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PMBM-based SLAM Filters in 5G mmWave
Vehicular Networks

Hyowon Kim, Member, IEEE, Karl Granström, Member, IEEE, Lennart Svensson, Senior Member, IEEE,
Sunwoo Kim, Senior Member, IEEE, and Henk Wymeersch, Senior Member, IEEE

Abstract—Radio-based vehicular simultaneous localization and
mapping (SLAM) aims to localize vehicles while mapping the
landmarks in the environment. We propose a sequence of three
Poisson multi-Bernoulli mixture (PMBM) based SLAM filters,
which handle the entire SLAM problem in a theoretically
optimal manner. The complexity of the three proposed SLAM
filters is progressively reduced while sustaining high accuracy by
deriving SLAM density approximation with the marginalization
of nuisance parameters (either vehicle state or data association).
Firstly, the PMBM SLAM filter serves as the foundation, for
which we provide the first complete description based on a
Rao-Blackwellized particle filter. Secondly, the Poisson multi-
Bernoulli (PMB) SLAM filter is based on the standard reduction
from PMBM to PMB, but involves a novel interpretation based
on auxiliary variables and a relation to Bethe free energy.
Finally, using the same auxiliary variable argument, we derive
a marginalized PMB SLAM filter, which avoids particles and
is instead implemented with a low-complexity cubature Kalman
filter. We evaluate the three proposed SLAM filters in comparison
with the probability hypothesis density (PHD) SLAM filter in
5G mmWave vehicular networks and show the computation-
performance trade-off between them.

Index Terms—5G mmWave vehicular networks, Bethe free
energy, Poisson multi-Bernoulli mixture filter, random finite set,
simultaneous localization and mapping.

I. INTRODUCTION

In 5G vehicular networks, mmWave signals with large
bandwidths bring high resolution in both time-delay and angle
domains [1]. This makes it possible for a 5G mmWave
receiver on a vehicle to perform simultaneous localization
and mapping (SLAM), i.e., to both exploit the multipath for
improving positioning and for using position information to
map the environment, which we define as 5G radio-SLAM (see
Fig. 1) [2]–[4]. The SLAM problem [5], [6] is in general
divided into a front-end and a back-end problem. The front-end
problem is to determine the association between landmarks
and measurement detections, known as data association and is
highly dependent on sensor type. The back-end problem is to
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Fig. 1. Example of 5G radio-SLAM application. The base station (BS)
transmits the mmWave signals, and multipath components are generated
depending on the propagation environment: i) reflected by the large surfaces
which are characterizing the virtual anchors (VAs); and ii) scattered by the
scattering points (SPs). A high-level flow-chart of SLAM is shown.

find the probabilistic SLAM density given data association
determined in the front-end problem. In the 5G mmWave
radio SLAM scenario, this data association is challenging
due to the following aspects: i) lack of features that identify
which landmark generated the corresponding detection; ii)
high dimensional vehicle state with uncertainty; iii) missed
detections at the receiver, due to errors in the detection process
or varying sensor field-of-view (FoV); iv) false detections,
due to errors in measurement routine or clutter. Even with
known data associations, the back-end SLAM problem is still
challenging due to the coupling between the unknown vehicle
state trajectory and the unknown landmark states. To solve the
SLAM problem, several approaches have been developed, and
these are now described in detail.

The most well-known SLAM algorithms such as extended
Kalman filter (EKF) SLAM [7], [8], FastSLAM [9]–[11],
and GraphSLAM [12], [13] are Bayesian methods, based on
random vectors, to solve on the back-end problem. In EKF
SLAM, the sensor and landmark states are collected in a single
vector, and the posterior is approximated as Gaussian using
an EKF. In FastSLAM, the sensor and landmark states are
estimated using a Rao-Blackwellized particle filter (RBPF)
where the the sensor state posterior is handled using a particle
filter. GraphSLAM [12], [13] makes use of a graphical model
to efficiently solve for the maximum a posteriori estimates
of the sensor state trajectory and the landmark states by
constrained optimization. However, those data associations
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are explicitly modeled out of Bayesian SLAM filter, and
false alarms cannot be properly handled. Instead, the front-
end problem (determining the data association) is handled by
separate approaches such as the Mahalanobis distance test [8],
maximum likelihood test [10], and joint compatibility test [14].

An alternative approach is based on random finite
sets (RFSs) [15], [16] rather than random vectors, leading to a
rigorous and powerful framework for solving SLAM problems.
RFS-based SLAM naturally captures the data association
problem, the randomness in the number of measurements and
number of detected landmarks, and can address both front-end
and back-end problems in a fully Bayesian manner. Several
RFS-based SLAM filters have been proposed in the literature.
The probability hypothesis density (PHD) SLAM filter [17]
is proposed from [18], implemented by the RBPF. With the
measurement at the current time, the proposal distribution for
sampling the particles is computed [19], which allows for
the reduced number of particles. Furthermore, the Poisson
RFS-likelihood for computing the vehicle posterior density is
theoretically derived in [4]. However, the PHD-SLAM filter
is vulnerable to missed detections and false alarms since it
cannot track the landmarks without explicit data association.
The labeled multi-Bernoulli (LMB) SLAM filter [20], [21]
and δ-generalized labeled multi-Bernoulli (δ-GLMB) SLAM
filter [22], [23] are proposed. LMB is the computationally
efficient alternative to δ-GLMB that is identical to LMB
mixture under the LMB birth [24, Sec. IV].

Poisson multi-Bernoulli mixture (PMBM) SLAM [25]–[27]
was introduced without proper mathematical justification for
the sensor state density computation. The δ-GLMB [28] and
PMBM [24] densities are conjugate priors for each Bayesian
recursion and can handle the entire SLAM problem in a theo-
retically optimal manner. Compared to δ-GLMB, PMBM effi-
ciently represents the set of landmarks as two disjoint subsets:
undetected landmarks, modeled by Poisson; and detected land-
marks, modeled by multi-Bernoulli mixture (MBM), leading
to computational savings in parameterization and hypotheses
cardinality [24, Sec. IV]. Therefore, the PMBM filter is attrac-
tive as a starting point for reduced-complexity variations, and
is the focus of this work. A reduced-complexity Poisson multi-
Bernoulli (PMB) joint sensor and target tracking filter was
proposed in [29], based on the reduction from PMBM to PMB
using belief propagation (BP), but required several ad-hoc
steps. BP has also been used to derive low-complexity PMB
or MB SLAM directly (known as BP-SLAM [3], [30], [31]),
by modeling the landmarks with random vectors rather than
random sets and computing marginal posteriors of landmarks
and sensor state.

In this paper, we provide a rigorous derivation of the PMBM
SLAM filter for a scenario involving mixed continuous and
discrete states, to capture different landmark models. From the
PMBM-SLAM filter, we develop a reduced complexity PMB-
SLAM filter and a low-complexity marginalized PMB-SLAM
filter. The main contributions of this paper are as follows:
• We provide the first complete derivation of the PMBM-

SLAM filter from the PMBM-MTT filter, by adopting
the expected RFS-likelihood calculation from [24]. It
provides a fully Bayesian solution to the complete prob-

TABLE I
Common Notations

Notation Description Notation Description
k time index n particle index
i landmark index j measurement index
sk vehicle state fk vehicle density
x landmark location m landmark type
ai,nk local hypothesis (LH) ak ∈ Ank global hypothesis (GH)

r
i,aik,n
k existence probability f

i,aik,n
k landmark density

β
i,aik,n
k LH weight βak,n

k GH weight

lem, including the birth of landmarks and a compact
representation of all hypotheses, where undetected land-
marks are elegantly modeled by means of a Poisson point
process (PPP).

• We derive the PMB-SLAM filter from the proposed
PMBM-SLAM filter, motivated by the introduction of
a novel auxiliary variable of data association. We also
reveal a novel connection with the Bethe free energy [32]
to the computation of the normalization constant for
determining the sensor particle weights.

• We develop a novel marginalized PMB-SLAM filter
from the PMB-SLAM filter, by marginalizing out the
sensor state and global hypotheses, and by deriving the
marginalized sensor posterior density. By not tracking
the correlations between the sensor state and landmarks,
a significant reduction in the computational burden is
achieved while sustaining the SLAM accuracy compared
to both PMBM and PMB SLAM filters. We also reveal
close connections of the BP-SLAM filter to the proposed
marginalized PMB-SLAM filter.

• The developed marginalized PMB-SLAM filter pro-
vides a new framework for developing new versions of
EKF-SLAM [7], [8], FastSLAM [9]–[11], and Graph-
SLAM [12], [13], with an inherent ability to acknowledge
the association uncertainties, i.e., it simultaneously solves
the front-end and back-end problems in a theoretically
optimal manner.

• We validate the three proposed SLAM filters in 5G
mmWave vehicular networks and provide a performance
comparison with the PHD-SLAM filter [4].

The rest of this paper is organized as follows. Section II
presents the system model in vehicular networks with 5G
mmWave communication links. Section III introduces the
backgrounds of RFS-based SLAM. In Section IV, the PMBM
and PMB SLAM filters are derived, and the marginalized
PMB-SLAM filter is proposed. Section V presents the CKF
implementation of marginalized PMB-SLAM. The numerical
results and discussions are reported in Section VI, and con-
clusions are drawn in Section VII.

Notation: Scalars are indicated by the italic font, e.g.,
x. Vectors and matrices are respectively displayed in the
bold lowercase and uppercase letters, e.g., x and X, and
their transpose are indicated by superscript >, e.g., x> and
X>. Sets are displayed in the calligraphic font, e.g., X , and
the cardinality of set X is denoted by |X |. The probability
density function (pdf) and probability mass function (pmf) are
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respectively denoted f(·) and p(·). The number of unknown
variables of x is denoted by d(x). The disjoint union of sets
is denoted by ]. The symbol ∝∼ stands for approximately
proportional to application-specific notations are described in
Table I.

II. SYSTEM MODEL IN 5G VEHICULAR NETWORKS

Without loss of generality, we describe models for the
vehicle dynamics and observations, and introduce the prop-
agation environment, consisting of different types of land-
marks. We consider that a vehicle is moving around a base
station (BS), and a vehicle state at time step k is denoted
by sk = [v>k , αk, ζk, ρk, bk]>, where vk = [xv,k, yv,k, zv,k]>,
αk, ζk, ρk, and bk are respectively the 3-dimensional (3D)
location, heading, translation speed, angular speed, and clock
bias. With the known prior density f(s0) and known transition
density f(sk|sk−1), we model the vehicle dynamics as

sk = v(sk−1) + qk, (1)

where v(·) is a transition function [33, Chapter 5], [34], and
qk ∼ N (0,Q) denotes the process noise with the known
covariance matrix Q.

The BS periodically transmits the mmWave signals. We
consider the following propagation environments [4] in the
viewpoint of the vehicle receiver: i) direct path from BS; ii)
reflected path from the reflection surfaces, characterized as
virtual anchors (VAs) by mirroring the BS to surface [2], [35]–
[37]; and iii) scattered path from small objects, modeled as
scattering points (SPs), exist as shown in Fig. 1. We regard
the BS, VAs, and SPs as landmarks which are static, and
we assume that landmarks never appear or disappear in the
propagation environment. We denote the landmark type by
m ∈ M = {BS,VA,SP} and the landmark location by
x = [x, y, z]>. The set of all landmark locations and types
is modeled as an RFS X with the set density f(X ).

The receiver at the vehicle can detect the signals [38]. Each
signal comes from the landmark (x,m) ∈ X with an adaptive
detection probability [39], denoted by pD,k(sk,x,m) ∈ [0, 1],
which depends on the FoV, and both vehicle and landmark
states. We assume a channel estimation routine is performed at
the vehicle receiver, which provides a bunch of measurements.
Then, using the channel estimation routine the measurement
for the landmark (x,m) ∈ X is provided as

zjk = h(sk,x,m) + rjk, (2)

where h(sk,x,m) = [τ jk , (θ
j
k)>, (φjk)>]>, and rjk ∼

N (0,Rj
k) denotes the measurement noise. Here, τ jk , θjk, and

φjk respectively denote a time-of-arrival (TOA), direction-of-
arrival (DOA) in azimuth and elevation, direction-of-departure
(DOD) in azimuth and elevation, which follow the geometric
relations, see, e.g., [4, Appendix B], and Rj

k denotes a known
covariance matrix. We define clutter consisting of either false
alarms or transient targets (e.g., people or passing car) or
multi-bounce signals. We model the set of measurements as an
RFS Zk = {z1k, ..., z

Jk
k }, where Jk is the number of observable

measurements (including clutter) at the vehicle receiver.

The goal is to determine the joint posterior of the vehicle
state and landmarks given the prior f(s0) and the BS location,
i.e., f(s0:k,X|Z1:k), and to develop a low complexity SLAM
filter which computes f(sk,X|Z1:k).

III. BACKGROUND FOR RFS-BASED SLAM FILTER

We provide background for RFS-based SLAM filters. First,
we briefly present the basic computation and densities of
RFS. Second, we introduce two joint densities for SLAM and
the Bayesian recursion for SLAM. Third, we also introduce
marginalization of a PMB density.

A. Basics on RFS Densities

1) General RFS: Let us denote a finite set by X =
{x1, ...,xI}, where each vector xi ∈ Rnx is random, and
the cardinality I = |X | is also random, where |·| is the set
cardinality. By FISST [16] with the joint pdf f(x1, ...,xI),
the set density f(X ) is given by [40] f({x1, ...,xI}) =
p(I)

∑
π f(xπ(1), ...,xπ(I)), where p(I) = Pr(|X | = I), and

π(·) denotes a permutation function, which indicates that the
joint pdf f(·) is invariant to all permutations. The set integral
is defined in [15].

2) Poisson RFS: The RFS X follows a Poisson process:
the cardinality I is Poisson distributed with mean µ (i.e.,
p(I) = µI exp(−µ)/I!); and given the cardinality I , each
vector xi ∈ X is independent and identically distributed
with the density f(x) (i.e., f(xπ(1), ...,xπ(I)) =

∏
x∈X f(x)).

Then, the intensity function of the Poisson RFS is given by
λ(x) = µf(x), and the density of the Poisson RFS X is given
by [40, pp. 373]

f(X ) = e−
∫
λ(x)dx

∏
x∈X

λ(x). (3)

3) Bernoulli RFS and its Generalizations: The density of
the RFS X following a Bernoulli process is given by

f(X ) =


1− r, X = ∅,
rf(x), X = {x},
0, |X | > 1,

(4)

where r ∈ [0, 1] denotes the landmark’s existence probability.
When X is the union of I independent Bernoulli RFSs
X i, i = 1, . . . , I with the pdf f i(X i), defined in (4), the
RFS X follows a multi-Bernoulli (MB) process. Then, using
convolution theorem for independent RFSs [16, pp. 372, 386],
the density of the RFS X is represented as

f(X ) =
∑

]I
i=1X i=X

I∏
i=1

f i(X i), (5)

where ]Ii=1X i indicates X 1 ] · · · ] X I . Here, ] stands
for the disjoint set union. Finally, a multi-Bernoulli mixture
(MBM) RFS X is expressed as a linear combination of |A|
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MB densities [24], [40], where A denotes a set of global
hypotheses:

f(X ) =
∑
a∈A

βa
∑

]I
i=1X i=X

I∏
i=1

f i,a
i

(X i), (6)

∝
∑
a∈A

∑
]I

i=1X i=X

I∏
i=1

βi,a
i

f i,a
i

(X i), (7)

where a = [a1, ..., aI ] denotes a single global hypothesis,
where ai is the local hypothesis indicating the single-trajectory
hypothesis for i-th Bernoulli, i.e., the measurements associated
at different times to this Bernoulli; βa ∝

∏I
i=1 β

i,ai is the
weight of global hypothesis a, such that

∑
a∈A β

a = 1, i.e.,
p(a) = βa; and βi,a

i

and f i,a
i

(X i) are the weight and the
Bernoulli density of potentially detected landmark i under
hypothesis ai.

4) PMBM and PMB: If XU and XD are independent RFSs
such that X = XU ] XD, then the set density f(X ) is

f(X ) =
∑

XU]XD=X

fU(XU)fD(XD). (8)

When XU and XD respectively follow the Poisson process
in (3) and MBM process in (6), then f(X ) is a PMBM density.
Substituting (3)–(6) into (8) [24],

f(X ) ∝
∑

]I
i=1X i]XU=X

∏
x∈XU

λ(x)
∑
a∈A

I∏
i=1

βi,a
i

f i,a
i

(X i).

(9)

Note that when XD follows an multi-Bernoulli (MB) pro-
cess (i.e., |A| = 1), f(X ) is a PMB density f(X ) ∝∑
]I

i=1X i]XU=X
∏

x∈XU λ(x)
∏I
i=1 f

i(X i).

B. Bayesian Recursion of RFS-joint SLAM Density

We now describe the SLAM recursion.
1) Joint Vehicle Trajectory and Landmark Density: At time

step k, a joint posterior density for a vehicle trajectory s0:k
and a set of landmarks X is denoted by f(s0:k,X|Z1:k), which
can be factorized as

f(s0:k,X|Z1:k) = f(s0:k|Z1:k)f(X|s0:k,Z1:k), (10)

where f(s0:k|Z1:k) and f(X|s0:k,Z1:k) are respectively pos-
terior densities for the vehicle trajectory and the set of land-
marks conditioned on the vehicle trajectory. Each density goes
through the following prediction and update steps. Assume that
the motion of sk is independent of X , and that the targets are
static. The vehicle trajectory is predicted as

f(s0:k|Z1:k−1) = f(sk|sk−1)f(s0:k−1|Z1:k−1), (11)

where f(sk|sk−1) is the known transition density of the
dynamic model (1). We remind the reader that the static
landmarks are assumed to never appear or disappear. Thus, the
landmarks have no prediction [41] and f(X|s0:k,Z1:k−1) =
f(X|s0:k−1,Z1:k−1). The set of landmarks conditioned on the

vehicle trajectory is updated as

f(X|s0:k,Z1:k) =
f(X|s0:k,Z1:k−1)g(Zk|s0:k,X ,Z1:k−1)

g(Zk|s0:k,Z1:k−1)
,

(12)

where g(Zk|s0:k,X ,Z1:k−1) is the RFS-likelihood of the
measurement set Zk for s0:k and X , and g(Zk|s0:k,Z1:k−1)
is the normalizing factor. The vehicle trajectory is updated as

f(s0:k|Z1:k) =
f(s0:k|Z1:k−1)g(Zk|s0:k,Z1:k−1)

g(Zk|Z1:k−1)
, (13)

where g(Zk|Z1:k−1) is the normalizing factor.

2) Marginal Vehicle State and Landmark Density:
In case we are not interested in vehicle trajectories,
we can reduce complexity by recursively determining
marginal densities f(sk|Z1:k) and f(X|Z1:k). Assume
f(sk−1|Z1:k−1) and f(X|Z1:k−1) are given, then
f(sk|Z1:k−1) =

∫
f(sk|sk−1)f(sk−1|Z1:k−1)dsk−1 by the

Chapman-Kolmogorov equation. We recall that the landmarks
have no prediction. The update step then becomes [29]

f(sk|Z1:k) ∝ f(sk|Z1:k−1)

∫
f(X|Z1:k−1)g(Zk|sk,X )δX ,

(14)

and

f(X|Z1:k) ∝ f(X|Z1:k−1)

∫
f(sk|Z1:k−1)g(Zk|sk,X )dsk.

(15)

C. Marginal PMB Density

In our proposed filters, we will work with PMB densi-
ties that are conditioned on nuisance variables: the global
hypotheses (see (9)) or the vehicle state (see (12)). When
we marginalize out these nuisance variables and approximate
again with a PMB density (leading to a marginal PMB
density), less complex filters result, since the marginal PMB
density of the set of landmarks can be represented as the
Poisson and MB components. In the following, the marginal
PMB density is approximated, derived by the Kullback-Leibler
divergence (KLD) method.

Given a density f(X|η), conditioned on a nuisance variable
η that can contain continuous and discrete variables with the
probability distribution p(η), of the form of a PMB, f(X|η) =∑
]I

i=1X i]XU=X fU(XU|η)
∏I
i=1 f

i(X i|η). In case we want
to approximate f(X ) = Eη[f(X|η)] with a PMB, we use
the following approach [42]: we extend the state space with
an auxiliary variable by u ∈ U = {0, 1, ..., I}, where u = 0
implies that the landmark has not yet been detected, while
u = i > 0 indicates that the landmark corresponds to the i-th
Bernoulli component. A set of landmark states with auxiliary
variables is denoted by X̃ with elements (u,x) ∈ U × Rnx .
Then, we define

f̃(X̃ ) = Eη[f̃U(X̃U|η)

I∏
i=1

f̃ i(X̃ i|η)], (16)
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where X̃U = {(u,x) ∈ X̃ : u = 0} and X̃ i = {(u,x) ∈ X̃ :
u = i}, and similarly to [42, eq. (8)] we express

f̃U(X̃ |η) = exp(−
∫
λ(x|η)dx)

∏
(u,x)∈X̃

δ0,uλ(x|η), (17)

f̃ i(X̃ |η) =


1− ri(η), X̃ = ∅,
ri(η)f i(x|η)δu,i, X̃ = (u,x),

0, otherwise,
(18)

where δu,i denotes a Kronecker delta, defined as δu,i = 1 if
u = i and δu,i = 0, otherwise, and the existence probability
is depending on the nuisance variable, denoted by ri(η). It is
readily verified that marginalizing out the auxiliary variables
in f̃(X̃ ) yields Eη[f(X|η)]. The goal is to obtain a PMB
approximation q̃(X̃ ) = q̃U(X̃U)

∏I
i=1 q̃

i(X̃ i), and we express

q̃U(X̃ ) = exp
(
−
∫
λq(x)dx

) ∏
(u,x)∈X̃

δ0,uλ
q(x) (19)

q̃i(X̃ ) =


1− ri, X̃ = ∅,
rif i(x)δu,i, X̃ = (u,x),

0, otherwise.
(20)

Lemma 1. Given the density f̃(X̃ ) of the form (16), the PMB
approximation q̃(X̃ ) that minimizes the KLD D(f̃‖q̃) is of the
form q̃U(X̃U) = Eη[f̃U(X̃U|η)] and q̃i(X̃ i) = Eη[f̃ i(X̃ i|η)].

Proof. The proof is similar to [42, Appendix B].

Given a PMBM posterior (where we obtain a mixture due
to the nuisance parameter η), we can thus introduce auxiliary
variables, use Lemma 1 to approximate that PMBM distribu-
tion as a PMB distribution with auxiliary variable, and finally
marginalize out the nuisance parameters to obtain a PMB
without auxiliary variables. For example, when η is continuous
variable then the parameters of the final PMB distribution
can be expressed in terms of the original PMBM as follows.
Using the sense of KLD minimization in Lemma 1, the PMB
components are computed as follows: the Poisson intensity is
given by λq(x) =

∫
p(η)λ(x|η)dη, while the Bernoulli com-

ponents have existence probability ri =
∫
p(η)ri(η)dη and

density f i(x) =
∫
p(η)ri(η)f i(x|η)dη/(

∫
p(η)ri(η)dη). In

the approximation of the PMBM as a PMB, we merge all
possible distributions for the PPP into a new PPP, and we
also merge all possible distributions for Bernoulli component
i (landmark i) into Bernoulli component i [42, Proposition 2].

IV. PROPOSED RFS-BASED FILTERS

In this section, we provide an intuition of the proposed
SLAM filters. This is followed by the proposed PMBM, PMB,
and marginalized PMB SLAM filters. The main results relate
to the vehicle state update, and are expressed as Propositions
1–3.

A. Short Description of the Proposed SLAM Filters

The main development objective is to provide a low-
complexity implementation of a PMBM-based SLAM filter.

In Table II, we provide a high-level comparison of the three
proposed filters. The starting point is the PMBM-SLAM filter
(see Section IV-B), implemented by an RBPF [17]. The
entire filter is described for completeness, though our novelty
pertains to the computation of the particle weights. From the
PMBM-SLAM filter, two PMB SLAM filters are developed
by marginalizing out the nuisance parameter (e.g., global
hypothesis ak in PMB-SLAM; and both global hypothesis ak
and vehicle state trajectory s0:k in marginalized PMB-SLAM).

In the PMB-SLAM filter (see Section IV-C), the PMBM
is reduced to a PMB (i.e, result of marginalizing out global
hypothesis) after each update step, following the approach
from Section III-C, which is achieved by running loopy belief
propagation (LBP) [40] to compute marginal association prob-
abilities. Particle weights can no longer be based on expected
likelihoods, and a novel approach based on Bethe free energy
is proposed. Finally, in the marginalized PMB-SLAM filter
(Section IV-D), we apply the method from Section III-C and
also marginalize out the vehicle state trajectories, allowing for
a low-complexity implementation without particles.

All filters operate according to the prediction and update
steps, similar to Section III-B1. In particular, in the update
step, we will refer to four steps: Step i) missed detections
of landmarks that were previously undetected; Step ii) newly
detected landmarks or clutter that were previously undetected,
now representing as MB density; Step iii) missed detections
of the previously detected landmarks; and Step iv) detections
from the previously detected landmarks.

B. PMBM-SLAM Filter

We develop the proposed PMBM-SLAM filter from the
PMBM-MTT [24] in line with the Bayesian recursion in
Section III-B1.

1) Notation: For notational simplicity, we will denote
f(s0:k|Z1:k−1) , fp,k(s0:k), f(s0:k|Z1:k) , fu,k(s0:k),
f(X|s0:k,Z1:k) , fu,k(X ). We adopt the RBPF approach
for the SLAM filter: using particles fp,k(s0:k) and fu,k(s0:k)

are represented as fu,k(s0:k) ≈
∑N
n=1 w

n
u,kδ(s0:k − sn0:k),

where wnu,k ≥ 0 such that
∑N
n=1 w

n
u,k = 1, and fu,k(X )

is maintained by the set density of the map conditioned on
vehicle particles sn0:k, ∀n. We note that f(X|sn0:k,Z1:k) is
a PMBM density consisting of Poisson and MBM densities.
In undetected landmarks with the Poisson density, we will
denote the intensity function conditioned on vehicle sample
n by λ(x,m|sn0:k,Z1:k) , λnu,k(x,m), and we consider the
intensity function λnu,k(x,m) for m ∈ {VA,SP} since the BS
is regarded as a detected landmark and is thus not considered
in the undetected landmarks. In detected landmarks with MBM
density, we will denote the MBM density conditioned on
vehicle sample n by f(x,m|sn0:k,Z1:k) , fnu,k(x,m), and we
consider the MBM components fnu,k(x,m) for m ∈M, βnu,k,
and existence probability rnu,k.

For each particle n in the posterior at time k − 1, we
thus have {sn0:k−1, wnu,k−1}, PPP {λnu,k−1(x,m)}m∈{VA,SP},
global hypotheses ak−1 ∈ Ank−1, and MBM components

{{f i,a
i
k−1,n

u,k−1 (x,m)}m∈{BS,VA,SP}, r
i,aik−1,n

u,k−1 , β
i,aik−1,n

u,k−1 }Ik−1

i=1 ,
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TABLE II
Overview of the three proposed SLAM filters (N particle samples; An

k updated global hypotheses; |Zk| = Jk newly detected landmarks or clutter; Ik−1

previously detected landmarks; Bmax maximum allowable global hypotheses; Lmax iterations, required for BP convergence).

PMBM-SLAM PMB-SLAM Marg. PMB-SLAM
Bayesian recursion f(s0:k,X|Z1:k) of (10) f(s0:k,X|Z1:k) of (10) f(sk|Z1:k) of (14), f(X|Z1:k) of (15)

Sensor Repr. f(s0:k|Z1:k) ≈
∑N
n=1 δ(s0:k − sn0:k)wnk

(by particle sample)
f(s0:k|Z1:k) ≈

∑N
n=1 δ(s0:k − sn0:k)wnk

(by particle sample)
f(sk|Z1:k) ≈ N (sk; su,k,Uu,k)

(by CKF)
Map Repr. f(X|sn0:k,Z1:k) by PMBM, ∀n f(X|sn0:k,Z1:k) by PMB, ∀n f(X|Z1:k) by PMB

Data Assoc.
update Ank by Bmax-best global hypotheses

using Murty’s alg. [24], [43]

compute marginal association
probabilities (Sec. IV-C2)

by BP during Lmax iterations [40]

compute marginal association
probabilities (Sec. IV-C2)

by BP during Lmax iterations [40]
# Global Hypo. |Ank | ≥ 1, ∀ n |Ank | = 1, ∀ n |Ak| = 1

Vehicle weight
compute (21) by the updated MBM

components (Sec. IV-B2) compute (21) by Bethe free energy (44) –

Complexity per
time step k O

(∑
n |Ank−1| (Ik−1 + Jk)

3
Bmax

)
O (NIk−1JkLmax) O (Ik−1JkLmax)

which will be predicted and updated for all n in the
following.

2) Vehicle Prediction and Map Update: We use (1) to
generate snk ∼ f(sk|snk−1), and wnp,k = wnu,k−1. The map
update step consists of standard PMB components update and
global hypothesis update from [24]. The details are provided
in Appendix A.

3) Vehicle State Update: The updated particle weight wnu,k
is related to the prior particle weight wnp,k through the follow-
ing proposition.

Proposition 1 (PMBM-SLAM particle weight update). The
updated particle weight is given by

wnu,k ∝wnp,k
∑

ak−1∈Ak−1

∑
]

Ik−1
i=1 Z

i
k]Z

U
k=Zk,

|Zi
k|≤1

∏
zj
k∈Z

U
k

νnk ({zjk})

×
Ik−1∏
i=1

ν
i,aik−1,n

k (Zik)β
i,aik−1,n

u,k−1 , (21)

where νnk ({zjk}), ν
i,aik−1,n

k (Zik), and β
i,aik−1,n

u,k−1 are computed
as part of the PMB component update in Appendix A-A.

Proof. See Appendix B-A.

Remark 1 (Relation between particle weight and global
association weights). The global association weights βak,n

k for
any ak ∈ Ank are given by

βak,n
k =

1

χnk

Ik∏
i=1

β
i,aik,n
u,k =

1

χnk

Ik−1∏
i=1

β
i,aik,n
u,k

Ik−1+Jk∏
i′=Ik−1+1

β
i′,ai

′
k ,n

u,k

=
1

χnk

Ik−1∏
i=1

ν
i,aik−1,n

k (Za
i
k

k )β
i,aik−1,n

u,k−1

∏
j∈Uk(ak)

νnk ({zjk}) (22)

where (a) βi
′,ai
′

k ,n
u,k = 1 when measurement j = i′ − Ik−1

does not correspond to a newly detected landmark under
global hypothesis ak; (b) Za

i
k

k is the measurement set (a
singleton or empty set) associated with landmark i under
global hypothesis ak, defined as Za

i
k

k = zjk if aik = j, Za
i
k

k = ∅
if aik = 0; and (c) Uk(ak) represents the measurements
indices that correspond to newly detected landmarks under

global hypothesis ak. The normalization constant χnk can be
recovered from

∑
ak
βak,n
k = 1. Inspecting (21) and (22), we

observe that the correction to the particle weight is given by
the normalization constant χnk from (22).

C. PMB-SLAM Filter

Here, we develop the PMB-SLAM filter by approximating
the PMBM as a PMB, in line with the Bayesian recursion
in Section III-B1. First, similarly to the four steps in Sec-
tion IV-B2, we compute Poisson and MB components from
the previous PMB density for each particle n and global
hypothesis ank−1 ∈ Ank−1, which will be briefly described in
Section IV-C1. Second, we approximate the PMBM as a PMB
of the set of landmarks by using Lemma 1, where the nuisance
parameter η corresponds to the global association hypotheses
ak. We note that the density of undetected landmarks does
not depend on the nuisance parameter, while each Bernoulli
component i only depends on aik, i.e., we can express∑

ak∈Ak

f̃U(X̃U|ak)p(ak) = f̃U(X̃U) (23)

∑
ak∈Ak

f̃ i(X̃ i|ak)p(ak) =

Jk∑
aik=0

f i,a
i
k(X̃ i)p(aik), (24)

where p(aik) is the marginal association probabilities of
Bernoulli i. We show that it can be implemented by using the
marginal association probabilities in TOMB/P [40], detailed
in IV-C2. Third, we compute the marginal association proba-
bilities and derive that this approximation can be designed by
the Bethe approach of free energy [32]. We also derive that the
weight of vehicle particle is computed by the marginal belief
in the Bethe approach, determined by the marginal association
probabilities.

1) Vehicle Prediction and Map Update: By construc-
tion, in a PMB, |Ank−1| = 1. Notation that was intro-
duced in Section IV-B1 is used again in here. Hence,
for each particle n in the posterior at time k − 1
we have {sn0:k−1, wnu,k−1}, {λnu,k−1(x,m)}m∈{VA,SP}, and
{{f i,nu,k−1(x,m)}m∈{BS,VA,SP}, r

i,n
u,k−1}

Ik−1

i=1 . Vehicle prediction
follows Section IV-B2, and landmark parameters are updated,
similar to Section IV-B2, ignoring the previous association
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aik−1. Then, we have Jk + Ik−1(Jk + 1) Bernoullis (i.e., Jk,
Ik−1, and Ik−1Jk Bernoullis are respectively obtained in Steps
ii)-iv) of Section IV-B2), as detailed in Appendix A-A. Note
that even the landmark density is a PMB at time k − 1, at
the end of time k the landmark density will be a PMBM.
In the next two subsections, we describe how a PMBM is
approximated by a PMB and how the particle weights for
updating the vehicle density are computed.

2) Approximating the PMBM as a PMB and Vehicle Up-
date: When the landmark density is a PMB, the global
association weights in (22) become

βak,n
k =

1

χnk

Ik−1∏
i=1

νi,nk (Za
i
k

k )
∏

j∈Uk(ak)

νnk ({zjk}). (25)

From this pmf over global hypotheses, we compute the
marginals using the LBP algorithm as in [40, Appendix
C, Fig. 9]. In particular, we introduce an integer random
variable ak = [c>k ,d

>
k ]> = [c1k, ..., c

Ik−1

k , d1k, ..., d
Jk
k ]>, where

cik ∈ {0, 1, . . . , Jk} and djk ∈ {0, 1, . . . , Ik−1}. The pmf of ak
is defined as pnk (ak) = pnk (ck,dk) with

pnk (ak) =
1

Znk

Ik−1∏
i=1

Jk∏
j=1

pna,k(cik)pna,k(djk)Ψn
k (cik, d

j
k), (26)

where

pna,k(cik = j) =

{
νi,nk ({zjk}), j ∈ {1, ..., Jk},
νi,nk (∅), j = 0,

(27)

pna,k(djk = i) =

{
1, i ∈ {1, ..., Ik−1},
νnk ({zjk}), i = 0,

(28)

Ψn
k (cik, d

j
k) =


0, cik = j, djk 6= i, or

cik 6= j, djk = i,

1, otherwise,
(29)

where Ψn
k (cik, d

j
k) ensures that only valid global associations

are considered. We observe the correspondence with (25),
where pnk (ak) = βa,n

k and χnk = Znk . Performing LBP
algorithm [40, Appendix C, Fig. 9] on the associated factor
graph, yields the beliefs belnk (cik) and belnk (djk), so that the
approximate marginal association probabilities are pi,nk (j) =
belnk (cik = j) for i ∈ {1, ..., Ik−1} and j ∈ {0, ..., Jk};
and p

Ik−1+j,n
k (0) = bel(djk = 0) for j ∈ {1, ..., Jk}.

From these approximate marginal association probabilities, the
approximate PMB can be recovered by the so-called TOMB/P
method from [40], as described in Appendix C.

Proposition 2 (PMB-SLAM particle weight update). The
updated particle weight is given by

wnu,k ∝ wnp,k exp(−F(belnk )) (30)

where F(belnk ) is the so-called Bethe free energy of the
beliefs [32].

Proof. See Appendix B-B

This proposition thus provides a tractable way to compute

the particle weights.

D. Marginalized PMB-SLAM Filter
We develop the proposed marginalized PMB-SLAM filter

in line with the Bayesian recursion in Section III-B2. A
marginalized PMB-SLAM filter is derived by marginaliz-
ing joint posterior density for a vehicle state and landmark
f(sk,X|Z1:k). When computing the posterior density of the
set of landmarks f(X|Z1:k), we approximate the PMBM as
a PMB of the set of landmarks by using Lemma 1. Here, the
nuisance parameter η corresponds to the global association
hypotheses ak and vehicle state sk.

1) Notation: For notational convenience, we will de-
note f(sk|Z1:k−1) , fp,k(sk), f(sk|Z1:k) , fu,k(sk),
λ(x,m|Z1:k) , λu,k(x,m), f i(x,m|Z1:k) , f iu,k(x,m), and
f(X|Z1:k) , fu,k(X ). The purpose is to estimate fu,k(sk)
of (14) and fu,k(X ) of (15), and for which we adopt the
RFS-likelihood function in [24, eq. (25), (26)] and PMB
representation in (9), which are respectively plugged into
g(Zk|sk,X ) and fu,k−1(X ).

In the posterior at time k − 1, {λu,k−1(x,m)}m∈{VA,SP},
fu,k−1(sk−1), and {{f iu,k−1(x,m)}m∈{BS,VA,SP}, r

i
u,k−1}

Ik−1

i=1

are given, which will be predicted and updated at time k.
2) Vehice Prediction and Map Update: The vehicle density

is predicted:

fp,k(sk) =

∫
f(sk|sk−1)fu,k(sk−1)dsk−1. (31)

The updated density of set of landmarks is represented as
PMB components. Thus, we also use Step i)–iv) for updat-
ing Poisson and MB components, which were introduced in
Section IV-A and were presented in Section IV-B2. However,
instead of conditioning on a particle n, we marginalize out the
vehicle state. See Appendix D-A.

3) Approximating PMBM as a PMB and Vehicle Update:
Similarly to Section IV-C2, we compute the approximate
marginal association probabilities (i.e., pik(j) = bel(ci = j)

for i ∈ {1, ..., Ik−1} and j ∈ {0, ..., Jk}; and p
Ik−1+j
k (0) =

bel(dj = 0) for j ∈ {1, ..., Jk}). Then, we compute the
density and existence probability of landmarks for the PMB,
similarly to Appendix C.

Proposition 3. The vehicle posterior density is proportionally
approximated as a mixture density

fu,k(sk) ∝∼
∑

]
Ik−1
i=1 Zi

k]Z
U
k=Zk

∏
z∈ZU

k

νk({z})
Ik−1∏
i=1

νik(Zik)

× q(sk|ZU
k ,Z1

k , ...,Z
Ik−1

k ), (32)

where q(sk|ZU
k ,Z1

k , ...,Z
Ik−1

k ) is a normalized density, de-
scribing the posterior density conditioned on the association
ZU
k ,Z1

k , ...,Z
Ik−1

k . The constants νk({z}), νik(∅), and νik({z})
were determined in Appendix D-A. We can express (32) as

fu,k(sk) ≈ (33)∑
ak

pk(ak)fp,k(sk)
∏

j∈Uk(ak)

ψk(zj , sk)

νk({zj})

Ik−1∏
i=1

qi(Z
aik
k |sk)

νik(Za
i
k

k )
,
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where qi(zj |sk) and qi(∅|sk) are defined in Appendix E.

Proof. See Appendix E

As the nuisance parameters are marginalized out, the cor-
relation between the vehicle state and the landmarks is lost.
However, the marginal densities allow for efficient repre-
sentation and computation, which will be implemented in
Section V.

E. Connection of BP-SLAM to Marginalized PMB-SLAM

We discuss connection of the BP-SLAM filter [3], [31] to
the proposed marginalized PMB-SLAM filter, covering the
data associations, steps i)–iv) in the PMB update, and also
the vehicle posterior computation.

1) Data Association: Both BP-SLAM and marginalized
PMB-SLAM use belief propagation to compute marginal data
association probabilities. The iterative data association step in
[3, Sec. V-B3] is identical to performing LBP on (26). Hence,
the corresponding beliefs are identical in both methods. How-
ever, internally BP-SLAM uses message in the computation,
not beliefs.

2) PMB Component Update: In BP-SLAM, the landmarks
are separated into undetected features (similar to our Step
i)), new potential features (PFs) (similar to our Step ii)),
and legacy PFs (similar to our Step iii) and iv)). When we
adopt the likelihood functions eqs. (76) and (77) with the
association variables cik and djk of (26) instead of the likelihood
functions in [3, Sec. III-D], the PF beliefs on the factor
graph [3, Fig. 2] are identical to the proposed marginalized
PMB implementation. The connections are further detailed as
follows:
• Step i) There is no connected message passing step

in [3], [31]. As an ad-hoc modification, the PHD intensity
is adopted outside of the factor graph framework and
posterior density expression.

• Step ii) The message from likelihood function for new
PF to the association variable is identical to νk({zjk})
of Step ii). The belief for new PF, i.e., [3, eq. (35)]
can be represented as the existence probability (47) and
Bernoulli density (48).

• Step iii) and iv) The message from likelihood function for
legacy PF to the association variable, i.e., [3, eq. (25)],
is identical to νik(∅) of Step iii) with cik = 0, and to
νik({zjk}) of Step iv) with cik = j (see (27)). After
normalization, the belief for legacy PF, i.e., [3, eq. 33]
can be represented as the existence probability (45) and
Bernoulli density (46).

It follows that the landmark update in BP-SLAM is identical
to marginalized PMB-SLAM, though with a slightly different
likelihood function and with an ad-hoc version of Step i).

3) Vehicle State Update: The belief for the vehicle, i.e., [3,
eq. 37], is computed with the association messages, averaging
different local associations [3, eq. 32] and integrating out
the landmark state. Messages over the vehicle state from
each landmark are then multiplied with the prior, leading
to the vehicle posterior belief. The vehicle state update in
marginalized PMB (33) can be expressed in a similar form,

but has an additional factor ψk(zj , sk) that accounts for the
undetected landmarks.

V. IMPLEMENTATION OF THE MARGINALIZED
PMB-SLAM FILTER

The implementation of the PMBM-SLAM and PMB-SLAM
filters is standard, due to the conditioning of the landmark
state on the vehicle state. Hence, a standard representation and
implementation can be used [40]. In the marginalized PMB-
SLAM, on the other hand, the landmark is not conditioned
on the vehicle state and thus requires a novel implementation.
We chose a CKF-based implementation, due to the nonlinear
nature of the measurements (2), where both the vehicle state
and Bernoulli components in the PMB are represented by
Gaussian densities.

1) Initialization: We set fu,k(s0) = N (s; su,0,Uu,0). We
generate cubature points (CPs)1 and weights with Uu,0 =

CC>, {sc0, wcu,0}
2d(s0)
c=1 , where sc0 = Cεcs0 + su,0, and

weights wcu,0 = 1/(2d(s0)). We have {λu,0(x,m) =

κ(m)U(x)}m∈{VA,SP}, f1u,0(x,BS) = N (x;xBS, I
d(x)),

{f1u,0(x,m) = 0}m∈{VA,SP}, r1u,0 = 1.
2) Vehicle Density Prediction: To implement (31), from

N (sk−1; su,k−1,Uu,k−1) we decompose Uu,k−1 = CC> and
generate CPs for c = 1, ..., 2d(sk): scu,k−1 = Cεcsk + su,k−1,
and weights wcu,k−1 = 1/(2d(sk)). We propagate the CPs as
sck = v(scu,k−1) and wck = wcu,k−1 for all c, and we compute
the predicted vehicle density fp,k(sk) = N (sk; sp,k,Up,k),
where sp,k =

∑2d(sk)
c=1 wcks

c
k and Up,k =

∑2d(sk)
c=1 wcks

c
ks
c>
k −

sp,ks
>
p,k + Q.

3) PMB Update: The PMB update requires the CKF im-
plementation of the update steps i)–iv), marginalizing out the
vehicle state. The details are provided in Appendix D-B.

4) Vehicle Posterior Computation: To compute the poste-
rior, we first of all approximate ψk(zj , sk) as a constant in sk,
as measurements related to undetected targets provide limited
information regarding the vehicle state. Similarly, qi(∅|sk)
is approximated as constant. Secondly, to avoid a complex
mixture density for in fu,k(sk), we limit the summation in
(33) to the most likely association (determined via Murthy’s
algorithm or by making hard decision based on the marginal
data association belief) and by considering only landmarks for
which piu,k−1(mi) > TEP. Then,

fu,k(sk) ∝∼N (sk; sp,k,Up,k)
∏
i∈I∗k

∫
N (zjk; h(sk,x,m),Rj

k)

×N (x;xiu,k−1(mi),Piu,k−1(mi))dx (34)

=

∫
f([s>k ,yk

>]>|Z1:k)dyk, (35)

where we utilize |I∗k | determined Bernoulli with piu,k−1(mi) >

TEP, yk = [x
I∗k(1)
u,k−1

>
, ...,x

I∗k(|I
∗
k |)

u,k−1
>

]> and f([s>k ,yk
>]>|Z1:k)

of (35) is computed by the CKF.

1We define d(?) as the number of unknown variables of ?, and we define
εc? as the c-th column vector of the matrix C ∈ Rd(?)×2d(?), computed as
C =

√
d(?)[Id(?),−Id(?)].

√
d(?)[Id(?),−Id(?)] ∈ Rd(?)×2d(?), where

Id(?) ∈ Rd(?)×d(?) is the identity matrix.
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(c) at time k = 37

Fig. 2. Exemplary results of marginalized PMB-SLAM filter at time (a) k = 3, (b) k = 7, and (c) k = 37 in the 5G mmWave vehicular network of
Section VI-A. The estimated results of the vehicle and landmarks are represented by x and y location elements of the filtered Gaussians, and filtered mean
and covariance are respectively represented by ‘x’ markers and solid ellipses. The visible signal paths are represented by the solid line.

VI. NUMERICAL RESULTS

In this section, simulation setup for evaluating the proposed
SLAM filters is introduced. Subsequently, performance and
results are discussed. As our focus is on the relative compari-
son between the different PMBM-based filters, no extensive
evaluation against methods based on other set densities is
conducted. The interested reader is referred to [24] for compar-
ison with cardinalized probability hypothesis density (CPHD),
to [42] for comparison with δ-GLMB and LMB, and to [44]
for comparison with BP.

A. Simulation Setup

To show the efficiency of the proposed SLAM filters,
we evaluate and discuss the performance. We consider 3D
vehicular networks (see, Fig. 2), where a single vehicle is
moving with the dynamics (1), following the mobility model
[33, Chapter 5], and fixed landmarks (a single BS, four VAs,
and four SPs) are located. The measurements can be obtained
with the detection probability within the FoV, including clutter.
For the details of the network size, initial vehicle state,
mobility model, locations of landmarks, FoV, clutter intensity,
and performance metrics, we adopt the same definition and
values from [4, Sec. VI-A].

We consider BS and vehicle to be equipped with uniform
planar arrays, and the number of antennas at the BS and
vehicle is respectively 64 (8 × 8) and 16 (4 × 4). Each
array is equipped with 1 radio-frequency chain, so that ana-
log beamforming is utilized. The carrier frequency is set
to 28 GHz, while the transmitted signal and noise power
spectral density are respectively 5 dBm and−174 dBm/Hz. We
consider OFDM pilot signals with 64 subcarriers in 200 MHz
bandwidth and 16 OFDM symbols. The beamforming weights
are set randomly during each OFDM symbol. To derive
the measurement noise covariance Rj

k, we consider the 5G
mmWave specific features and adopt the Fisher information
matrix (FIM) of channel parameters [45].

To implement the proposed SLAM filters, the following
details are considered. We implement the intensity density

for undetected landmarks by the uniform density U(x) with
the weight κ(m): λ(x,m) = κ(m)U(x) and set κ(m) =
2.37 × 10−6 for m = {VA,SP}. The adaptive detection
probability p(sk,x,m) is computed per MB and landmark
type. We set p(sk,x,m) ≈ 0. in Step i), p(sk,x,m) ≈ PD
in Step ii). In Step iii), we set p(sk,x,m) ≈ PD if Md < TG,
otherwise, p(sk,x,m) ≈ 0, where Md is ellipsoidal gating
distance and TG is the gating threshold, computed by using the
Chi-square CDF with gate probability PG. We set PD = 0.95
and PG = 0.99. We use a CKF approximation to compute
the landmark posterior densities. For numerical robustness in
the CKF update for Step ii) and iv), we replace Rj

k with
Rj

U,k = 4×Rj
k. Due to the nonlinear measurement, the up-

dated covariance of vehicle state is excessively concentrated in
the CKF. To mitigate this adverse effect, the dithering method
is adopted [46]. In data association, we set the maximum al-
lowable number of global hypotheses Bmax = 200 [24] and the
number of iterations for computing the marginal association
probabilities Lmax = 100 [47]. After the update step at every
time k, the pruning and merging step is performed, which
consists of the following steps. A Bernoulli is pruned when its
existence probability is less than 10−5, and a global hypothesis
is pruned when its weight is less than 10−4.

A landmark is detected when the existence probability of
Bernoulli is larger than TEP = 0.4, and its landmark type
is determined as m∗ = maxm e(m). Simulation results were
obtained by averaging over 10 Monte Carlo runs, and by
using MATLAB implementation for the proposed three SLAM
methods, which were executed on a PC with 3.2 GHz Intel
Core i7-8700 CPU and 32 GB RAM, and the operating system
is Windows 10 Pro 64-bit.

B. Results and Discussions

Here, we demonstrate the performance of the proposed three
SLAM filters with application to 5G radio-SLAM, compared
to the PHD-SLAM filter [4] as a benchmark. Furthermore,
exemplary results of the proposed marginalized PMB-SLAM
filter is provided in Fig. 2, showing the vehicle density
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Fig. 3. Comparison of the average GOSPA of (a) VA and (b) SP for the
three proposed SLAM filters (PMBM, PMB, marginalized PMB) and PHD-
SLAM [4].

and the SP and VA estimates. The estimated walls are also
shown, most clearly seen in Fig. 2c. The walls are directly
estimated based on the estimated VAs, so that VA estimation
performance will be used to indicate how well the walls can
be estimated [4, eq. (42)].

1) Mapping: Fig. 3 shows the mapping performance of the
three proposed SLAM filters, compared to the PHD-SLAM
filter [4]. In Fig. 3a and Fig. 3b, average GOSPAs for VA and
SP are presented, respectively. We can see both VA and SP
GOSPAs of the proposed three SLAM filters decrease over
time steps while the GOSPAs of PHD fluctuate. Hence, the
proposed SLAM filters are robust to both missed detections
and false alarms, compared to [4]. Contrary to VAs, SPs have
the large measurement covariance and limited FoV, resulting
in generating multiple global hypotheses at each time step.
Among the three proposed filters, therefore, the SP GOSPA
has significant gain in the PMBM filter that never goes through
approximation to the global hypotheses [48, Sec. III], while
the three filters exhibit similar VA GOSPA.

2) Vehicle Localization: Fig. 4 shows the root mean square
error (RMSE) of the estimated vehicle location, bias, and
heading. The PMBM, PMB, and PHD SLAM filters, im-
plemented by the RBPF, have similar localization accuracy
compared to the MPMB-SLAM filter. This is because that
the noise covariance for the known BS is relatively smaller
than VA and SP in the FIM-based noise covariance even there
are differences in the VA and SP GOSPAs. The localization
performance of the MPMB filter is worse than the other
filters due to the Gaussian approximation to the posterior
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Fig. 4. Comparison of the average RMSE of (a) location, (b) bias, and (c)
heading for the three proposed SLAM filters (PMBM, PMB, and marginalized
PMB) and PHD-SLAM [4].

density with the nonlinear measurement and assumption that
the prior vehicle and landmarks are independent in the joint
CKF implementation. We believe that alternative linearizations
can close this gap [49]. It results that the prior covariance of
joint state between the vehicle and landmarks cannot capture
the correlation that is captured in the update step with the
measurement likelihood.

3) Computation Complexity: The computational complex-
ity is represented as the operation time. During 40 time steps,
the vehicle is traveling one lap along with the circular road.
The average computation time of the three proposed SLAM
filters for per time steps is the following: (i) PMBM-SLAM:
4.7 minutes; (ii) PMB: 3.5 minutes; and (iii) marginalized
PMB: 1.4 seconds. The operation time of PHD [4] is 1.8 min-
utes. It is shown that PMB-SLAM yielded a reduction of the
averaged operation time by 24.7 % due to approximating the
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PMBM-SLAM as a PMB-SLAM by the marginal association
probabilities and Bethe free energy. Furthermore, we confirm
that the marginalized PMB-SLAM significantly yielded it by
99.5 % due to marginalization using Lemma 1 as well as PMB-
SLAM approximation. Even the operation time of proposed
PMBM and PMB-SLAM filters are about two times or more
than PHD, it is adequate for using PMBM or PMB-SLAM
filters, rather than PHD because both are robust to missed
detections and false alarms.

VII. CONCLUSIONS

This paper tackled the SLAM problem using the PMBM
filter. We have proposed, derived, and implemented three novel
SLAM filters, based on the PMBM filter: the PMBM, PMB,
and marginalized PMB-SLAM filters. We showed that the
three proposed filters are robust to both missed detections and
false alarms in comparison with the PHD-SLAM filter, and
confirmed that the computation-performance trade-off comes
from the marginalization of auxiliary variables. The trade-off
is especially prominent in the marginalized PMB-SLAM filter
by marginalizing both auxiliary variables for global hypotheses
and vehicle state. We also reveal close connections to the
BP-SLAM filter, which opens the way to further complexity
reductions and highly parallelized particle implementations to
improve the accuracy of the marginalized PMB-SLAM filter.
A more explicit connection requires additional study and is
left for future work. Other planned extensions of this work
are to incorporate a theoretical performance analysis of the
proposed filters, combination with a real channel estimator,
and the generation of propagation paths from a ray tracing
simulator; and to improve the localization accuracy of the
marginalized PMB by the posterior linearization approximate
with the iterated posterior linearization filter [49] or by the
parallelized particle filter [50, Chapter 5.3] without Gaussian
approximation and measurement linearization.

APPENDIX A
PMB COMPONENT AND GLOBAL HYPOTHESIS UPDATE

A. PMB Component Update

Step i): The intensity for m ∈ {VA,SP} is updated as

λnu,k(x,m) = (1− pnD,k(x,m))λnu,k−1(x,m), (36)

where pnD,k(x,m) is shorthand of pD(snk ,x,m), from Section
II.

Step ii): The updated MBM components with zjk ∈ Zk
have density

f j,nu,k (x,m) =
pnD,k(x,m)λnu,k−1(x,m)g(zjk|sn0:k,x,m)∑

m′ e
j
k(m′)

(37)

for m ∈ {BS,VA,SP}, existence probability rj,nu,k =∑
m e

j,n
k (m)/νnk ({zjk}), and weight βj,nu,k = νnk ({zjk}), where

ej,nk (m) =

∫
pnD,k(x,m)λnu,k−1(x,m)g(zjk|s

n
0:k,x,m)dx,

(38)

and νnk ({zjk}) =
∑
m e

j,n
k (m) + c(zjk), in which c(z) is the

clutter intensity. This Step ii) leads to new landmarks, which
will be indexed i ∈ {Ik−1 + 1, . . . , Ik−1 + Jk}.

Step iii): Under missed detection, the MBM components
are updated with density

f
0,i,aik−1,n

u,k (x,m) =
(1− pnD,k(x,m))f

i,aik−1,n

u,k−1 (x,m)∑
m′ e

0,i,aik−1,n

k (m′)
, (39)

for landmark type m∈{BS,VA,SP}, existence probabil-

ity r
0,i,aik−1,n

u,k =r
i,aik−1,n

u,k−1
∑
m e

0,i,aik−1,n

k (m)/ν
i,aik−1,n

k (∅) and

weight β
0,i,aik−1,n

u,k =β
i,aik−1,n

u,k−1 ν
i,aik−1,n

k (∅), where

e
0,i,aik−1,n

k (m) =

∫
(1− pnD,k(x,m))f

i,aik−1,n

u,k−1 (x,m)dx,

(40)

and ν
i,aik−1,n

k (∅) = r
i,aik−1,n

u,k−1
∑
m e

0,i,aik−1,n

k (m) + 1 −
r
i,aik−1,n

u,k−1 .
Step iv): The updated MBM components with zjk ∈ Zk

have density

f
j,i,aik−1,n

u,k (x,m) =
pnD,k(x,m)f

i,aik−1,n

u,k−1 (x,m)g(zjk|sn0:k,x,m)∑
m′ e

j,i,aik−1,n

k (m′)
,

for landmark type m∈{BS,VA,SP}, exis-

tence probability r
j,i,aik−1,n

u,k =1, and weight

β
j,i,aik−1,n

u,k =β
i,aik−1,n

u,k−1 ν
i,aik−1,n

k ({zjk}), where e
j,i,aik−1,n

k (m) =∫
pnD,k(x,m)f

i,aik−1,n

u,k−1 (x,m)g(zjk|sn0:k,x,m)dx and

ν
i,aik−1,n

k ({zjk}) = r
j,i,aik−1,n

u,k−1
∑
m e

j,i,aik−1,n

k (m).

B. Global Hypothesis Update

Using the updated MBM components above, the set of
global hypotheses Ank is now updated [40] by selecting the
B

ak−1,n
k best global hypotheses using Murty’s algorithm [24],

[43] for each ak−1 ∈ Ank−1. For each landmark i under
hypothesis ak−1 ∈ Ank−1, Jk + 1 local hypotheses are added
(1 local hypothesis from Step iii) and Jk local hypotheses
from Step iv)); and for each measurement, a new local
hypothesis (landmark or clutter) is created (Step ii)). Finally,
Ank comprises the hypotheses that are globally consistent (i.e.,
with at most 1 measurement for each landmark and at most 1
landmark associated to each measurement).

APPENDIX B
PROOF OF PARTICLE WEIGHT UPDATES

A. PMBM-SLAM

Finally, the particle weight wnu,k is updated as

wnu,k ∝ wnp,kg(Zk|sn0:k,Z1:k−1) (41)

= wnp,k

∫
f(X|sn0:k,Z1:k−1)g(Zk|sn0:k,X ,Z1:k−1)δX , (42)

which follows the RFS-likelihood in (13). We plug the
PMBM form of (9) into the predicted landmark density
f(X|sn0:k,Z1:k−1), and adopt the likelihood representation



12

in [24, eqs. (25), (26)] for replacing g(Zk|sn0:k,X ,Z1:k−1).
Therefore, we find that [24, Sec. III-D]

wnu,k ∝wnp,k
∫
f(X|sn0:k,Z1:k−1)g(Zk|sn0:k,X ,Z1:k−1)δX

so that

wnu,k ∝wnp,k
∑

ak−1∈Ak−1

∑
]

Ik−1
i=1 Z

i
k]Z

U
k=Zk,

|Zi
k|≤1

∏
zj
k∈Z

U
k

νnk ({zjk})

×
Ik−1∏
i=1

ν
i,aik−1,n

k (Zik)β
i,aik−1,n

u,k−1 = wnp,kχ
n
k . (43)

B. PMB-SLAM

To derive the weight computation of vehicle particle, we
recover the normalization constant χnk = Znk (see, (21)
and (25)) by the Bethe free energy [32], defined as − lnZnk ≈
F(belnk ) = U(belnk ) − H(belnk ), where F is the Bethe free
energy, U denotes the average energy and H the entropy,
which can be computed from the beliefs and the factor graph
structure, according to [32, eqs. (37)–(38)]. In the special
case where the beliefs are nearly degenerate, i.e., belnk (cik) ≈
δ(cik − c̄ik) and belnk (djk) ≈ δ(djk − d̄

j
k), H(belnk ) ≈ 0 and

U(belnk ) ≈ −
∑Ik−1

i=1 ln pna,k(c̄ik)−
∑Jk
j=1 ln pna,k(d̄jk), so that

Znk ≈ exp(−F(belnk )) ≈
Ik−1∏
i=1

Jk∏
j=1

pna,k(c̄ik)pna,k(d̄jk), (44)

which is straightforward to evaluate.

APPENDIX C
CONVERSION FROM PMBM TO PMB

The marginal association probabilities are the track-oriented
associations with the measurements, and each track i rep-
resents one landmark with all possible landmark types. Let
us denote the marginal association probabilities by pi,nk (j)
for the previously detected landmarks i ∈ {1, ..., Ik−1} and
for missed detections and detections j ∈ {0, ..., Jk}; and
p
Ik−1+j,n
k (0) for the newly detected landmarks or clutter
j ∈ {0, ..., Jk}. Here, pi,nk (j) is the marginal probability that
previously detected landmark i is associated to measurement j,
and p

Ik−1+j,n
k (0) is the marginal probability that measurement

j corresponds to a newly detected landmark (the one with
index Ik−1+j). We then apply the TOMB/P method from [40,
Appendix C, Fig. 10]: for existing landmarks i = 1, ..., Ik−1

ri,nu,k =

Jk∑
j=0

pi,nk (j)rj,i,nu,k , (45)

f i,nu,k (x,m) =
1

ri,nu,k

Jk∑
j=0

pi,nk (j)rj,i,nu,k f j,i,nu,k (x,m), (46)

and for new landmarks (with j = 1, ..., Jk)

r
Ik−1+j,n
u,k = p

Ik−1+j,n
k (0)rj,nu,k , (47)

f
Ik−1+j,n
u,k (x,m) = f j,nu,k (x,m). (48)

APPENDIX D
DERIVATION OF MARGINALIZED PMB MAP DENSITY

A. Mathematical Expressions

We will denote hU
p,k(sk,x,m) , fp,k(sk)λu,k−1(x,m) and

hD,i
p,k(sk,x,m) , fp,k(sk)f iu,k−1(x,m).
i) We update λu,k(x,m) for m ∈ {VA,SP} as

λu,k(x,m) = (1−
∫

pD,k(sk,x,m)dsk)λu,k−1(x,m).

(49)

ii) The MB components with zjk ∈ Zk are updated as

f ju,k(x,m)

=

∫
pD,k(sk,x,m)hU

p,k(sk,x,m)g(zjk|sk,x,m)dsk∑
m′ e

j
k(m′)

,

(50)

and rju,k =
∑
m e

j
k(m)/νk({zjk}). Here,

ejk(m) =

∫∫
pD,k(sk,x,m)hU

p,k(sk,x,m)

g(zjk|sk,x,m)dskdx, (51)

and νk({zjk}) =
∑
m e

j
k(m) + c(zjk).

iii) The MB components are updated as

f0,iu,k(x,m) =

∫
(1− pD,k(sk,x,m))hD,i

p,k(sk,x,m)dsk∑
m′ e

0,i
k (m′)

,

(52)

and r0,iu,k = riu,k−1
∑
m e

0,i
k (m)/νik(∅). Here,

e0,ik (m)

=

∫∫
(1− pD,k(sk,x,m))hD,i

p,k(sk,x,m)dskdx, (53)

and νik(∅) = 1− riu,k−1 + riu,k−1
∑
m e

0,i
k (m).

iv) The MB components with zjk ∈ Zk are updated as

f j,iu,k(x,m)

=

∫
pD,k(sk,x,m)hD,i

p,k(sk,x,m)g(zjk|sk,x,m)dsk∑
m′ e

j,i
k (m′)

,

(54)

and rj,iu,k = 1. Here, νik({zjk}) = rj,iu,k−1
∑
m e

j,i
k (m) and

ej,ik (m) =

∫∫
pD,k(sk,x,m)hD,i

p,k(sk,x,m)

× g(zjk|sk,x,m)dskdx. (55)

B. CKF Implementation

As derived in Appendix D-A, the vehicle state is marginal-
ized out in steps i)–iv). We now implement these steps i)–iv)
with CKF.

1) Steps i) and iii): Step i) and iii) correspond to the
missed detections. Therefore, PPP and MB components can
be computed without any intractable integration of the product
of the prior density and likelihood function.
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2) Step ii): We first show how to compute (51) and then
how to compute the spatial density (50).

a) Normalization constant for newly detected land-
marks (51): We recap (51) and calculate ejk(m) as

ejk(m)

=

∫∫
pD,k(sk,x,m)hU

p,k(sk,x,m)g(zjk|sk,x,m)dskdx

= PDκu,k−1(m)

∫∫
N (sk; sp,k,Up,k)U(x)

×N (zjk; h(sk,x,m),Rj
k)dskdx. (56)

We draw B independent and identically distributed (iid)
samples xb,jk (m) ∼ qjk(x,m) = N (x; x̄jk(m), P̄jk(m)) with
weights wb,jk ∝ U(x)/q(xb,jk (m),m), and

∑
b w

b,j
k = 1. We

select the proposal distribution based on the measurement, as
follows. We set

x̄jk(m) =

2d(sk)∑
c=1

xc,jk (m)/2d(sk), (57)

P̄jk(m) =

2d(sk)∑
c=1

[
Pc,jk (m) + (xc,jk (m)− x̄jk(m))

× (xc,jk (m)− x̄jk(m))>]/2d(sk), (58)

where each cubature component is computed by

xc,jk (m) =

2d(zk)∑
b=1

xb,c,jk (m)/2d(zk), (59)

Pc,jk (m) =

2d(zk)∑
b=1

(xb,c,jk (m)− xc,jk (m))

× (xb,c,jk (m)− xc,jk (m))>/2d(zk). (60)

Here, xb,c,jk (m) is the birth point, computed as

xb,c,jk (VA) =

xcp,k + rb,jk cos(θb,jaz,k + αcp,k)

ycp,k + rb,jk sin(θb,jaz,k + αcp,k)

zcp,k + τ b,jk sin(θb,jel,k)

 (61)

xb,c,jk (SP) (62)

= xb,c,jk (VA) +
(fk − xb,c,jk (VA))>uk

(xcp,k − xb,c,jk (VA))>uk
(xcp,k − xb,c,jk (VA)),

where the geometric components are given by

rb,jk = (τ b,jk −B
b,j
k ) cos(θb,jel,k), (63)

uk = (xBS − xb,c,jk (VA))/‖xBS − xb,c,jk (VA)‖, (64)

fk = 0.5× (xBS + xb,c,jk (VA)). (65)

Here, scp,k and zb,jk are the CPs with the cubature index c and b,
respectively, which are generated from N (sk; sp,k,Up,k) and
N (zk; zjk,R

j
k). Putting this together, then we have

ejk(m) ≈PD

B
κu,k−1(m)

∑
b

wb,jk (m)

∫
N (sk; sp,k,Up,k)

×N (zjk; h(sk,x
b,j
k (m),m),Rj

k)dsk, (66)

where xb,jk (m) =
∑2d(sk)
c=1 xb,c,jk (m)/2d(sk). By CKF approx-

imation, we find

ejk(m) ≈PD

B
κu,k−1(m)

∑
b

wb,jk (m)

×N (zjk; h(sp,k,x
b,j
k (m),m),Sb,jzz,k(m)). (67)

b) Landmark density for newly detected landmarks (50):
With the CPs xb,c,jk (m) of (61) and (62), the landmark density
of (50) is computed as f ju,k(x,m) = N (x; x̄jk(m), P̄jk(m)),
where x̄jk(m) and P̄jk(m) were handled in (56).

3) Step iv): Similar to Step ii), we first compute the
normalization constant (55) and then the spatial density (52).

a) Normalization constant for previously detected land-
marks (55): To implement (55), we recap the expression

ej,ik (m)

=

∫∫
pD,k(sk,x,m)hD,i

p,k(sk,x,m)g(zjk|sk,x,m)dskdx.

To solve the integral, we construct N (jk; jip,k(m),Jip,k(m)),
where

jip,k(m) = [s>p,k, (x
i
p,k(m))>]>, (68)

Jip,k(m) = blkdiag(Up,k,P
i
p,k(m)). (69)

We approximate ej,ik (m) as

ej,ik (m) ≈
∫∫

pip,k(m)pAD(m)N (jk; jip,k(m),Jip,k(m))

×N (zjk; h(sk,x,m),Rj
k)dskdx. (70)

Using the CKF [51] approximation

N (jk; jip,k(m),Jip,k(m))N (zjk; h(sk,x,m),Rj
k) (71)

≈ N (j; jj,iu,k(m),Jj,iu,k(m))N (zjk; h(sp,k,x
i
p,k(m)),Pj,izz (m)),

ej,ik (m) ≈ pip,k(m)pAD(m)N (zjk; h(sp,k,x
i
p,k,m),Pj,izz (m)).

b) Landmark density for previously detected land-
marks (52): The landmark density of (52) is computed as
f0,iu,k(x,m) = N (x;xj,iu,k(m),Pj,iu,k(m)). We extract xj,iu,k(m)

and Pj,iu,k(m) from N (j; jj,iu,k(m),Jj,iu,k(m)) of (71), where

jj,iu,k(m) = [s̄>u,k, (x
i
u,k(m))>]>, (72)

Jj,iu,k(m) = [Uu,k,Ou,k;O>u,k,P
i
u,k(m)]. (73)

APPENDIX E
DERIVATION OF MARGINALIZED VEHICLE POSTERIOR

Based on [24, eq. (33)], we have

fu,k(sk) ∝
∫
fp,k(sk)

∑
]

Ik−1
i=1 X i]XU=X

∑
]

Ik−1
i=1 Zi

k]Z
U
k=Zk

× fU
u,k−1(XU)l(ZU

k |sk,XU)

×
Ik−1∏
i=1

f iu,k−1(X i)t(Zik|sk,X i)δX , (74)

where |X i| ≤ 1. We denote ZU
k = {z1k, ..., z

|ZU
k |

k }, and we
decompose XU into all possible sets U ,Y1, ...,Y |ZU

k |, where
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U is a set of undetected landmarks, and set Y is the origin
of the measurement z ∈ ZU

k . Then, l(ZU
k |sk,XU) is given by

[24, eq. (13)]

l(ZU
k |sk,XU)

= e−
∫
c(z)dz

∑
]
|ZU

k
|

i=1 Yi]U=XU

∏
(x,m)∈U

[1− pD(sk,x,m)]

×
∏

z∈ZU
k

l̃(z|sk,Yi), (75)

where l̃(z|sk,Y) is given by

l̃(z|sk,Y) =


pD(sk,x,m)g(z|sk,x,m) Y = {(x,m)},
c(z) Y = ∅,
0 |Y| > 1,

(76)

and t(Zik|sk,X i) is given by [24, eq. (26)]

t(Zik|sk,X i)

=


pD(sk,x,m)g(z|sk,x,m) Zik = {z}, X i = {(x,m)},
1− pD(sk,x,m) Zik = ∅, X i = {(x,m)},
1 Zik = ∅, X i = ∅,
0 otherwise.

(77)

Making use of [24, Corollary 2] [48, Lemma 2], which states
that

∫ ∑
X]Y=Z f(X )g(Y)δZ =

∫
f(X )δX

∫
g(Y)δY , we

find

fu,k(sk) (78)

∝
∑

]
Ik−1
i=1 Zi

k]Z
U
k=Zk

fp,k(sk)q(ZU
k |sk)

Ik−1∏
i=1

q(Zik|sk),

where q(ZU
k |sk) and q(ZU

k |sk) are

q(ZU
k |sk) =

∫
fU
u,k−1(XU)l(ZU

k |sk,XU)δXU, (79)

q(Zik|sk) =

∫
f iu,k−1(X i)t(Zik|sk,X i)δX i. (80)

Substituting (75) into (79) and invoking again [24, Corol-
lary 2], we find that q(ZU

k |sk) is a PPP since

q(ZU
k |sk) =e−

∫
c(z)dze−

∑
m

∫
λu,k−1(x,m)dx

×
∫ ∏

(x,m)∈U

λu,k−1(x,m)(1− pD(sk,x,m))δU

×
∏

z∈ZU
k

∫ ∏
(x,m)∈Y

λu,k−1(x,m)l(z|sk,Y)δY

(81)

∝e−
∫
ψk(z,sk)dz

∏
z∈ZU

k

ψk(z, sk) (82)

with intensity function

ψk(z, sk) (83)

= c(z) +
∑
m

∫
pD(sk,x,m)λu,k−1(x,m)g(z|sk,x,m)dx.

Substituting (77) into (80) with the data association, we find
that if Zik = {z},

qi(Zik|sk) =riu,k−1
∑
m

∫
pD(sk,x,m)f iu,k−1(x,m)

× g(z|sk,x,m)dx, (84)

and that if Zik = ∅,

qi(Zik|sk) =riu,k−1
∑
m

∫
(1− pD(sk,x,m))f iu,k−1(x,m)dx

+ 1− riu,k−1. (85)

Using the sense of KLD minimization of Lemma 1, we
approximate the normalization constant for each global hy-
pothesis in (78) as∫

fp,k(sk)q(ZU
k |sk)

Ik−1∏
i=1

qi(Zik|sk)dsk (86)

≈
∫
fp,k(sk)q(ZU

k |sk)dsk

Ik−1∏
i=1

∫
fp,k(sk)qi(Zik|sk)dsk.

Using again the sense of KLD minimization similarly to (86),
we compute the first factor of (86):∫

fp,k(sk)q(ZU
k |sk)dsk ∝∼

∫
fp,k(sk)e−

∫
ψk(z,sk)dzdsk

×
∏

z∈ZU
k

∫
fp,k(sk)ψk(z, sk)dsk (87)

∝
∏

z∈ZU
k

(c(z) +
∑
m

ek(m)) =
∏

z∈ZU
k

νk({z}) (88)

where the constant
∫
fp,k(sk)e−

∫
ψk(z,sk)dzdsk is identical for

all terms in (78) and

ek(m) = (89)∫∫
fp,k(sk)pD(sk,x,m)λu,k−1(x,m)g(z|sk,x,m)dxdsk

is identical to (51) in Appendix E.

We compute the second factor of (86) as∫
fp,k(sk)qi(Zik|sk)dsk = νik(Zik), (90)

where νk({z}), νik(∅), and νik({z}) were determined in Ap-
pendix D-A.

We then find (32) by substitution of the normalized densities
of (79) and (80) into (78):

fu,k(sk) =
∑

]
Ik−1
i=1 Zi

k]Z
U
k=Zk

∏
z∈ZU

k

νk({z})
Ik−1∏
i=1

νik(Zik) (91)

× q(sk|ZU
k ,Z1

k , . . . ,Z
Ik−1

k )
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where q(sk|ZU
k ,Z1

k , . . . ,Z
Ik−1

k ) is a normalized density, pro-
portional to fp,k(sk)q(ZU

k |sk)
∏Ik−1

i=1 qi(Zik|sk). To recover
(32), we note that the summation

∑
]

Ik−1
i=1 Zi

k]Z
U
k=Zk

is equiv-
alent to the summation over global hypotheses ak and that the
weights of global hypotheses are given by (25):

fu,k(sk) =
∑
ak

p(ak)q(sk|ak) (92)

=
∑
ak

p(ak)
Φ(sk|ak)∫

Φ(s′k|ak)ds′k
, (93)

where Φ(sk|ak) is given by

Φ(sk|ak) = fp,k(sk)
∏

j∈Uk(ak)

ψk(zj , sk)

Ik−1∏
i=1

qi(Z
aik
k |sk).

(94)

Finally, we find that

fu,k(sk) (95)

≈
∑
ak

p(ak)fp,k(sk)
∏

j∈Uk(ak)

ψk(zj , sk)

νk({zj})

Ik−1∏
i=1

qi(Z
aik
k |sk)

νik(Za
i
k

k )
.
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