
of P and ⊑ depends on the context in which G is used and should
be made by a domain-expert.

The elements of P are denoted by the letters p,q, . . . and
represent the intended purpose for which a given piece of data
may be used. The preorder ⊑ on purpose labels models sub-
sumption: if p ⊑ q, we say that p is a sub-purpose of q or that
q subsumes p. Intuitively, p ⊑ q means that p is a more spe-
cific purpose than q, i.e. a q-labeled piece of data can also be
used for the more specific purpose p. For example, a DFD mod-
eling parts of an e-commerce system may be annotated with
purpose labels ProductSelection,Payment,Purchase ∈ P, where
ProductSelection ⊑ Purchase and Payment ⊑ Purchase because a
purchase may involve both product selection and payment, but
ProductSelection@Payment because product selection and pay-
ment are independent activities. Hence, a piece of data (such as a
credit card number) could be used for all three purposes if labeled
Purchase, but only for payment if labeled Payment.

In the remainder of this paper, we will often assume that P is
the powerset P = 2P of a finite set of atomic or basic purposes P ,
and that purposes are ordered by set inclusion ⊑ = ⊆. Intuitively,
atomic purposes a,b, . . . ∈ P represent the basic functions a system
can perform. A purpose label p ∈ P is then a collection of all
the atomic purposes that a given piece of data may be used for:
if a ∈ p, then the data can be used for the atomic purpose a, if
a < p, it cannot. A purpose label q subsumes another purpose label
p if p ⊆ q. This corresponds to the intuition that it is safe to use
a q-labeled piece of data for the more restricted set p ⊆ q of basic
functions. Fig. 2 shows an example for the set of atomic purposes
P = {advert, login}. The example models a toy system that can
perform only two basic functions: advertising (advert) and user
log-in (login). The Hasse diagram in Fig. 2a shows how purpose
labels are ordered. At the top of the diagram is the set P itself: data
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P = {advert, login}

{advert} {login}

∅
(a) The powerset lattice of P = {advert, login}.

In1 Out1

Combine Credentials
DB Split

In2 Out2

email {advert, login}

password {login}

email, password

{login}

email, password

{login}

email {login}

password {}

(b) A DFD combining and splitting data with purpose labels drawn from P = 2P .

Figure 2: A simple purpose lattice P = 2P and a P-annotated DFD.

{advert} and {login} are used to label data that can be used for
exactly one of the basic purposes.

In general, the powerset 2P of a finite set P forms a finite bounded
lattice with maximum P and minimum ∅, and with set intersection
∩ as the greatest lower bound (GLB) and set union ∪ as the least
upper bound (LUB). We have already noted that the extremal labels
P and ∅ are useful to minimally or maximally constrain the use
of data. The lattice operations ∩ and ∪, on the other hand, are
useful when determining the purpose labels of outputs and inputs
of processes that combine and split data, respectively. Fig. 2b shows
an example. The “Combine” process simply takes its inputs “email”
and “password” and combines them into a tuple (to be stored in a
credentials database). Initially, the “email” and “password” flows
are labeled p1 = {advert, login} = P and p2 = {login}, indicating
that the user’s email address can be used for any purpose, while
their password can only be used for log-in. What purposes may
we use the combined data for? Because the tuple “email, password”
contains both data, we must take care to only use it for purposes
covered by both p1 and p2, i.e. the atomic purposes in p1 ∩ p2 =
{login}. Conversely, we may ask what purpose label we should use
for the input to the “Split” process in the figure, if given only the
labels q1 = {login} and q2 = ∅ of its two outputs. Since the label of
the input “email, password” must cover the use of either component
separately, the appropriate label is q1 ∪ q2 = {login}.

Althoughwe only explicitly cover the case whereP is a powerset
lattice here, the same reasoning extends immediately to any domain
where purpose labels can be represented as a bounded lattice. We
will revisit this idea in §3.2.2, where we define a language for privacy
signatures based on lattice expressions.

3.2 Signatures: Propagating Purpose Labels
The discussion at the end of the previous section about the use of
the lattice operations for determining the correct purpose labels on
the inputs and outputs of processes illustrates a more general point:
as data flows through a DFD and is changed by different activators,
the purpose of the data changes as well, and the purpose labels of
the corresponding flows must be updated. Processes that simply
split or combine data are easy to reason about because they do not
actually change the underlying data. Hence it is straightforward
to relate purpose labels of their inputs and outputs. But there are
no general rules for doing this when processes perform arbitrary
computations or when data is read from or written to external
entities or data stores. In such cases, a designer has to explicitly
model the effect of an activator on the purpose labels of its inputs
and outputs.

In theory, almost any type of relationship between purpose labels
of inputs and outputs are imaginable. Indeed, a process might – in
theory – simply forget all its inputs and produce random outputs.
In this extreme case, the purpose labels on the inputs and outputs
of the process need not be related at all.

In practice, however, we argue that, for any given application do-
main, there ought be a finite number of useful combinations of input
and output labels, corresponding to typical operations performed
by systems in that domain. For example, a process might aggregate
data from two inputs with purpose labels p1 and p2, in which case
the label of the aggregated output should be p2 ∩ p2, just as for the
“Combine” process in the previous example – unsurprisingly, as
pairing is a particular type of aggregation.

As an other example, a process might anonymize one of its inputs,
in which case the anonymized output may be given any purpose
label whatsoever, provided that the anonymization is done properly
(i.e. any trace of personal information has been removed). We call
the combinations of input and output purposes associated with
such generic (but domain-specific) operations privacy signatures.

Before we give our formal definition of privacy signatures, we
need to introduce a bit of auxiliary notation. Let I be a finite set, e.g.
I = {1, 2, . . . ,n} for some natural numbern. We think of finite maps
p ∈ PI as tuples or vectors p = (p1,p2, . . . ,pn ) of purpose labels
with index set I . We use p(i) and pi interchangeably to denote the
i-th component of p. The subsumption order ⊑ extends pointwise to
vectors: we write p ⊑ q if pi ⊑ qi for all i ∈ I . In the following, we
will use purpose vectors to represent collections of purpose labels
indexed by flows (I ⊆ F), activators (I ⊆ N) or natural numbers
(I = {1, 2, . . . ,n}).

We take the view that privacy signatures are fully characterized
by how they act on purpose labels, i.e. if two privacy signatures
combine input and output labels in the same way, they are indistin-
guishable. Formally, we therefore model privacy signatures simply
as functions from (vectors of) input purpose labels to (vectors of)
output purpose labels.

Definition 3.1. Let I and O be finite sets of input and output
names, respectively. A privacy signature or purpose propagation
function (PPF) is a monotone map σ : PI → PO . That is, for all
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inputs to purpose labels on outputs – whence the name purpose
propagation function.

For example, consider the privacy signature σagg associated with
the Combine activator in Fig. 2b or any other process aggregating
two inputs into one output. There are two inputs and one output,
so we choose I = {1, 2} and O = {1}. This means that σagg must
map pairs of input purposes (p1,p2) to a single output purpose
σagg(p1,p2). As explained earlier, an appropriate output purpose
for aggregation is the GLB of p1 and p2, i.e. σagg(p1,p2) = p1 ∩ p2.

We use the terms “privacy signature” and “purpose propagation
function” interchangeably. The former explains what PPFs repre-
sent, while the latter describes how theywork. The term propagation
function was coined by Tuma et al. [22] who uses it to model the
effect of activators on the confidentiality of inputs and outputs;
instead of purpose labels, their functions propagate security labels
from inputs to outputs.

The monotonicity requirement says that, if we restrict the pur-
pose label on any input, the purpose labels on the outputs should
not become more general as a consequence. This captures the intu-
ition that, if a data subject limits her consent to a more restrictive
set of purposes, the system should be more constrained in its use
of the data both before and after processing the data. Consider
again the privacy signature σagg representing aggregation: mono-
tonicity holds because, whenever p1 ⊆ p′1 and p2 ⊆ p′2, we have
p1 ∩ p2 ⊆ p′1 ∩ p′2, and hence σagg(p1,p2) ⊆ σagg(p′1,p′2).

Given a set of purpose labels P, we denote by Sig(P) the set of
possible signatures ranging over P. That is,

Sig(P) = {σ : PI → PO | I ,O finite }.
3.2.1 Purpose-Annotated DFDs. With the definitions of purpose
labels and privacy signatures in place, it is now easy to extend
our earlier definition of DFDs, Def. 2.2, to incorporate purpose
annotations. We simply equip DFDs with an additional attribute
purpose that denotes the purpose label and privacy signature of the
corresponding flows and activators, respectively. To this end, we
also extend the set of possible valuesVG with the set of purpose
labels P and signatures Sig(P).

Definition 3.2. A purpose-annotated DFD (or simply annotated
DFD) is a DFDG with extended attribute setAG = {type, purpose}
and extended value set VG = Tdn ⊎ Tdf ⊎ P ⊎ Sig(P), such that
f .purpose ∈ P and n.purpose ∈ Pin(n) → Pout(n) for all activa-
tors n and flows f .

Note that, for simplicity, we assume the input and output names
of a signature n.purpose to be exactly the set of input and output
flows in(n) and out(n) of n. In practice, this requirement can be re-
laxed: it suffices to establish a one-to-one correspondence between
the input/output flows of activators and the input/output names of
their signatures.

In the remainder of the paper, we use the following short-
hands when working with purpose annotations. We write pf for
f .purpose and σn for n.purpose. Given a set F ⊆ F of flows, we
define the vector pF as pF (f ) = pf . For example, pin(n) denotes
the vector of input purpose labels for a given activator n. Because
every flow f has exactly one source activator n = s(f ), and every
activator n has exactly one signature σn , there is canonical map
σf : Pin(s(f )) → P defined as σf (p) = σs(f )(p)(f ) that propagates

input purposes of s(f ) to f . We call this map σf the signature of
f . The slight abuse of terminology is justified by the fact that the
signature σn of an activator n is the pairing of the signatures of its
outputs, i.e. σn (p)(f ) = σf (p) for f ∈ out(n).

Def. 3.2 ensures that every flow in an annotated DFD has a
purpose and that every activator has a signature. But it does not
guarantee that the purpose labels in the input and output flows of
an activator n are consistent with the signature of n. For example,
we could annotate the Combine activator in Fig. 2b with the bogus
signature σ defined as σ (_, _) = ∅, i.e. σ returns the constant output
purpose ∅ irrespective of the input purposes. The output label
returned by the signature σ is clearly inconsistent with the actual
purpose label on the output flow of Combine, which is {login}.
Surely, an output that has purpose label ∅, and therefore cannot be
used for any purpose, should not be passed on to a downstream
activator for the purpose of log-in! However, had σ been defined
as σ (_, _) = P , there would not have been a problem: the output of
Combine could then have been used for any purpose, including log-
in. More generally, we require that the purpose labels computed by
signatures subsume (i.e. are more permissive than) those specified
via annotations.

Definition 3.3. An annotated DFD G is consistent if, for all flows
f : n⇝ m, we have pf ⊑ σf (pin(n)).

3.2.2 A Language for Signatures. So far, we have deliberately kept
the representation of purposes and signatures abstract. But, if we
wish to use our theoretical framework to model and reason about
concrete systems, we must choose concrete representations for pur-
poses and signatures that can be understood and manipulated by
human beings (designers, domain experts) and software tools (such
as those described in §4.3). Earlier in this section, we have discussed
a possible representation for purpose labels that fits this require-
ment: a domain expert may fix a finite set P of atomic purpose labels
– typically a short list of strings such as P = {“login”, “advert”} –
that represent the basic functions of systems in the given domain.
Purpose labels are then simply subsets of P , such as {}, {“login”},
etc. In other words, purpose labels are elements of the powerset
lattice P = 2P . We call this the finite set representation. The finite
set representation is both intuitive for human beings – the purpose
of a data asset is just the list of basic functions it may be used for –
and easy to implement algorithmically.

Assuming a finite set representation for purpose labels, signa-
tures are monotone maps between vectors of finite sets. It may be
tempting to simply represent such maps directly, e.g. as tables or
hash-maps. But such a representation quickly becomes intractable,
even when the number of atomic purposes |P | is small. For example,
consider the set P from Fig. 2 which contains only |P | = 2 atomic
purposes. A signature for a process activator with just two inputs,
such as the aggregation signature σagg of the Combine activator in
Fig. 2b, would require a table with (2 |P |)2 = 16 entries. If we double
the number of atomic purposes to |P | = 4, then the number of table
entries for the same signature grows to 256, even though the se-
mantics of the signature remains the same: it simply computes the
intersection of the two input sets. Clearly, a direct representation
of signatures as finite maps is inefficient both for human beings
and for algorithms.
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We therefore choose an alternative representation that is more
intuitive to work with and also more compact: a small domain-
specific language (DSL) of lattice expressions. The grammar for
lattice expressions e is

e ::= x
�� p �� ⊤ �� ⊥ �� e ⊓ e �� e ⊔ e

where x denotes a variable name drawn from a finite setV (typically
the set of input names I of some signature) and p ∈ P denotes a
constant. The remaining expression formers correspond to the
usual operators of a bounded lattice. The top (⊤) and bottom (⊥)
constants are strictly speaking redundant (they are subsumed by
constant expressions p) but turn out to be useful in practice. Using
lattice expressions, the aggregation signature σagg of the Combine
activator from Fig. 2b can be expressed compactly as “x ⊓y”, where
x and y are the names of the two inputs labels.

Let us assume, once again, that P = 2P is the powerset lattice
generated by a finite set of atomic purposes P . Then, given an
environment ρ : V → P, i.e. a map that assigns concrete purpose
labels to variables, we can evaluate an expression e to a purpose
⟦e⟧ρ ∈ P in the obvious way.

⟦x⟧ρ = ρ(x) ⟦⊤⟧ρ = P ⟦e1 ⊓ e2⟧ρ = ⟦e1⟧ρ ∩ ⟦e2⟧ρ
⟦p⟧ρ = p ⟦⊥⟧ρ = ∅ ⟦e1 ⊔ e2⟧ρ = ⟦e1⟧ρ ∪ ⟦e2⟧ρ

Note that the definition of ⟦−⟧ immediately generalizes to arbitrary
bounded lattices (other than finite powersets).

Lattice expressions evaluate to monotone functions, which
makes them a suitable DSL for specifying signatures.

Lemma 3.4 (monotonicity). The function ⟦e⟧ : PV → P is
monotone for any lattice expression e .

Proof. By straightforward induction on the structure of e and
monotonicity of the lattice operations. (See App. A for details.) □

As discussed in §3.2.1, we may specify the signature σn of an
activator by defining a signature σf for each of its output flows
f ∈ out(n). Thus, given finite sets I and O of input and output
names, respectively, a syntactic signature e is a tuple e = (ej )j ∈O
of |O | lattice expressions – one for each output – with variables
in V = I . We extend evaluation pointwise to syntactic signatures,
i.e. we define ⟦e⟧ : PI → PO as ⟦e⟧p(j) = ⟦ej⟧p. Finally, we de-
fine syntactically annotated DFDs in the same way as annotated
DFDs, but with the purpose attributes of activators n ranging over
syntactic signatures en instead of signatures σn .

For simplicity, we will assume that a syntactic signature en of
an activator n has input set I = in(n) and output set O = out(n),
though, in practice, we merely require that there is a one-to-one
correspondence between the input/output names of en and the
input/output flows of n. In fact, we believe that there is generally
only a small number of useful (syntactic) signatures for any given
application domain, and that it is the task of domain experts to
define, ahead of time, a relevant collection of (syntactic) signatures
to be used by software designersworking in that application domain.
By its nature, this collection of signatures will not be specific to
any given DFD, and hence the names of inputs and outputs of
those signatures will not, in general, match those of the flows in a
particular DFD. Instead, a software designer will have to specify a
correspondence between the two when annotating a DFD. This is

the approach taken in our proof-of-concept tool, which we describe
in more detail in §4.3.

3.2.3 A Sketch of Purpose Inference. A consistently annotated DFD
contains some redundant information. The consistency requirement
means that designers cannot annotate flows and activators with
arbitrary, incompatible purpose labels and signatures. Instead, the
signature on a given node sets an upper bound on the purpose
labels of its outgoing flows. And, since every flow is an output
of some node (namely its source), the signatures in an annotated
DFD effectively constrain the purpose labels on all its flows. Indeed,
one may wonder whether the purpose labels on flows are entirely
redundant, in the sense that they could be be inferred from the
signatures.

The alternative name we use for privacy signatures – purpose
propagation functions (PPFs) – suggests a naive approach for in-
ferring purpose labels: simply propagate purpose labels through
the DFD, one activator at a time, starting with the input activators
(external entities with only output flows). The problem with this
method is that it cannot deal with cycles in the DFD. Consider, for
instance, the following DFD.
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In P1 P2 Out
f1

f2

f3

f4

Assume each activator n carries a signature σn . It is easy to derive
a purpose label for the flow f1: because the In activator only has
output flows (but no inputs) the signature σIn : P ∅ → P {f1 } is a
constant function that assigns a fixed purpose p1 = σIn ()(f1) to f1.
But things get complicated for the next activator, P1, which has
two input flows, f1 and f3. To apply σP1 , we need to compute their
purpose labels p1 and p3. We have a value for p1 but we have not
yet computed p3. Indeed, the value of p3 depends on that of p2, via
σP2 , which depends on p3 itself – we are stuck in a cycle.

A possible workaround for this problem is to ask designers to
specify more details about the system that is being modeled, e.g.
a sequence of events (a trace) that witnesses the order in which
activators are to be executed [see e.g. 22]. Here, we adopt a different
approach, borrowing ideas from program analysis, in particular
from abstract interpretation and data flow analysis.2 The advantage
of this approach is that it does not require any additional informa-
tion from the designer.

Let us recapitulate some basic facts from order theory that are the
heart of our data flow analysis. It is well known that, if L is a finite
bounded lattice and I is a finite set, then the set LI of I -indexed
vectors over L is also a finite bounded lattice. The lattice order
and operations are extended pointwise, e.g. ⊥ = (⊥, . . . ,⊥) and
p⊓ q = (p1 ⊓q1, . . . ,pn ⊓qn ). Another well-know fact about finite
bounded lattices L is that any monotone function F : L → L has
a least fixpoint µ(F ) ∈ L. Recall that an element x ∈ L is a fixpoint
of F if F (x) = x , and that x is a least fixpoint if x ⊑ y for any other
y ∈ L such that F (y) = y. Furthermore, this least fixpoint can be
computed as the limit of the (necessarily finite) chain ⊥ ⊑ F (⊥) ⊑
F (F (⊥)) ⊑ · · · ⊑ µ(F ), where⊥ is the minimum ofL. The main idea
behind data flow analysis is to infer a static property of a system
(represented by elements of a lattice L) by iteratively computing
better and better approximations of the desired property (via a
monotone function F ) until a fixpoint is reached. By re-formulating

2 Despite the name, data flow analysis has nothing to do with data flow diagrams.
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(represented by elements of a lattice L) by iteratively computing
better and better approximations of the desired property (via a
monotone function F ) until a fixpoint is reached. By re-formulating
the problem of purpose inference as a data flow analysis, we can
leverage these properties and compute a consistent annotation
for the flows of a DFD as the least fixpoint of some well-chosen
monotone function.

Given a DFD G (not necessarily annotated), we define a flow
annotation for G as a map p ∈ PFG from flows to purpose labels
or, equivalently, a vector of purpose labels indexed by FG . Because
the set FG is finite, a flow annotation p is an element of the finite
bounded lattice PFG . Given a flow annotation p and a subset F ⊆
FG of flows, we write p|F for the restriction of p to F , i.e. the vector
p|F ∈ PF where we simply forgot the purpose labels of flows that
are not in F . Assume now that we are given a signature σn for
each activator n in G. As explained earlier, this is equivalent to
specifying a signature σf for each flow f ∈ FG . It is easy to extend
each such signature σf into a function Σf : PFG → P, defined
as Σf (p) = σf (p|in(s(f ))) which takes a full flow annotation as its
input and ignores all those purpose labels that are not relevant for f .
Combining the various Σf , we obtain a single function ΣG : PFG →
PFG defined as ΣG (p)(f ) = Σf (p). We call ΣG the global purpose
propagation function (GPFF) of G. Intuitively, ΣG takes a full flow
annotation forG as its input and propagates all the purpose labels on
all the input flows inG to all the output flows inG , simultaneously.
Here, we derived ΣG from individual signatures σn , but it is an easy
exercise to do the opposite, i.e. derive individual signatures (for
activators or flows) from a given map ΣG : PFG → PFG . Hence,
it does not matter if we specify PFFs per-activator, per-flow, or
globally – all three are equally expressive.

We can restate the consistency condition form Def. 3.3 in terms
of the GPFF as follows: an annotated DFD G is consistent if
pFG ⊑ ΣG (pFG ). Clearly, any flow annotation p that is a fixpoint of
ΣG gives rise to a consistently annotated DFD since the above con-
sistency condition immediately follows from p = ΣG (p). Because
signatures are monotone, so is the GPFF, and hence there must be
a least fixpoint p = µ(ΣG ) for any choice of signatures for G. The
same is true for signatures that are specified syntactically.

Theorem 3.5. Assume we are given a DFD G and, for each acti-
vator n ∈ NG , a syntactic signature en . Then G can be extended to a
consistently annotated DFD, with purpose labels

n.purpose = ⟦en⟧ for n ∈ NG
f .purpose = µ(ΣG )(f ) for f ∈ FG

where µ(ΣG ) is the least fixpoint of the GPFF ΣG defined as

ΣG (p)(f ) = ⟦es(f )(f )⟧(p|in(s(f ))).
This is the basis of the purpose inference algorithm (Alg. 2) de-

scribed in §4.2.
Finally, note that every monotone function F on a finite bounded

lattice L also has a greatest fixpoint ν (F ), and that we might just as
well compute a consistent flow annotation for a DFD G based on
ν (ΣG ). The result is qualitatively different, though. A flow anno-
tation computed via the least fixpoint of ΣG is conservative in the
sense that it starts from a minimal flow annotation ⊥ – assuming
data may not be used for any purpose – and progressively relaxes

Algorithm 1: Consistency Checking
input :A syntactically annotated DFD G
output :An error if G is inconsistent.

1 foreach f : m⇝ n ∈ FG do
2 e ← en (f );
3 ρ ← pin(n);
4 q ← ⟦e⟧ρ ;
5 if pf @ q then
6 Error: "The label on flow f is inconsistent with that

computed by the signature e on node n."

this restriction. A flow annotation computed via the greatest fix-
point of ΣG , on the other hand, is permissive in the sense that it
starts from a maximal flow annotation ⊤ – assuming data can be
used for any purpose whatsoever – and progressively restricts this
assumption.

4 ALGORITHMS AND IMPLEMENTATION
Here we present algorithms for checking the consistency of a given
purpose-annotated DFD, and for inferring purpose labels on flows
from syntactic signatures on nodes. Additionally, we describe our
proof-of-concept implementation of these algorithms in our tool
PL-DFD.

We focus on the core algorithms (Consistency Checking and
Purpose Inference) implemented in PL-DFD and omit details about
frontend operations such as parsing and pre-processing of DFDs,
signatures, etc. since they are fairly standard. Furthermore, we pre-
tend that the input to our algorithms (DFDs, purposes and syntactic
signatures) are exactly as described in §3, even though the actual
data structures are sightly more complicated. For example, we al-
low domain experts to define a collection of named (syntactic) flow
signatures ahead of time, separately from DFDs, so that the same
set of signatures can be reused by designers for different DFDs.
Designers then annotate flows (rather than nodes) in DFDs with
signature names (rather than lattice expressions) and must specify
explicitly which input flows of the corresponding nodes are to be
used as inputs to the signature in question. This representation of
syntactically annotated DFDs is more flexible but also slightly more
complex than the one given in §3.2.2. Since they are equivalent, we
use the simpler representation when describing our algorithms.

4.1 Checking Consistency of Annotations
It is straightforward to check consistency of a syntactically anno-
tated DFD G. As shown in the pseudo code for the Consistency
Checking algorithm (Alg. 1), one simply compares the purpose an-
notation pf of every flow f in G against the label computed from
the (syntactic) signature of f and reports possible inconsistencies.
In addition, our tool PL-DFD can suggest proper purpose labels to
replace invalid ones based on the given privacy signatures.

4.2 Inferring Purpose Labels
The Consistency Checking algorithm works when DFD’s flows are
annotated with purpose labels. Instead of manually annotating a
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Algorithm 2: Purpose Inference
input :A DFD G with syntactic signatures {en }n∈NG
output :A consistent syntactically annotated version of G

1 q← ⊥;
2 repeat
3 p← q ; q← PropagatePur(G, p)
4 until p = q;
5 foreach f ∈ FG do f .purpose← p(f );

Function PropagatePur(G, p) – computes the GPFF of G.
input :A DFD G with syntactic signatures {en }n∈NG and

a flow annotation p for G
output :An updated flow annotation q

1 q← {} ; – initialize q to the empty map
2 foreach f : m⇝ n ∈ FG do
3 e ← en (f );
4 ρ ← p|in(n);
5 q(f ) ← ⟦e⟧ρ ;
6 return q;

DFD, designers may wish to automatically infer them, using the
approached sketched in §3.2.3.

The Purpose Inference algorithm (Alg. 2) automates this proce-
dure. It takes a DFD G annotated with privacy signatures (but not
purpose labels) and computes a consistent flow annotation via a
fixpoint procedure. Initially, flows are labeled with the bottom (⊥)
purpose label – the most restrictive purpose (“don’t use”). The
initial flow annotation is then iteratively relaxed by applying the
helper function PropagatePur, which propagates purpose labels
from input flows to output flows (i.e. it implements the GPFF for
G). The algorithm iteratively calls the function until a fixpoint is
reached. This fixpoint procedure is guaranteed to terminate because
the lattice P is finite, and Theorem 3.5 ensures that the resulting
fixpoint is indeed a consistent purpose annotation for G.

Note that Alg. 2 is guaranteed to always infer a consistent pur-
pose annotation for any DFD, but the result may look unexpected.
In particular, there may be flows connected to external entities or
data stores that have the purpose label ⊥ = {}, which is dubious
since the label ⊥ indicates that the data asset in question should
not be used. An example of such a dubious flow is shown in Fig. 2b,
where the “password” flow has label⊥ but is connected to the exter-
nal entity Out2. Such flows may indicate errors in a model and need
to be checked carefully by designers to avoid privacy violations.

4.3 Proof-of concept tool
Our proposed framework for modeling purposes in DFDs com-
prises the two algorithms presented in the previous subsection. We
implemented both algorithms in our PL-DFD tool. PL-DFD uses
diagrams.net, a cross-platform, user-friendly, simple-to-use, open-
source third-party application for drawing DFDs [15]. We utilize
Henriksen’s open source library [13] to provide additional support
for manipulating DFDs. Since it is easy to import and export di-
agrams from/to XML format in diagrams.net, we represent DFD

Table 1: Three privacy signature and their corresponding
purpose propagation functions (PFFs).

Anonymize Restrict Forward
x 7→ ⊤ x ,y 7→ x ⊓ y x 7→ x

diagrams in an XML format. The checking result and the propa-
gated purpose labels of DFD are displayed on CSV/Text file. Our
tool is implemented in Python and has been experimented on a
MacBook Pro. 3

5 EVALUATION
This section describes the evaluation of the implemented algorithms
introduced in §4. We adopt and modify the DFD of a fictional Smart
Speaker system, as analyzed by Lee et al. [17]. Then, we use our
framework of (syntactically) annotated DFDs from §3 to extend the
modified DFD with PFFs. For reproducibility, we have included all
the DFD models (and results) that were used for evaluation in the
source code repository.3

Smart Speaker. Smart speakers (such as Amazon Alexa and
Google Echo) are widely spread voice recognition platforms that
use AI software to translate users’ voice commands into correspond-
ing actions which are then autonomously carried out. For instance,
playing music, adding reminders on users’ cloud account, initiating
a phone call via the user’s connected smartphone, searching on
the Internet, etc. Due to the increasing number of privacy con-
cerns associated with similar devices calling for more robust data
protection mechanisms [16], a fictitious smart speaker platform
is an interesting case study to evaluate our privacy propagation
framework.

Designer input. Figure 3 depicts a simplified diagram of our pri-
vacy enhanced Smart Speaker DFD. For a decomposed and detailed
view of the inner-workings for each process of Figure 3 (including
data stores), we refer the reader to the repository.3The regular DFD
notation consists of external entities, processes, data flows, and
data stores. The figure depicts what elements are involved when
the device owner (external entity) downloads the app and installs it
on their smartphone (process), logs in to the app, and starts using
the speaker by interacting with it by sending voice commands (data
flow). It also shows the data flows that are not directly visible to
the device owner, i.e., when the speaker connects to the local WiFi
and the provider forwarded data to third-party partners.

This diagram is free of privacy violations. In addition to the
regular DFD notation elements, the designer is required to also: (i)
annotate data flows with the purpose labels, (ii) compile a set of
privacy signature definitions (see Table 1), (iii)annotate activators
with signatures (e.g., the Speaker process forwards the password and
WiFi ID to the Router), and (iv) define the permitted purpose(s) that
the external entities are allowed to process the data for (annotations
of external entities in Figure 3).

Table 1 lists the privacy signature definitions that a designer or
domain expert needs to specify for PL-DFD (Algorithms 1 and 2)
to work. For instance, in our case, the designer chose to model
anonymization, restricting inputs (with possibly different purpose
3Source code available at https://github.com/alshareef-hanaa/PL-DFD.

https://github.com/alshareef-hanaa/PL-DFD
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Figure 3: Context diagram of the smart speaker platform (without privacy violations)

labels) and finally, forwarding data assets without performing any
privacy computation. For brevity we omit the signature annotations
(e.g., for one of the decomposed DFDs we included 45 instances of
the defined privacy signatures) and refer the interested reader to
the repository.

Scenario. The device owner can first download the mobile App
for using the smart speaker. After the initial setup, the userwill login
to the App and connect the speaker to the local network (in Figure 3
the data flows with Password and WiFi ID are passed to the Router).
The user can also login to the Music Store. The user activates the
speakers’ microphone and sends voice requests which are processes
by the Provider, returning the corresponding command back to the
speaker. The speaker then invokes the Music Store API provided
capabilities to stream the desired content. Finally, the Provider may
send certain aggregated statistics about their history of clienteles’
requests to Third-party partners (e.g., children.stories.com).

Method of evaluation.To illustrate the efficacy of the proposed
algorithms we create another version of the DFD model for the
smart speaker platform, which includes an additional external en-
tity. We first run the Purpose Inference algorithm on a DFD model
to infer purpose labels. Then, we run the Consistency Checking
algorithm on an annotated DFD model to show two privacy vio-
lations. The privacy violations result from inconsistent purpose
labels with propagation functions, leading to a privacy leak to an
external entity.

Results. Figure 4 shows the effect of the two algorithms. Com-
pared to the violation-free DFD presented in Figure 3, we add an-
other external entity: a Household guest visiting the home of the
device owner. The guest does not explicitly consent to any privacy
policy, therefore “Voice request 2” has no allowed purpose.

Our inference algorithm (Alg. 2) is able to infer the purposes
of all the DFD’s flows, producing the DFD in (a). Let us assume
the DFD designer does not consider the additional external entity
(“Household user”) and instead models the DFD as seen in Figure 4
(b). Alg. 1 can detect two privacy violations. The “Speaker” process
has the restrict privacy signature attached to the incoming voice
requests (1 and 2) into the output “Voice data”. Upon propagation,
the restrict signature is applied in the “Speaker” process for inputs
“Voice request 1” and “Voice request 2”, flowing into the output
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CMD (notify user), music (streaming)

Password (login)

Password (login)

Token (authenticate)

App password (login)App (instal)

Playlist request (streaming)
Music (streaming)

Password,  
WiFi ID (register)

Request token, Token (authenticate), 
Voice data ( )

Token (authenticate), 
CMD (trigger Music Store,  

streaming, notify user)

Stats of Voice data  
CMD pairs ( )

Password, WiFi ID (register)

App Store

notify user,

marketing
Login response (login)

register

Household user
(guest/family)

Voice request  2 ( )

Provider

Speaker

Music Store

Smartphone

(a) The DFD after inferring the purpose labels with Algorithm 2
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(b) The annotated DFD after checking for violations with Algo-
rithm 1

Figure 4: A graphical representation of the effect of Algo-
rithms 1 and 2 on the models developed for the evaluation

“Voice data”4. The intersection of the purposes on the inputs is
an empty set, which means it can not be used for any purpose.
However, the purpose of the output flow is not an empty set (“CMD
processing”). Therefore, the voice data should not be sent to the
provider for further CMD computation, and our algorithm finds a
violation. Within the same DFD, the “Provider” composite process
forwards the voice data input to the voice data pairs on the output,
which is then consumed by the Third-party. The Third-party is only
authorized to consume data that is allowed to be used for marketing.

4Note that in the actual DSL, the data flows are not bundled together, every data asset
is linked to a unique data flow.
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However, upon propagation, the forward signature will copy the
label on the output. Thus, the Third-party consumes data used
for “CMD processing” (and not “marketing”), and our algorithm
witnesses inconsistency. Such violations are detected by checking
the consistency of the output flow purpose(s) and the permitted
purpose(s) of an external entity (e.g. Third-party).

6 RELATEDWORK
For a more comprehensive discussion on the challenges and open
problems in privacy by design, we refer the reader to [19, 21] and
the comprehensive ENISA report by Danezis et al. in [9].

As discussed in the introduction, DFDs have been already used
in the context of PbD approaches [4, 5]. However, previous work
has mostly focused on engineering approaches that do not provide
correctness and completeness guarantees. For instance, Hoepman
[14] has suggested that privacy can be addressed constructively
during the creation of an architectural design by applying privacy
design strategies Along the same lines, some catalogs of privacy
design patterns have been proposed in the past, like for instance
https://privacypatterns.org. Colesky et al. [8] suggest a set of pri-
vacy design tactics to be use as an intermediate refinement level
between design strategies and design patterns. By addressing pri-
vacy from the very earl stages, these approaches allow software
engineers to avoid potential privacy issues early on. The design
models deriving from the adoption of the above-mentioned ap-
proaches can undergo analysis by using, for instance, threat mod-
eling approaches like the one proposed by Sion et al. [20] These
approaches are complementary to our work, which takes a more
formal stance to the problem of specifying and analyzing privacy
in design models. The adoption of formal methods in PbD has been
advocated in the past by Antignac and Le Métayer [3].

Basin et al. [6] have proposed an approach to check GDPR com-
pliance in business process models, which are somehow related to
flow diagrams (even though the semantics of processes is quite
different in the two types of diagrams). In particular, they assign
“purpose” to a “process”, automatically generate privacy policies
and can detect violations of the principle of data minimization.
Their work is complementary to ours (which focuses on purpose
limitation rather than data minimization). However, their paper
also highlights the difficulty of representing the notion of purpose
at the level of software entities and problematizes the possibility
of performing fully automated checks for GDPR compliance. Al-
though we agree with this position, in this paper we try to push
the envelope of automatization for a specific privacy property.

Finally, our work is inspired by the work of Tuma et al. [22],
which propose an approach to analyze information flow policies in
DFD models. Their work focuses on data confidentiality and, partly,
on data integrity. Similarly to our work, they define four types of
contracts for process nodes (in the shape of labels) and introduce
propagation rules for the data assets on the flows traversing the
annotated processes. The work of Tuma et al. focuses on detecting
information leakage (security), while this paper focuses on purpose
limitation (privacy).

7 CONCLUSIONS
By leveraging the leverage the DFD notation, this paper has pro-
posed a formal approach to the specification of purpose limitation

in design models. In particular, we have presented a framework to
annotate process nodes with semantically defined purpose labels
and have introduced a collection of algorithms to (i) compute the
propagation of such labels in the model graph and (ii) check the
consistency of the information flows with respect to said labels.
The contributions in this work complement the work on DFD by
Antignac et al. [5] and Alshareef et al. [2].

In the future, we would like to investigate the usability of our
framework by software developers and designers. For that, it would
be useful to improve our implementation so that rich explanations
could be provided to the developers in case of violations, possibly
with suggestions on how to fix the design flaws.
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A PROOF OF LEMMA 3.4
Lemma 3.4 (monotonicity). The function ⟦e⟧ : PV → P is mono-
tone for any lattice expression e , i.e. if ρ ⊆ σ , then ⟦e⟧ρ ⊆ ⟦e⟧σ .

Proof. The proof relies on monotonicity of ∪ and ∩. We know
from basic lattice theory that the least upper bound (LUB) ⊔ and
greatest lower bound (GLB) ⊓ operations are monotone in any
(semi-)lattice. Monotonicity of ∪ and ∩ follows as a special case for
powerset lattices. Let us quickly recap the general proof for ⊓; the
one for ⊔ is dual. Assume x ⊑ x ′ and y ⊑ y′. Because x ⊓ y is a
lower bound of x and y, we have x ⊓y ⊑ x ⊑ x ′ and x ⊓y ⊑ y ⊑ y′,
so x ⊓ y is also a lower bound of x ′ and y′. Since x ′ ⊓ y′ is the
greatest lower bound of x ′ and y′, we must have x ⊓ y ⊑ x ′ ⊓ y′.
Hence ⊓ is monotone in both its arguments.

The proof of Lemma 3.4 is now an easy induction on the structure
of lattice expressions e . We show the cases for variables x , constants
p and GLBs e1 ⊓ e2, the others are similar.
• Case e = x . Assume ρ ⊆ σ , i.e. ρ(x) ⊆ σ (x) for all x ∈ V .
Then ⟦x⟧ρ = ρ(x) ⊆ σ (x) = ⟦x⟧σ .
• Case e = p. Trivial: ⟦p⟧ρ = p = ⟦p⟧σ for any ρ and σ .
• Case e = e1 ⊓ e2. By the induction hypothesis, ⟦e1⟧ and
⟦e2⟧ are monotone, i.e. if ρ ⊆ σ , then ⟦e1⟧ρ ⊆ ⟦e1⟧σ and
⟦e2⟧ρ ⊆ ⟦e2⟧σ . By monotonicity of GLBs,
⟦e1 ⊓ e2⟧ρ = ⟦e1⟧ρ ∩ ⟦e2⟧ρ

⊆ ⟦e1⟧σ ∩ ⟦e2⟧σ (by monotonicity of ∩)
= ⟦e1 ⊓ e2⟧σ .

□
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