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Abstract
This thesis proposes an optimization model to efficiently schedule energy and flexi-
bilities of a grid-connected microgrid (MG) with non-dispatchable renewable energy
sources and battery energy storages (BESs). The model can also be used to co-
ordinate the MG operation with the connected upstream distribution grid and to
assess the MG flexibility considering economic viability, technical feasibility, and
BES degradation. The performance of the model was tested for both deterministic
and stochastic formulations using two solution approaches i.e., day-ahead and rolling
horizon, in different simulation and demonstration test cases. In these test cases,
the model optimizes the schedule of the MG resources and the energy exchange with
the connected main grid, while satisfying the constraints and operational objectives
of the MG. The flexibilities from the MG would also be optimized when the MG pro-
vided flexibility services (FSs) to the distribution systems. The coordination with
the distribution system operator (DSO) was proposed to ensure that the microgrid
operation would not violate the technical constraints of the distribution grid.

Two types of test systems were used for the simulations studies: 1) distribution
grids with grid-connected MGs and 2) building MGs (BMGs). The distribution
test systems included the 12-kV electrical distribution grid of the Chalmers campus
and a 12.6-kV 33-bus standard test system, while the BMGs were based on real
residential buildings i.e., the HSB LL building and the Brf Viva buildings. Results
of the Chalmers’ test case showed that the MGs’ economic optimization could reduce
the annual cost for the DSO by up to 2%. Centralized coordination, where the MG
resources were scheduled by the DSO, led to an even higher reduction, although
it also led to sub-optimal solutions for the MGs. Decentralized coordination was
applied on the 33-bus network with a bilevel optimization framework for energy and
flexibility dispatch. Two types of FSs were integrated in the bilevel model i.e., the
baseline (FS-B) and the capacity limitation (FS-C). The latter has found to be more
promising, as it could offer economic incentives for both the DSO and the MGs. In
the studies of the BMGs, the BESs were modeled considering both degradation
and real-life operation characteristics derived from measurements conducted at the
buildings. Results showed that the annual building energy and BES degradation cost
could be reduced by up to 3% compared to when the impact of BES degradation
was neglected in the energy scheduling. With the participation of the BMG in FS-C
provision, the building’s operation cost could be further reduced depending on the
flexibility price. A 24-h simulation of the BMG’s operation yielded an economic
value of flexibility of at least 7% of its daily energy and peak power cost, while
the DSO could benefit from the FS assuming that the dispatched flexibility could
be used to reduce the subscription fee that guarantees a certain power level. For
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frequent flexibility provision i.e., multiple times within a year, the value of flexibility
for the MG operator could be reduced due to the BES degradation.

To demonstrate the practical use of the proposed model, an energy management
system was designed to integrate the model and employ it to optimize the energy
schedule of the BMGs’ BESs and energy exchange with the main grid. The energy
dispatch was performed in real-time based on the model’s decisions in real demon-
stration cases. The demonstration results showed the benefits of the model in that it
helped reduce the energy cost of the BMG both in short term and in long term. The
model can also be used by the MG operators to quantify the potential and assess
the value of microgrid flexibility. Moreover, with the help of this model, the MG can
be employed as a flexible resource and reduce the operation cost of the connected
distribution grid.

Keywords: Battery energy storage, energy management, energy scheduling, distri-
bution network, flexibility, microgrids, optimization.
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c Index for iteration loop
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Parameters

B1 Pre-exponential factor used in empirical cycle aging model
B2 Exponential factor used in empirical cycle aging model
∆t Time interval
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ηch

m Charging efficiency of BES
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m Discharging efficiency of BES
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Ac Calendar aging coefficient
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M approach)
N it Number of iterations
Πw Probability of occurrence of scenario w.
P −

mp Sample measurement of output power from the battery cells
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P +
mk Sample measurement of input power to the battery cells

P Cap
m Capacity limit
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P dis
mp Sample measurement of discharging power injected to the grid
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tm Heating output from the CHP plant

P G,min
m Minimum electrical power output from the CHP plant
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Λt Spot price [$/kWh]
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Rij Resistance of line i− j

RCHP
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SoEmin
m Lower state-of-energy limit

SoEmax
m Upper state-of-energy limit

SoEch
mk Sample measurement of BES state-of-energy during charging

SoEdis
mn Sample measurement of BES state-of-energy during discharging

T Temperature
Vmax Upper voltage limit
Vmin Lower voltage limit
Xij Reactance of line i− j

Variables

ξtmp Positive variable indicating choice of lifecycle loss function sample point
p

ρtm Percentage of lifecycle loss for one cycle at a specific DoD
ϕ(DoD) Lifecycle as a function of DoD
btmp Binary variable used with adjacency constraints
cB

m Cycle aging cost (calculated over the scheduling period)
cDER

m Operation cost (calculated over the scheduling period) associated with
the DER owned by the MG
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cDoD
tm Cycle aging cost per time step t

cim
m Cost of MG’s imported energy (calculated over the scheduling period)

cpeak
m Cost of the MG’s peak imported power drawn from the main grid

(calculated over the scheduling period)
δP im

tm Procured flexibility amount (deviation from the imported power base-
line profile)

δP ex
tm Procured flexibility amount (deviation from the exported power base-

line profile)
dodtm Depth-of-discharge (DoD)
eDR

tm The part of energy available from DRRs that has already been curtailed
at time t

eDR,end
tm The part of energy available from DRRs that has already been curtailed

by the end of the time horizon
fm Value of the objective function of MG m (MG’s total cost)
fDO

wm Total MG’s deterministic cost for scenario w naively treating forecast
as perfect information

fDO,P I
wm Total MG’s deterministic cost for scenario w assuming perfect forecast

fSO
m Total MG’s expected cost

πfl,Cap
tm Flexibility price

πfl,im
tm Flexibility price

πfl,ex
tm Flexibility price

pj Active power injection at bus j

pji Active power flow from bus j to bus i

p−
tm Power output from the battery cells (before battery losses have been

taken into account)
p+

tm Power input to the battery cells (after battery losses have been taken
into account)

pMG,ex
tm Exported power to the main grid

pMG,im
tm Imported power from the main grid

pch
tm Charging power of BES (power absorbed from the grid)

pdis
tm Discharging power from BES (power injected to the grid)

pDR
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pflex
tm Procured amount of flexibility

pfl,p
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pG
tm Electrical power output from the CHP plant

pP CC
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ti Active power at the substation
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qDR
tm Reactive power of DRRs
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qG
tm Reactive power from the CHP plant

Ql
m Percentage of cycle-based capacity loss a BES

Qr Percentage of retained BES capacity after a rest period
Qr,0 BES capacity percentage at the beginning of a rest period
rex

m Revenue of MG m due to exporting energy to the main grid
rflex

m Revenue of MG m from selling flexibility
cSS,peak

i Cost of the distribution network’s peak power measured at the substa-
tion

cp
m Cost of the MG’s peak power drawn from the main grid

qSS
ti Reactive power at the substation

soc State-of-charge (SoC)
soetm State-of-energy (SoE)
νi Voltage at bus i

vi Square of voltage magnitude at bus i

xtmn Positive variable indicating choice of discharging sample measure-
ment n

ytmk Positive variable indicating choice of charging sample measurement k

zBES
tm Binary variable that indicates if the BES is charging or discharging
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Chapter 1

Introduction

This chapter presents the problem overview and the main research questions that are
being addressed in this thesis. It describes the objectives and the main contributions
of the thesis and it also includes the publications that resulted from the thesis work.

1.1 Background
Under the Paris agreement, which has been in effect since 2016, the European Union
(EU) countries have committed to significant reductions of CO2 emissions to achieve
the EU goal of carbon neutrality by 2050 and contribute to the global goal of limiting
the Earth’s temperature rise to 1.5°C above pre-industrial levels by the end of the
21st century. Despite all encouraging actions to address the problem of climate
change, it seems that humanity is falling behind. The highest ever level of global
emissions was recorded in 2021 completely eliminating the positive effect of CO2
reductions caused by the lockdown measures imposed during the previous year due to
the COVID-19 pandemic [1]. The alarming findings from the latest United Nations’
Intergovernmental Panel on Climate Change (IPCC) report [2] indicate that unless
global CO2 emissions are cut by 43% by 2030, in comparison to the 2019 levels, it
will be statistically impossible to limit the temperature rise to 1.5°C.

To fight climate change and balance in time the amounts of carbon emitted to
the atmosphere and absorbed by the atmosphere, sweeping actions are required to
reduce the global emissions, as the technological readiness level of direct air carbon
capture and storage technologies is low and their potential is predicted to be limited
by 2030 [2]. To this end, the generation of electrical energy is undergoing a transition
from fossil-based energy sources to renewable-based energy sources (RESs) such as
solar energy, wind power, and others. Sweden, in particular, has set ambitious
energy goals of 100 % renewable energy production by 2040 and zero net emissions
of greenhouse gases by 2045 [3, 4]. Apart from the necessity to replace the fossil-
based electric energy sources with RESs, the integration of more RESs is also driven
by the need to support growing electricity demand and electrification requirements.

Despite the fact that the EU has so far focused on large-scale deployment of RESs,
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1. Introduction

small-scale integration of renewables has also been achieved with residential photo-
voltaics (PVs) thanks to the feed-in tariffs and the solar panel subsidies which make
own production from PVs worthwhile and appealing to the consumers. This marks
the transition of the former passive consumers to active prosumers i.e., electrical
energy consumers that also have the capability of producing their own electrical
energy, which can be used either for self-consumption or exported to the main grid.

Following a decrease in the battery cost [5], the installation of residential, stationary
battery energy storages (BESs) has increased, signifying their value in reducing the
prosumers’ electricity cost. Behind-the-meter BESs can be combined with residential
PVs to increase the self-supply level of end-users during the day and help small-
scale RESs owners increase their revenue by maximizing self-consumption of PV
generation [6] and by engaging in energy arbitrage (load-shifting). These BESs are
also a promising application for recycling retired electric vehicle (EV) BESs, which
can be re-used as second-life BESs load-shifting and peak-shaving.

The coupling of small-scale generation with residential BESs promotes the integra-
tion of microgrids (MGs) i.e., clusters of local energy sources, energy storages, and
customers represented as a single controllable entity [7]. The term "microgrid" has
been subjected to many definitions. According to the U.S. Department of Energy
MG is [8]: "a group of interconnected loads and distributed energy resources (DERs)
within clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid. An MG can connect and disconnect from the grid to enable
it to operate in both grid-connected or island mode." The Conseil International des
Grandes Réseaux Électriques (CIGRÉ) Working Group C6.22 Microgrid Evolution
Roadmap (WG6.22) provided the following definition: "MGs are electricity distri-
bution systems containing loads and DERs, (such as distributed generators, storage
devices, or controllable loads) that can be operated in a controlled, coordinated way
either while connected to the main power network or while islanded."

MGs can be employed at various locations including both rural and urban areas.
Off-grid solutions are usually ideal for remote rural areas. In cities, on the other
hand, grid-connected MGs can be formed by clusters of DERs that are integrated
in commercial or residential buildings. These MGs can also be defined as building
MGs (BMGs) [9, 10], when the management of the DERs is in tight relation with
the electricity load consumption of a building or clusters of buildings.

1.2 Motivations and scope of the thesis

Up until now, the driving force for the deployment of MGs [7] around the globe has
been the need to have uninterrupted and reliable power supply in remote locations or
areas. These MG projects are still vital for the ongoing access to electricity especially
for areas severely affected by extreme weather phenomena e.g. wildfires, hurricanes
etc. Therefore, the main focus of their application has been islanding capability,
black-start capability, and grid-forming control. In the case of grid-connected MGs,
the focus in the literature has shifted from the grid-forming control to the optimal
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energy management, which is the main focus of the thesis. The thesis studies the
operation of grid-connected MGs without making any distinction between clusters
that possess and clusters that do not possess islanding capability. The studied
clusters are always connected to the grid and therefore their operation is similar to
the operation of grid-connected MGs.

Energy management, which is also known as scheduling or dispatch (these three
terms are used interchangeably in the thesis), refers to the control of the energy
consumed or produced by the MG resources and the control of the energy exchanges
between the MG and other connected grids. This operation is performed by the
MG energy management system (MG-EMS). A comprehensive literature review on
optimal energy scheduling of MGs can be found in Section 2.2.

Many studies on optimal MG energy scheduling e.g., [11–16], assume MG-EMSs
that operate in uncoordinated schemes i.e., without coordinating with the distribu-
tion system operator (DSO) to solve the MG energy scheduling problem. Others
have applied coordinated energy management of grid-connected MGs considering
interaction with the DSO e.g., [17–20]. It is unspecified, however, in these studies,
how the MG integration can affect the cost of the DSO, if the unbundling of network
operation is considered, which is why the coordinated energy scheduling studied in
this thesis assumes utility restructuring (also known as deregulation). Restructuring
separated the generation, transmission, and distribution thus breaking the monopoly
that bundled these services together. The unbundling framework of power system
operation is the existing regulatory framework in EU countries [21] and many states
in the United States of America (U.S.A.) [8].

The thesis also focuses on the realistic representation of the BES operation and
associated cost. Energy storage emerges as a critical resource in MG energy man-
agement [11] offering energy services (ESs) that benefit MG owners such as increased
self-consumption of RES-based generation and energy arbitrage [22]. In fact, the
main focus of this thesis is the MG system that consists of PV and energy storage
systems, which has been characterized as the basic MG [23]. The basic MG can serve
smaller loads such as a number of buildings and, therefore, it can easily be deployed
by residential electricity customers. Thus, the models developed for this thesis and
the proposed solutions are relevant to the end-users and have high chances of practi-
cal applications in MG projects likely to be implemented by residential customers in
the near future. Many recent studies [11–13,15–20,24–37] have published results on
optimal MG energy dispatch considering stationary energy storage. The proposed
scheduling solutions can be applied by the MG-EMSs and enable the end-users to
fully utilize the BES potential in reducing their energy costs.

However, the studies that consider BES dispatch often oversimplify the BES schedul-
ing model to reduce the complexity of the optimal MG energy scheduling problem,
as is discussed in the literature review in Section 2.3. For the same reason, the
impact of degradation is often ignored. However, the link between BES dispatch
and BES degradation is essential, as it can be exploited to further reduce the oper-
ation cost of the MG [9]. The challenge to introduce a linear mathematical model
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that can realistically represent the non-linear BES behavior and the induced BES
degradation motivated the focus of the thesis on BESs.

Another aspect of the grid-connected MG operation is the dispatch of the MG flexi-
bility. MGs at distribution system level can be introduced as new flexibility sources
that can offer demand-side flexibility services (FSs). Such sources are urgently
needed because the increasing share of both large-scale and small-scale RESs in the
energy mix increases the flexibility needs of system operators [38]. Using alternative
flexibility sources to avoid the operation of expensive and fossil-fuel based generators
for the sole purpose of containing infrequent high-peak periods will offer significant
cost savings [39]. Local FSs can also offer economic and sustainable solutions for
the future challenges concerning the distribution grid operation. The DSO can act
as the intermediate responsible party for technical validation of demand-side FSs
traded in day-ahead (DA) and intra-day markets or s/he can act as the flexibil-
ity procurer [40]. These FSs can mitigate the impact of the high-peak conditions
incurring lower capital expenditures compared to the upgrade of distribution grid
infrastructure, which can take up to 10-12 years, or other FSs such as grid reconfig-
uration [41]. Even if the network reinforcement costs cannot altogether be avoided,
deferring these costs with the support of FSs can be economically beneficial.

The ideas of flexibility quantification and demand-side FSs provided from DERs
or DERs aggregators such as MG operators, which have recently gained attention
as is evident by a number of recent studies e.g., [38, 41–48], is also investigated in
the thesis. As shown by the extensive literature review in Section 2.4, these studies
estimate the technically available flexibility without examining whether this amount
of flexibility is also economically viable or optimal.

Finally, the thesis work did not focus on every aspect related to MG energy man-
agement. Although communication and control interfaces have been successfully
used in real-life demonstrations of some of the developed models, the thesis did not
study interoperability aspects regarding the integration of the MG components to
the MG’s or DSO’s control centers i.e., the MG controller or the DSO’s supervi-
sory control and data acquisition (SCADA) system, respectively. To guarantee the
successful practical applications of the proposed models and solutions, irrespective
of the vendors that provide each deployed software and technology, the existing
interoperability standards and ontologies must be considered. In the thesis, it is
assumed that all the equipment employed by the control center that implements the
solution is fully interoperable. Furthermore, the MG-EMSs typically dispatch the
resources within a look-ahead time horizon and some input data, such as electricity
load demand and RES-based generation, have uncertain values over the time hori-
zon. Therefore, forecast profiles of these values are used instead. The development
of forecasting models was out of the scope of this thesis. For this reason, historical
data or pseudo measurements were used in the majority of the case studies. Ac-
tual forecasts were used, however, in one case study which evaluated the effect of
short-term and high-resolution forecast errors on the optimal MG energy scheduling.
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1.3 Objectives
The overarching goal of the thesis was to develop and validate an optimization model
that optimizes the use of flexible resources of a grid-connected MG. The model
was developed to more accurately characterize the operational costs of MGs/BMGs
considering the profit from load shifting, the revenue from the FSs, and the cost
of BES degradation, which has often been neglected in the literature on optimal
MG energy management. The model could dispatch the MG resources either in
an uncoordinated manner or assuming interaction with the DSO to coordinate the
dispatch of the resources with the operation of the DSO’s grid. To achieve its
primary goal, the thesis has the following objectives:

1. To compare and evaluate optimal solutions from different energy scheduling
strategies satisfying operational targets of: 1) each MG operator or 2) the
DSO, in a distribution network with grid-connected MGs considering the un-
bundled framework of network operation.

2. To incorporate an improved BES dispatch model, which can capture a more
realistic BES operation performance, and BES degradation models in the op-
timization model for MG energy and flexibility dispatch.

3. To quantify the MG flexibility considering both its technical and its economic
feasibility.

4. To apply stochastic assessment of flexibility with sufficient computational ef-
ficiency to respond to close to real-time flexibility requests.

5. To define a methodology for short-term flexibility assessment and dispatch.

6. To introduce an optimization framework of coordinated operation between
the DSO and the MG operators for the optimal allocation and dispatch of
MG flexibility in a distribution network with grid-connected MGs and use this
framework to quantify the value of local flexibility for both the MGs and the
main grid operator as well as analyze its impact on the dispatch of the MG
resources.

7. To verify the effectiveness of the proposed model with simulation studies of
real test systems and demonstrate its performance on physical MG testbeds.

1.4 Main research questions

Within the scope of this thesis the following research questions (RQs) have been
identified in the effort towards the accomplishment of its goal:

• RQ-1: How can MG energy scheduling strategies affect the cost for the DSO
in the unbundled framework of operation?

• RQ-2: How can the mathematical model of the BES be improved to capture
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both real-life performance characteristics and the impact of degradation, while
having a formulation that does not add complexity to the optimal energy and
flexibility dispatch problem?

• RQ-3: How much does BES degradation impact the cost of the MG energy
scheduling solution?

• RQ-4: How should uncertainties be handled when short-term and
high-resolution load forecasts are used in optimal MG energy scheduling?

• RQ-5: How can the technically and economically feasible MG flexibility be
assessed and how is its economic value affected by different factors?

• RQ-6: How can the interaction between the DSO and the MG operators
be employed to determine the optimal allocation and dispatch of the MG
flexibility in a distribution network with multiple grid-connected MGs?

The thesis examines these questions, which are related to the research gaps high-
lighted in Section 2.6 and presents findings that can provide answers or further
knowledge and insight on the studied subject.

1.5 Contributions
To answer the research questions and achieve the objectives mentioned in the pre-
vious sections, a model for the MG Optimal Dispatch of Energy and Flexibility,
which will be called MODEFlex model in this thesis, was developed. The model can
be integrated to an MG-EMS, which interacts with the MG resources and dispatches
them according to the solution of the optimization problem that is formulated from
the MODEFlex model. The optimal solution is related to either the economic op-
eration or the level of interaction with the main grid. It can be employed by an
MG operator or a DSO, depending on the implemented coordination scheme, to
implement the multi-period optimal dispatch of the MG resources. The MG energy
management follows a market-based approach to offer ESs such as energy arbitrage
and peak power cost minimization to the MG customers in order to minimize the
energy cost paid them. In correspondence to its objectives, the main contributions
of the thesis are the following:

1. A long-term evaluation study of MG energy scheduling strategies:
Unlike existing studies, the operation cost and performance of the DSO’s grid
and its grid-connected MGs were assessed considering the unbundling of net-
work operation. The link between the expected BES lifetime, which is affected
by BES degradation, and the applied energy scheduling strategy was also in-
vestigated.

2. BES dispatch considering a measurement-based model and degradation:
A measurement-based BES model, which could capture real-life operation
characteristics derived from BES measurements, and cycle aging models, which
calculated the impact of degradation to the BES capacity and the degradation
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cost, were incorporated in the MODEFlex model. Moreover, the effect of the
BES’s depth-of-discharge (DoD) on the BES capacity was assessed both in
cycle and in calendar aging, in contrast to many optimal BES studies that
have often ignored the dependency of aging to the DoD.

3. Integration of FS models in the optimization model for MG energy dispatch:
The integration of local FS models in the optimal energy scheduling model,
which has rarely been considered in energy scheduling studies, introduced the
comprehensive formulation of the MODEFlex model. In particular, two FSs
were modeled: 1) the baseline FS (FS-B) and 2) the capacity limitation FS
(FS-C). The MG customers could increase their revenues by providing these
FSs to a flexibility procurer e.g., the DSO. Therefore, the MODEFlex model
can be employed by the MG operators to reduce the MG’s operation cost
through both ESs and FSs and can be used to calculate the optimal amount
of flexibility that the MG can offer upon a request. The integration of the FS
models in the optimal energy scheduling model meant that both the technically
and the economically feasible flexibility were considered in the calculation of
the flexibility amount that could be offered.

4. A stochastic MODEFlex model with improved efficiency and quality:
The MODEFlex model was also formulated using scenario-based stochastic
optimization (SO) to account for uncertainties of the model’s input data
i.e., forecasts of load consumption and PV generation values. The stochas-
tic MODEFlex model was used to implement optimal energy and flexibility
dispatch of a BMG in a rolling horizon (RH) scheme. Unlike other studies
using RH approach, each update in the forecast values updates the whole con-
trol trajectory of the MG resources, while the dispatched active power of the
resources is not discretized and thus the impact of the forecast errors is even
further minimized. The model considered look-ahead uncertainty thanks to
the stochastic formulation and, instead of considering real-time uncertainty re-
alization, adjustments to the deterministic control decisions were dynamically
being implemented with the RH approach to deal with close to real-time uncer-
tainty. These adjustments, in addition to a scenario reduction technique that
was implemented, improved the computational efficiency and the scalability
of the formulated SO problem.

5. A methodology for stochastic assessment and dispatch of flexibility:
The stochastic MODEFlex model was used to introduce a versatile method-
ology for flexibility assessment. The methodology can be implemented with
different flexibility activation periods and notification times for flexibility re-
quests. It can be used to dispatch intra-day flexibility on a short notice (up to
close to real-time) to alleviate unscheduled network congestions i.e., unrelated
to network maintenance. It can also be used to define flexibility evaluation
metrics and can easily be adjusted to fit the specific needs of the flexibility
procurer.

6. Development of a bilevel optimization model for flexibility dispatch:
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Assuming that flexibility was procured by the DSO and provided by the MGs,
a leader and multi-follower approach was defined which formulated a bilevel
optimization problem with the upper level (UL) i.e., the leader, being the DSO
and the lower level (LL) i.e., the followers, being the MGs. The bilevel model
assumed AC OPF for the distribution network modeling of the UL and the
MODEFlex model for each MG at the LL. The solution of the bilevel opti-
mization problem yielded the optimal allocation and amount of MG flexibility.
The model can be used to determine the optimal amount and price of flex-
ibility dispatch as well as the value of flexibility for both the procurer and
the providers. It can also give valuable information regarding the flexibility
potential of a network area and reveal network areas that could benefit from
the implementation of local flexibility markets (LFMs).

7. Validation of the MODEFlex model with studies on real test systems:
The real distribution network of a university campus was employed in the
long-term evaluation study where different MG energy scheduling strategies
were implemented. Furthermore, a real energy-flexible residential building was
used as a BMG in multiple studies of the thesis. Comprehensive evaluation
of the BES dispatch under the proposed MODEFlex model was performed
under different technical and degradation BES models revealing which model-
ing approach could yield the maximum reduction to the electricity cost of the
building residents. A different case study on the same BMG demonstrated the
effect of BES capacity and flexibility price on the dispatched flexibility and
the daily economic value of flexibility for the MG customers. In addition, the
BMG was used to study the effects of load forecasting errors on the BMG’s
operation cost. Finally, a BMG-EMS was designed to implement online and
real-time control of the on-site DERs in two physical test sites. The MODE-
Flex model incorporating the measurement-based BES model was integrated
in the BMG-EMS of each BMG testbed and its performance was validated
through real-life demonstrations on the BMGs.

1.6 Structure of the thesis

The thesis is organized in nine chapters:

• Chapter 1 presents the background and the scope of the thesis as well as its
objectives, the main contributions, and the identified research questions.

• Chapter 2 presents a state-of-the-art survey on MG energy management and
demand-side flexibility. Emphasis is given on BES scheduling and degrada-
tion models as well as FSs models integrated in the MG energy management
problem. Industrial perspectives of grid-connected MGs are also discussed.

• Chapter 3 defines the operational framework of the studied MG systems and
presents the basic structure of a MODEFlex problem as well as the method-
ology that was used in the thesis for its solution.
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• Chapter 4 presents the formulation of the optimization models that were
developed to solve the MODEFlex problems studied in the thesis.

• Chapter 5 deals with deterministic energy management of BMGs and ana-
lyzes the effect of load forecasting errors to BMG’s cost.

• Chapter 6 presents the solution of the stochastic MODEFlex problem for a
BMG and a probabilistic approach to quantify the BMG’s flexibility.

• Chapter 7 compares the results of different energy scheduling strategies of
grid-connected MGs and investigates their impact on the cost and operation
of the MGs and the DSO grid.

• Chapter 8 solves the deterministic MODEFlex problem in coordination with
the DSO to present results of the optimal allocation, dispatch, and value of
flexibility.

• Chapter 9 concludes the thesis and provides suggestions for future work.
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Chapter 2

State-of-the-art and Industrial
Perspectives

The following section is an overview of the state-of-the-art on MG energy and flex-
ibility dispatch. Special focus is given in the use of BES as a flexible resource. The
models of FSs and the quantification of flexibility are also discussed and the most
recent studies on demand-side flexibility offered from MGs are reviewed. Industrial
perspectives of MGs and their integration into existing distribution grids are also
discussed.

2.1 Energy management system
MGs are defined as clusters of distributed energy sources (generation, storage, flex-
ible loads, etc.) and energy consumers (non-flexible load). The MGs can operate
either in grid-connected or in island mode and many MGs can support seamless
transition between the two modes to increase supply reliability for the customers.
In grid-connected mode, the difference between the MG generation and consump-
tion can be imported or exported to the main grid. In island mode, the MG is
completely autonomous i.e., energy is supplied exclusively from the MG resources
and any excess in generation must be stored or curtailed, if self-consumption is not
an option.

Regardless of the mode of operation, an MG can be considered as a controllable
entity, which is represented as a single entity to the distribution grid. This can be
achieved with the help of the MG controller, which is the key component of the MG
in control of the producing and consuming units (distributed generation, flexible
loads, storage) that are clustered together to form the MG. The MG controller
ensures that the operation of the MG is both secure and reliable as well as efficient
and economical.

The MG-EMS is an intelligent automation system employed by the MG controller
and its main task is to optimally balance load and supply both in the planning
phase and in the delivery phase (either by MG resources or through interconnec-

11



2. State-of-the-art and Industrial Perspectives

tions). The MG-EMS belongs to the tertiary control level, which is the highest level
of the three-level hierarchical MG control architecture [8], where the primary and
secondary levels deal with controlling active and reactive power sharing among the
MG resources in short timescales i.e., milliseconds to seconds, to achieve frequency
and voltage regulation. The IEC 61970 standard [49] on EMS application program
interface has defined EMS as “a computer system comprising a software platform
providing basic support services and a set of applications providing the functionality
needed for the effective operation of electrical generation and transmission facilities
so as to assure adequate security of energy supply at minimum cost”.

The use of the MG-EMS is essential in dispatching the MG resources in an intel-
ligent, secure, and reliable manner and in achieving coordination both among the
MG components as well as with other grids. The MG-EMS determines the power
exchange between the MG and the other grids at the points of common coupling
(PCCs), which are the physical interfaces of the MG and the other grids with the
connection to the MG. Typically, the MG has one PCC with the upstream, main
distribution grid. Clearly, through the PCCs the scheduling of the MG resources
affects the operation of the interconnected system (e.g., voltage profile, utilization
of feeders). The MG resources are managed by the MG-EMS, while the objectives
and strategies that determine the scheduling decisions of the MG-EMS are defined
by the MG operator. If the MG operator is different from the DSO and the MG
operates in grid-connected mode, then these objectives might not be co-aligned with
the operational objectives that optimize the operation of the main distribution net-
work. Therefore, it can be beneficial to employ the distribution management system
(DMS), which is a part of the utility control centre, to schedule either directly or
indirectly the MG resources with the aim to ultimately control the active (and/or
reactive) power exchange at the PCCs.

Through the control of the power exchange at the PCCs, the operation between
multiple grid-connected MGs and the distribution network can be coordinated. This
can ensure the satisfaction of grid technical constraints, contribute to an economical
operation of the interconnected systems and assist in ancillary services. To achieve
this level of coordination, a control and communication MG interface should be
developed as an add-on DMS functionality to integrate the MG energy scheduling
with the network optimal power flow (a functionality already available at the DMS).
Such an interface would allow MGs and DSO to exchange information including
desired MG schedule, the voltage at PCC and flexibility requests among others.

2.2 Optimal energy scheduling of MGs
The optimal energy management of MGs has been extensively studied in recent lit-
erature, mainly as a DA scheduling problem with the MG-EMS operating in uncoor-
dinated schemes i.e., without considering interaction with the DSO, even when the
MG is connected to the main grid (e.g., [11–16,24,27,34,50]). A part of the research
on MG energy management specifically focuses on BMGs [51, 52] and investigates
solutions that can be applied by a BMG energy management system (BMG-EMS),
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which is also known as home energy management system (HEMS), especially when
the energy management is applied for a single residence. Reducing the peak con-
sumption is also considered in the energy management models through peak power
tariffs or penalties e.g., [53–55]. Typically, when studies seek to reduce peak power
costs, the peak demand is minimized in the short-term, with the assumption that
the consumer will be charged with respect to the daily peak demand. Apart from
the DA scheduling, there is also research that focuses on model predictive control
(MPC) [52], also known as receding or rolling horizon (RH) control, which utilizes
feedback in an iterative process that adjusts and improves the control output mul-
tiple times within the (typically daily) scheduling time horizon, which is typically
24 hours. Control of conventional generators, control of energy storage and demand
response (DR) are usually employed to minimize the operation cost of the MG. An
exhaustive review on solution approaches and uncertainty handling approaches that
have been proposed for MG energy management can be found in [56].

The majority of the studies on building energy management use low time resolution
of load and generation profiles, which also yields a low-time resolution control. The
time resolution, also known as time granularity, refers to the length of the time
interval between the dispatch of two consecutive operational set-points. The time
resolution has most frequently been 1 hour, which is not sufficient to capture the peak
power patterns, as studies on the impact of time resolution have shown [57]. In latest
research, 15-minute time intervals have frequently been employed. Although this is
an improvement, it does not necessarily bring the energy scheduling closer to real-
time control. This can be achieved with the iterative process of the RH approach.
The low time resolution of most recent studies [52] that employ RH control, which
typically use hourly time discretization steps, makes them incompatible with close
to real-time control. Moreover, these studies do not usually implement peak power
reduction and RH optimization concurrently.

2.2.1 Forecasting

Most often the MG energy scheduling has been formulated either as deterministic
optimization (DO) or stochastic optimization (SO) problem; the latter in order to
address uncertainties without enforcing conservative costly solutions, as is the case
with robust optimization. Typically, MG resources are dispatched hourly within a
look-ahead time horizon of 24 hours. However, the need to mitigate the effects of
intermittent RES generation has motivated researchers to study intra-hour dispatch
schemes. Since the problem uses a look-ahead horizon and requires forecasts of the
uncertain input values (e.g., load demand) at each dispatch time step, it is obvious
that there is a need for both short-term and high-resolution forecasts.

Machine learning (ML) models such as neural networks (NNs) have successfully been
employed to provide electric load forecasts in the last 30 years [58]. However, there
has been a lack of studies that seek to satisfy the two-fold requirement, as only a
few publications (e.g., [59–62]) have developed forecast models with a resolution of
a few minutes.
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2.2.2 Multiple grid-connected MGs

The future distribution grid of multiple, grid-connected MGs could create new chal-
lenges for the DSOs and requires proper control and coordination of different network
entities. Therefore, a lot of studies (e.g., [17–20, 63–69]) have also been applying
coordinated energy management of grid-connected MGs considering interaction be-
tween the MG-EMSs and the DSO. The MG energy scheduling is the result of a
decision-making process, where the MGs and the DSO (or an MG aggregator) need
to exchange information to determine the interactions between the MGs and the
main grid (e.g., power exchange, energy prices). In this decision making process,
there is often a hierarchical structure (see e.g., [69]), where a central controller op-
erated by the DSO or the MG aggregator determines the power exchanges between
the main grid and the MGs. This type of hierarchy can also be used to indirectly
schedule the power exchanges e.g., through the use of price signals (energy/flexibility
prices or penalties). In this case, the DSO is acting as the leader (upper level) that
determines the price signals and the MG operators are the followers (lower level)
that respond to these price signals and schedule their resources and power exchanges
according to them. When the hierarchical structure consists of two levels of decision
making, then the coordinated MG energy scheduling problem can be formulated as
a bilevel optimization problem.

Applications of both stochastic [63–65] and deterministic [17,18,66,67] bilevel opti-
mization can be found in the recent literature on coordinated energy management
of grid-connected MGs. The same concept has also been applied for other clusters
of resources at the lower level, such as virtual power plants, and different main grid
operators at the upper level e.g., energy communities [70] instead of utility compa-
nies. In most works, the DSO is at the upper level and is viewed as a supervisor
for the energy exchange among all interconnected network entities. Therefore, these
studies usually assume that the DSO has full knowledge of MG information, which
extends beyond the PCC data such as the MGs’ objectives, MG grid constraints,
as well as DERs and customer data in order to solve the bilevel optimization prob-
lem (e.g., [19, 20, 63, 67]). Full knowledge helps to simplify the bilevel optimization
problem, as it can then be transformed into an equivalent single-level mathematical
problem with complementarity constraints (MPCC), as in [63, 66]. Full MG infor-
mation, however, comes into conflict with the requirements for reduced MG data
sharing.

According to the guidelines provided in [71], the DMS should not require any infor-
mation of the MG network and capacity configuration (except perhaps of the status
of some tie-line switches) in order to be functional. In this regard, some methods
have been developed for coordinated MG energy scheduling with limited informa-
tion exchange with the DSO. Authors in [64] propose a decentralized solution for
the same problem, which was solved in a centralized manner in [63]. Specifically, the
MGs share information only about the power exchange at the PCC and iteratively
increasing penalties are introduced to incorporate the coupling of the different en-
tities and ensure convergence of the solution. Multi-period energy scheduling with
inter-temporal constraints for generators and energy storage is considered in [17],
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where the MGs can also exchange energy with each other. In this case, the DSO
first sends the energy exchange schedule to the MGs and then receives information
from them to update it iteratively until the optimal decision is reached. The DMS
does not require any MG values as input except from PCC measurements and the
MG information related to the worst-case operating cost. In the multi-MG concept
in [18], the aggregator only requires the scheduled energy exchange of each MG at
PCC and the corresponding MG profits in order to generate a congestion price signal
and avoid violation of PCC capacity.

Studies on coordinated MG energy management often ignore the distribution net-
work modeling or simplify it using DC power flow equations. If the grid constraints
are considered, then this applies to the main grid, while the MG grid constraints
are neglected. The network power flow within the MGs was only considered in [67],
where an equivalent single-level problem was solved. As it was mentioned, this ap-
proach requires that the DSO has data/measurements of the MG network and/or
resources. In this case, full information of the MG configuration was shared with
the DSO to ensure that the global grid constraints i.e., the technical constraints of
the entire grid including the connected MGs, would be satisfied with the application
of the individual optimal solution.

What is missing from recent publications is a study of the MG integration consider-
ing the unbundled framework of operation. All of the previously mentioned studies
assume that both the DSO and the MGs can own and schedule DERs and they
trade energy with each other. Thus, the proposed methodologies and the published
results are not particularly relevant to the European DSOs, where unbundling rules
usually apply to their operation.

2.3 BES scheduling
Energy storage enables smart grid integration, electromobility, and FSs that can
be provided to the power system [72]. The focus on connecting stationary storage
units to energy systems has particularly increased due to the need for dispatchable
RESs. Stationay energy storages support the integration of RESs by reducing the
grid power fluctuations the RESs cause and can offer many other services that
benefit the grid operators (e.g., peak shaving, load leveling, frequency regulation
[73]). BESs have mostly been used in frequency regulation, which accounts for
about half of their applications, while energy arbitrage accounts for about 10%
according to [22]. However, as recent research has been investigating the potential
contribution of energy arbitrage in reducing the energy cost, the BES has started
to emerge as a critical resource for energy management. This is evident by many
research publications on MGs [11–13,17–20,25–37] and BMGs [9,10,74] that seek to
optimize the MG energy management through the optimal scheduling of stationary
BESs. Many of the above-mentioned studies (e.g., [13, 17–20, 33–35]), however, do
not consider BES degradation.

Publications that do consider the effect of battery degradation on energy manage-
ment usually neglect the impact of calendar aging [12,26–30,32], which reduces the
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BES capacity during open-circuit periods. Instead, they focus on cycle aging, often
disregarding the effect of the DoD as a stress factor [26, 27, 32]. In addition, most
works use simplified BES scheduling models, which could reduce the reliability of
the scheduling solution.

As was observed from the literature review, the mathematical models employed in
energy scheduling of MGs with stationary BESs had at least one of the following
shortcomings: 1) simplified BES scheduling model assuming constant BES charg-
ing/discharging efficiencies and/or maximum power rates and 2) no implementation
of a degradation model to consider the impact of BES degradation. Below is a
detailed review of the state-of-the-art on optimal BES dispatch focusing on BES
degradation and BES scheduling models to present the modeling approaches that
have been used in recent publications.

2.3.1 BES degradation
Some of the most recent studies that have published results on optimal BES dispatch
(not necessarily using the MG concept) and consider BES degradation cost are
[12,26–32,75–78]. A penalty is often used in the objective function in order to reduce
BES stress, usually by avoiding deep cycle depths and/or high power rates [27,76,77].
Other works consider the impact of low state-of-charge (SoC) [28–30,75], while the
simplest approach is to limit the number of cycles [26].

In [27], a mixed-integer non-linear programming model links the degradation cost
to the cycle depth and updates the BES capacity per time-step. The battery degra-
dation in [76] is a function of the power rates, while authors in [77] link degradation
cost to both cycle depth and charge/discharge rates. However, neither of the stud-
ies [27, 76,77], consider the DoD of each cycle.

In contrast, the degradation cost in [28] is calculated using an approximation that
links BES lifetime loss with a weighted sum of SoC levels. Authors in [29] also
consider SoC level and use Q-learning to approximate the non-convex cycle aging
cost. The rainflow algorithm is employed in [75], where the authors prove convexity
of the cycle-based degradation cost function provided that the DoD stress function
is also convex. Then, they use a subgradient algorithm to approximate the solution
of optimal BES dispatch. The loss of lifecycle as a function of DoD is also studied
in [30], although the specific DoD related to each cycle is not considered. The
authors propose a piecewise linearization of the lifecycle loss function, where the
BES sizing of an MG is decided based on the expected degradation associated with
the maximum DoD of all cycles. A sensitivity analysis is performed in [78] to define
the impact of multiple stress factors on the BES degradation cost. For simplicity,
the authors assume that the BES charging and discharging efficiencies are the same.

Unlike most studies, which neglect calendar aging, the authors in [31] incorporate
both calendar and cycle aging into a mixed-integer linear programming (MILP)
problem considering their dependencies on time elapsed and cumulative throughput,
respectively. In order to include calendar aging in the MILP problem, a predefined
desired BES lifetime must be entered as a parameter. The impact of SoC is not
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evaluated in either cycle or calendar aging.

The BES degradation can be expressed either as loss of available capacity or as
increase in the BES resistance. Most of the studies reviewed in this section link the
degradation cost with a percentage of the estimated capacity loss. This percentage
is multiplied with the initial investment cost of the BES to define a degradation
cost term in the objective function. Thus, these studies determine the optimal BES
dispatch considering the trade-off between degradation cost and revenue from load
shifting. An interesting study on the trade-off between profit and BES degradation
investigating the participation of the BES owner in different services can be found
in [79]. For a more realistic representation of the BES degradation cost both the
decreasing trends in BES replacement costs and the end-of-life retained capacity
(the remaining capacity of the BES when it is retired) for grid applications would
have to be considered. These were not discussed in the previously mentioned works
that linked the degradation cost with BES capacity reduction.

Practical approaches can also be found to calculate the degradation cost, as for
example those proposed in [28, 30]. In these works, the BES depreciation was cal-
culated using only data from the manufacturer’s performance warranty without
utilizing any modeling approach to account for the effect of aging mechanisms on
the BES capacity or resistance. In [28], the BES degradation was calculated by
estimating the effective cumulative throughput (depending on the SoC levels) of the
BES dispatch. Considering the cumulative throughput that the BES can deliver in
its lifetime according to the manufacturer’s warranty, the BES loss could then be
calculated as a percentage of the cumulative throughput that was removed from the
total throughput. Authors in [30] calculated degradation as a percentage of lifecycle
loss, using manufacturer’s data about the maximum number of cycles the BES could
deliver at a specific DoD.

The manufacturers of residential, stationary BESs (e.g., Tesla’s Powerwall [80], and
Samsung’s SDI [81]) give a performance warranty of 10 years considering, in addi-
tion, an operating limitation in terms of maximum throughput or number of cycles,
especially if the end-user combines the BESs with products/applications provided
from different vendors. The end-of-life retained BES capacity is 65%-80% for BESs
that are coupled with PVs, depending on the geographic location of the BES and
PV installation. These applications, however, are relatively new, as these BESs
were introduced in the market in 2015, and the BES retirement age and end-of-life
retained capacity is not as well determined as in EV applications. Further research
is required to more accurately quantify the benefits of using residential, stationary
BESs in load shifting applications considering the impact of degradation.

The challenge to accurately assess the impact of degradation on the operation cost
of the MG is therefore twofold. First, the employed degradation model should
be representative of the main aging factors associated with BES usage without
adding unnecessary complexity to the optimal MG energy and flexibility dispatch
problem. Secondly, regardless of the followed modeling approach, the assessment
should account for factors such as future BES replacement cost and expected BES
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retirement age.

2.3.2 BES scheduling models

Up until now, studies on optimal BES dispatch that consider degradation have
been using technical BES models, which are built on some simplifying assumptions
regarding the BES operation e.g., the charging/discharging energy efficiency and the
power limits are considered to be constant and independent of the BES’s SoC. The
BES scheduling in [32], which is formulated as a Markov decision process (MDP),
considered both degradation and effective charging/discharging power dependent on
the SoC, resulting in an improved BES model compared to previously mentioned
works. Still though, the round-trip efficiency was considered to be constant.

The simplifications of the BES scheduling models can lead to miscalculations and
failure to implement the BES schedule e.g., the scheduled BES energy might not
be delivered or the BES might fail to reach the scheduled energy storage level.
Neglecting the BES power dependency on SoC can actually be a valid assumption,
if additional limits on stored energy are considered. Rated power can normally
be delivered within the SoC region, which is available by the BES converter i.e.,
where the storage voltage will not trigger the current limiter function. The benefit
of additional SoC limits is twofold: 1) the power output becomes more predictable
due to relatively stable voltage values and 2) the BES is protected from high stress.
Thus, a BES model with this assumption is not expected to deviate much from the
behaviour of an actual BES. However, if the state-of-health (SoH) of the battery
has deteriorated, the maximum power levels can be affected leading to decreased
accuracy of this modeling approach.

As a way to deal with the issues that arise with the existing BES scheduling models, a
few recent works proposed models that can integrate the actual, non-linear behavior
of a real BES in linear programming (LP) optimization problems [82, 83]. The
authors in [82] provide a piecewise linear approximation of the charging curve to
account for the non-constant charging power limits, while simplifications are still
applied on BES efficiency. Their BES model was tested for two C-rates, separately.
In [83], each state of the BES operation is a linear combination of sampled points of
operation taken from measurements. This approach considers dependency of both
power and efficiency on SoC. Ref. [82,83] did not consider BES degradation.

Promising results on the SoC estimation with the use of artificial neural networks
(ANNs) have also been presented [84,85]. Boulmrharj et al. [84] showed that the use
of an ANN gave higher accuracy than model-based approaches for SoC estimation
(the Coulomb counting method was used as a reference value). The long short-term
memory (LSTM) method was deployed in [85] to forecast SoC estimation. Future
research could integrate these methods in the optimal BES dispatch problem and
investigate whether they could increase the reliability of the BES dispatch solution.
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2.4 Demand-side flexibility

The flexibility of the power system was first defined as the ability of the system
to deploy its resources in order to respond to changes in the net load which is not
supplied by RESs [86]. The flexibility resources were mainly conventional generation
sources and flexibility studies evaluated their capabilities to adapt their schedules
according to the requirements. The metrics of flexibility aimed to measure the
ramping requirements and available resources and identify the impact of additional
capacity and changes in the operation of flexibility resources to the operation and
planning of the power system. As research in flexibility provision and dispatch
progressed, it became obvious that load and RES-based generation, which had been
treated as the causes of flexibility requirement, could also act as flexibility resources
and become a part of the solution. Focus was also given on small-scale resources
and demand-side management for the procurement of local flexibility. In other
words, distributed resources such as non-dispatchable and dispatchable distributed
generation, energy storage, and DRRs could also be employed as flexibility resources.
Energy storage, in particular, has been playing an important role in latest flexibility
studies, because it can be coupled with non-dispatchable RES-based sources and
essentially turn them into dispatchable generators. Flexibility from non-dispatchable
generators can be provided by curtailment of their injected power. As a result,
additional flexibility could be available originating from distributed DERs and DRRs
depending on the power system’s operational policies and the state of each resource
at the time instance when flexibility would be needed. Interconnection to other
power systems was also suggested as a supplementary flexibility solution.

The demand-side flexibility refers to the ability of the DSOs to draw flexibility from
local flexible resources to alleviate congestion or reduce peak imported power from
the upstream grid. The concept of LFMs is a current research trend which ana-
lyzes how market-based principles can solve grid operation issues in a cost-efficient
manner. To demonstrate the benefit of establishing such markets, studies need to
investigate methods of quantifying the local flexibility and show that FSs can of-
fer economic value to both the DSOs and the flexibility service providers (FSPs).
For this purpose, the ideas of flexibility quantification and demand-side FSs pro-
vided from DERs or DERs aggregators such as MG operators have recently gained
attention, as is evident by a number of studies e.g., [38, 41–48].

2.4.1 Quantification
The real-time quantification of flexibility, which is critical for modeling and im-
plementing any FS, is a research gap addressed by a few works only e.g., [42, 43].
Ref. [41] presents a rudimentary model of an FS offered by a large heat pump with
predetermined cost of activation and discrete steps of flexibility amounts. The MG
flexibility bids are assumed to be equal to the predicted power injected to the main
grid in the hour-ahead bidding process of [44], where solar irradiance uncertainty
is considered in the BES-based MG energy scheduling using a Markov transition
matrix and the recursive least-squares method for predictions; the load uncertain-
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ties are disregarded. The use of the BES as a buffer to correct hourly mismatches
between injected power and bids might require investments on larger capacity or
reduce income from other revenue streams, as less capacity is released to provide
services. Unlike aforementioned studies, which use model-based approaches, ma-
chine learning techniques are proposed in [45] to forecast the longevity of the offered
flexibility. Similarly, a regression model is used in [46] to design the incentives that
will increase the participation of residential energy hubs in FSs.

2.4.2 Integrating FS models in optimal energy dispatch

Dispatching flexible resources to address the MG’s needs i.e., MG energy manage-
ment, is different from dispatching these resources to address the system’s needs.
Therefore, for an accurate evaluation of the optimal MG’s cost, the models of FSs
must be integrated in the optimal energy dispatch problem of an MG that provides
an FS to enhance the flexibility of the power system.

Most of the studies reviewed in Section 2.4.1 did not integrate FSs in the optimal
energy dispatch problem. The impact of FSs in the economic energy scheduling of
MGs was considered in [38,43,47,48]. The concept of the flexibility envelopes is used
in [43] to consider the feasibility region of the real-time operational flexibility of an
MG in its optimal power dispatch, which is performed in RH. The power exchange
with the main grid is assumed to be known per time step, thus the BES flexibility
dispatch satisfies the MG needs to avoid the cost of dispatching diesel generators
or curtailing load. A scenario-based stochastic optimization (SO) problem is solved
for a grid-connected MG in [47, 48], where the problem integrates flexibility lim-
its. In [47] these limits are time-varying and depend on the net consumption of
the rest of customers connected to the same distribution feeder as the MG. In [48],
these limits are set by the DSO to minimize deviations from the approved power
exchange schedule, which is treated as a baseline power profile. Similarly, the sched-
uled power exchange is used as a baseline reference to define MG flexibility in [38],
where a cooperative controller based on model predictive control is used to dis-
tribute the flexibility amount among a network of MGs. However, using the MG
schedule as a baseline to define MG flexibility can be prone to manipulation [87] and
having to agree on a power exchange schedule can be problematic for a real-world
implementation of this FS.

Despite its issues the baseline FS model is currently one of the main models to
dispatch local flexibility and different methods have been proposed to calculate the
baseline reference [87]. In the context of MG energy scheduling, the MG energy
schedules can be employed as the baseline references. Another FS model used for
local flexibility dispatch is the capacity limitation FS [88], a novel FS model which
does not depend on baseline reference profiles. This model defines a capacity limits
and the FSP is requested to limit the net power consumption below this limit.
Therefore, the flexibility is estimated as the amount of power reduction from the
capacity limit instead of the amount that deviates from the baseline.
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2.5 Industrial perspectives of MG integration

MG-EMSs are already offered by several manufacturers including ABB [89], Siemens
[90], and General Electric [91] among others. Some of these platforms also provide
integration with the supervisory control and data acquisition (SCADA) system of
the utility through standard industrial protocols. Thus, the technology for both
MG deployment and DSO integration is available. The adoption of MGs could
benefit both end-users, which could reduce their energy cost, and the operation of
the distribution system, which can exploit the energy flexibility offered by MGs.
Despite the available technologies and the benefits to different stakeholders the MG
integration raises questions from both sides.

In Europe, the development of MGs has not been significantly promoted yet, which is
evident by the lack of regulations and policies on this concept [92]. In fact, only 11%
of the total MG capacity can be found in Europe [93]. The low implementation can
be attributed to the unbundled framework of operation. As the DSOs have generally
not been able to own or operate DERs so far, it has been difficult to directly affect
the MG integration. Besides, the DSOs deem flexibility services as less reliable
compared to grid reinforcement, which reduces their incentive to implement MGs.
Therefore, it seems that the general preference from the DSOs’ side, especially in
high-density urban areas, is a bottom-up integration initiated by the end-users.

The problem is that the bottom-up integration has been highly restricted and hin-
dered by present regulations, perhaps even more so than the deployment which could
be realised by the utilities. An example of this is the "over-the-fence" rule [94], which
is applied in many US states, including the otherwise very supportive of MG projects,
state of California. This regulatory roadblock prevents entities other than utilities
to own and operate MGs with assets and customers belonging to more than two
neighboring properties. Thus, due to this rule, an MG developed and operated by a
small community of people such as a neighborhood is practically made impossible,
as the MG would become subject to utility-related regulations, which cannot be
managed by a small entity. As a result, the efforts to achieve bottom-up MG inte-
gration are left to the end-users that would be interested to develop smaller MGs
that would not be affected by the such regulations. The investment on small-scale
RESs and BESs is financially supported, however, there are no incentives for the
end-users to invest on advanced control functions offered by the MG-EMSs. Fur-
thermore, there are other unresolved issues for the interested parties apart from
investments on advanced control systems including communication infrastructure,
standardization, grid ownership, cyber security, and data protection.

The regulatory obstacles that dissuade the deployment of MGs by prosumers’ initia-
tives, could be overcome by supporting the formation of citizen energy communities.
These energy initiatives were recognized by the EU Directive for the internal elec-
tricity market 2019 [95]. As described in the Directive, the operation of the energy
communities essentially resembles the operation of MGs, with less emphasis on the
geographic contiguity of the assets and more emphasis on the voluntary and open
participation of the community members and the primary purpose of the energy
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community, which is to fight energy poverty of its members rather than generate
financial profits.

Another issue related with the bottom-up MG deployment is the interoperability of
MGs and MG components. The integration can be challenging for heterogeneous
devices, especially if these are provided by different vendors or manufacturers. Al-
though Internet interface facilitates an easier integration of the control devices, each
controllable device or converter-embedded controller might use a different commu-
nication protocol on top of the Transmission Control Protocol/Internet Protocol
(TCP/IP) protocol. Moreover, not all control functions are available through Inter-
net interface and, therefore, additional interfacing devices might be required, which
adds to the complexity of the control system. Unless integration of end-user devices
becomes a more standardized procedure, the prosumers will be discouraged to invest
on smart devices, which could offer energy flexibility to the grid, or might not be
interested on taking full advantage of their capabilities, unless there are very strong
incentives from the utility company. Without a high degree of standardization, the
widespread adoption of the MG technologies can only be realised by third-party MG
developers, as even the development of small MG projects such as residential BMGs
will be a very challenging task.

Despite the lack of initiatives from the DSOs’ side, their interest in grid-connected
MGs and their contribution in the distribution system operation could rise in the
future considering the relaxation of the rules about energy storage ownership. Up
until now, distribution utilities in Europe were generally not allowed to own and
operate energy storages [21] due to the unbundling of network operation and energy
supply, as already explained. In the latest report of the Swedish Energy Markets
Inspectorate [96], which was published in February 2020, it is clearly stated that
DSOs can, as an exception, own and operate energy storage, if it is used to handle
unexpected events and as long as the DSOs do not buy or sell energy to the energy
or the balance market. With creating MGs in form of clusters of energy storage
systems in certain strategic areas the DSO could alleviate congestion or regulate
voltage, when needed in a network area. With a large number of energy storage
based MGs, the distribution network could even become dispatchable and reduce
the effect of uncertainties of RES generation and EV integration. However, excluding
the participation to energy and balancing markets reduces the revenue streams from
BESs, such as, for example, revenues associated with frequency response services
and energy arbitrage. Thus, despite the change in the regulation and despite the
services that BESs can offer to the operation of the distribution network, the DSOs’
investment in BESs might not be efficiently rewarded.

2.5.1 Business model
A real-world example of innovative grid-connected MG projects is the financing busi-
ness model that introduces MG as an energy-as-a-service (EaaS) [97,98]. According
to this model, the MG is owned and operated by a third party and the costumers are
relieved from risks associated with investment, operation, and maintenance costs.
Thus, the MG can own both small-scale (residential) and utility-scale assets and
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DERs. The customers, who have an agreement with the third-party MG developer,
only pay for the energy services (for the energy provided by the MG) or they might
share the energy savings with the MG developer, depending on their power purchase
agreement [98, 99]. The energy savings can result from efficient management of the
energy portfolio to deliver energy and flexibility services such as for example energy
arbitrage and peak demand reduction. This business model enables the MG indus-
try to share its expertise with prospective customers by overcoming complexities
that have so far dissuaded prosumers from participating in this market. Thus, it
can lead to a faster MG integration and accelerated growth of the energy market at
the end-user level.

2.5.2 Demonstrators of MGs
There are many laboratory-scaled MGs that are used for research on MG control,
e.g., at the Electric Energy Systems laboratory in National Technical University of
Athens [100], in Aalborg University [101] in Denmark, at the KIOS laboratory [102]
in Cyprus, the Prince lab microgrid testbed [103] at Polytechnic University of Bari,
in Italy and others. Jansen et al. [104] present a survey of smart grid labs, most of
which can be found in Europe and many of these labs already implement MGs.

The need to bridge the gap between research and deployment motivated the de-
velopment of field testbeds, e.g., in Kythnos island [105] of Greece, in Bornholm
island [106, 107] of Denmark, at the University of California, San Diego [108] and
others. Among them, the Borrego Springs MG [109] in San Diego, California, is
a characteristic example of an "unbundled utility MG", where the distribution as-
sets of the MG are owned by the utility, while the DER of the MG are owned by
independent producers and the MG customers.

In 2019, there were 4475 identified MG projects globally [93]. These MG projects are
either in operation, under development, or under planning and the total MG capacity
amounts to about 27 GW. Out of these about 11 GW (42.3%) belong to remote MGs,
while the new MG projects that were recorded were mostly remote systems (93.4%
of new entries). The projects that are taken into account include grid-connected
systems that are capable of operating in island mode or remote systems that display
at least one of the following characteristics: 1) RES-based generation, 2) combined
heat and power (CHP) generation, 3) energy storage, and 4) control that enables
optimal operation of the resources. The leader area in MG capacity is Asia Pacific
with 37% of total MG capacity, followed by North America with 33%, Middle East
and Africa with 14%, Europe with 11%, and finally Latin America with 5% [93].

In Sweden, there are several local energy systems that can be viewed as platforms
for small-scale integration of energy sources and operate as grid-connected MGs.
One example is Simris [110, 111], a local energy system comprising a village of 140
households, a 660kW wind turbine, a 440kW solar power plant, and a 800 kWh BES.
A diesel generator has also been installed to additionally supply the MG in case it
operates in island mode. The back-up diesel generator is power by the hydrogenated
vegetable oil Diesel 100, a diesel fuel based 100% on renewable materials coming from
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slaughterhouse waste. Another example is the MG on the Arholma island [112]. The
MG supplies about 250 residents with the installed PV systems and the two BESs
of 1225 kWh total capacity. In case of a power outage, the MG can supply the
customers for at least one hour, under normal demand conditions and fully-charged
BESs. Other examples can also be found in local energy systems managed by the
EnergyHub system provided by Ferroamp [113] such as e.g., the HSB Living Lab
building [114, 115], the Brf Viva buildings [116], Fjärås [117], and others. The
EnergyHub is a converter-embedded power management system, which integrates
PV and BES DC/DC converters. The AC electricity load consumption and the PV
generation are monitored by the EnergyHub, which controls the power exchange
between the local energy system and the main grid by controlling the BES power.

2.6 Summary of identified research gaps
From the literature review in Sections 2.2-2.4 it was observed that studies on co-
ordinated operation of the MGs and the DSO have exclusively focused on defining
the amount of energy trade between the DSO and the MGs often without consider-
ing the underlying constraints of the distribution network operation. Thus, not all
real-world examples of distribution network operation can be studied by these ap-
proaches. The research question RQ-1 that was formulated in Section 1.4 indicates
the attempt of this thesis work to assess the impact of MG integration and evaluate
the cost of potential MG services considering unbundled network operation.

The role of BES as an energy-flexible resource was discussed in Section 2.3. For ef-
ficient BES dispatch and accurate evaluation of the BES utilization, it is important
to consider both real-life performance and lifetime degradation of the BES, some-
thing which has not been investigated in published literature on optimal MG energy
management, as was pointed out. This research gap is highlighted in the question
RQ-2, which is addressed in the thesis. The literature survey also identified the
drawbacks of the previous studies in realistically representing the BES degradation
cost. Overcoming these issues is significant for answering RQ-3 in Section 1.4.

Although the development of forecast models was outside of the scope of the the-
sis, the effect of short-term and high-resolution load forecasting was evaluated in a
comparative study in order to address RQ-4 in Section 1.4. In particular, a com-
parison of the two main optimization techniques in MG energy management i.e, DO
and SO, under different solution approaches for short-term and high-resolution load
forecasting was lacking from the literature.

As the literature review in Section 2.4 showed, the optimal MG flexibility dispatch
has rarely been integrated in the energy dispatch problem to quantify the economic
value of flexibility for the MG. Studies mostly focus on estimating the technically
available flexibility or take into account its economic impact to the energy dispatch
of the DERs. The technically available flexibility refers to the estimated flexibil-
ity amounts that are feasible according to the technical operation of the DERs as
in [38,41,43–46,48]. It can also refer to flexibility which is admissible by the network
operation [118] and even further restricted to secure the network’s reliability [119]

24



2. State-of-the-art and Industrial Perspectives

or robustness against uncertainties [120]. It does not, however, consider the "will-
ingness" of the FSP to offer a specific amount of flexibility i.e., the economically
viable or optimal flexibility, which can be less than the technically feasible amount.

Even when studies embed FSs into optimal energy scheduling models, the flexibility
potential is not explicitly calculated, leading to a lack of quantification and evalu-
ation of the flexibility, especially at distribution level [121]. The flexibility amount
that is dispatched solely depends on the operational limits and the grid operator set-
points, which are usually arbitrarily chosen power exchange references. The research
question RQ-5 in Section 1.4 stresses the need for insights regarding the economic
value of intra-day flexibility in the presence of uncertainties for the FSP. In addi-
tion, an integrated MG energy and flexibility dispatch model, such as the proposed
MODEFlex model, has not been employed in the coordinated MGs’ operation with
the DSO. Therefore, the assessment of the local flexibility which is technically and
economically feasible to both the MGs and the DSO has not been studied in depth.
However, to answer RQ-6 the flexibility value for both the FSPs and the flexibility
procurer needs to be considered in the optimization of the flexibility dispatch, which
is why the bilevel optimization framework was proposed in the thesis.
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Chapter 3

Methodology

This chapter presents the methodology that was used to solve the optimization prob-
lems which are formulated based on the comprehensive MODEFlex model presented
in Chapter 4 and are solved in the studies of the thesis given in Chapters 5–8.
The chapter first gives an overview of the studies and then illustrates the process of
building and validating the optimization model used for the solution of the defined
optimization problem. Afterwards, the operational framework of the studied MG
system is described and the basic structure of a MODEFlex problem is presented.
The chapter also discusses the coordination schemes that can be applied utilizing the
DMS interface in order to solve the MODEFlex problem. In the final sections, the
chapter introduces the test systems and the set-up used in real-life demonstrations.

3.1 Overview of studies

Depending on the entity that solved the MODEFlex problem, the MG resource mix,
the optimization method, and the solution approach that was followed, different test
cases were built to be studied in the thesis. The studies are presented in Chapters
5–8. Each of these chapters first introduces the aim of the study, then presents
the followed study approach including the formulation of the optimization models
utilized in the study, and finally analyzes and discusses the study’s results.

Table 3.1 summarizes the methodology of each study. The methodologies, which are
later described in detail in the respective chapters, were built based on the procedure
described in Section 3.2. The methodology characteristics that are highlighted in
Table 3.1 are related to the scheme of coordination with the DSO (see Section 3.5),
optimization method (deterministic or stochastic), solution approach (DA or RH, see
Section 3.4), and the time resolution, where high resolution refers to time intervals
of 5-15 minutes and low resolution refers to one-hour time intervals. All studies used
a 24-hour time horizon, except for the study of Chapter 6, where the time horizon
could be decreased depending on the availability of the forecasts. Note that Table
3.1 only shows the characteristics of the main methodology used in the simulations
of each study and not from other methodologies used in comparative analyses.
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Table 3.1: Characteristics of the main methodology employed in each study pre-
sented in Chapters 5–8.

Cordination Optimization method Solution approach Time resolution
Chapter 5 ✗ DO DA High
Chapter 6 ✗ SO RH High
Chapter 7 ✗ DO DA Low
Chapter 8 ✓ DO DA Low

3.2 Building and validating the MODEFlex model

Figure 3.1 presents the process of building the MODEFlex model by selecting its
attributes according to the problem that is to be solved. It also describes the steps
that are used to build a test case and validate the performance of the MODEFlex
model. The detailed procedure of the develoment and validation of the MODEFlex
model is as follows:

• First, the optimization problem that will solve the optimal MG dispatch is for-
mulated and a suitable optimization model needs to be selected for its solution.
Both the problem and the model formulation are based on the formulation of
the comprehensive MODEFlex model, which is given in Chapter 4. The op-
timization model might be different than the optimization problem, if some
mathematical equations and/or inequalities need to be modified to bring the
model to a form that facilitates efficient solution by the available solvers.

• The optimization model is built by selecting the optimization method, the
coordination scheme, the objective function and the constraints.

• Once the model is built, the solution approach is selected and, afterwards,
the time horizon and time resolution for the dispatch of the MG resources
were determined. The selection of the optimization method, the solution ap-
proach, and the time horizon and resolution are the most important steps of
the methodology because they substantially affect the quality of the imple-
mented control. Therefore, these steps are highlighted in the flow diagram of
Figure 3.1.

• A test system is selected and a simulation or demonstration test case is defined
based on it to prove the effectiveness of the built model to solve the formulated
problem. The test case uses input data from the test system and, if not all
data are available, input data from external sources can be used provided that
they were representative of the test system and test case. Assumptions related
to the lack of data or the problem itself are also defined at this stage.

• The final step is to validate the performance of the model using simulations
or demonstrations. The simulation and/or demonstration results are analyzed
and processed to present the key findings.
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Figure 3.1: Flow diagram of the steps followed to develop and validate the MODE-
Flex model.
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3.3 Description of the MG operational framework
The operational framework of the MODEFlex model assumes that the MG operator
is also the owner of the MG’s resources and has a contract with an electricity retail
provider, which enables energy trading at wholesale electricity market price. Thus,
the MG operator can employ ESs to reduce the energy costs of the MG customers
performing load shifting and energy price arbitrage. At the same time, the MG
operator can have a contract for flexibility provision with a DSO, which purchases
and utilizes this flexibility. This contract allows the DSO to request and buy FSs
from the MG on a short notice within a day to solve unexpected operation problems
or improve operation, utilizing the most recent information (e.g., forecasts). In
addition, the DSO can purchase MG flexibility to satisfy balancing needs of the
transmission system, although it should be noted that the FSs considered in this
thesis are only used by the DSOs. If there are requirements on minimum flexibility
amounts that the MG does not meet, the FSs can be offered through an aggregator.

The MODEFlex model can be used in the context of the EaaS business model de-
scribed in Section 2.5.1 by the third-party MG developer that owns and operates the
MG. It can also be used by the operators of privately-owned MGs, which can be pro-
sumers that own flexible resources or building owners and property managers in the
case of BMGs. The model can be integrated in an MG-EMS and used for economic
dispatch of the flexible MG resources considering participation in ESs or FSs. For
this purpose, the MG-EMS solves the MODEFlex problem with or without coordina-
tion with the DSO depending on the implemented coordination scheme (see Section
3.4). The solution yields a set of power dispatch set-points that maximize the eco-
nomic benefits of the MG customers, whose electricity demand is satisfied from the
MG resources and the upstream grid connection. Based on these set-points, the MG-
EMS controls the MG resources using the values of the electricity price, generation
and consumption as inputs. If these inputs are not deterministic, forecasts are used
instead. The mix of the MG’s resources can include BESs, DRRs, non-dispatchable
generation sources (such as PV systems and wind turbines), and dispatchable gener-
ation sources such as conventional diesel generators, micro-turbines and micro-CHP
plants.

3.4 Structure of the energy and flexibility dis-
patch problem

The fundamental structure of the MG energy and flexibility dispatch problem is
depicted in Figure 3.2. The selection of the look-ahead time horizon depends on the
accuracy of the forecast values of load and non-dispatchable generation. The time
horizon is discretized and represented by a set of time discretization steps, which can
simply referred to as time steps. Thus, the time horizon is divided in time intervals
i.e. time periods represented by the time steps. The number of time steps depends
on the selected time resolution and usually, although not necessarily, correspond to
the frequency update of the dispatched set-points and the resolution of the input
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Figure 3.2: The basic structure of the MODEFlex problem.

data. The forecast profiles of load and generation and the uncertainties of their
fluctuation should be considered to choose an appropriate time resolution.

There are two solution approaches with regard to how the set-points are dispatched:
the look-ahead period dispatch, which can also be called open-loop (OL) dispatch,
and the RH dispatch, which can be considered as a closed-loop (CL) dispatch. In
both approaches, the optimization is performed for a look-ahead period. In the OL
dispatch, all the set-points within the considered time horizon, which are retrieved
by the solution of the optimization problem, are dispatched. The look-ahead period
can be one hour, one day (i.e., DA dispatch), one week or even a month. In the RH
approach (Figure 3.3), there is one simulation for the solution of the MODEFlex
problem, before each time interval. The set-points for the first time step are dis-
patched to the MG resources after each simulation, while the time horizon is shifted
forward by one time step for the next simulation. The remaining set-points of each
simulation are advisory and can be discarded or used in case of unexpected failures
to update them. The input data are updated at each time step to consider values
that were outside of the time horizon previous simulation, as the horizon of the
new simulation is shifted forward, and potential changes/updates in the forecasts
or estimation of network and DERs states. Thus, the MG-EMS can receive feed-
back from th RH approach which can reduce the impact of forecast errors to the
MG’s operation cost by both renewing the input values and dynamically adjusting
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Figure 3.3: The RH approach (each simulation shifts forward in time).

the set-points at each time step. Note that the term RH often appears under the
name "model predictive control" in literature [122], typically when the problem is
formulated using state-space representation instead of mathematical programming,
which will be used for the formulation of the SO model in the thesis.

The RH dispatch be considered as close to real-time dispatch if used with a suffi-
ciently high resolution e.g., 15-minute or smaller time intervals. Energy management
schemes with time intervals which are shorter than 5 minutes can be classified as
real-time energy management schemes [24,56] when the RH approach is adopted.

3.5 Coordination schemes
The MG-EMS retrieves the reference set-points, which are obtained from the solution
of the MODEFlex problem, and transmits them to the MG resources using the
available communication links (see Figure 3.4). The MG-EMS has an interface with
the DMS, which is used for the integration of the MG to the distribution system,
since the MG operator is a different entity from the DSO.
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Figure 3.4: The communication infrastructure of the MG-EMS.

The proposed architecture for the integration of the MG to the distribution sys-
tem can be seen in Figure 3.5, which is a schematic representation of the interface
between the MG-EMS and the DMS. Two-ways communication is always assumed
between the MG-EMS and the DMS, even if there is no interaction i.e., the decisions
or actions of one entity do not affect the decision or actions of the other. No commu-
nication or interaction is considered between different MG-EMSs i.e., the MG-EMSs
can only interact with the DMS. Three different schemes of coordination between
the MG-EMS and the DMS are depicted in Figure 3.5. Coordination is based on in-
teraction between the MG-EMS and the DMS through information exchange which
is enabled by the interoperability between these entities. The grid-connected MGs
might utilize the same coordination scheme for their interaction with the DSO or
each MG might utilize a different scheme, depending on the agreement between the
DSO and the MG operator. These coordination schemes, which affect the formu-
lation and solution approach of the energy and flexibility dispatch problem, can be
described as follows:

• No coordination: The MG-EMS solves the MODEFlex problem and dis-
patches the MG resources according to this solution.

• Centralized coordination: It is assumed that the MG-EMS empowers the
DMS to dispatch the MG resources. The MG-EMS receives the reference
set-points from the DMS and then transmits them to the MG resources.

• Decentralized coordination: The DMS does not directly dispatch the set-
points of the MG resources. Instead, it indirectly affects them by transmitting
price signals (e.g., flexibility prices, penalties) or the reference values for the
desired power exchange at the MG’s PCCs. Using this information as an input,
the MG-EMS obtains the set-points by solving the MODEFlex problem and
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Figure 3.5: The integration of the MG-EMS to the DMS.

transmits them to the MG resources.

The above classification is based on the coordination/interaction with the DSO for
the purpose of dispatching the MG resources and, therefore, information exchange
for the solution of the MODEFlex problem is not considered. A coordinated op-
eration, whether centralized or decentralized, is assumed when at least one of the
following requirements is satisfied: 1) high amount of shared data, 2) high frequency
of shared data updates, and 3) event-based information exchange. More than one
data update within a day is considered high frequency for this classification. Fur-
thermore, if the DSO requires extended information from within the MG such as
resource capacities, technical constraints, network configuration, and forecasts of
consumption or generation, then the amount of data exchange is high enough to
classify the operation as coordinated even if there is no frequent signal transmission
that would require extensive communication infrastructure.

3.6 Test systems

This section presents the test systems that were used in the simulations studies
presented in Chapters 5–8. The test systems include two real residential buildings
representing BMGs with PV systems and a BES, the real distribution network of the
Chalmers University of Technology campus, where network areas were considered as
grid-connected MGs, and a 33-bus radial distribution standard network, which has
often been used in literature, modified with the addition of grid-connected MGs.

34



3. Methodology

Figure 3.6: The facade of the HSB LL building.

3.6.1 HSB Living Lab

The HSB Living Lab (HSB LL) building [114, 115] is a multi-family residential
building (Figure 3.6) of 29 apartments housing 40 residents, which serves as a testbed
for sustainable living solutions and is located at the campus of Chalmers University
of Technology. A 7.2 kWh BES with 6 kW charging/discharging power limits is
installed on the top floor of the building, while solar panels of an 18 kWp PV system
are mounted on its rooftop and facade. Figure 3.7 shows the DC/DC converters of
the solar strings and the DC/DC converter of the BES, which are connected to the
upstream AC grid (400 V) via a converter provided by the Ferroamp company [113].

The grid side converter, which is shown on the top-right side of Figure 3.7, has
bi-directional operation, since the solar energy and the BES stored energy can
be exported to the upstream AC grid and, in addition, the BES can be charged
through both the upstream AC grid and the PV system (see Figure 3.8). The
converter-embedded controller, which is called EnergyHub, is coupled with sensors
that monitor the DC/DC converters of the solar strings and the BES as well as the
building consumption and power exchange with the grid. The measurements of PV
generation, BES power, building load, and power exchange with the grid are col-
lected with a time resolution of 1 sec. In 2019, the building electricity consumption
was 84.2 MWh (the daily demand ranged from 162 kWh to 384 kWh), and the local
energy production of the solar panels was 12.3 MWh, out of which 0.7 MWh was
exported to the grid. The peak building consumption (minute average) was 32 kW,
while the peak PV power output that was recorded was 13 kW (minute average).
The characteristics of the HSB LL BMG are summarized in Table 3.2.
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Figure 3.7: The basic components of the HSB LL BMG: 1) the DC/DC converters
of the solar strings, 2) the bi-directional grid side converter, and 3) the BES with
the integrated DC/DC converter.
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Figure 3.8: Power flow of the BMG.

Table 3.2: Load Demand and DERs of the HSB LL BMG.

BES capacity (kWh) 7.2
BES energy to power ratio (h) 1.2

Daily electricity consumption (kWh) 162-384
PV capacity (kWp) 13
Peak demand (kW) 32
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Figure 3.9: The Brf Viva buildings in Guldheden, Gothenburg (photo courtesy of
Ulf Celander and Riksbyggen).

3.6.2 Brf Viva
The Brf Viva is a housing association of six buildings (shown in Figure 3.9), which
are in Guldheden, an area close to the campus of Chalmers University of Technology.
The buildings consist of 132 residences inhabited since 2018 [116].

The study is based on the 170.8 kWp PV system, which has been installed for local
electrical energy production and the 14 second-life Li-ion BESs (Figure 3.10), each
with a rated capacity of about 14 kWh and a maximum charge/discharge power of 6
kW, which have been installed to increase the PV self-consumption and reduce the
peak demand. The BESs have been taken from old electric buses (provided by Volvo
Buses). The DC/DC converters of the solar strings and the DC/DC converter of the
BESs are connected to the upstream AC grid via a 168 kVA multi-level converter
provided by Ferroamp [113]. Similar to the HSB LL building, the grid side converter
of the Brf Viva BMG has bi-directional operation and the BESs can be charged
through both the upstream AC grid and the PV system. The converter controller
i.e., the EnergyHub system, is coupled with sensors and provides measurements of
PV generation, power of the 14 BES system, building load, and power exchange
with the grid. In 2019, the building electricity consumption was 162 MWh, and the
local energy production of the solar panels was 72 MWh, out of which 11 MWh was
exported to the grid. The peak building consumption (minute average) was 198 kW,
while the peak PV power output that was recorded was 129 kW (minute average).

3.6.3 Electrical distribution system of Chalmers University
of Technology

The 12-kV distribution network of Chalmers University of Technology, which will
be referred to as "Chalmers" throughout the remaining of the thesis, is illustrated in
Figure 3.11. The electrical load demand, which is supplied by the electricity distri-
bution system of Chalmers varies between 2.5 and 6 MW. The load is supplied by

37



3. Methodology

Figure 3.10: The second-life Li-ion batteries of Brf Viva.

importing energy from the upstream distribution grid and, in addition, by electricity
generated through a micro-CHP plant and solar panels. The micro-CHP plant has
heating power capacity of 9000 kW, while the electrical capacity of the steam turbine
is 0.5-1.0 MW (the heating or electrical operational power output depends on the
choice of fuel). The micro-CHP plant is out of operation between April-September,
as its boilers are primarily scheduled for heating energy production. The total PV
capacity is 831 kWp and the majority of the solar panels have been installed on
rooftops of the campus’s buildings, with only a few solar panels of 16 kWp total
capacity mounted on the wall of a building. The network also hosts two BESs with
energy capacity of 200 kWh and 100 kWh and 35 PEV charging points at 32 A/22
kW and 16 A/3.7 kW level, located at two different charging stations. The facili-
ties include an advanced metering infrastructure (AMI) system that consists of an
ABB MicroSCADA and smart meters. The buildings of Chalmers are also equipped
with various energy meters as well as controllable devices that enable the building
operator to control the heating, cooling, and ventilation system.

3.6.4 33-bus distribution network
This test system is a 12.6-kV 33-bus radial distribution network first presented
in [123]. The 33-bus network was modified to include three grid-connected MGs at
the distribution buses 13, 18, and 30, as can be seen in Figure 3.12, and the BESs
of these MGs had an energy-to-power ratio of 17.2kWh/14.4kW, 25.9kWh/21.6kW,
and 134.9kWh/111.76kW, respectively.

3.7 Real-life demonstrators
The HSB LL and Brf Viva BMGs described in Section 3.6.1 and Section 3.6.2 were
also used as demonstrators. A schematic diagram of the communication and control
set-up used at each BMG testbed can be seen in Figure 3.13. The Message Queue
Telemetry Transport (MQTT) protocol, which runs on top of Transmission Control
Protocol/Internet Protocol (TCP/IP), was used for real-time data sharing between
the server, where the BMG-EMSs were implemented, and the grid side converter at
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Figure 3.13: Communication and control interface set-up of the BMG.

each demo site. The MQTT protocol is a ”machine-to-machine (M2M)/”Internet
of Things” connectivity protocol [124], which was designed for lightweight and low
power message transport and is therefore very useful for remote control applications.
With the MQTT protocol the BMG-EMS could interact with the EnergyHub system
at each demonstration site to receive real-time measurements as input for the energy
scheduling problem, as well as send commands i.e., BES power set-points.

The server interfaced MATLAB [125] to set up the communication and control
interface with the test site. An MQTT publisher/subscriber (also called MQTT
client) was built in MATLAB to interact with the MQTT broker run at the controller
of each grid side converter. The MATLAB subscriber read real-time measurements
that the MQTT broker transmitted in different topics. The MATLAB publisher
sent control commands i.e., BES power requests, to the MQTT broker, which would
then send these requests to the DC/DC converters of the BESs. The data that the
MQTT client and the MQTT broker exchanged were encoded in JSON format. In
addition to the MQTT protocol, HTTP requests could be used to retrieve historical
data, which were stored in an SQL-database, with the help of a web application
programming interface (API). A MATLAB to GAMS [126] interface was used for
data exchange with the optimization models and for retrieving the BES scheduling
solution, which included the BES power set-points that were dispatched in an online
manner. The server interfaces that were employed for the demonstrations can be
seen in Figure 3.14.

The data exchange with MQTT is very fast, and the control set-points were received
by the broker in about 50-200 msec (from measurements with the HSB LL BMG-
EMS the average response was 130 msec). The process of the command by the
converter-embedded controller took about 10 sec. After that, the control signal
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Figure 3.14: The server interfaces that enabled interaction of the BMG-EMS with
the grid side converter and the database.

was transmitted to the BES DC/DC converter through power line communication
(PLC), which also added a delay to the dispatch of the set-point. Once the battery
management system (BMS) was actuated, the desired value was reached in about 10
sec depending on the BES status and the amount of requested power. The results
showed a total delay of 30-40 sec to the dispatch of the BES set-point. This delay
is acceptable for close to real-time energy management applications, where the time
scale is usually 5-15 minutes.

As already explained, interoperability was not the main focus of the thesis. There-
fore, in order to replicate the designed interface set-ups at different testbeds, related
ontologies developed for standards such as SAREF, OpenADR, DELTA, CIM, etc.,
can be used to ease the integration with control and measurement systems oper-
ating under heterogeneous standards and guarantee the interoperability of these
systems [127]. The description of these systems according to these ontologies can
be easily incorporated in the backend services platform employed in the demonstra-
tions, which was based on the open-source FIWARE software [128].
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Chapter 4

Model Formulation

This chapter presents the comprehensive MODEFlex model i.e., the optimization
model developed to solve the problem of energy and flexibility dispatch of grid-connected
MGs. The comprehensive MODEFlex model is presented in its stochastic formula-
tion and, therefore, uncertainty modeling approaches are discussed in the beginning
of the chapter. The MG’s optimization problem is solved by the MG-EMS which
integrates an optimization model derived from the MODEFlex model. However, the
solution can also be affected or even directly implemented by the DMS of the DSO
depending on the level of interaction between the MG and the DSO. Hence, the op-
timization models employed for the optimal operation of the DSO’s grid are also
presented separately. At the end of this chapter, the MGs’ and the DSO’s grid
optimization models are used to formulate the bilevel optimization multi-follower
problem for the optimal allocation and dispatch of MGs’ flexibility. The equivalent
single-level optimization problem is also derived.

4.1 Uncertainty modeling

The main uncertainty modeling approaches that have been used in MG energy man-
agement studies include [129]: 1) scenario-based SO and robust optimization (RO),
where it is assumed that uncertainty is adequately characterized by a set of future
event scenarios each of them associated with the probability of occurrence of the
event, 2) adaptive RO and chance-constrained optimization (CCO), which use uncer-
tainty sets to constrain the operating points, 3) Markov decision processes (MDPs),
where the uncertainty is only modeled for the next-step decision, and 4) reinforce-
ment learning (RL), which observes (instead of explicitly modeling) uncertainty.
Depending on the application these approaches can offer advantages regarding com-
putation time, feasibility, and solution cost. Below is the description of the most
common uncertainty modeling approaches and their comparison with the scenario-
based SO optimization, which was used in the proposed MODEFlex model.
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4.1.1 Optimization approaches
The main drawbacks of RO and CCO are the too conservative (and by extent costly)
solutions of the former and the arbitrarily chosen constraint violation levels of the
latter. On the other hand, one major benefit of RO and CCO against SO is that they
can yield simplified equivalent reformulations of the original optimization problem
and reduce its complexity. However, the stochastic MODEFlex model presented in
this thesis already considerably reduces the size of the problem. This is achieved
by eliminating the “wait and see” decision variables which are used in classical SO;
the future scheduling plan consists of deterministic control variables and the only
stochastic variables are the imported and exported MG power which are affected by
the deterministic control variables and the stochastic inputs (load, PV generation),
as shown in the mathematical formulation in Section 4.2. In other words, the model
considers look-ahead uncertainty thanks to the stochastic formulation and, instead
of considering real-time uncertainty realization, control adjustments are dynamically
being implemented with the RH approach to deal with close to real-time uncertainty.
In addition, the scenario generation and reduction technique which is presented at
the end of this section further improves the performance of the model by reducing
its size. Therefore, it was computationally efficient to perform SO in RH with the
proposed model and, since the performance of RO and CCO is heavily dependent
on the underlying characteristics of the probability distribution function [14, 130],
their computational advantage would be trivial.

Apart from faster execution, thanks to its deterministic control the proposed SO
model also offers certainty of feasible solutions in out-of-sample analysis assum-
ing that the system is properly dimensioned to avoid exceeding the PCC capacity.
Therefore, the other advantage of CCO against classical scenario-based SO, which is
the guaranteed satisfaction of the problem’s constraints for a specific percentage of
the scenarios [131] in out-of-sample analysis, is not relevant for the proposed model.

4.1.2 Markov decision process
In this case, the problem is formulated in state-space representation and the system
state as well as the control output need to be discretized. This leads to the problem
well-known as "curse of dimensionality" i.e., to improve the quality of the control
more discrete points must be considered which crucially expands the size and the
computation time. Formulating the energy scheduling of an MG as an MDP also
enables to solve the problem in RH, as was done in [132], by changing the control
strategy or trajectory at each time step depending on the latest forecast information.
However, these strategies are pre-determined, whereas solving the SO problem in
RH results in a new optimal strategy at each time step.

4.1.3 Reinforcement learning
Built on MDP, the optimal strategies are defined without full knowledge of the
uncertainty model [133] (or even the MG system). They are rather defined through
observation and, therefore, a lot of information is needed as an input to train the
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Figure 4.1: Scenarios of electric load (given as ratio of the peak load) over a
scheduling period. The base forecast is shown by the dark color line and one standard
deviation is shown by the light-shaded areas.

RL models, so that they can choose the best "action" i.e., next-step control decision,
"on the go". Similar to MDP, the control actions are pre-determined unless the RL
model is trained online, which is typically time-consuming.

4.1.4 Scenario generation and reduction
In order to model stochasticity in scenario-based SO, which is the uncertainty mod-
eling approach used in this thesis, the probability distribution of forecast errors of
the variable input data must be known. A common practice employed by many
studies e.g., [48, 134], is to assume that these errors follow Gaussian distributions.
Other studies use scenario generation algorithms to capture stochasticity and cor-
relations among historical data [135]. To represent the uncertainty associated with
the input values in the thesis, the DA forecast errors of PV generation and power
consumption are assumed to follow Gaussian distributions. Based on the distribu-
tions of forecast errors, a number of scenarios are generated using the Monte Carlo
(MC) method i.e., random sampling of the input variables (taken from their most
recently updated forecasts) with the added noise to represent the forecast error. The
input values are the most recently updated forecast profiles, which have the same
time resolution as the time horizon of the simulation i.e., the same number of time
discretization steps. The available forecast profiles, which are naturally not perfect,
are used as base scenarios and a Gaussian random number generator is used to gen-
erate an error for each time step. The values of the base scenarios at each time step
are then adjusted according to the generated errors and the outcome is one future
event scenario of electricity load and PV generation. This process is then repeated
to generate all scenarios. One example of the generated scenarios for a scheduling
period can be seen in Fig. 4.1.

After the scenario generation, a scenario reduction technique is used to create a
reduced number of scenarios which are not equiprobable i.e., a different probability
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of occurrence is assigned to each scenario by the scenario reduction technique. The
resulting set of reduced scenarios is representative of the real variability of the input
values. Thus, scenario reduction contributes to reducing the size of the SO problem
without substantially compromising the accuracy of the results.

4.2 Optimization model for grid-connected MGs

The MG-EMS that integrates the MODEFlex model is designed to control the elec-
trical power supply of the MG loads and the electrical power exchange with the
connected main distribution grid. The MG operators seek to optimally schedule the
available DERs, while satisfying power balance within the MG and the operational
constraints of the resources. The DERs considered in this work include: a bio-fuel
based micro-CHP plant, PV systems, BESs and DRRs. Note that the following
conventions are used in this section:

• To present the MODEFlex model in a compact form, some equations contain
two parts i.e., "a" and "b". Part "a" refers to the equation used in the de-
terministic MODEFlex model, while part "b" refers to the equation used in
stochastic MODEFlex model.

• The definition of the variables is given with all the indices that can be associ-
ated to them.

• Expected cost or values only refer to the stochastic MODEFlex model.

• The dual variables λ and µ, which are associated with equality and inequal-
ity constraints, respectively, are only given for the constraints that will also
be used in the bilevel optimization problem in Section 4.4.3. The inequality
constraints that will be used in the bilevel optimization to derive the KKT
conditions are described together with their complementarity slackness (CS)
conditions. The CS constraints are not part of the primal problem.

4.2.1 Objective functions

In this section, two generic objective functions are formulated depending on the main
operational target of the MG owner/operator. The first objective function is cost
minimization, which can alternatively be formulated as profit maximization, and is
related to economic operation targets. The other objective function is the energy
exchange minimization and is related to the desired level of interaction between the
MG and the main grid.

The objective function for (expected) cost minimization is:

minfm = cim
m − rex

m + cp
m + cDER

m − rflex
m , (4.1)
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cim
m =

∑
t∈H

(Λt + Cim)pMG,im
tm ∆t, (4.2a)

cim
m =

∑
t∈H

∑
w∈W

Πwm(Λt + Cim)pMG,im
wtm ∆t, (4.2b)

rex
m =

∑
t∈H

(Λt + Cex)pMG,ex
tm ∆t, (4.3a)

rex
m =

∑
t∈H

∑
w∈W

Πwm(Λt + Cex)pMG,ex
wtm ∆t, (4.3b)

∀m ∈ Mi, where Mi is the set of the MGs’ PCCs with the distribution network
(assuming that each MG only has one PCC with the distribution network and no
PCCs with other MGs), H is the look-ahead time horizon, and ∆t is the time
interval. The positive variables pMG,im

wtm /pMG,ex
wtm denote the MG imported/exported

power from/to the upstream network through the PCC at bus m, at time step t and
scenario w, while Πw is the probability of occurrence of scenario w.

In (4.1), the first term (cim
m ) is the (expected) cost of the imported energy and the

second term (rex
m ) is the (expected) revenue associated with the energy exported to

the grid. The term cDER
m refers to variable operation costs associated with the DER

owned by the MG (e.g., fuel costs, degradation costs) and rflex
m is the (expected)

reward for providing flexibility. Eq. (4.2)–(4.3) analytically present the values of
cim

m , rex
m , and rflex

m . The electricity wholesale market is denoted by Λt, while Ci is the
grid charge for energy transmission (grid utilization), and Ce is the reimbursement
fee paid by the DSO as an incentive to reduce network losses. Finally, cpeak

m is the
(expected) cost of the peak power drawn from the main grid, which satisfies:

cpeak
m ≥ ΛpeakpMG,im

tm , ∀m ∈Mi, t ∈ H, (4.4a)
cpeak

m ≥ Λpeak
∑

w∈W
ΠwpMG,im

wtm , ∀m ∈Mi, t ∈ H. (4.4b)

In (4.4), Λpeak is the power tariff, which is linked to the (expected) maximum average
power of the studied period (measured per ∆t).

The objective function for (expected) energy exchange minimization is:

min
∑
t∈H

(pMG,ex
tm + pMG,im

tm )∆t, ∀m ∈Mi, (4.5a)

min
∑
t∈H

∑
w∈W

Πw(pMG,ex
wtm + pMG,im

wtm )∆t, ∀m ∈Mi. (4.5b)
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An MG that minimizes the energy exchange with the distribution grid aims at in-
creasing the level of autonomy, as zero energy exchange indicates the possibility of
off-grid operation provided that the MG has islanding operation and control ca-
pability. Besides the capacity and the technical constraints of the MG resources,
the choice of time horizon and solution approach i.e., if the scheduling problem is
solved one-period ahead or in RH, can also affect the level of autonomy. If the
variable pMG,ex

wtm /pMG,ex
tm is omitted from (4.5), then the MG operator aims to mini-

mize imported energy, which is equivalent to maximizing the use of MG resources.
If the variable pMG,im

wtm /pMG,im
tm is omitted instead i.e., the aim is to minimize ex-

ported energy, the objective function becomes equivalent to the maximization of
self-consumption.

4.2.2 Power balance
An MG connected at bus m ∈Mi must satisfy (4.6)–(4.7) ∀t ∈ H to ensure that the
electricity consumption of the MG customers is supplied through the MG resources
and through the connection with the upstream distribution grid:

pG
tm+P P V

tm +pdis
tm +pDR

tm −P L
tm−pch

tm+pMG,im
tm −pMG,ex

tm =0, : λAP B
tm , (4.6a)

pG
tm+P P V

wtm+pdis
tm +pDR

tm −P L
wtm−pch

tm+pMG,im
wtm −pMG,ex

wtm =0, : λAP B
wtm , ∀w ∈ W , (4.6b)

qG
tm + qDR

tm −QL
tm + qMG,im

tm − qMG,ex
tm = 0 : λQP B

tm , (4.7a)
qG

tm + qDR
tm −QL

wtm + qMG,im
wt − qMG,ex

wtm = 0 : λRP B
wtm , ∀w ∈ W . (4.7b)

Constraint (4.6) defines the active power balance, where the variables pG
tm, pdis

tm/pch
tm,

and pDR
tm refer to electrical power output from the CHP plant, BES charging/dis-

charging power, and power from DRRs, respectively, while the parameters P P V
wtm and

P L
wtm refer to active power from PV generation and active load demand, respectively.

Note that pDR
tm is positive when power consumption from DRRs is curtailed and neg-

ative when it is increased. The PV systems are non-dispatchable generation sources
and can therefore be viewed as negative loads. They operate at fixed (unitary) power
factor and they do not participate in Volt/Var control. Moreover, it is assumed that
the BES draws power from both the main distribution grid and the PVs and injects
power into both the main grid and the MG’s consumption points. Constraint (4.7)
defines the reactive power balance, where constant power factor is considered for
generation and load (flexible and inflexible). The variables qG

tm and qDR
tm refer to

reactive power from the CHP plant and reactive power of DRRs, respectively, while
parameter QL

wtm refers to reactive power of load demand.

4.2.3 Combined heat and power plant
A CHP plant is a source of heat and electrical power. It is considered that the
micro-CHP used in this thesis is primarily scheduled for heating energy production.
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When there is generation of heat, the electrical power output of the CHP plant can
be controlled and is constrained by

P G,min
m ≤ pG

tm ≤ P H
tmRCHP

m , m ∈Mi, ∀ t ∈ H, (4.8)

where P G,min
m is the minimum electrical power output and P H

tm is the heating output,
which is treated as a parameter. Constraint (4.8) is only effective, when there is
generation of heating power. The parameter RCHP

m is the ratio of electrical power
to heating power output, which depends on the type of fuel and the operating point
of the electric generator.

When the micro-CHP plant is a part of the MG’s resource mix, the term CCHP
m is

added as part of the term cDER
m in (4.1), where

CCHP
m =

∑
t∈H

Cf
mP H

tm, m ∈Mi (4.9)

and Cf
m refers to the fuel cost of the CHP plant. Although CCHP

m is not affected
by the solution of the MODEFlex problem, the cost of the MG is affected by the
electrical power output of the CHP, since the power exchange with the grid and
potentially the peak imported power are also modified.

4.2.4 Demand response
The model for load flexibility is equivalent to a generic energy storage model and is
described by the constraints on the energy that is available for DR:

eDR
tm =

EDR,init
m , ∀m ∈Mi, t = 1,

eDR
m,t−1 + pDR

m,t−1∆t, ∀m ∈Mi, ∀t ∈ H \ {1},
(4.10)

eDR,end
m = eDR

tm + pDR
tm ∆t, m ∈Mi, t = T, (4.11)

0 ≤ eDR
tm ≤ P L,r

tm , m ∈Mi, ∀t ∈ H, (4.12)

−KDR
m P L,r

tm ≤ pDR
tm ≤ KDR

m P L,r
tm , m ∈Mi, ∀t ∈ H, (4.13)

eDR,end
m = EDR,init

m , m ∈Mi. (4.14)

In the above formulas, eDR
tm is the part of energy available from DRRs that has

already been curtailed at time step t, while eDR,end
tm is the DR energy that has been

curtained by the end of the time horizon. The parameter EDR,init
tm denotes the DR
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energy already curtailed at the beginning of the time horizon. The value of the
maximum energy capacity of the DRRs is related to the available responsive load
P L,r

tm and KDR
m is the power to energy ratio, which depends on the technology of

the DRRs [136]. Note that (4.14) may only be used in OL dispatch to set identical
conditions at the beginning and at end of the time horizon.

4.2.5 BES dispatch
This section presents two BES dispatch models that have been used in the optimiza-
tion problems that were defined in the thesis. The first model is the conventiontal
BES model, which has most frequently been used in relevant literature on optimal
MG energy management. The other model, is a measurement-based model, which
more accurately represents the behavior of a real BES, as it can capture non-ideal
BES operation.

Since the BES throughput is calculated in Wh instead of Ah in the proposed op-
timization model, the term state-of-energy (SoE) is used instead of the SoC [82].
The SoE level is not affected by fluctuations of the BES voltage in contrast with
SoC. However, the term SoC is still used, for the experimental BES measurements
presented in the thesis. This thesis also defines DoD as the discharged energy from
100% SoE i.e., DoD = 1− SoE.

4.2.5.1 Conventional model

The BES model that has been most frequently used in the latest literature on BES
scheduling (e.g., [26,27,33,34]) assumes that the SoE of the BES at each time step
is linearly dependent on the cumulative BES throughput of the previous time steps.
The charging/discharging energy efficiency and the power limits are considered to be
constant and independent of the SoE level. This model is described by (4.15)–(4.21):

soetm =

SoEinit
m , ∀m ∈Mi, t = 1

soet−1,m + ηch
m

pch
t−1,m∆t

Emax
m

− pdis
t−1,m∆t

ηdis
m Emax

m
, ∀m ∈Mi, ∀t ∈ H \ {1}

(4.15)

soeend
m = soetm + ηch

m

pch
tm∆t

Emax
m

− pdis
tm∆t

ηdis
m Emax

m

, ∀m ∈Mi, t = T (4.16)

SoEmin
m ≤ soetm ≤ SoEmax

m , ∀m ∈Mi, ∀t ∈ H, (4.17)

0 ≤ pch
tm ≤ KBES

m Emax
m , ∀m ∈Mi, ∀t ∈ H, (4.18)
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0 ≤ pdis
tm ≤ KBES

m Emax
m , ∀m ∈Mi, ∀t ∈ H, (4.19)

pch
tm ≤ zBES

tm M, ∀m ∈Mi, ∀t ∈ H, (4.20)

pdis
tm ≤ (1− zBES

tm )M, ∀m ∈Mi, ∀t ∈ H, (4.21)

soeend
m = SoEinit

m , ∀m ∈Mi. (4.22)

In the above formulation, KBES
m denotes the power to energy ratio, which deter-

mines the maximum charging/discharging power according to the specifications of
the BES manufacturer. Moreover, ηch

m /ηdis
m respectively refer to the charging/dis-

charging efficiency, Emax
m is the installed capacity and soetm is the SoE, which must

lie between the lower and upper limit (SoEmin
m and SoEmax

m , respectively). The
binary variable zBES

tm indicates if the BES is charging or discharging and M is a
very large number, which is necessary for the linearization of this BES model. The
linearization technique used in this case is called the Fortuny-Amat approach, which
is also known as the “Big-M” approach [137]. Note that (4.22) may be considered in
OL dispatch because, in this case, the SoE at the end is often set to be equal [138]
or very close [139] to the initial SoE.

4.2.5.2 Measurement-based model

The assumptions that simplify the battery operation i.e., the constant charging/dis-
charging efficiencies and maximum power limits can be seen in (4.15)–(4.16) and
(4.18)–(4.19). Depending on the application and the BES’s state-of-health (SoH),
these assumptions may lead to mismatches between the estimated and actual SoE or
the BES may fail to deliver the rated power. Therefore, a sampling-based approach,
which was first presented in [83], is used to derive a model that captures more ac-
curately the behavior of an actual BES by utilizing underlying patterns that exist
in the charging/discharging data. This measurement-based model uses sample data
from charging/discharging curves and satisfies (4.23)–(4.39), where N (K) denotes
the set of discharging (charging) data and the positive variables p−

tm/p+
tm respectively

represent power output/input from/to the battery cells, before/after battery losses
have been taken into account:

soetm =

SoEinit
m , : λstart

tm , ∀m ∈Mi, t = 1
soet−1,m + p+

t−1,m∆t

Emax
m

− p−
t−1,m∆t

Emax
m

: λBES
tm , ∀m ∈Mi, ∀t ∈ H \ {1}

(4.23)
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soeend
m = soetm + p+

tm∆t

Emax
m

− p−
tm∆t

Emax
m

, : λBES,end
tm , ∀m ∈Mi, t = T (4.24)

0 ≥ SoEmin
m − soetm ⊥ µSoE

tm
≥ 0, ∀m ∈Mi, ∀t ∈ H, (4.25)

0 ≥ soetm − SoEmax
m ⊥ µSoE

tm ≥ 0, ∀m ∈Mi, ∀t ∈ H, (4.26)

p−
tm =

∑
n∈N

P −
mnxtmn, : λ−

tm, ∀m ∈Mi, ∀t ∈ H, (4.27)

pdis
tm =

∑
n∈N

P dis
mnxtmn, : λdis

tm , ∀m ∈Mi, ∀t ∈ H, (4.28)

p+
tm =

∑
k∈K

P +
mkytmk, : λ+

tm, ∀m ∈Mi, ∀t ∈ H, (4.29)

pch
tm =

∑
k∈K

P ch
mkytmk, : λch

tm, ∀m ∈Mi, ∀t ∈ H, (4.30)

0 ≥ −pch
tm ⊥ µch

tm ≥ 0, ∀m ∈Mi, ∀t ∈ H, (4.31)

0 ≥ −pdis
tm ⊥ µdis

tm ≥ 0, ∀m ∈Mi, ∀t ∈ H, (4.32)

0 ≥ −p+
tm ⊥ µ+

tm ≥ 0, ∀m ∈Mi, ∀t ∈ H, (4.33)

0 ≥ −p−
tm ⊥ µ−

tm ≥ 0, ∀m ∈Mi, ∀t ∈ H, (4.34)

soetm =
∑

n∈N
SoEdis

mnxtmn +
∑
k∈K

SoEch
mkytmk : λSoE

tm ,∀m ∈Mi, ∀t ∈ H, (4.35)

∑
n∈N

xtmn = 1, : λx
tm, ∀m ∈Mi, ∀t ∈ H, (4.36)
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0 ≥ −xtmn ⊥ µx
tmn ≥ 0, ∀n ∈ N , ∀m ∈Mi, ∀t ∈ H, (4.37)

∑
k∈K

ytmk = 1, : λy
tm, ∀m ∈Mi, ∀t ∈ H, (4.38)

0 ≥ −ytmk ⊥ µy
tmk ≥ 0, ∀k ∈ K, ∀m ∈Mi, ∀t ∈ H, (4.39)

soeend
m = SoEinit

m , : λend
m ,∀m ∈Mi. (4.40)

Eq. (4.23) calculates the BES’s SoE at each time step. Similar to (4.15), the SoE
depends on the cumulative BES throughput and the SoE at the previous time step.
Unlike the conventional model, the dependency of maximum charging/discharging
rates on SoE levels is considered in the measurement-based model. That is because
the feasibility regions of BES power and SoE in the measurement-based model are
not independent from each other. Instead, a 3-dimensional feasibility region is de-
fined by (4.27)–(4.28), (4.32), and (4.34)–(4.37) using the discharging sample data
(SoEdis

mn, P −
mn, P dis

mn) to constrain the values of the variables soetm, p−
tm, and pdis

tm ,
which are dependent to each other, during discharging. Similarly, (4.29)–(4.31),
(4.33), (4.35), and (4.38)–(4.39) define the feasibility region of the variables soetm,
p+

tm, and pch
tm during charging using the charging sample data (SoEch

mk, P +
mk, P ch

mk). In
other words, the sample data form the convex hull of the feasible region for the BES
operation points. Thus, the variables soetm, p+

tm, pch
tm, p−

tm, and pdis
tm can be written as

convex combinations of the sample measurements. Each convex combination (BES
operation point) depends on the positive variables xtmn and ytmk, which are associ-
ated respectively with the choice of discharging or charging sample data. No binary
variables are required in this model, provided that the sample data include the BES
state where the BES is an open-circuit as well as the state where the BES is an
open-circuit and fully charged or fully discharged [83]. Similar to the conventional
BES model, (4.40) may be considered in OL dispatch.

It can easily be seen that the measurement-based model also incorporates the vari-
able (with respect to BES power and SoE) charging/discharging efficiencies (both
internal BES losses and DC/DC converter losses are considered), which are given by
ηch

tm = p+
tm

pch
tm

and ηdis
tm = pdis

tm

p−
tm

, respectively, ∀m ∈ Mi, ∀t ∈ H [83]. As the efficiencies
are correlated with the model’s decision variables, the efficiency values (at each BES
power and SoE level) depend on the feasible combinations of xtmn and ytmk, which
determine the choice of pdis

tm and p−
tm (or pch

tm and p+
tm during charging periods).
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4.2.6 BES degradation
The BES degradation can be expressed as loss of available capacity or increase in
the BES resistance and is linked in a non-linear manner to many factors [77, 140].
Degradation is caused when the BES is cycled as well as during resting periods i.e.,
when the BES is an open-circuit. Different mechanisms are in effect in each case.
Degradation is more prominent with high C-rates (C-rate of 1C indicates discharg-
ing at nominal discharging current, C-rate of 2C indicates discharging at twice the
nominal current, etc. [83]), frequent cycling with high DoD, high operating temper-
atures, and resting periods at high SoC [140, 141]. The temperature in residential,
stationary BES applications can easily be controlled and is therefore considered to
be constant for the BES degradation models that are presented below. Each of
these BES degradation models calculates the BES degradation cost cB

m. If this cost
is considered in the MODEFlex model, it can be added in (4.1) as a part of the term
cDER

m .

4.2.6.1 Cycle aging (dependency on cumulative throughput)

The degradation model presented in [142] and modified in [31,143] is used to model
the dependency of cycle aging on cumulative throughput:

Ql
m = B1e

B2Ic
∑
t∈H

(p−
tm + p+

tm)∆t , ∀m ∈Mi. (4.41)

In (4.41), Ql
m represents the cycle-based BES capacity loss in %, while the pre-

exponential and exponential factors B1 and B2 can be obtained from empirical
fitting of experimental data. The daily average C-rate Ic is entered as a parameter
and thus (4.41) becomes linear. The BES degradation cost is calculated as:

cB
m = CB,0

m Ql
m

100%−H% , ∀m ∈Mi, (4.42)

where CB,0
m is the purchase (or replacement) cost of the BES and H is the end-of-life

retained capacity percentage i.e., the percentage of retained capacity, when the BES
is retired. Depending on the manufacturer, the end-of-life retained capacity can
range from 65% to 80% [80,81].

4.2.6.2 Cycle aging (dependency on DoD)

Another degradation model that can be used to define a cost associated with cycle-
based degradation is the one presented in [144], which estimates cycle aging taking
into account the maximum DoD of each cycle. Given a function of lifecycle per-
centage loss for one cycle of a specific DoD, the cycle-based BES degradation cost
according to this model is given by
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Figure 4.2: The percentage of lifecycle loss as a function of one cycle at a specific
DoD.

cB
m =

∑
t∈H

cDoD
tm , ∀m ∈Mi, (4.43)

where cDoD
tm is the cycle aging cost per time step t given by

cDoD
tm = max{0, (ρtm − ρt−1,m)CB,0

m }, ∀m ∈Mi. (4.44)

This cost is related to the percentage of lifecycle loss ρtm = 1/ϕ(DoD) for one cycle
at a specific DoD, where ϕ(DoD) refers to the lifecycle as a function of DoD. An
example of the loss of lifetime as a function of DoD derived from data of a Li-ion
BES can be seen in Fig. 4.2 (based on data from [30]).

In (4.44), ρtm is greater than ρt−1,m only when the BES is discharging, since the loss
of BES lifetime increases, when the DoD increases. Thus, the aging cost is added
for every discharging half-cycle, while it is zero during charging. The degradation
model can be piecewise linearized according to (4.45)–(4.50):

dodtm =
∑
p∈P

DoDmpξtmp, ∀m ∈Mi, (4.45)

ρtm =
∑
p∈P

ρ̂mpξtmp, ∀m ∈Mi, (4.46)

P∑
p

ξtmp = 1, ∀m ∈Mi, (4.47)
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Figure 4.3: The baseline (left) and capacity limitation (right) FSs.

0 ≤ ξtmp ≤ 1, ∀m ∈Mi, ∀t ∈ H, (4.48)


ξtm1
ξtm2

...
ξtmP

 ≤
[
H

]


btm1
btm2

...
btmP −1

 , ∀m ∈Mi, (4.49)

P −1∑
p=1

btmp = 1, ∀m ∈Mi. (4.50)

In (4.45)–(4.46), P denotes the set of sample points of the BES lifecycle loss function,
while DoDmp and ρ̂mp respectively refer to the sample points of DoD (dodtm) and
lifecycle loss percentage (ρtm), which are used for the piecewise linearization of the
lifecycle loss function curve (Fig. 4.2). The positive variable ξtmp is related to the
choice of sample point p ∈ P . Eq. (4.49)–(4.50) are adjacency constraints, where
H is the adjacency matrix. The binary variable btmp is used to ensure interpolation
of the decision variables dodtm and ρtm between consecutive sample points.

4.2.7 Models of FSs
Two models of FSs were considered for integration to the MODEFlex model: FS-
B and FS-C. These are illustrated in Fig. 4.3. The FS-C model is used for the
flexibility that is offered as a capacity limitation product and the FS-B model is
used for the flexibility that is offered as a baseline product.

4.2.7.1 FS-B

When FS-B is integrated in the MODEFlex problem the term rflex
m of (4.1) becomes

rflex
m =

∑
t∈Hf

πfl,ex
tm δP ex

tm + πfl,im
tm δP im

tm , (4.51)

while the MG imported and exported power in (4.6) are replaced according to (4.52)–
(4.53) during the flexibility activation period Hf ⊆ H:

pMG,im
tm = pim

tm + δP im
tm , ∀t ∈ Hf , ∀m ∈Mi, (4.52)
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pMG,ex
m,t = pex

m,t + δP ex
tm , ∀t ∈ Hf , ∀m ∈Mi. (4.53)

To incorporate the FS-B model to the MODEFlex model the following constraints
are added:

0 ≥ −pim
tm ⊥ µim,+

tm ≥ 0 ∀t ∈ Hf ,∀m ∈Mi, (4.54)

0 ≥ −pex
tm ⊥ µex,+

tm ≥ 0 ∀t ∈ Hf ,∀m ∈Mi, (4.55)

0 ≥ δP im
tm ⊥ µfl,im+

tm ≥ 0 ∀t ∈ Hf ,∀m ∈Mi, (4.56)

0 ≥ −δP ex
tm ⊥ µfl,ex+

tm ≥ 0 ∀t ∈ Hf ,∀m ∈Mi, (4.57)

0 ≥ −pim
tm − δP im

tm ⊥ µfl,im
tm ≥ 0 ∀t ∈ Hf ,∀m ∈Mi, (4.58)

0 ≥ −pex
tm − δP ex

tm ⊥ µfl,ex
tm ≥ 0 ∀t ∈ Hf ,∀m ∈Mi, (4.59)

where the positive variables πfl,im
tm , πfl,ex

tm are the flexibility prices and the variables
δP im

tm /δP ex
tm are the procured flexibility amounts. In FS-B, the amount of flexibility

provided δP im
tm or δP ex

tm is the deviation from the baseline power exchange profile. In
this thesis, it is assumed that the baseline profile corresponds to the optimal MG
energy dispatch (pex

tm − pim
tm) computed as the solution of the optimal MG energy

management problem when no FS is considered.

4.2.7.2 FS-C

When FS-C is integrated in the MODEFlex problem the term rflex
m of (4.1) becomes

rflex
m =

∑
t∈Hf

πfl,Cap
tm pflex

tm =
∑

t∈Hf

πfl,Cap
tm (P Cap

m − pfl,p
tm ), (4.60)

while the MG imported and exported power in (4.6) are replaced according to (4.61)–
(4.62) during the flexibility activation period Hf ⊆ H:

pMG,im
tm = pim

tm, ∀t ∈ Hf , ∀m ∈Mi, (4.61a)
pMG,im

wtm = pim
wtm, ∀t ∈ Hf , ∀m ∈Mi,∀w ∈ W , (4.61b)
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pMG,ex
tm = pex

tm, ∀t ∈ Hf , ∀m ∈Mi, (4.62a)
pMG,ex

wtm = pex
wtm, ∀t ∈ Hf , ∀m ∈Mi,∀w ∈ W . (4.62b)

To incorporate the FS-C model to the MODEFlex model (4.63) is added:

0 ≥ pim
tm − pex

tm − pfl,p
tm ⊥ µfl,Cap

tm ≥ 0, ∀t ∈ Hf ,∀m ∈Mi, (4.63a)
0 ≥ −pfl,p

tm +
∑

w∈W
Πw(pim

tmw − pex
tmw) ⊥ µfl,Cap

tm ≥ 0, ∀t ∈ Hf ,∀m ∈Mi. (4.63b)

The positive variable pflex
tm denotes the procured amount of active power flexibility

(average value over ∆t), πfl,Cap
tm is the flexibility price, and pfl,p

tm is the expected
imported power per time step of the flexibility activation period Hf ⊆ H. The
amount of flexibility is calculated in terms of power capacity reduction. When
this FS is activated, the MG resources modify their schedule to guarantee that the
imported power will not exceed the "new" capacity P Cap

m − pflex
tm provided by FS-C.

The parameter P Cap
m should be based on a value that the DSO and the MG operator

can easily agree upon such as e.g., the capacity at the grid connection point, so that
the flexibility can be quantified in a reliable manner.

In FS-C, the flexibility amount can also be evaluated and dispatched over the entire
activation period instead of per time step of this period. In this case, the term rflex

m

of (4.1) becomes

rflex
m = πfl,Cap

m pflex
m = πfl,Cap

m (P Cap
m − pfl,p

m ). (4.64)

while (4.65)–(4.66) are added to MODEFlex model to incorporate the FS-C model:

pfl,p
m ≥ pMax,net

m , ∀t ∈ Hf ,∀m ∈Mi, (4.65a)
pfl,p

m ≥
∑

w∈W
ΠwpMax,net

wm , ∀t ∈ Hf ,∀m ∈Mi, (4.65b)

pMax,net
m ≥ (pim

tm − pex
tm), ∀w ∈ W ,∀t ∈ Hf ,∀m ∈Mi, (4.66a)

pMax,net
wm ≥ (pim

wtm − pex
wtm), ∀w ∈ W ,∀t ∈ Hf ,∀m ∈Mi. (4.66b)

The amount of flexibility pflex
m i.e., the peak power capacity reduction, is highlighted

in Fig. 4.3 enclosed within a rectangle. In (4.65), pfl,p
m is the (expected) peak

imported power during the flexibility activation period, whereas the variable pMax,net
wm

in (4.66) is the net peak power of scenario w during the flexibility activation period.

4.3 Optimization model for the DSO
Generally, the DSOs are not allowed to own or operate DERs. The distribution
network’s DERs, which belong to the MGs, can be dispatched by the DSO, only
if s/he is allowed to have full knowledge of the MG constraints and, in addition,
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is empowered to control the MG resources. Alternatively, the DSO can treat the
MGs as dispatchable resources, since they are represented as controllable entities
connected at a PCC. For this purpose, there must be proper coordination between
the DMS and the MG-EMS.

The optimal dispatch of the MG resources by the DSO, whether it is performed
directly through centralized coordination or indirectly through decentralized coor-
dination and control of power exchanges at the PCCs, is formulated as an AC OPF
problem. The dispatch of MGs and network controllable devices must satisfy the
grid technical constraints, while serving the specific operational targets of the DSO.
The DSO may aim to minimize the grid connection charges paid to the transmis-
sion system operator (TSO) in order to achieve a more economic operation. These
charges include the energy transmission fee paid for the imported energy from the
TSO’s grid and the subscription fee, which is related to the peak imported power.

4.3.1 Objective functions
Two objective functions that can be used to improve the economic operation of the
distribution grid are formulated for the DSO’s optimization model. One objective
function is the minimization of the grid charges paid to the TSO:

min
∑
i∈S

∑
t∈H

pSS
ti Cim,SS∆t +

∑
i∈S

cSS,peak
i , (4.67)

where S ⊆ D is the subset of substation buses. These are the boundary buses with
connection (physical interface) to the upstream network i.e., the buses with TSO-
DSO interface. These buses belong to the set of distribution network buses D which
also includes all the MG buses. In the case of a radial distribution grid, the subset S
has only one element. The grid charges refer to the costs paid by the DSO to the TSO
and are associated with the cost of imported energy and the cost of peak imported
power, which are respectively shown by the first and the second term in (4.67). The
variables pSS

ti and cSS,peak
i represent the active power and the cost of the peak power

through the boundary substation at bus i, respectively, while the parameter Cim,SS

is the imported energy transmission grid tariff. The other objective function is the
minimization the peak power cost considering the procurement of local FSs:

min
∑
i∈S

cSS,peak
i + cflex. (4.68)

This objective, which can be used to reduce the subscription fee paid to the TSO,
sums the peak power cost paid to the TSO and the cost of procuring flexibility from
local FSPs. In this thesis, it is assumed that the grid-connected MGs are the only
local FSPs and the cost of purchasing local flexibility from them is denoted by cflex.
The peak power cost in (4.67)–(4.68) is constrained by:

cSS,peak
i ≥ ΛSS,peakpSS

ti , ∀i ∈ S, t ∈ H, (4.69)

where ΛSS,peak is the imported peak power grid tariff. If the MGs offer the flexibility
product FS-B, the term cflex of (4.68) becomes
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cflex =
∑

t∈Hf

∑
m∈Mi

−πfl,im
tm δP im + πfl,ex

tm δP ex, (4.70)

whereas if the MGs offer the flexibility product FS-C and assuming that the flexi-
bility is calculated and dispatched per time step of the flexibility activation period,
the term cflex of (4.68) becomes

cflex =
∑

t∈Hf

∑
m∈Mi

πfl,Cap
tm pflex

tm = πfl,Cap
tm (P Cap

m − pfl,p
tm ). (4.71)

4.3.2 Network power flow
The AC power flow of the distribution network is described by the branch flow model
(BFM). The BFM is a relaxed model of the original non-convex OPF problem [145],
which applies angle relaxation to eliminate the phase angles of voltages and currents.
This relaxation is exact only for radial distribution networks and, therefore, the
obtained solution for a meshed network might not be globally optimal i.e., there
might be other feasible solutions that yield a better objective function value. The
AC power flow of the radial network is described by a set of equations, also known
as DistFlow equations, which was first presented in [123].

Below is the derivation of the linearized BFM as given in [145]for a radial distribution
network represented by a set of buses D.

4.3.2.1 Branch flow model

The BFM, which is derived after the angle relaxation, is given by [145]:

pj =
∑
i:j∼i

pji −
∑
i:i∼j

(pij −Rij

p2
ij + q2

ij

|νi|2
) + Gi|νi|2, ∀j ∈ D, (4.72)

qj =
∑
i:j∼i

qji −
∑
i:i∼j

(qij −Xij

p2
ij + q2

ij

|νi|2
) + Bi|νi|2, ∀j ∈ D, (4.73)

|νj|2 = |νi|2−2(Rijpij + Xijqij) + (R2
ij +X2

ij)
p2

ij +q2
ij

|νi|2
, ∀(i, j) ∈ F , ∀i, j ∈ D, (4.74)

where j ∼ i represents a line between bus j and bus i i.e., either (j, i) ∈ F or
(i, j) ∈ F (but not both), where F is the set of distribution network lines (also
called branches). In (4.72)–(4.74), pj/qj denote the active/reactive power injection
at bus j, pji/qji denote the active/reactive power flow from bus j to bus i, and
|νi| refers to the voltage magnitude. Moreover, Rij and Xij respectively denote the
resistance and reactance of line i − j, while Gi and Bi respectively refer to shunt
conductance and shunt susceptance from bus i to ground.

The relaxed model is still non-convex. Neglecting the capacitance of the lines and the
quadratic terms that represent the power losses, which are much smaller compared
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to the power flows, the linearized BFM (also known as LinDistFlow equations) is
derived:

pj =
∑
i:j∼i

pji −
∑
i:i∼j

pij, ∀j ∈ D, (4.75)

qj =
∑
i:j∼i

qji −
∑
i:i∼j

qij, ∀j ∈ D, (4.76)

vj = vi − 2(Rijpij + Xijpij), ∀(i, j) ∈ F , ∀i, j ∈ D, (4.77)

where vi = |νi|2. The linearized BFM has extensively been used in literature for
power flow calculations in radial distribution networks [63, 146]. In fact, the ap-
proximations that derive this model only introduce a small relative error of about
1% [147], while they simplify the network state calculation by reducing it to the
following three variables: voltage magnitude, active power and reactive power injec-
tions.

4.3.2.2 Distribution network power flow equations

The AC power flow equations for a distribution network with grid-connected MGs
according to the linearized BFM are given by:

−
∑

m∈Mi

(pMG,im
tm −pMG,ex

tm )−P L
ti +

∑
i∈S

pSS
ti +

∑
j:i∼j

(ptji−ptij) = 0,

∀i ∈ D \M, ∀t ∈ H,
(4.78)

−
∑

m∈Mi

(qMG,im
tm −qMG,ex

tm )−QL
ti+

∑
i∈S

qSS
ti +

∑
j:i∼j

(qtji − qtij) = 0,

∀i∈D\M, ∀t∈H,
(4.79)

vtj = vti−2(Rijptij + Xijqtij), ∀(i, j)∈F , ∀i, j∈(D ∪Mi)\M, t∈H, (4.80)

ptij = 0, ∀(i, j) /∈ F , ∀i, j ∈ (D ∪Mi) \M, ∀t ∈ H, (4.81)

qtij = 0, ∀(i, j) /∈ F , ∀i, j ∈ (D ∪Mi) \M, ∀t ∈ H, (4.82)

ptij + ptji = 0, ∀(i, j) ∈ F , ∀i, j ∈ (D ∪Mi) \M, ∀t ∈ H, (4.83)
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qtij + qtji = 0, ∀(i, j) ∈ F , ∀i, j ∈ (D ∪Mi) \M, ∀t ∈ H, (4.84)

vti = V SB, ∀i ∈ S, ∀t ∈ H, (4.85)

Vmin ≤ |νti| ≤ Vmax, ∀i ∈ (D ∪Mi) \M, ∀t ∈ H. (4.86)

In (4.78)–(4.86), qSS
ti is the reactive power through the boundary substation at bus

i and the parameters P L
ti /QL

ti denote the active/reactive power load at the distribu-
tion bus i. The square of voltage at the distribution grid’s boundary buses, which
represent controlled voltage buses, must remain constant and equal to the reference
value denoted by V SB as seen in (4.85), while (4.86) constraints the voltage mag-
nitude within statutory limits. The equations are defined for all the network buses
except for the buses that belong to the MGs, i.e., the DSO does not have knowledge
of the network structure that belongs to the MGs. The network buses where MGs
are connected i.e., the PCCs, which represent the physical interface between the
MGs and the main distribution network, are considered in the network power flow
equations. If it could be assumed that the DSO has full knowledge of the MGs’
network and the technical constraints of the MG resources, then (4.78)–(4.80) could
be re-written as:

pG
ti + P P V

ti + pdis
ti +pDR

ti − pch
ti +−P L

ti +
∑
i∈S

pSS
ti +

∑
j:i∼j

(ptji−ptij) = 0,

∀i ∈ D, ∀t ∈ H,
(4.87)

qG
ti + qDR

ti −QL
ti +

∑
i∈S

qSS
ti +

∑
j:i∼j

(qtji − qtij) = 0, ∀i ∈ D, ∀t ∈ H, (4.88)

vtj = vti − 2(Rijptij + Xijqtij), ∀(i, j) ∈ F , ∀i, j ∈ D, t ∈ H, (4.89)

ptij = 0, ∀(i, j) /∈ F , ∀i, j ∈ D, ∀t ∈ H, (4.90)

qtij = 0, ∀(i, j) /∈ F , ∀i, j ∈ D, ∀t ∈ H, (4.91)

ptij + ptji = 0, ∀(i, j) ∈ F , ∀i, j ∈ D, ∀t ∈ H, (4.92)

qtij + qtji = 0, ∀(i, j) ∈ F , ∀i, j ∈ D, ∀t ∈ H, (4.93)

vti = V SB, ∀i ∈ S, ∀t ∈ H, (4.94)

Vmin ≤ |νti| ≤ Vmax, ∀i ∈ D, ∀t ∈ H. (4.95)
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4.4 Bilevel optimization model for coordinated
operation of DSO and MGs

To represent the coordinated operation of the DSO grid and the MGs, a bilevel
optimization problem is defined following the developing research trend of utilizing
bilevel programming to model interactions between resource aggregators (or MGs)
and prosumers [148, 149], as well as interactions between grid or market operators
and aggregators, MGs or prosumers [150, 151]. The bilevel problem is transformed
into an equivalent single-level mixed integer programming (MIP) problem by replac-
ing the LL problem with its Karush–Kuhn–Tucker (KKT) conditions and adding
them to the UL problem.

4.4.1 DSO (UL): Optimal network operation problem
The DSO purchases the FSs offered by the grid-connected MGs i.e., the FSPs, in
order to minimize the peak power cost of the distribution grid. The formulation of
the UL problem depends on the type of the offered FS. In case of:

• FS-B, the UL problem is given by (4.68) s.t. (4.52)–(4.53), (4.69), (4.78)–
(4.86), and (4.70).

• FS-C, the UL problem is given by (4.68) s.t. (4.61)–(4.62), (4.69), (4.78)–
(4.86), and (4.71).

4.4.2 MGs (LL): Optimal energy and flexibility dispatch
The MGs offer FSs to reduce their cost given by (4.1). The LL optimization problems
are formulated as DO problems and their formulation depends on the type of the
offered FS. In case of:

• FS-B, the LL problem is given by (4.1) s.t. (4.2)–(4.4), (4.6), (4.23)–(4.39),
and (4.51)–(4.59), ∀m ∈M, where the terms cp

m and cDER
m are ignored.

• FS-C, the LL problem is given by (4.1) s.t. (4.2)–(4.4), (4.6), (4.23)–(4.39),
and (4.60)–(4.63), ∀m ∈M, where the terms cp

m and cDER
m are ignored.

4.4.3 Bilevel optimization: DSO and MGs
To formulate the bilevel problem as a single-level equivalent problem the KKT con-
ditions of the LL problem are added to the DSO’s UL problem. The KKT conditions
comprise all the equality and inequality conditions of the LL problem (along with
the CS conditions of the LL inequalities) and the equality constraints derived from
the partial derivatives of the LL Lagrangian function, w.r.t. the LL primal variables
(the derivatives must be equal to zero). These equalities are given by (4.96)–(4.112)
for FS-B as well as (4.96)–(4.108), and (4.113)–(4.114) for FS-C, ∀m ∈Mi, where
T is the last time step of the time horizon. Note that all the primal and dual
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variables of the LL problem become primal variables of the single-level equivalent
problem.

∂L
∂pch

tm

= 0 = −λAP B
tm + λch

tm − µch
tm, ∀t ∈ H, (4.96)

∂L
∂pdis

tm

= 0 = λAP B
tm + λdis

tm − µdis
tm , ∀t ∈ H, (4.97)

∂L
∂xtmn

=0 =−P −
mnλ−

mt−P dis
mnλdis

tm−SoEdis
mnλSoE

tm −λx
tm−µx

tmn, ∀t ∈ H, ∀n ∈ N , (4.98)

∂L
∂ytmk

=0=−P +
mkλ+

tm−P ch
mkλch

tm−SoEch
mkλSoE

tm −λy
tm−µy

tmk, ∀t ∈ H, ∀k ∈ K, (4.99)

∂L
∂soetm

= 0 = −λBES
tm + λstart

m + λSoE
tm + µSoE

tm − µSoE
tm

, t = 1, (4.100)

∂L
∂soetm

= 0 = λBES
t,m − λBES

t+1,m + λSoE
tm + µSoE

tm − µSoE
tm

, ∀t ∈ H \ {1, T}, (4.101)

∂L
∂soetm

= 0 = λBES
tm − λBES,end

m + λSoE
tm + µSoE

tm − µSoE
tm

, t = T, (4.102)

∂L
∂pim

tm

= 0 = (Λt + Cim)∆t + λAP B
tm + µim,+

tm − µfl,im
tm , ∀t ∈ Hf , (4.103)

∂L
∂pex

tm

= 0 = −(Λt + Cex)∆t− λAP B
tm + µex,+

tm − µfl,ex
tm , ∀t ∈ Hf , (4.104)

∂L
∂p+

tm

= 0 = − ∆t

Emax
m

λBES
t+1,m + λ+

tm − µ+
tm, ∀t ∈ H \ {T}, (4.105)

∂L
∂p+

tm

= 0 = − ∆t

Emax
m

λBES,end
t,m + λ+

tm − µ+
tm, t = T, (4.106)

∂L
∂p−

tm

= 0 = − ∆t

Emax
m

λBES
t+1,m + λ−

tm − µ−
tm, ∀t ∈ H \ {T}, (4.107)
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∂L
∂p−

tm

= 0 = − ∆t

Emax
m

λBES,end
t,m + λ−

tm − µ−
tm, t = T, (4.108)

∂L
∂δP im

tm

= 0 = (Λt + Cim)∆t + πfl,im
tm + λP B

tm + µfl,im+
tm − µfl,im

tm , ∀t ∈ Hf , (4.109)

∂L
∂δP im

tm

= 0 = (Λt + Cim)∆t + λP B
tm + µfl,im+

tm − µfl,im
tm , ∀t ∈ H ∩H′

f , (4.110)

∂L
∂δP ex

tm

= 0 = −(Λt + Cex)∆t− πfl,ex
tm − λAP B

tm − µfl,ex+
tm − µfl,ex

tm , ∀t ∈ Hf , (4.111)

∂L
∂δP ex

tm

= 0 = −(Λt + Cex)∆t− λAP B
tm − µfl,ex+

tm − µfl,ex
tm , ∀t ∈ H ∩H′

f , (4.112)

∂L
∂pfl,p

tm

= 0 = πfl,Cap
tm − µfl,+

tm − µfl,Cap
tm , ∀t ∈ Hf , (4.113)

∂L
∂pfl,p

tm

= 0 = −µfl,+
tm − µfl,Cap

tm , ∀t ∈ H ∩H′
f , (4.114)

4.4.3.1 Linearization of CS constraints

As in Section 4.2.5.1, the Fortuny-Amat approach is used to linearize the CS con-
straints. Since this approach introduces binary decision variables, the equivalent
single-level optimization problem is formulated as an MILP problem. For example,
the non-linear (4.25) will be replaced by (4.115)–(4.116) in the single-level problem,
where zSoE,min

tm and MSoE,min
min denote the binary variable and "Big-M" parameter as-

sociated with the CS constraint of inequality (4.25). The same process is repeated
for all inequalities of the CS constraints.

− SoEmin
m + soetm ≤ zSoE,min

tm MSoE,min
min , ∀m ∈Mi, t ∈ H, (4.115)

µSoE
tm
≤ (zSoE,min

tm − 1)MSoE,min
min , ∀m ∈Mi. (4.116)

4.4.3.2 Linearization of the UL objective function

Irrespective of the choice of the FS, the objective function of the equivalent single-
level problem is non-linear. When FS-C is used, the objective function contains
the product of the variables πfl,Cap

tm and pfl,p
tm . When the FS-B is used, the objective

function includes the product of the variables πfl,im
tm and δP im

tm , as well as the product
of the variables πfl,ex

tm and δP ex
tm . The UL objective functions are linearized using the

strong duality theorem [152].

65



4. Model Formulation

66



Chapter 5

Deterministic Energy Scheduling

This chapter is based on Paper I and Paper IV and presents results from optimal
energy scheduling applied in two BMGs that used BES as the main flexible resource
considering the energy market-based participation of the buildings. First, the chapter
describes the problem that is addressed by the chapter’s study and presents the study
approach, the formulated DO problems, the considered parameters and the assump-
tions. Then, simulation results illustrate the comparison of different BES dispatch
and degradation models that can be incorporated in the optimal energy management
models. Results from demonstrations on the BMG testbeds, which were set up at real
residential buildings, validate the accuracy of the BES dispatch models. At the end
of this chapter, the effects of load forecasting errors on the BMG’s operation costs
are analyzed comparing different optimization methods and solution approaches.

5.1 Aim of study

As highlighted by the literature review in Section 2.3, there is a need to improve
the accuracy in the assessment of the economic benefits for customers of BMGs
using the BES as an energy-flexible resource. This can be achieved by utilizing BES
dispatch models tailor-made for each BES to capture their real-life characteristics
and, in addition, by investigating the impact of the degradation cost on the BMG’s
energy scheduling solution.

The aim of this chapter’s study was to validate the proposed BMG energy manage-
ment model, which considered real-life BES behavior and the cost of degradation,
with multiple simulation and demonstration test cases, including test cases for long-
term evaluation of the energy cost and BES degradation cost. The study also aimed
to analyze the impact of different factors to these costs. For this purpose, different
SoE limits and BES replacement costs were tested. The effects of the load forecast-
ing errors on the BMG’s operation cost was also investigated analyzing the different
forecasting models and solution approaches that deal with these errors.
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5.2 Study approach

As can be seen in Figure 5.1, which presents the study’s approach, four different en-
ergy management models have been defined depending on whether the mathematical
model of the BES incorporates real-life performance characteristics (measurement-
based model) and the impact of cycle-based degradation. These models, which are
formulated in Section 5.2.1, utilized the deterministic formulation of the MODE-
Flex model, without considering participation in FSs, and were used to perform DA
optimal energy management. Model-1 incorporates the simplified BES scheduling
model typically used in MG energy management, while Model-2 makes use of a
measurement-based BES scheduling model that can capture a more realistic BES
operation performance. The impact of degradation is not considered in the BES
scheduling decisions according to these two models. Instead, Model-3 and Model-
4 consider the impact of cycle-based degradation and they incorporate both the
measurement-based BES scheduling model and different cycle aging models to ac-
count for degradation cost.

Either of the four models can be used to apply RH or DA dispatch and the acquired
dispatch decisions can be used to assess the operation cost of the BMG and the
BES utilization and degradation. In addition, they can be used to control the BES
during demonstrations by dispatching its power and scheduling its stored energy
levels. The initial SoC used as an input in the optimization problem was read from
the BES during demonstrations, whereas in simulation test cases, it was obtained
from the solution of the optimization problem in each simulation (and arbitrarily
set before the first simulation).

Simulations were carried out for all four models, while demonstrations were carried
out for Model-1 and Model-2 in order to validate their incorporated BES scheduling
models and compare their performance. The four models were evaluated in a long-
term operation of a BMG by simulating the optimal DA energy management of the
HSB LL building over a year. Model-1 and Model-2 were demonstrated in both the
HSB LL and the Brf Viva test systems. The optimal BMG energy management was
performed in RH during the demonstrations, as shown in Figure 5.1.

Although this study employed deterministic energy scheduling assuming perfect fore-
casts, a comparative analysis was carried out to evaluate the effect of load forecast
errors on the BMG’s operation cost. For this purpose, Model-3 was employed to
obtain the energy scheduling solution and calculate the operation cost of the HSB
LL BMG. The analysis compared the deterministic and stochastic formulations of
Model-3 in the following simulation test cases:

1. SO and DA dispatch (SO-DA)

2. SO and dispatch in RH (SO-RH)

3. DO and DA dispatch (DO-DA)

4. DO and dispatch in RH (DO-RH)
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Figure 5.1: The flow diagram presenting the simulation and demonstration set-up
of the deterministic BMG energy management model.
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Figure 5.2: Illustrative diagram of the optimal deterministic and stochastic BMG
energy dispatch implemented in RH and DA.

Figure 5.2 depicts in detail the input and output data related to the BMG opti-
mal energy scheduling performed in these test cases, which used input values from
load profiles acquired from different forecasting ML models [153]. The simulation
and demonstration test cases in this chapter had a high time granularity ranging
from 5 to 15 minutes and a short look-ahead period, which was typically 24 hours.
Therefore, the comparative analysis also used short-term and high-resolution load
forecasts. The dispatch time horizon and time resolution in the analysis was adjusted
to fit the time horizon and time resolution of the available forecast profiles.

For a detailed characterization of the uncertainty in the SO problems of the compar-
ative analysis, different probability distributions were used for each time step of the
time horizon. Thus, instead of having a maximum percentage of uncertainty over
the entire time horizon, there were different levels of uncertainty at each time step
of the horizon. Specifically, the parameters of the Gaussian distributions depended
on the time when the forecast results were acquired, the time when the predicted
load values would occur, and the predicted time step ahead. The parameters were
obtained from testing the forecasting models with historical data of the HSB LL
building and implementing curve fittings. After the time horizon would be shifted
either by a look-ahead period in DA dispatch or by ∆t in RH dispatch both the load
forecast profiles and the distributions of forecast errors would be updated and used
as an input to the optimization model.

5.2.1 Formulation of the optimization problems
Four optimization models for the deterministic energy scheduling of a BMG m were
defined based on the choice of cost function and the employed BES dispatch and
BES degradation models:
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• Model-1 : The conventional BES scheduling model (Section 4.2.5.1) is used,
while degradation cost is neglected. The terms cDER

m and rflex
m are omitted

from (4.1). The formulated MILP problem is given by (4.1) s.t. (4.2a)–(4.4a),
(4.6a), and (4.15)–(4.21).

• Model-2 : A measurement-based BES scheduling model (Section 4.2.5.2) is
used, which was validated with experimental values taken from the real resi-
dential building used as a BMG test system. As in Model-1, aging is neglected
and the terms cDER

m and rflex
m are omitted from (4.1). The formulated LP

problem is given by (4.1) s.t. (4.2a)–(4.4a), (4.6a), and (4.23)–(4.39).

• Model-3 : The measurement-based model is combined with the cycle aging
model with dependency on throughput, which was presented in Section 4.2.6.
The formulated LP problem is given by (4.1) s.t. (4.2a)–(4.4a), (4.6a), (4.23)–
(4.39), and (4.41)–(4.42). The term rflex

m is omitted from (4.1), while cDER
m =cB

m.

• Model-4 : The measurement-based model is combined with the cycle aging
model with dependency on DoD, which was presented in Section 4.2.6. The
formulated MILP problem is given by (4.1) s.t. (4.2a)–(4.4a), (4.6a), (4.23)–
(4.39), and (4.43)–(4.50). The term rflex

m is omitted from (4.1), while cDER
m =cB

m.

These optimization models can be employed to simulate the performance of a BMG’s
operation and they can also be integrated to a BMG-EMS, like the ones designed
for the BMG testbeds which were employed for the demonstrations of this thesis.

5.2.2 Simulation set-up
The values of the buildings’ electricity consumption and PV generation as well as the
Nordpool spot market prices for bidding area 3 of Sweden [154] were used as inputs
to BMG energy management models in simulations and demonstrations. For the
HSB LL BMG, the 2018 building load and PV power output were used as inputs
in order to run 365 DA energy scheduling simulations. Historical load demand
and PV generation data were also used in the demonstrations and were treated as
perfect forecasts. The input data for the simulations of the HSB LL BMG can be
found in Appendix C.3, while the input data for the simulations of the Brf Viva
BMG can be found in Appendix C.4. The actual grid tariffs and reimbursement
fee, which have been taken from the website of the local DSO [155] and can be
found in Appendix C.1, were also used for the corresponding parameters of the
MODEFlex model. The characteristics of the two BMGs were described in Section
3.6.1 and Section 3.6.2. Note, however, that only 5 out of 14 BESs were considered
in the study corresponding to the number of BESs that were available during the
demonstrations of the BMG energy scheduling solutions in Brf Viva.

The main parameters used in the study’s simulations and demonstrations are given
in Table 5.1. The time horizon was 24 hours and the time discretization step was
∆t = 5 minutes, except for the demonstrations at the HSB LL building, where the
time step was ∆t = 15 minutes. Considering the uncertainty in the future price
of residential, stationary BESs [22], a sensitivity analysis was performed with three
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Table 5.1: Parameters used in the simulations and demonstrations of deterministic
energy scheduling applied on the HSB LL and Brf Viva BMGs.

H 80%
ηch/ηdis (HSB LL) 91%/98%
ηch/ηdis (Brf Viva) 97%/97%

SoEmin/SoEmax (Scenario-1) 30%/80%
SoEmin/SoEmax (Scenario-2) 10%/90%

BES installation prices ($/kWh) $100, $290, $500
Ic 0.3 (HSB LL)
B1 0.0013
B1 0.3534

prices, i.e., $100, $290, and $500 per kWh, for the BES installation cost. These
approximately correspond to a best-case, likely, and worst-case scenario. Moreover,
two scenarios of SoE limits were investigated: 30%-80% in Scenario-1 and 10%-
90% in Scenario-2. The initial SoE of each simulation in DA dispatch and the first
simulation of RH dispatch was set to 50%, while the end-of-life retained capacity was
assumed to be H = 80%. The parameters for the measurement-based models were
obtained from sample data of tests on the BES systems at each BMG. The values
of the charging and discharging efficiencies ηch/ηdis used in Model-1 corresponded
to the average values that were recorded during those tests, which were performed
in April 2019 for the HSB LL BMG and December 2019 for the Brf Viva BMG.
Since the measurement-based model is used in Model-2, Model-3, and Model-4 the
charging and discharging efficiencies in these models were variable and dependent
on SoE and power rate. The Li-ion cycle aging parameters of Model-3 were taken
from [142], while the BES lifecycle loss function ρt = 1/ϕ(DoD), which is used in
Model-4, was derived from Li-ion BES data provided in [30]. For the parameter Ic

in (4.41), which is included in Model-3, the daily average C-rate was used for the
HSB LL BMG, which was found to be 0.3 for the charging/discharging profiles of
all four models over the 365 DA simulations.

In the long-term simulation of the HSB LL operation, the BES capacity was up-
dated after each DA optimization, as shown in the flow diagram in Figure 5.1
showed. First, the percentage of capacity loss due to cycle aging given by cB(100%−
H)%/CB,0 was calculated using one of the models presented in Section 4.2.6 (de-
pendency on throughput or DoD), where the real-time C-rate was used in (4.41).
Afterwards, this loss was subtracted from the capacity that the BES had at the
beginning of the day. Finally, a linear model dependent on time elapsed was used
to evaluate the BES capacity loss due to calendar aging:

Qr = Qr,0 − Ac∆t. (5.1)

The capacity loss that was calculated according to (5.1) was subtracted from the
remaining BES capacity for every t of the simulation time horizon that was an open-
circuit period for the BES. In (5.1), Qr is the percentage of retained capacity after
the rest period, Qr,0 is the capacity percentage at the beginning of the rest period,
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and Ac is a parameter dependent on SoC level. The values for Ac were derived
from linear interpolation of the calendar aging data given in [141]. As mentioned in
Section 4.2.6, the temperature in stationary BESs can easily be controlled and was
therefore considered to be constant (T = 298K).

The same parameters presented in Table 5.1 were also used in the test cases of the
comparative analysis. The time horizon and time resolution of the energy dispatch
was set to be identical to the time horizon and time resolution of the available
forecasts. Thus, for this analysis, the time horizon was 24 hours and the time
step was ∆t = 15 minutes. In addition, (4.40) with SoEinit

m = 0.5 was added to
the formulation of Model-3 for the test cases with DA dispatch. The PV power
output was deterministic in the SO models i.e., a perfect PV generation forecast
was assumed, to focus on evaluating the effect of the load forecasting errors on the
BMG costs. The simulations for all the test cases of the comparative analysis were
performed for a week in December, 2018 using the historical load profile as the base
scenario for SO and as the realized scenario for DO. In the studied week, there was
minimal PV production to effectively eliminate the impact of the approximation due
to the perfect PV forecast assumption and enhance the accuracy of the results.

5.2.3 Rule-based BES dispatch
The BMG-EMS could also dispatch the BES using a rule-based algorithm represent-
ing the BAU BES operation. This algorithm can be used to reduce the peak load
consumption as well as to even out the aggregated load profile as seen by the DSO at
the PCC. The BES dispatch under the rule-based algorithm was demonstrated for
comparison with the BES dispatch solutions obtained from the optimization models.

This rule-based algorithm tries to constrain the power exchange with the grid be-
tween a peak and a low load threshold (Ppeak and Plow, respectively), which can be
externally set by the BMG operator. The algorithm updates the BES charging/dis-
charging power output set-point per iteration c (pch

c /pdis
c ) based on the SoC (socc)

and the average PCC power exchange (pP CC
c ) of the previous iteration loop, which

are the input values to the rule-based algorithm. The duration of each iteration loop
depends on the choice of ∆t. The number of iterations N it depends on the schedul-
ing period. To avoid deep discharges/charges of the BES, the SoE (soe) limits are
considered (SoEmin, SoEmax).

Algorithm 1 describes the rule-based algorithm and the interaction between the
BMG-EMS and the controlled system via the Message Queue Telemetry Transport
(MQTT) protocol. As can be seen, the conventional BES model (see Section 4.2.5)
with constant charging/discharging power limits P +

max/P −
max is used for the calcu-

lation of the charging/discharging BES power requests pch
c /pdis

c . The rule-based
algorithm can easily be adjusted to incorporate dependency of power limits to the
SoE by utilizing BES measurements. It cannot be expected that the applied BES
scheduling will be as accurate as when the measurement-based model is used, how-
ever, the BES control can become more effective, which can be useful, if BES requests
calculated with the conventional BES model are not fully met.
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Algorithm 1: Rule-based BES dispatch algorithm
1 Connect to the MQTT broker.
2 Subscribe to the available topics.
3 while c ≤ N it do
4 Read pP CC

c and socc;
5 Calculate pch

c /pdis
c so that Plow ≤ pP CC

c ≤ Ppeak;
6 if pch

c /pdis
c > P +

max/P −
max then

7 pch
c /pdis

c = P +
max/P −

max;
8 end if
9 if (soec+1 > SoEmax) ∨ (soec+1 < SoEmin) then

10 Reduce pch
c /pdis

c so that SoEmin ≤ soec+1 ≤ SoEmax;
11 end if
12 Publish pch

c /pdis
c ;

13 end while

5.3 Results and discussions
This section presents the simulation and demonstration results that validated the
performance of the BMG energy dispatch model. The factors affecting the cost of the
energy dispatch and the utilization of the BMG’s BES are analyzed and discussed.

5.3.1 Assessment of cost and degradation
Figure 5.3–5.4 present the annual assessment metrics of the energy dispatch in the
HSB LL BMG according to the four models presented in Section 5.2.1 in the two
scenarios of SoE limits given in Table 5.1. The calculation of cycle aging and the
respective cost is presented for both approaches (dependency on throughput/DoD)
for comparison. The assessment of the models was performed according to the
measurement-based BES model. Thus, the maximum feasible charging/discharging
power was chosen, when the BES power set-points of Model-1 were infeasible with
respect to the measurement-based model. Figure 5.5 shows an example of one DA
simulation, where the measurement-based model gives a different estimation of the
SoE profile, when the set-points of Model-1 are used as an input.

5.3.1.1 Scenario-1

As Figure 5.3 shows, Model-3 and Model-4 yielded the most economic operation
at all prices. The total cost for either model was not higher than $4401 at $100,
while Model-4 yielded the lowest cost at $290 and $500, which was not higher than
$4591 and $4795, respectively. Even though the energy cost was increased in these
models, the total capacity loss was lower than in Model-1 and Model-2, which did
not include the cycle aging cost in their objective functions and gave a total cost
of at least $4408 at $100, $4616 at $290, and $4847 at $500. Comparing with the
highest cost of either Model-1 or Model-2, a reduction of up to 0.4%, 0.6%, and 1.2%
could be observed for Model-3 at the price of $100, $290, and $500, respectively.
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Figure 5.3: The assessment metrics of the energy dispatch in the HSB LL BMG
for Scenario-1 (SoE limits of 30%-80%), where the considered BES installation price
is indicated on top of the bars representing the total cost or the total capacity loss.
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Figure 5.4: The assessment metrics of the energy dispatch in the HSB LL BMG
for Scenario-2 (SoE limits of 10%-90%), where the considered BES installation price
is indicated on top of the bars representing the total cost or the total capacity loss.
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Figure 5.5: The difference in the SoE estimation of the BES at HSB LL BMG,
when the solution (BES power set-points) of Model-1 (conventional BES model) is
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Similarly, a reduction of up to 0.4%, 1.0%, and 1.8% could be observed for Model-4
at the price of $100, $290, and $500, respectively. As the BES prices increase, the
cycle aging decreases for Model-3 and Model-4. At the same time, calendar aging
increases, as the BES is cycled less. Model-4 caused the lowest capacity loss among
all models, which was not higher than 2.8% (at $100). Interestingly, Model-2 caused
the highest capacity loss due to cycle aging (at least 1.5%), which was even higher
than in Model-1. Apparently, the less accurate SoE estimation of Model-1 led to
slower cycle aging. However, Model-2 could yield a lower total cost than Model-1,
especially at lower BES prices, because it caused the lowest calendar aging (1.7%)
and, more importantly, yielded the lowest energy cost ($4290) out of all models.

5.3.1.2 Scenario-2

Similar trends with Scenario-1 can be observed among the models and across the
three BES prices in Scenario-2, Figure 5.4. The economic performance of Model-3
and Model-4 was enhanced in Scenario-2, where the total cost of either model was
not higher than $4392 at $100. Again, Model-4 yielded the lowest cost at $290 and
$500, which was not higher than $4590 and $4799, respectively. Apart from the
lower energy cost in Scenario-2, the calendar aging also decreased, as lower values
of SoE helped the BES retain more capacity during rest periods. This is why these
models achieved the best economic performance in Scenario-2 as well.

In contrast, Model-1 and Model-2 gave higher total costs in Scenario-2 at all prices
and under both assessments of cycle aging. Again, comparing with the highest cost
of either Model-1 or Model-2, a reduction of up to 0.7%, 1.3%, and 2.3% could be
observed for Model-3 at the price of $100, $290, and $500, respectively, Similarly, a
reduction of up to 0.7%, 1.7%, and 3.1% could be observed for Model-4 at the price
of $100, $290, and $500, respectively. Model-2 gave the lowest energy cost ($4273)
and the lowest capacity loss due to calendar aging (1.4%) out of all models. At the
same time, however, it caused the highest cycle-based capacity loss (at least 2%)
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leading to the largest BES degradation, while Model-4 gave the lowest capacity loss
in total, which was not higher than 2.8% at $100.

5.3.1.3 Discussion on energy and degradation cost

The evaluation of Model-3 and Model-4 highlighted the importance of including
both energy and degradation cost in the objective functions that determine the BES
dispatch. These models, which combined the measurement-based model with cycle
aging models dependent on throughput (Model-3) or DoD (Model-4), could reduce
the annual energy and degradation cost by up to 3.1% under the considered pricing
scheme compared to when cycle aging cost was neglected in the BES scheduling.
Ideally, the cost of calendar aging should also be included in the optimization model
to obtain the most economic BES schedule and it can be considered in a future
study. As shown by the results, there is a trade-off between cycle and calendar
aging and thus, a BES schedule that induces lower cycle aging causes higher calendar
aging and vice versa. Nevertheless, Model-3 and Model-4 always yielded the lowest
degradation. In particular, the capacity loss was found to be lowest in Model-4.
Model-4 also yielded the lowest cost for the BES prices of $290 and $500.

5.3.1.4 Discussion on degradation models

In both scenarios, Model-4 gave the lowest total cost at $290 and $500 irrespective of
the deviation between the two different assessments of cycle aging. Either Model-3
or Model-4 could achieve the most economic operation at $100. Comparing this two
models, Model-4 caused a lower calendar aging (despite directly forcing the BES to
higher SoE values), which contributed to a reduced degradation cost, especially when
it was a larger part of the total cost. On the other hand, Model-3 gave lower energy
cost, which contributed to the reduction of its total cost, when the degradation
cost was a less significant part of it. When cycle aging was omitted from the cost
function, there was no clear advantage of using the more accurate BES dispatch
model i.e., the measurement-based model (Model-2) instead of the conventional one
(Model-1).

The accuracy of the aging models can vary depending on the BES chemistry. The
aging models used in this study might not be applicable to all Li-ion BESs. More-
over, it can be hard to obtain reliable aging parameters for each installed stationary
BES, if aging models that are derived from empirical fitting are to be used, such
as, for example, the cycle aging model with dependency on cumulative throughput,
which was presented in Section 4.2.6.1 and the calendar aging model.

The cycle aging model with dependency on DoD which was presented in Section
4.2.6.2, on the other hand, is a more practical modeling approach, as it uses a
degradation cost function derived by data provided by the manufacturer, which also
adds reliability to the cost of the implemented BES scheduling solution. It should
be noted, however, that not all manufacturers provide such detailed data regarding
the impact of each cycle to the BES lifetime (often only a maximum number of
cycles or throughput is given). Rainflow counting could also be used instead of the
half-cycle counting used with this model, however, as explained in [75], the cost
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function would not be continuously differentiable, and it could therefore not be used
in an LP problem formulation. Furthermore, the results (calculated capacity loss
after each DA optimization) based on half-cycle counting agreed with the results
based on rainflow counting (obtained by the rainflow function in MATLAB [125]),
thus validating the half-cycle counting approach used in the cycle aging model with
dependency on DoD.

5.3.1.5 Discussion on SoE limits

Model-3 and Model-4 could be used with either conservative SoE limits or with less
strict SoE limits, as both scenarios resulted in almost equal economic benefits for
the BMG owner and the residents in the building. On the other hand, if degradation
is neglected in the BES scheduling, it is suggested that conservative limits should be
applied to prolong the BES lifetime, unless high economic benefits that can offset
the degradation cost can be guaranteed. Test with scenarios of different SoE limits
are suggested to investigate if the obtained results can be further improved. The
choice of optimal SoE limits depends on the possible economic benefit from load-
shifting, which is affected e.g., by price fluctuation or PV generation within a day.
If the revenue can compensate for the degradation cost, then a larger SoE window
can be used.

5.3.1.6 Discussion on battery retirement

The degradation cost in this study is related with H, which is used to evaluate
the remaining useful lifetime of the BES and serves as a termination (retirement)
criterion [156]. It is assumed that, when the BES capacity is reduced to H% of
its initial value, the BES is replaced. However, storing electricity generated from
RES is a less demanding function than powering EVs. This is also the motivation
behind using retired EV BESs as second-life BESs in load shifting applications [157].
BESs with reduced capacity could still be used in energy management, which could
potentially lead to an overestimation of the degradation cost, if the BES is ultimately
replaced at a capacity, which is lower than H. In practice, the BES needs to be
replaced after a certain part of its initial capacity is lost, as the benefit of using the
BES for load shifting is reduced and the overall BES performance deteriorates. The
choice of H, however, is still an open question, as there are relatively few research
studies and applications of residential, stationary BESs

5.3.1.7 Discussion on revenue streams

The motivation for focusing on energy arbitrage as the main revenue stream in
this study is twofold: 1) operational policies that reduce degradation have a more
severe impact on the profit from energy arbitrage than the profit from balancing
services [79], which makes the contribution of the measurement-based model in
reducing the energy cost more important, and 2) there are strong indications that
energy arbitrage would be the preferred revenue stream for residential BES owners,
who consider protection against high electricity prices as one of the main motives
for installation of residential BESs [158].
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Figure 5.6: The BES power dispatch at the Brf Viva BMG according to the rule-
based algorithm, Model-1, and Model-2.
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Figure 5.7: The SoE estimation of the BES at the Brf Viva BMG according to the
rule-based algorithm, Model-1, and Model-2.

5.3.2 Comparison of BES power and SoE profiles
A comparison of the daily BES power dispatch and SoE the profile obtained from
Model-1, Model-2, and Model-4, which were presented in Section 5.2.1, as well as
the rule-based algorithm, which was presented in Section 5.2.3, can be seen in Figure
5.6–5.9 for the Brf Viva BMG. The BES dispatch was performed in RH to allow
for comparison of the simulation results with the corresponding results from the
demonstrations at Brf Viva (see Section 5.3.3.2).

The BES power dispatch in Figure 5.6 and the SoE profile in Figure 5.7 show that
the BES was cycled more when the BES was used to minimize energy cost (Model-1
and Model-2), as the BES power followed the fluctuations of the spot price. Small
variations in the BES power e.g., between hour 8 and hour 13, can be attributed to
the fact that, in each simulation, the forecast of the load and the PV generation was
updated, which made the BMG-EMS re-adjust the charging or discharging rate.
Bigger variations in BES power were a result of the spot price difference, since
the BMG-EMS tried to maximize the profit through energy arbitrage. This can
be observed e.g., in the first four hours of the simulation, where there were big
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Figure 5.8: The BES power dispatch at the Brf Viva BMG according to Model-1,
Model-2, and Model-4.
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Figure 5.9: The SoE estimation of the BES at the Brf Viva BMG according to
Model-1, Model-2, and Model-4.
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changes in the electricity price of each hour. Between the BES scheduling according
to Model-1 and the BES scheduling according to Model-2 there were only small
differences, as can be seen from their SoE profiles.

When BES degradation was considered, however, there was a trade-off between the
minimization of energy cost through load shifting and the minimization of BES
degradation cost. The cost of cycle aging, which is considered in Model-4, penalizes
both the number of cycles and deep discharges resulting in the BES dispatch and
SoE profile seen in Figure 5.8–5.9. As can be seen, even when the BES was cycled
in the first hours (Figure 5.8), it did not reach the low SoE value that Model-1 and
Model-2 yielded (Figure 5.9). In addition to this, the BES was not cycled during
the second half of the scheduling period as it happened with Model-1 and Model-2
because the profit from energy arbitrage was very small and did not compensate
for the cost of lifecycle loss of the BES. This profit was in fact that small, that the
daily BMG energy cost (including peak power cost) was practically similar among
the optimization models (about $70).

When the rule-base algorithm was applied, the daily BMG energy cost was higher
(about $72), although that could be different depending on the choice of the peak
and low load threshold. The rule-based algorithm, however, uses the BES in a non-
optimal way and it is hard to capture and reduce the peak power. Since the future
load and PV generation profiles are not considered, the energy storage levels might
be depleted, when the daily peak power occurs. This problem can be observed in
Figure 5.6–5.7, where there is big discharge power rate applied by the rule-based al-
gorithm starting around hour 8, whereas the optimization models (Model-1, Model-
2, and Model-4) apply a more conservative BES scheduling, saving energy for the
expected peak power. Therefore, the rule-based algorithm results in a peak load of
152.2 kW, while the peak power according to the optimization models ranges from
131.9 to 132.9 kW.

5.3.3 Demonstration results
The designed BMG-EMSs implemented remote control of the buildings’ BESs at
each demonstration test site. The BMG-EMSs integrated optimization models for-
mulated in Section 5.2.1 and utilized the in-built measurements and control systems
of the bi-directional grid side converter installed at each building.

5.3.3.1 HSB LL

The demonstrations with the HSB LL BES showed that the BES dispatch, which was
implemented on a 15-minute time scale, could not follow the schedule obtained with
Model-1 as well as it followed the schedule obtained with Model-2. The same input
data (including initial SoC measured at t = 0) were used for both demonstrations to
allow for comparison of their results. Figure 5.10 and Figure 5.11 respectively show
the BES response during a 24-hour demonstration of Model-1 and Model-2 at HSB
LL building. In Figure 5.10, it can clearly be observed that the dispatched power
did not match the big charging request.
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Figure 5.10: The set-points and the real-time measurements of the BES power
(demonstration of Model-1 at HSB LL building).
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Figure 5.11: The set-points and the real-time measurements of the BES power
(demonstration of Model-2 at HSB LL building).
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As explained in Section 4.2.5.2, SoE mismatches or SoH issues can lead to deviations
from the expected BES performance. These deviation are caused by the current
limiter function of the battery management system which is activated to protect the
BES from undesired operating conditions e.g., high temperatures or over/under-
voltages (caused by too high/low SoC or degraded BES cells, as was the case in
HSB LL). To mitigate this issue with Model-1 one would have to apply stricter
operation limits in upper/lower SoE and BES power. This is, however, a rule-based
solution approach that would considerably reduce the energy flexibility that can
be provided by the BES. An alternative solution can be found in the measurement-
based model. As seen in Figure 5.11, the BES response was significantly improved in
the demonstration of Model-2 without implementing additional, non-optimal limits.
This is because any dependency of the efficiencies and delivered BES power on
the SoE that has been captured by the discharging/charging sample data has been
considered in the parameterization of this model.

The comparison of Model-1 and Model-2 showed that the BES was cycled more when
the accuracy of the BES model was improved. This confirms what was indicated
by the simulation results, as Model-2 gave a higher cycle aging. Moreover, the
total mismatch in delivered charging and discharging BES energy over the requested
BES energy was 3.7% and 13.3% in the demonstration of Model-2 and Model-1,
respectively. This validates the enhanced accuracy of the measurement-based model
and, by extent, the reliability of the BES scheduling solution in the simulation results
of Section 5.3.1, since the measurement-based model was incorporated in Model-2,
Model-3, and Model-4 and the assessment of Model-1 was performed using the
measurement-based model.

Figure 5.12–5.13 show the estimated on a 15-minute time scale SoE according to
Model-1 and Model-2, respectively. These values are compared with the SoC mea-
surements (updated per 5 seconds) provided by the converter controller and the SoE
limits (as were defined by the BMG operator). Both models provided an accurate
SoE estimation on a 15-minute time scale, while the violations of the SoE limits
were negligible. To evaluate the accuracy of the SoE quality the following index was
defined:

qidx = ||soet − soct||
soet

. (5.2)

The quality index qidx gives the percentage value of the difference between the
estimated SoE and the measured SoC of one time step. The average quality index
for Model-1 and Model-2 was 0.5% and 1.2%, respectively. Model-1 had a better
performance in terms of SoE estimation, however, the two models gave a different
BES scheduling and SoE profile, as the BES performed more cycles with Model-2.

5.3.3.2 Brf Viva

The results from the demonstration of the BES dispatch at the Brf Viva BMG
showed that both the conventional and the measurement-based BES scheduling
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Figure 5.12: The estimated SoE of the BES dispatch model during the demon-
stration of Model-1 at HSB LL building and the real-time value of SoC as measured
by the converter (updated per 5 seconds).
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Figure 5.13: The estimated SoE of the BES dispatch model during the demon-
stration of Model-2 at HSB LL building and the real-time value of SoC as measured
by the converter (updated per 5 seconds).
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Figure 5.14: The dispatched set-points of Model-2 and the real-time power mea-
surements (demonstration with the system of BESs at Brf Viva).
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Figure 5.15: The estimated SoC during the demonstration of BES scheduling
under Model-2 and the real-time value of SoC (updated per minute) of the system
of BESs at Brf Viva.

model had acceptable accuracy and the BES dispatch followed the schedule. More-
over, the demonstration results matched the simulation results, which were presented
in Section 5.3.2. The same input data (including initial SoC measured at t = 0)
were used both for demonstrations and simulations to allow for comparison of their
results. As an example, Figure 5.14–5.16 present the results from the demonstration
of the BES scheduling obtained by Model-2.

The demonstration results validated the accuracy of Model-2, as the response of the
system of BESs matches the requests from the BMG-EMS in Figure 5.14. Moreover,
the estimated on a 5-minutes time scale SoE according to this model matches the
(updated per minute) SoC measurements provided by the converter controller, as
can be seen in Figure 5.15. Thus, the results prove that Model-2, and by extent the
proposed Model-3 and Model-4, can be used for close to real-time BMG energy man-
agement. Small deviations in the power dispatch compared to the simulated BES
scheduling (see Figure 5.16) are attributed to the fact that in the demonstration,
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Figure 5.16: The BES power set-points of simulated and demonstrated BES
scheduling of the system of BESs at Brf Viva under Model-2.

the measured SoC was entered as an input to the algorithm, whereas simulations
used the estimated SoE levels as inputs. The average quality index for Model-1
and Model-2 was 1.5% and 1%, respectively, suggesting a slightly improved perfor-
mance of the BMG energy management model, when the measurement-based BES
scheduling model was used.

5.3.4 Effect of load forecasting errors on the operation cost
of the BMG

This section analyzes the effect of short-term and high-resolution load forecast errors
on the BMG’s operation cost by presenting and discussing the results of the test
cases described in Section 5.2. The ML load forecasting models are also presented
in this section and their performance is compared.

5.3.4.1 ML load forecasting models

The ML models used and tested for the load forecasting were: 1) a linear regression
(LR) [58,159–161] model, 2) an artificial NN (ANN) [162] with backpropagation, and
a long short-term memory (LSTM) model [60, 61, 163], which is a type of artificial
recurrent NN. For the development of these models only time-series historical electric
load data were used. These data, which had a time resolution of 15 minutes, were
taken from the HSB LL [115].

The performance of the ML models was evaluated using the mean absolute percent-
age error (MAPE). The average MAPE over the 24-hour time horizon was found to
be approximately 12% for all three ML models [153]. Table 5.2 shows the MAPE of
each model for the first four quarters of the forecast’s time horizon. These MAPEs
were computed over all of prediction tests i.e., a prediction test was run for each time
step amounting to a total of 365x96 tests for each ML model. The models were also
compared with a base line model i.e., a naive and empirical approach which assumes
that the coming four quarters maintain the load value of the current quarter.
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Table 5.2: MAPEs for the ML and the base line models over the first four quarters.
The MAPEs were calculated on all prediction tests of the HSB LL BMG’s load.

Model 15 min 30 min 45 min 60 min
Linear Regression 7.79% 9.63% 10.25% 10.60%

Artificial Neural Network 8.10% 9.77% 10.25% 10.06%
Long Short-term Memory 8.93% 9.98% 10.45% 10.73%

Base Line 8.28% 11.14% 12.43% 12.26%

Figure 5.17: Histogram of percentage error for all prediction tests of the HSB LL
BMG’s load demand. The solid line is a Gaussian distribution fitted to the data.

To corroborate the common assumption that the probability distribution of the
load forecast error takes a Gaussian form the errors for each prediction test of the
ML models were recorded and presented as a histogram in Figure 5.17. As can
be seen, the results verified that the probability distribution of the error can be
well approximated by a Gaussian distribution. In summary, the load forecast error
normally ranged between about 10%-15% while it was unlikely to be more than 60%.
As for the dependencies of these errors on the factors described in Section 5.2, these
can be visualized in Figure 5.18. The big deviation between the values of MAPE
recorded at the first time steps of the look-ahead horizon and the values of MAPE
throughout the rest of the time horizon demonstrates the need to have different
probability distribution at each time step. A big deviation is also observed when
comparing the values of MAPE between the hours 00:00 and 06:00 to the values of
MAPE recorded at different hours, which demonstrates the dependency on the time
of occurrence of the predicted load value irrespective of how far ahead the value is
found within the look-ahead horizon.
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Figure 5.18: Color chart of MAPE in relationship with time of prediction (y-axis)
and time of the load value occurrence (x-axis) [153]. The slanted lines through the
chart show the time ahead.

5.3.4.2 Effect of forecast error

The costs related to the BMG energy dispatch can be seen in Table 5.3, where all
three ML models were used to give input to each test case. As can be seen from
the total cost f , similar results were achieved with DO and SO and the same was
observed comparing DA and RH dispatch. These were perhaps counter-intuitive
outcomes. As Figure 5.19 shows, the forecast errors were non-negligible. In fact,
significant variations were recorded in phase i.e., timing, and especially amplitude
between the actual and the forecast load demand. Therefore, judging from Figure
5.19, one would expect worse performance from the test cases that employed DO
and implemented DA dispatch. Still, all the solutions based on forecasts did not
deviate more than 1% from the solution in the ideal case of DO assuming perfect
forecast. Based on this, it can be concluded that the generated forecasts for that
week were sufficiently good to be used in DO. Note, however, that DO might not
perform as well as SO, if different realized scenarios are considered.

The higher cost of the test cases that used forecasts in comparison to the ideal case
was mainly due to the BMG’s peak power cost (cpeak), which accounted for about
8% of the total cost f and was increased up to 20.2%. This can be explained by the
difficulty of the ML models to accurately predict the value or the time of occurrence
of the daily peak load (see Figure 5.20) and by the low potential for energy arbitrage,
which, combined with the low PV output, led to minimal variations in the energy
costs.

The value of SO and the effect of the forecast error can also be assessed by two
stochastic metrics which use DO as a comparison benchmark [164]: the expected
value of perfect information (EVPI) and the expected cost of ignoring uncertainty
(ECIU). Defining fDO,P I

w as the cost obtained by DO assuming perfect forecast i.e.,
perfect knowledge of the load profile of scenario w, the value of the EVPI is obtained
by subtracting the expected cost computed as the weighted sum of the costs fDO,P I

w
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Table 5.3: Cost [$] of the HSB LL BMG’s energy dispatch for a week.

f cim − rex cpeak cB

SO-DA (LR) 145.58 134.17 11.24 0.17
SO-DA (ANN) 145.52 134.17 11.24 0.10
SO-DA (LSTM) 145.50 134.18 11.23 0.09
SO-RH (LR) 145.31 133.93 11.24 0.15
SO-RH (ANN) 145.26 133.87 11.24 0.16
SO-RH (LSTM) 145.26 133.86 11.24 0.16
DO-DA (LR) 145.47 134.18 11.24 0.05
DO-DA (ANN) 145.51 134.18 11.24 0.09
DO-DA (LSTM) 145.44 134.18 11.23 0.03
DO-RH (LR) 145.35 133.96 11.24 0.15
DO-RH (ANN) 145.34 133.96 11.24 0.15
DO-RH (LSTM) 145.35 133.96 11.24 0.16
DO-DA (perfect forecast) 143.40 134.04 9.35 1.39
DO-RH (perfect forecast) 144.30 133.92 10.38 0.27
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Figure 5.19: The load forecasts obtained by the ML models.
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Figure 5.20: The average error of the peak load’s predicted value (left y-axis) and
time of occurrence (right y-axis) over the simulated week for each ML model.

Table 5.4: SO assessment metrics for the optimal energy dispatch implemented
day-ahead at the HSB LL BMG.

ML model EVPI ECIU
LR 3.13% 0.29%
ANN 3.19% 0.32%
LSTM 5.69% 0.30%

over all scenarios from fSO :

EV PI = fSO − Πω

∑
w∈W

fDO,P I
w . (5.3)

The ECIU value is obtained by the weighted sum of the difference between the cost
of the SO solution and the cost of the DO solution fDO

w for each scenario w, where
the forecast is naively treated as perfect information ignoring uncertainties:

ECIU = Πω

∑
w∈W

(fDO
w − fSO), (5.4)

Assuming that only one of these scenarios is realized, the deterministic cost will
be higher than the expected cost over some of the scenarios. An example of these
metrics for the DA energy scheduling is given in Table 5.4.

The EVPI and ECIU are given in % of the total cost of DO-DA with perfect forecast
and have been calculated for all ML models assuming that the base scenario was
realized for the calculation of ECIU. The almost similar costs of SO and DO in DA
or RH solution approaches (see Table 5.3) indicated that there was very little cost of
ignoring uncertainty i.e., the value of SO was trivial. This was validated, as ECIU
in Table 5.4 was less than 1%. Although all ML models had a similar ECIU, LSTM
had a higher EVPI, which implies that it could not handle uncertainties as well as
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the LR and the ANN models.

Regardless of the low ECIU, SO was favored for the 15-minute energy dispatch of this
comparative study thanks to the fast execution time of the scenario generation and
solution of the SO problem, which was approximately 15 seconds in total . However,
it should be noted that the SO problem could become computationally heavy if a
higher number of scenarios, a higher resolution, or a more complex optimization
model e.g., due to more MG resources, are considered.

5.4 Summary
In this chapter, the deterministic MODEFlex model was used to solve the optimal
energy management problem for the HSB LL and Brf Viva buildings i.e., the consid-
ered BMGs under study. Emphasis was given on the BES dispatch and degradation
models presented in Section 4.2.6, as the simulations of this chapter compared the
two BES dispatch models i.e., the conventional and the measurement-based BES
model, and the two degradation models, which were used to model the dependency
of cycle aging on either throughput or DoD. A comprehensive evaluation of the total
BMG operation cost and induced BES capacity loss was conducted by simulating
the performance of the HSB LL building over a year. Simulation results did not show
a clear advantage of the measurement-based model against the simpler and easier
to implement conventional model, when no degradation model was incorporated in
the MODEFlex model.

The BMG test systems were also used as physical demonstration sites to validate
the measurement-based BES model which was used in the simulations of the de-
terministic MODEFlex model. The Brf Viva demonstration results showed negli-
gible mismatches between requested and delivered BES power irrespective of the
BES scheduling model employed to obtain the optimal energy scheduling solution.
On the contrary, these mismatches could not be perfectly cancelled for the HSB
LL BMG. However, they were substantially reduced when the measurement-based
model was employed, thus proving its merits against the conventional model.

In addition, the effect of the load forecasting errors to the BMG’s operation cost was
analyzed by testing the performance of the MODEFlex model under different load
forecasting profiles, optimization methods, and solution approaches. Simulations
results showed that using a simpler forecasting model e.g., LR, and methodology
to obtain the optimal energy dispatch solution did not compromise the economic
benefits for the BMG’s customers.
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Chapter 6

Scenario-Based Stochastic Energy
and Flexibility Dispatch

This chapter is based on Paper II and presents results of the stochastic MODEFlex
model applied to the operation of a BMG and used to optimally dispatch the BMG’s
energy and flexibility. The chapter describes the employed process of the stochastic
flexibility assessment and analyzes in detail multiple factors that affect the amount
and value of flexibility.

6.1 Aim of study
As identified in Section 2.6, there was a lack of quantification of the economically
available flexibility even among the studies that embedded FS models in energy
management models used for economic optimization. The aim of this chapter’s
study was to validate the performance of the most comprehensive formulation of
the MODEFlex model which utilized a scenario-based SO approach and integrated
an FS model into the optimal energy scheduling model. The stochastic MODEFlex
model was used to introduce a methodology for stochastic flexibility assessment and
to dispatch flexibility amounts that were both technically available and economically
feasible. The study employed SO to account for the uncertainties related to the input
values of the BMG i.e., the load demand and PV power output. At the same time, it
was important to show that the formulated stochastic model could be compatible for
close to real-time flexibility assessment and dispatch of the BMG’s power exchange,
as SO increases the size of the formulated optimization problem and, by extent, the
time required to solve it.

6.2 Study approach
The study’s approach is presented in Figure 6.1 for both OL and CL dispatch to
illustrate the differences of the two approaches. Most studies apply SO in OL. Even
though the RH dispatch reduces the effect of the forecast errors by dynamically

93



6. Scenario-Based Stochastic Energy and Flexibility Dispatch

updating the set-points, it requires more frequent simulations, which can be an
issue as SO has higher computation time than deterministic optimization. Similar
to [165], both the SO and the RH dispatch are used in this study to benefit from the
feedback, which is particularly important for close to real-time control. Furthermore,
the study considered FS-C as the offered FS and evaluated the BMG’s flexibility
under different test cases and parameters.

The stochastic MODEFlex model was used to simulate the operation of HSB LL
BMG (see Section 3.6.1) implementing RH optimization to dispatch the BMG’s en-
ergy and flexibility for a day. In order to reduce the size of the SO problem and
avoid scalability issues, deterministic control variables were used in the model as ex-
plained in Section 4.1.1 i.e., the scheduled BES power is independent of the scenario.
Since the RH dispatch is used, it is only the next time-step control decisions that are
implemented after each simulation and the deterministic control trajectory can be
updated considering the latest forecasts available with every new simulation. The
rest of the control trajectory of each simulation is advisory. Despite the advantages
of the RH dispatch, the OL dispatch can be useful for practical applications in case
of failure to receive feedback. Then, the advisory BES power set-points obtained
from the last solution of the SO problem will be applied, thus implementing OL
control until the CL control can be restored.

6.2.1 Process of flexibility assessment and dispatch
The proposed process of flexibility assessment and dispatch, which corresponds to an
intra-day framework of procuring flexibility, is shown in Figure 6.2 with indicative
milestones marking the process. The solution approach is RH optimization and
the depicted time discretization step is ∆t = 15 minutes, therefore 96 simulations
(solutions of the Stochastic MODEFlex problem) are performed in Day 1. As shown
in Figure 6.2, one simulation is performed at each time step τ to solve the following
SO problem for a building BMG m:

minfm =



f ′
m (6.2) s.t. (4.2b)–(4.4b), (4.6b), (4.23)–(4.39),

and (4.41)–(4.42)
τ < t0

f flex
m (6.3) s.t.

(4.2b)–(4.4b), (4.6b), (4.23)–(4.39),
(4.41)–(4.42), (4.61b)–(4.62b), (4.64),
and (4.65b)–(4.66b)

τ = t0

f ′′
m (6.4) s.t. (4.2b)–(4.4b), (4.6b), (4.23)–(4.39),

(4.41)–(4.42), (6.5), and (6.6)
t0 < τ ≤ t2

f ′
m (6.2) s.t. (4.2b)–(4.4b), (4.6b), (4.23)–(4.39),

and (4.41)–(4.42)
t2 > τ

, (6.1)

f ′
m = cim

m − rex
m + cp

m + cB
m, (6.2)

f flex
m = cim

m − rex
m + cp

m + cB
m − rflex

m , (6.3)
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Figure 6.1: Flowchart representing the simulation set-up for the solution of the
stochastic MODEFlex problem.
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Figure 6.2: Process of flexibility dispatch using the RH approach.

f ′′
m = cim

m − rex
m + cp

m + cB
m −

∑
t∈Hf ′

∑
w∈W

ΠwmβwtmCpen
m , (6.4)

βwtm ≤ P fl,p
m − (pim

wtm − pex
wtm), ∀w ∈ W , ∀t ∈ Hf ′ , (6.5)

βwtm ≤ 0, ∀w ∈ W , ∀t ∈ Hf ′ , (6.6)

where t0 and t2 respectively denote the notification time of flexibility request and the
end of the flexibility activation period (see Figure 6.2). The flexibility price πfl,Cap

m is
entered as a parameter in (6.1). The BMG operator implements the optimal energy
schedule obtained from solving the SO problem given by (6.1) for τ < t0 at each
time step τ . If the DSO needs to buy flexibility, a request is sent at τ = t0 to
the BMG-EMS, which responds with the amount pflex and a stochastic assessment
of the flexibility that can be offered by solving (6.1) for τ = t0. The response is
sent directly after the request e.g., in Figure 6.2, the flexibility request along with
information about the activation period is sent at 08:00 (Simulation 32) and the
response is sent to the DSO before the next simulation (at 08:15). The BMG-EMS
is also notified about the acceptance or decline of pflex

m before the next simulation.
If it is accepted, the BMG-EMS solves (6.1) for t0 < τ ≤ t2 i.e., until the simulation
horizon is shifted outside of the activation period (note that Hf ′ in (6.4)–(6.6) refers
to the part of the scheduling period that belongs to the flexibility period, which
shrinks as the time horizon shifts). In Figure 6.2, this problem, which minimizes the
mismatch between flexibility bid and dispatch, is solved at each simulation between
08:15-20:00 i.e., Simulations 33-80. Thus, the BMG-EMS adjusts its control to
provide the flexibility bid both before and during the flexibility activation period
which starts at t1. The mismatch is minimized by penalizing the deviation between
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the net power and the expected net power peak pfl,p
m , which is now entered as a

parameter (P fl,p
m ).

The non-negative term βwtm in (6.4)–(6.6) represents the deviation between the
expected peak and dispatched net power that should be penalized at each time step.
If the net power is below its expected peak P fl,p

m , which was calculated at t0 to define
the flexibility bid, this deviation should not be penalized. Since the right-side term
in (6.5) becomes positive in this case, (6.6) becomes the binding constraint and βwtm

becomes equal to zero because a negative term would increase the value of the cost
function f ′′

m given by (6.4). If the net power exceeds the bid, then (6.5) is binding
and βwtm is negative taking the value of P fl,p

m − (pim
wtm − pex

wtm). This quantity is
multiplied by the penalty Cpen

m adding a cost in f ′′
m.

After the look-ahead horizon is shifted past the end of the flexibility activation
period, the BMG-EMS continues solving the energy scheduling problem given by
(6.1) for τ < t0. The same problem is also solved after the BMG-EMS receives a
decline of the offered flexibility until there is a new flexibility request. It should
be noted that the proposed process of flexibility dispatch is independent of the
notification time or the duration of the activation period and can even be used
for close to real-time flexibility dispatch, when a small ∆t is used. Moreover, the
BMG’s response and the notification of acceptance/decline from the DSO can occur
later than t0. In that case, the BMG-EMS will repeatedly solve (6.1) for τ = t0
to optimize the flexibility offer at each time step until it sends the response to the
DSO.

The following steps can describe each simulation of the RH process performed at τ :

• Step 1: The look-ahead horizon extends to include all hours where the elec-
tricity price is known, up to a maximum of 24 hours. E.g., in Figure 6.2,
the initially 24-hour time horizon is continuously reduced by one time step for
Simulations 2-51 and then extends again to 24 hours until Simulation 96, since
the day-ahead spot market prices are updated at about 12:45 on the previous
day [154].

• Step 2: Obtain the day-ahead most recently updated forecasts of load and PV
power output which have the same time resolution as the considered scheduling
time horizon. Reduce the length if necessary, update the base scenario, and
generate new scenarios.

• Step 3: Solve the SO problem according to (6.1) using the generated scenarios,
the price data, and SoEinit, which was obtained from the previous simulation.
These are the input data illustrated in Figure 6.1.

• Step 4: Obtain and update the set-points pdis
tm/pch

tm for t = 1. Shift the time
horizon by ∆t and go to Step 1 (at τ ← τ + ∆t).
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6.2.2 Simulation set-up
The BMG characteristics were listed in Table 3.2 and all the parameters related to
BES data were taken from the HSB LL [115]. The inputs in the simulation of the
DA energy scheduling in RH included electricity load and PV generation data of the
HSB LL building as well as electricity prices taken from the Nord Pool market [154]
for bidding area 3 of Sweden. All the input data referred to values recorded in 2018.
The grid tariffs and the reimbursement fee have been taken from the website of the
local DSO [155] and can be found in Appendix C.1.

The DA forecast errors of PV generation and power consumption were assumed to
follow the Gaussian distributions given as EP V

t ∼ N(0, 0.12) and EL
t ∼ N(0, 0.052),

respectively, where the standard deviations σP V
t = 0.1, σL

t = 0.05 were adopted from
the day-ahead forecast error distributions of [48, 134]. The accuracy of the forecast
values progressively deteriorates for the time steps further ahead in time, which is
why B. V. Solanki et al. [166] used non-uniform time resolution. In this study, the
horizon is uniform; however, the standard deviations of the distributions gradually
increase to account for the reduction of the intra-day accuracy. Thus, for the time
steps until the next hour ahead as well as for the time steps after the first hour
and until six hours ahead, they are equal to 10%σP V

t /10%σL
t and 50%σP V

t /50%σL
t ,

respectively. The resulting probability distributions and the MC method were used
to generate 2000 scenarios of PV generation and load for each simulation, which
were subsequently reduced to 120 scenarios.

Simulations were performed according to the test cases described in Table 6.1. To
analyze the effect of BES capacity, the simulations were performed from three BES
sizes i.e., 7.2 kWh (the capacity of the actual BES installed at the HSB LL system),
14.4 kWh and 18 kWh. The capacity at the connection point was P Cap = 43.65
kW, the time discretization step was ∆t = 15 minutes, and the penalty was Cpen =
180$/MW, similar to the one used in [167]. The values of the BES model parameters
in (4.25)–(4.26) and (4.41)–(4.42) were: B1 = 0.0013, B2 = 0.3534, Ic = 0.3, H =
80%, SoEmin = 10%, SoEmax = 90%, and the initial SoE was 50%. The flexibility
activation periods were between 07:00-20:00, as was requested from small to medium-
sized companies offering flexibility in [168]. A base πfl,Cap was calculated according
to the following assumption: it was assumed that the revenue from offering 1 kW
of pflex would be equal to selling 1 kWh of energy at average spot market price
at each hour of the activation period. The simulations were conducted considering
different flexibility prices within the range of 50%-150% of this base πfl,Cap, which
was different for each test case, depending on the length of Hf and the method of
flexibility dispatch.

6.3 Results and discussions

The stochastic assessment of flexibility was performed at time step τ = t0 i.e., right
after the notification of the flexibility request. The results are obtained by solving
the respective SO problem according to (6.1) at τ = t0 .
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Table 6.1: Test cases of the study on stochastic MODEFlex

Time of Flexibility Flexibility Assessment
Notification Activation Period and Dispatch

Case A 08:00 12:00-20:00 Flexibility amount
over entire activation period

Case B 18:00 19:00-20:00 Flexibility amount
over entire activation period

Case C 08:00 12:00-20:00 Flexibility amount
per time step of activation period

6.3.1 Flexibility dispatch over entire activation period

The simulations showed that pflex generally increased as the BES size increased,
which can be observed in Figure 6.3 that presents the stochastic assessment of
flexibility for Cases A-B at their base πfl,Cap for a 7.2, 14.4, and 18 kWh BES.
The actual amount of flexibility that the BMG provided to the grid in each of the
120 scenarios is depicted as a histogram plot. The x-axis represents the amount of
dispatched flexibility P Cap −max(pMG,im

wt , ∀w ∈ W), where max(pMG,im
wt ) refers to

the activation period Hf . The y-axis reports the probability of achieving a specific
amount of flexibility (in one or more of the 120 scenarios). Thus, the percentage
reported in the y-axis is the weighted sum of the scenarios where a given flexibility
amount occurs, divided by the weighted sum of all 120 scenarios (which has a 100%
probability of occurrence). The weights are the probabilities of occurrence of each
scenario assigned by the scenario reduction technique (see Section 4.1). The vertical
dashed line in each plot of Figure 6.3 marks the value of pflex implying that the
optimal solution involves scenarios where more flexibility is provided, or where the
BMG might fall short of meeting its bid.

Under circumstances, the BMG with the 7.2 kWh BES could offer slightly more
flexibility than the BMG with the 14.4 kWh BES (compare Figure 6.3 (d) and
(e)). In this study, this happened due to the late notification time in Case B. The
results are illustrated in Figure 6.4 (a) and (b) which present the corresponding
schedules of Figure 6.3 (d) and (e). In Figure 6.4, the power profiles are plotted as
bar graphs on the left y-axis (positive values correspond to net power consumption
and/or BES charging) and the SoE is given as a line plot on the right y-axis. As
can be seen, both BESs stayed idle at their initial SoE until τ = t0 in preparation
for the highest consumption period predicted at τ > t2 and both were almost at
SoEmin at the end of the day. Hence, it is evident that the 7.2 kWh BES could not
decrease energy and peak power cost as much as the 14.4 kWh BES so the revenue
from the FS was more important in reducing the total cost under the considered
πfl,Cap. The 14.4 kWh BES could benefit more from ESs i.e., energy and peak power
cost reduction; therefore, more capacity was used for that purpose at the expense
of offering flexibility. In Figure 6.4 (b) its injected power resulted in up to 2-3 kW
lower BMG imported power at time steps 83-90 in comparison to Figure 6.4 (a),
while offering at the same time flexibility only 400 W less than the amount offered
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by the 7.2 kWh BES. The 18 kWh BES allocated slightly more capacity than the
14.4 kWh BES for the ESs and the rest was used for the FS resulting in a larger
pflex.
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(a) Emax = 7.2 kWh
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Figure 6.4: BMG power flows for Case B with πfl,Cap = 0.05$/kW .

Comparing Figure 6.3 (d) with (a) and Figure 6.3 (f) with (c) it can be seen that
pflex could be larger in Case B, even though the notification of flexibility request was
much closer to the activation period. An explanation for this is that the uncertainty
regarding the flexibility dispatch is lower in Case B, since the activation period is
shorter and much closer to τ = t0; therefore, the input data for t1 ≤ τ ≤ t2 are less
affected by forecast errors. Despite that, the probability of dispatching the flexibility
according to the bid was actually higher in Case A.

6.3.2 Flexibility dispatch per time step of activation period
In Case C, where the flexibility is dispatched per time step, (4.64), (4.65b)–(4.66b)
are replaced by (4.60) and (4.63b) in (6.1), while P fl,p

tm is indexed by t and refers
to the expected net power at each time step. The simulations showed that with
the increase in πfl,Cap the probabilities of dispatching certain flexibility amounts at
the same time steps would also increase. However, this was not always straight-
forward, as increasing the probability at one step could come at the expense of
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Figure 6.5: The probability distribution of dispatched flexibility per time step
(Case C, Emax =7.2 kW) for two different prices.

the probability at another step. This can be seen in Figure 6.5 which presents the
probability of flexibility dispatch for Emax =7.2 kW at πfl,Cap =$0.01250/kW and
πfl,Cap =$0.01875/kW.

The probability of flexibility dispatch in Figure 6.5 is shown in the cell numbers
of the heatmaps. These correspond to the probability of dispatching a flexibility
amount at least equal to the value shown in the x-axis, at the time step shown in
the y-axis. The BMG-EMS guaranteed the dispatch of at least 30 kW during the
activation period except for time steps 55-58 and at least 35 kW from time step 66
onward for both prices presented in Figure 6.5. As can be seen in Figure 6.5, the
probability of dispatching 30 kW at time step 56 and 35 kW at time steps 63–64
increases with the increase in the price. At the same time, though, the respective
probabilities decrease for the amount of 30 kW at time steps 55, 57–58 and the
amount of 35 kW at time step 65.

6.3.3 Economic value of flexibility dispatch
The probability of dispatching the flexibility amount(s) calculated at τ = t0 can
substantially increase when the SO problem is solved in RH, depending on the
chosen penalty and the technical constraints of the BMG resources.

6.3.3.1 Benefit of combining SO with RH dispatch

For all considered values of πfl,Cap and Emax in Cases A-C, the flexibility amount
(pflex) was successfully dispatched. This demonstrated the value of combining SO
with the RH dispatch, which contributed to avoiding the payment of penalties and
increased the value of flexibility for the BMG operator. The value of flexibility, which
was calculated as the cost difference of the daily BMG schedule with and without the
FS assuming that the base scenario was realized, is shown in Figure 6.6 along with
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the degradation cost and the flexibility bid w.r.t πfl,Cap. The value of flexibility was
also estimated for the DSO assuming that s/he buys the BMG flexibility to reduce
the subscription fee that guarantees a certain power level. To calculate this value
the cost of buying flexibility was subtracted from the cost reduction achieved by
reducing the BMG’s peak imported power using the FS.

6.3.3.2 Factors affecting the value of flexibility

Two important factors associated with the value of flexibility are scrutinized: the
BES size and the flexibility dispatch parameters t0, t1, t2 i.e., the time of notification
and the duration of the activation period. The results indicated that the FS-C can
offer value to both the BMG customers and the DSO when flexibility is dispatched
over the entire activation period i.e., in Cases A-B, with the BMG’s value of flexibil-
ity amounting to at least 56% and 7% of the daily BMG operation cost, respectively.
As can be seen in Figure 6.6 (a), (d), and (g), the BMG’s value of flexibility increased
linearly wrt πfl,Cap, while the BES size did not significantly affect the BMG’s daily
value of flexibility. This shows that the BMG-EMS favored participation in ESs (en-
ergy arbitrage, peak shaving) instead of the FS within the studied range of πfl,Cap.
The BES size played a more important role in the DSO’s value. In fact, in Cases
A-B, the larger BESs usually increased the economic benefits for the DSO. Case C
offered no benefit to the DSO even though the value of flexibility was considerably
higher for the BMG.

Analyzing the results in Figure 6.6 (b), (e), and (h), it can be seen that a higher
πfl,Cap and a larger BES lead to larger pflex in Case A. In Case B, however, the
shorter notice limited pflex from the smaller BES, which did not exceed the amount
of 34.7 kW despite the increase in πfl,Cap. Nevertheless, this BES could offer more
flexibility than the 14.4 kWh BES (and even the 18 kWh BES at very low πfl,Cap)
for reasons explained in Section 6.3.1 i.e., higher need to increase value through the
FS due to lower potential for energy and peak power cost reduction (or profit from
energy arbitrage). Figure 6.6 (h) shows the average flexibility bids and their range
for the 7.2 kWh BES. The results from other BESs are omitted for clarity purposes,
however, they exhibit the same trend, such that the BES size and πfl,Cap do not
affect the average pflex in Case C.

6.3.3.3 Effect of degradation

Although with the tested flexibility prices the value of flexibility dispatch remained
practically unaffected by the BES size as can be seen in Figure 6.6 (a), (d), and
(g), the faster degradation of smaller BESs suggests that the investment on the
size of a BES that will provide FSs should be determined considering the frequency
of providing these FSs. Figure 6.6 (c), (f), (i) depict the degradation cost as a
percentage of the BES’s purchase cost, where both cycle and calendar aging were
considered. Calendar aging was assessed after the simulations using the obtained
values of soet, as was explain in Section 5.2.2, which explains why e.g., in Figure
6.6 (c), there is a significant decrease in the degradation cost of the 7.2 kWh BES
when πfl,Cap increases. Comparing the different BES sizes it can clearly be seen
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Figure 6.7: BMG power flows with and without FS for Case A with πfl,Cap =
0.4$/kW and Emax = 14.4 kWh.

that the induced aging is worse for the smallest BES. This is more notable in Figure
6.6 (c) and (f) and it can be attributed to the increased utilization (cycling) in an
attempt to maximize profit from both ESs and FSs. If the FS is event-based e.g.,
requested during extreme weather conditions or unexpected failures, the effect of
degradation would be trivial. Otherwise, long-term planning studies are required
to assess whether the faster degradation of smaller BESs could result in a reduced
value of their flexibility.

An example of the different BES utilization is shown in Figure 6.7, which depicts the
BMG power flows for Case A, πfl,Cap = 0.4$/kW and Emax = 14.4 kWh, comparing
the results with and without the FS. Without the FS, the BES was only discharged
after the flexibility period, when peak demand was expected (time steps 86-90).
When the BMG offered flexibility (Figure 6.7 (a)), the BES’s utilization increased,
as it started charging at τ = t0 to be able to inject power both at time steps 86-90
and within the activation period.
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6.3.3.4 Number of scenarios and cost of optimal solution

Since all the studied SO problems were linear, the convergence to an optimal solution
is guaranteed at each time step. However, the optimality with respect to all possible
uncertainty realizations cannot be guaranteed. Scenario-based approaches are based
on samples and, therefore, there is a trade-off between the cost of the solution and the
execution time. A higher number of scenarios can lead to a lower cost i.e., a solution
closer to the optimal solution, however, it also increases the computation time. To
investigate the relationship between scenario number, optimality and computation
time, a sensitivity analysis was performed for Case A, with Emax =7.2 kWh and
πfl,Cap = 0.4 $/kW. The results are given in Table 6.2, where the performance of
the study whose results have been presented is shown in bold and the negative cost
value refers to profit. Since the sampling happens at two stages i.e., first with the
MC method and then with the scenario reduction, the analysis accounted for both
sample sizes. The execution time refers to the maximum time that was needed for
scenario generation, scenario reduction (if applicable), and for the solution of the
SO problem.

It can be observed from Table 6.2 that scenario reduction, when considered, accounts
for the biggest part in total execution time. For example, a SO problem with 80
scenarios is solved in 9, 34, and 59 sec when obtained from a full set of 2000, 4000,
and 5000 scenarios, respectively. Nevertheless, the scenario reduction leads to a
significant decrease in execution time, as it reduces the number of variables of the
SO problem. The daily cost, which is shown in the last column of Table 6.2, was
not directly comparable for the studied sizes of scenario sets, even when no scenario
reduction was implemented. This occurs due to the random scenario generation and
the RH, since 96 solutions of the SO problem are needed to obtain the daily cost.
Despite that, the cost did not vary significantly, and the results yielded a maximum
variation of 1.7% from the average cost obtained by these scenario sets.

The results demonstrated that the number of scenarios used in the study was suf-
ficient for the HSB LL BMG, as the cost did not deviate considerably among the
scenario sets of the sensitivity analysis. Although there was no proven economic
benefit, the larger sets of Table 6.2 could also be used, since their respective so-
lution time was compatible with the chosen time step. Larger sets might not be
preferable for real-world applications, however, as communication delays associated
with input and output data must also be accounted for.

6.4 Summary
In this chapter, the stochastic MODEFlex model is used to implement energy
and flexibility dispatch in RH and conduct a stochastic assessment of the techno-
economically feasible MG flexibility. The optimization model is updated at each
time step after the time horizon shifts to update its input data by considering the
most recent forecasts of the stochastic parameter values i.e., electricity load and PV
power output, and adjust the time horizon length depending on the availability of
data for the future electricity prices.
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Table 6.2: Scenario sensitivity analysis for Case A, Emax =7.2 kWh, πfl,Cap =
0.4 $/kW.

Full Reduction Reduced Execution Cost ($)
set set time (sec)

5000 no – 111 -3.58
5000 yes 120 75 -3.66
5000 yes 80 59 -3.69
4000 no – 81 -3.57
4000 yes 120 45 -3.66
4000 yes 80 34 -3.69
2000 no – 24 -3.58
2000 yes 120 11 -3.68
2000 yes 80 9 -3.69

Three BES sizes i.e., 7.2 kWh, 14.4 kWh and 18 kWh and a capacity limit of P Cap =
43.65 kW have been used to simulate the performance of the stochastic MODEFlex
model in three test cases based on the HSB LL BMG, which were described by
different notification time, flexibility activation period, and method of flexibility
assessment and dispatch i.e., dispatch per time step or over the entire activation
period. Simulations were performed for each test case to analyze the impact of
multiple factors on the flexibility potential, assessing both the amount and the
economic value of flexibility. The main observations regarding the impact of the
proposed model on the flexibility potential can be summarized as follows:

1. Combining SO and dispatch in RH ensured the dispatch of the offered flexi-
bility. Therefore, the BMG operator avoided paying penalties which increased
the economic benefits from providing the FS.

2. Increasing the BES’s size did not significantly affect the BMG’s value of flexi-
bility, whereas the larger BES offered higher value to the DSO for Cases A-B.

3. In Case B, where the flexibility activation period was short and close to the
notification time for the flexibility request, a larger amount of flexibility was
offered in comparison to the other cases, as the dispatch of this amount was
less affected by the uncertainties of the input data to the model.

4. The economic value of flexibility for the smallest BES that was tested i.e.,
the 7.2 kWh BES, could be more severely affected by the induced degradation
which was proven to be higher for this BES than for the other two larger BESs.
This is especially important to consider when the FSs are offered on a frequent
basis instead of being event-based.

Simulation results also showed the impact of the offered FS-C on the BES dispatch
by comparing the BES power and SoE profiles with the respective profiles obtained
by the same model without considering provision of flexibility. It was revealed that
a bigger BES size did not necessarily provide a higher flexibility amount, when the
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notification time was close to the flexibility activation period.
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Chapter 7

Evaluation of Optimal Energy
Scheduling Strategies

This chapter is based on Paper V and evaluates optimal energy scheduling strate-
gies of grid-connected MGs. The impact of the implemented strategy is assessed
on the cost and operation of both the MG and the main distribution grid. First,
the chapter presents the strategies and the formulation of the optimization problems
that are solved in each strategy. Information regarding the considered parameters,
assumptions, and simulation set-up related to the study of optimal energy scheduling
strategies are also given in this chapter. At the end of the chapter, the results are
analyzed and discussed.

7.1 Αim of study

The aim of this chapter’s study was to evaluate the cost and performance of the MG
operation under different operational objectives. The study also aimed to assess the
effect of MG integration to the cost and operation of the main distribution grid
assuming the unbundled framework of DSO’s operation, which is typically not con-
sidered, as discussed in Chapter 1. For this purpose, different MG energy scheduling
strategies were tested including MG energy cost minimization, minimization of MG
energy exchange with the main grid, minimization of MG imported energy from
the main grid, and minimization of the DSO’s cost due to grid connection charges.
Since the focus was on energy scheduling, the MGs did not participate in any FS.

7.2 Study approach

The study was based on the electric distribution system of Chalmers, which was
described in Section 3.6. The MG resource mix could include BESs, DRRs, PV
systems, which are non-dispatchable generation sources, and a micro-CHP plant,
which is a dispatchable generation source.
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Figure 7.1: The proposed configuration of the distribution network of Chalmers
with the interconnection layout of the two MGs (shown with the sections in dashed
and dotted lines).

7.2.1 Formulation of the optimization problems

Two network areas of the Chalmers distribution system have been considered as grid-
connected MGs, as can be seen in Figure 7.1. Microgrid A (MG-A), shown with
dotted lines in Figure 7.1, is a CHP-PV-BES-DRR MG and can produce excess
energy, when the CHP is in operation. MG-A has a PV penetration level of 23%
(calculated as a percentage of the MG’s peak load). Microgrid B (MG-B), shown
with the dashed lines in Figure 7.1, is a PV-BES-DRR MG. Since MG-B only hosts
a small PV capacity (the penetration level is 5%) and has no other local generation
sources, it must continuously import power from the main grid. The MGs are the
only network areas, where flexible load is available.

The energy scheduling strategies for these two MGs are summarized in Table 7.1.
Strategy 0 is the business as usual (BAU) scenario, where the BES dispatch fol-
lows the rule-based algorithm described in Section 5.2, which triggers charging and
discharging based on peak and low load thresholds. No DR is considered in BAU.
Strategies 1-3 (S1-S3) apply uncoordinated energy scheduling schemes, and thus
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Table 7.1: Energy scheduling strategies.

MG-A MG-B DSO
Strategy 0 (BAU) no optimization no optimization –
Strategy 1 (S1) max. profit min. cost –
Strategy 2 (S2) min. energy exchange min. cost –
Strategy 3 (S3) min. import min. import –
Strategy 4 (S4) – – min. cost

each MG-EMS solves a local optimization problem i.e., an optimization problem
that only considers local DERs, constraints and objectives that refer to the specific
MG network area, in order to determine the optimal schedule of the available DERs
according to the operational targets defined by the MG operator. As can be seen
in Table 7.1, the MGs can have different objectives. A centrally coordinated energy
scheduling scheme is considered in Strategy 4 (S4) and thus the DMS directly dis-
patches the MG resources to satisfy a DSO’s operational target. In this strategy the
DMS solves a global optimization problem i.e., an optimization problem with an ob-
jective function and constraints that refer to the operation of the entire distribution
grid, including the MG network areas and all available MG DERs.

Depending on the entity (MG operator or DSO) that dispatches the MG resources
and its operational objectives, a different DA energy scheduling problem is formu-
lated and solved. All energy scheduling problems that were solved in the study
were deterministic implementing DA dispatch of the MG resources for the schedules
obtained by local or global optimization i.e., Strategies 1-4 (S1-S4). Note that local
and global optimization in this chapter refer to the considered network areas, where
the global system is the Chalmers distribution network depicted in Figure 7.1, and
not to the value of the obtained optimal point. For example, a global optimum can
be retrieved by solving an optimal MG energy scheduling problem, which is defined
here as a local optimization problem.

The formulation of the optimal energy scheduling problem for the profit maximiza-
tion of MG-A is given by (4.1) s.t. (4.2a)–(4.4a), (4.6a)–(4.7a), (4.8)–(4.13), and
(4.15)–(4.21), where the term cDER in (4.1) is cDER = CCHP , while the term rflex

is omitted from it. For the profit maximization of MG-B, the formulation is given
by (4.1) s.t. (4.2a)–(4.4a), (4.6a)–(4.7a), (4.10)–(4.13), and (4.15)–(4.21), where the
terms cDER and rflex are omitted from (4.1). The optimal scheduling problem for
the minimization of the energy exchange with the main grid is given by (4.5) s.t.
(4.6a)–(4.7a), (4.8)–(4.13), and (4.15)–(4.21) for MG-A, while for MG-B it is given
by (4.5) s.t. (4.6a)–(4.7a), (4.10)–(4.13), and (4.15)–(4.21). The above-mentioned
energy scheduling problems are used in Strategies 1-3 and, since no interaction is
considered with the DSO, they are solved in an uncoordinated way. The coordinated
MG energy scheduling is formulated as an AC optimal power flow (OPF) problem
in Strategy 4, since the purpose is to find the energy scheduling of the MG resources
that minimizes the cost for the DSO. This problem is given by (4.67) s.t. (4.69),
(4.87)–(4.95), (4.10)–(4.13) for m ={MG-A, MG-B}, (4.15)–(4.21) for m ={MG-

111



7. Evaluation of Optimal Energy Scheduling Strategies

Uncoordinated 

energy scheduling

(S1, S2, S3)

Centrally coordinated

energy scheduling

(S4)

Input data of next 24 h

Network configuration PV/load forecast

Electricity priceHeating power of CHP

Day-ahead scheduling

Output data of next 24 h

BES power

DRR power

Electric power of CHP

Initial status of BES/DRR

t=0

t=t+24h

Figure 7.2: The flow diagram depicting the simulation set-up used to evaluate
energy scheduling strategies in uncoordinated and centrally coordinated schemes.

A, MG-B}, and (4.8) for m = MG-A. Due to the constraints (4.20)–(4.21) all the
formulated optimization problems were MILP problems.

7.2.2 Simulation set-up
The simulation set-up that was used to evaluate the energy scheduling strategies can
be seen in Figure 7.2. The results of DA scheduling provide the hourly set-points of
operation of the resources for the next day. The status of the resources (e.g., SoE
level of BES) at the end of the day is given as input (initial operating status) for the
next DA simulation. The rest of the input data, which can be seen in Figure 7.2,
are the same across all studied strategies. Therefore, it is the different operation
set-points that provide a different solution for each strategy.

Most of the parameters and input data to the MG energy scheduling problems were
taken from data obtained from Chalmers campus. The parameters included network
configuration, resource topology and resource capacity. Historical data of electricity
and heating demand, temperature, and irradiation in 2016 were used as input data.
These were treated as "perfect forecasts" by the MG energy scheduling problem. The
electricity load data, which were acquired from smart meters at campus’ buildings,
were aggregated to the corresponding network buses in order to be used as input to
the network’s power flow. The PV generation was calculated according to [169]. The
electricity prices were taken from the Nord Pool market [154] for bidding area 3 of
Sweden in 2016. The load consumption and PV generation profiles of the MGs and
the electricity prices that were used in the simulations can be found in Appendix
C.2. The grid tariffs and the reimbursement fee have been taken from the website
of the local DSO [155] and can be found in Appendix C.1.

The parameters that were especially considered for this case study can be seen in
Table 7.2. It was assumed that the micro-CHP plant has a fixed electrical power
output efficiency (rCHP = 0.25) and operates under a constant leading power factor
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Table 7.2: Parameters of the case study.

Scheduling horizon 24 hours
∆t 1 hour

ηch
m /ηdis

m 95%/95%
SoEmin

m /SoEmax
m 20%/90%

RCHP
m 0.25

KBES
m 0.5

KDR
m 0.5

of 0.96, while the load (both flexible and inflexible) has a constant lagging power
factor of 0.98. Moreover, κ = 0.5 and κDR = 0.5, while it is assumed that 20%
of the load consumption at each MG bus is available for DR at each time step i.e.,
P L,r

tm = 0.2P L
tm in (4.12). The SoE ranges between 20% to 90% and ηch

m = ηdis
m = 0.95,

which are typical values used for the BES efficiencies in similar studies [17]. The
scheduling horizon was 24 hours with an hourly time discretization step and the MG
energy scheduling problem was solved DA repeatedly for each day with a complete
input data set (in total it was 358 days).

7.3 Results and discussions

The metrics associated with the operation and cost of the MGs and the main grid
are presented in Table 7.3. The generation cost of the micro-CHP plant was entered
as a parameter to the optimal energy scheduling problem and, therefore, it is not
included in the results of MG-A because it was entered as a parameter to the optimal
energy scheduling problem.

Table 7.3: Annual cost and performance metrics.

BAU S1 S2 S3 S4
MG-A

Annual cost (k$) 104 99 110 105 104
Imported energy (GWh) 2.99 2.95 2.95 2.95 2.99
Exported energy (MWh) 337 296 0 295 329
Zero energy exchange hours 0 601 3 211 725 0

MG-B
Annual cost (k$) 243 239 239 246 243
Imported energy (GWh) 6.95 6.95 6.95 6.95 6.95

DSO
Annual cost (k$) 312 306 311 314 304
Imported energy (GWh) 28.72 28.72 29.02 28.72 28.72
Peak power (MW) 5.66 5.47 5.61 5.70 5.44
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Figure 7.3: The DER output of MG-A for the DA simulation of September 17,
2016 (comparison between S1 and S4).

7.3.1 Comparison of the costs under different strategies
As can be seen in Table 7.3, S1 reduced the cost of all three entities (MG-A, MG-B,
DSO) compared to BAU, which means that all interconnected systems benefited
from the deployment of two MG-EMSs, each seeking to optimize their respective
MG cost. The cost reduction was 2% for MG-B and DSO and 4% for MG-A. When
S2 was applied, the cost of MG-A was increased by 7% compared to BAU; however,
the self-supply level of MG-A was significantly improved. Specifically, MG-A could
operate as a virtual island and supply its customers with its own resources for 3211
hours (about 4.5 months) throughout the year.

The centrally coordinated energy scheduling (S4), yielded the most economic opera-
tion for the DSO resulting in a 2.5% reduction compared to the BAU case. However,
this solution was not optimal for the MGs, as their costs were similar to the cost of
their BAU solution. This shows that there can be a conflict between the objectives
of local and global optimization and, as a result, their solutions can yield a different
dispatch of the MG resources. As an example, Figure 7.3 shows the variation in
the scheduling pattern of the BES and DRRs of MG-A (positive values indicate
discharging and load curtailment), when S1 and S4 were applied during an autumn
day (the CHP was out of operation). In S4, the BES is only scheduled to contribute
to the system’s peak reduction (in Figure 7.3 the BES was not used for this day).
Unlike S4, the scheduling in S1 is affected by the spot price and follows its fluctu-
ation. Therefore, in this example, the BES was discharged and load was curtailed
from 13:00-14:00 at high PV production because the spot price had a high value at
that hour.

The peak load consumption of the whole distribution system was kept at its lowest
points with S1 and S4 as shown in Table 7.3, whereas S2 and S3 resulted in an
increase of 3-5% compared to S4 because with these strategies MG-A interacted less
with the upstream network. Therefore, MG-A did not contribute to reduce the peak
consumption of neighboring areas in the grid. Considering the low peak as well as
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the reduced cost for the DSO it is clear that S1, which was optimal for both MGs,
is the best option out of all the simulated strategies. However, with additional MGs
and increased local generation or with different load profiles, such as those with
rapid variations due to EV charging, it is possible that the need for coordinated MG
operation will increase.

7.3.2 Distribution system operation
After the DA simulations, power flow calculations were performed to validate that
the uncoordinated energy scheduling solutions satisfied the network constraints
(voltage limits, feeder constraints). All the simulations resulted in operation within
technical limits. It should be noted, though, that the modeled network has sufficient
feeder capacity and relatively low PV penetration level (14%). A minimum interac-
tion between the MGs and the DSO could be applied (e.g., the DSO could approve
or reject an MG schedule) to ensure that the MGs’ operation does not undermine
the operation of a distribution system.

7.3.3 Expected BES lifetime
The link between the BES scheduling of each strategy and the expected BES lifetime
was investigated using manufacturers’ data of the lifecycle loss function in relation
to the DoD, which can be found in [30], in order to evaluate the impact of cycle
aging. The rainflow algorithm [75] was used to calculate the number of half cycles
and full cycles of the BESs along with the cycle range and an average SoE. From
this information, the number of full cycles was calculated and an average DoD was
estimated.

The results showed that the proposed strategies were unsuitable for BESs with low
lifecycle (e.g., lead acid BESs), since the BES performance could not be guaranteed
for more than 5 years. They also showed that energy arbitrage and cost minimiza-
tion, whether performed locally (S1) or for the entire system (S4), increased the
number of cycles resulting in faster cycle-based BES degradation. Therefore, these
strategies should only be considered for BESs with high lifecycle (e.g., Li-ion or
NaS BESs). Table 7.4 summarizes the results and presents the estimated expected
lifetime for Li-ion BESs.

7.4 Summary
The deterministic MODEFlex model was used in this chapter to evaluate energy
scheduling strategies. In these strategies, the model could be employed by each
MG-EMS to schedule the MG resources in an uncoordinated way (only considering
local constraints/targets) or in coordination with the DSO. When the uncoordinated
scheme was used, the aim was to obtain the solution that best satisfied the opera-
tional objectives of each MG operator. With the centralized coordination scheme,
the DMS directly dispatched the MG resources to satisfy an operational target that
was applicable to the whole grid, including the MGs. The 12-kV distribution net-
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Table 7.4: BES utilization and expected lifetime for Li-ion BESs

BAU S1 S2 S3 S4
MG-A

BES cycles 67 403 153 144 317
Average DoD (%) 78.5 80 80 80 80
Lifetime in years >15 11 >15 >15 14

MG-B
BES cycles 200 400 400 0 317

Average DoD (%) 79 80 80 – 80
Lifetime in years >15 11 11 – 14

work of Chalmers University of Technology was used as a test system, where two
areas of the network were considered as grid-connected MGs. It was assumed that
the MG-EMSs interacted with the DMS before implementing the energy scheduling
solution to ensure technical feasibility.

The impact on the energy transmission and peak power cost of the DSO was evalu-
ated both for the uncoordinated and coordinated energy scheduling. The simulation
results of the study showed that, even without assuming any coordination with the
DSO, implementing local optimization to minimize the energy and peak power cost
of each MG benefited both the MGs’ and the DSO’s cost in comparison to the base
case (BAU). Further optimizing the performance of the DSO’s grid to reduce the
DSO’s operation cost would mean that the MGs’ economic benefits against the BAU
case would be removed. Therefore, simulating the MGs’ and DSO’s operation under
different strategies is of high value in order to investigate the trade-off between the
global and local optimization applied for the energy scheduling of the MG resources.
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Chapter 8

Optimal MG Flexibility Dispatch
with DSO Coordination

This chapter is based on Paper III and presents simulation results from the bilevel
optimization problem used to determine the optimal allocation and dispatch of MG
flexibility. Using the proposed framework of bilevel optimization the MGs could co-
ordinate with the DSO, which is the entity that solves the optimization problem, and
dispatch their resources based on the flexibility prices obtained from the solution. At
the end of this chapter, the value of flexibility for the DSO and the MGs is discussed
for two models of FSs considered in the bilevel optimization problem.

8.1 Aim of study
In Chapter 6, the value of flexibility was examined for different flexibility prices.
No insight was provided, however, regarding the choice of the suitable flexibility
price which determines the optimal dispatch of flexibility. This chapter further an-
alyzes the values of flexibility considering the impact of the distribution operation
and configuration, which affects the allocation and value of dispatched flexibility
provided by grid-connected MGs. The bilevel optimization framework is proposed
to calculate the optimal allocation and dispatch of the MG flexibility via coordi-
nation between the DSO’s grid operation and the operation of the MGs under the
deterministic MODEFlex model.

The aim of this chapter’s study is to investigate the changes in the dispatch of
the MG resources when the MODEFlex problem is solved assuming coordination
between the DMS and the MG-EMSs. The study also aimed to assess the value of
flexibility for both the procurer i.e., the DSO, and the FSPs i.e., the MGs.

8.2 Study approach
The performance of the proposed bilevel optimization model, which was formulated
in Section 4.4.3, is validated on the standard 33-bus radial distribution network
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Figure 8.1: The two test cases considered to investigate the value of local flexibility
and its impact on the operation of the MGs and the main grid.

described in Section 3.6.4 using the test cases presented in Figure 8.1. The provision
of local flexibility through FSs is only considered in Case B, which investigates
the relationship between the level of the flexibility price and the amount of local
flexibility mobilized by solving the bilevel optimization problem.

When the MG-EMSs coordinate their operation with the DMS i.e., in Case B, they
exchange their energy and flexibility dispatch problem formulations, input data, and
parameters. The DSO uses this information as an input to the DMS which solves
one optimization problem for all connected entities. This problem is the equivalent
single-level optimization problem derived from the bilevel optimization problem.
The DMS only sends flexibility prices signals, which are obtained by the solution of
the problem, to each MG. Since the MG resources are not directly dispatched, this
coordination is classified as decentralized, even though the optimization is performed
in a centralized manner.

8.2.1 Formulation of the optimization problems
A detailed description of the aim and features of Cases A-B (see Figure 8.1) and the
mathematical formulation of the associated optimization problems are given below.

8.2.1.1 Without FSs and DSO-MGs coordination

In Case A, each MG optimizes its energy dispatch without considering the provision
of FSs. The optimization problem solved by each MG m is given by (4.1) s.t. (4.2a)–
(4.4a), (4.6a), (4.23)–(4.40), without considering the CS conditions and ignoring the
terms cp

m, cDER
m , and rflex

m . The solution of each MG’s problem yields the profile
of the power exchanges with the distribution network (pMG,ex

tm − pMG,im
tm ), which are

entered as parameters in the AC OPF problem of the DSO given by (4.68) s.t. (4.69)
and (4.78)–(4.86) without considering the term cflex, which is solved to compute the
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DSO’s grid operation metrics and associated cost. No coordination of the grids’
operation is considered at the DSO-MGs interfaces.

8.2.1.2 Bilevel optimization with FSs and DSO-MGs coordination

In Case B, the DSO coordinates with the MGs to jointly optimize the provision of
local flexibility within the latter in order to reduce the DSO’s peak power cost while
minimizing the net cost of each MG. The problem formulations of two sub-cases are
considered within this case (see Section 4.4.3) depending on which FS is mobilized.
When the offered FS is:

• FS-B, the flexibility prices πfl,im
m /πfl,ex

m and the operation metrics of the DSO’s
grid and MGs are computed by solving the bilevel optimization problem given
by (4.68) s.t. (4.69), (4.78)–(4.86), (4.70), (4.2a)–(4.4a), (4.6a), (4.23)–(4.40),
(4.52)–(4.59), and (4.96)–(4.112) .

• FS-C, the flexibility price πfl,Cap
m and the operation metrics of the DSO’s grid

and MGs are computed by solving the bilevel optimization problem given by
(4.68) s.t. (4.69), (4.78)–(4.86), (4.71), (4.2a)–(4.4a), (4.6a), (4.23)–(4.40),
(4.61a)–(4.63a), (4.96)–(4.108), and (4.113)–(4.114).

In the above-mentioned problems, the terms cp
m and cDER

m are ignored, while the CS
conditions of the LL inequality constraints are included.

8.2.2 Simulation set-up

The considered time horizon of the study was 24 hours and the time discretization
step was ∆t = 1 hour. The flexibility was dispatched in DA for each time step of the
considered flexibility activation period, which is 16:00-20:00 i.e., a time period which
lies within the activation periods requested from small to medium-sized companies
offering flexibility in [168]. The capacity limits P Cap

m used in FS-C were 110 kW, 154
kW, and 307 kW for the MGs at buses 13, 18, and 30, respectively. Therefore, the
results presented below comment on the impact of FS-C.

8.3 Results and discussions

The results computed for the test cases presented in Figure 8.1 demonstrate the
effectiveness of the proposed DSO-MGs coordination for the provision of local flex-
ibility. The impact of this coordination on the DSO’s and MGs’ operation costs, as
they are defined by their objective function of their respective optimization prob-
lem, and the dispatch of the MG resources is also discussed. After the respective
optimization problem was solved for each test case, power flow calculations were
performed to validate that the obtained solution lied within the boundaries of the
feasible region i.e., that the voltage and feeder capacity limits were not violated.
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8.3.1 Impact on the dispatch of local flexibility resources

An example of how the dispatch of the MGs’ resources can be affected by the offered
FSs is given in Figure 8.2. The comparison between Figure 8.2(a) and Figure 8.2(b)
shows the difference in the BES dispatch within MG2 in Case B, when the MG
provides FS-C, and the dispatch in Case A, where no FS is offered. It can be seen
that in Case B, there is an additional discharge half-cycle of the BES, which occurs
at a time step within the flexibility activation period because the MG provides
flexibility to the upstream connected system. Figure 8.2(c) shows the net power,
where positive values refer to imported power of the MG, and illustrates how the
imported power of MG2 is modified in Cases A-B. Right after the flexibility period
in Case B, there is large increase in the imported power, as the earlier dispatch
of flexibility leaves time for one more BES cycle before the end of the day, which
allows the MG to benefit from energy arbitrage. It should be emphasized, however,
that having more frequent cycling of BESs can have a long term cost related to the
decrease of their lifetime due to degradation. Thus, it is important to implement
long-term studies to assess which frequency of flexibility provision is acceptable e.g.,
whether the flexibility dispatch is going to be event-based or determined by a daily
cleared market. This was also pointed out in Section 6.3.3.3, where it was shown that
smaller BESs can be more severely affected by degradation when they are utilized
to offer FSs.
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Figure 8.2: Operation of MG2: a) BES dispatch for Case A, b) BES dispatch for
Case B with FS-C, and c) net power in Case A and Case B with FS-C.
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8.3.2 Impact on the value of local flexibility
Within the study considered here, the local FSPs did not profit from the provision
of FS-B. Similarly, this FS offered no benefit to the DSO as, in Case B, no flexibility
was bought and the main grid’s cost was equal to that of Case A.

The flexibility value of FS-C depends on the choice of P Cap
m , which is affected by

the configuration of all connected grids and it should be customized for each specific
test system. In the bilevel formulation (Case B), these parameters are eliminated.
Therefore, this FS was implemented as the addition of a penalty to the objective
function of the FSPs and an income from the payment of this penalty to the objective
function of the DSO. This can be understood by setting P Cap

m = 0 to (4.71) and
(4.60). A sensitivity analysis performed about P Cap

m for Case B showed that when
P Cap

m was set to be equal to 25% of the capacity at the MGs’ connection points,
the DSO and the MGs connected at nodes 13 & 18 had a daily economic value of
flexibility of 0.2%, 0.8%, and 1.8%, respectively, of their total daily operation cost.
The MG at node 30, however, had an increased cost. Considering that the installed
BES capacity at each MG corresponded to a conservative future scenario of BES
deployment, it is possible that with the integration of more BESs, FS-C could offer
an even higher economic value and potentially benefit all connected systems.

8.3.3 Comparison of the flexibility dispatch studies
In comparison to the study of Chapter 6, the value of flexibility provided by FS-C
was significantly lower for the MGs studied in Chapter 8. This showed that the net-
work configuration layout and the coordination of multiple FSPs could substantially
reduce the value of flexibility, as the solution of the two-player game in the bilevel
optimization framework yielded a flexibility price that would not offer a significant
economic benefit to the MGs. It should be noted, however, that the flexibility price
is essentially defined by the use of local flexibility. Procuring local flexibility for the
purpose of reducing the peak power cost of the DSO’s grid offered only small bene-
fits to the cost of the DSO resulting in relatively low incentives for the FSPs in the
studies of these two chapters. Under different conditions e.g., daily variation in load
demand and local generation, and for different uses of flexibility, higher economic
values could be revealed.

8.4 Summary
In this chapter, the proposed bilevel optimization model for the coordinated oper-
ation of the MGs and the DSO’s grid was tested on the 33-bus radial distribution
network to explore the competing needs and synergies among different parties. The
linearized AC power flow equations were used in the UL problem to model the op-
eration of the DSO’s grid with the DSO acting as the leader and the MODEFlex
model was used for the MGs’ operation in the LL problem. The quantification of
the technically and economically feasible local flexibility was achieved with the in-
tegration of the models of two FSs i.e., FS-B and FS-C, in the LL optimal energy
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scheduling problem, which is rarely considered in energy scheduling studies. The
MG customers could increase their revenues by providing these FSs to the DSO.
The DSO procured flexibility from the MGs to minimize the peak power cost of
the distribution grid. The MGs implemented economic dispatch of their flexible
resources by offering flexibility to the DSO and engaging in energy arbitrage.

The simulation results showed how the proposed bilevel model altered the dispatch
of the MGs’ resources. The modified dispatch implied that certain limitations might
need to be considered with regard to the frequency of the flexibility provision. Ad-
ditional insights were given regarding the value of flexibility for the DSO and the
MGs. FS-B offered no economic value to either the DSO or any of the MGs for the
test system and simulation test case of this chapter. Contrary to FS-B, FS-C could
reduce the total cost for some parties depending on the choice of the capacity limit.
Different uses of flexibility by the DSO might reveal higher economic values offered
by the two FSs. The flexibility activation period assumed in the simulations was
between the hours 16:00-20:00.
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Chapter 9

Conclusions and Future Work

This chapter summarizes the work of the thesis and the key findings from the thesis’
studies. The derived conclusions from the simulation and demonstration results
provide answers to the formulated research questions and can be used to explain how
the MG operators and main grid operators can benefit from practical applications
of the proposed MODEFlex model. Lessons learnt from real-life demonstrations and
suggestions for future research are also provided in this chapter.

9.1 Conclusions
This thesis has dealt with energy and flexibility dispatch of grid-connected MGs by
developing the MODEFlex model. The model can be utilized for optimal dispatch of
the MG resources in an uncoordinated way i.e., only considering local constraints and
targets, or in coordination with the DSO. A BMG-EMS was designed to integrate
the developed model and employ it to demonstrate its performance on two physical
test sites i.e., the real residential buildings of HSB LL and Brf Viva, which were
treated as BMGs.

Following is a summary of what was studied in the thesis and the main conclusions
indicating the relations to the RQs formulated in Section 1.4. With regard to:

• RQ1, which was formulated to inquire about the effect of the MG energy
scheduling strategies to the DSO’s cost assuming utility restructuring, the
MODEFlex model was tested with different operational strategies and schemes
of coordination with the DSO. The impact of these strategies and coordina-
tion schemes on the cost and operation of the MGs and the DSO’s grid was
assessed considering the unbundled framework of operation with a simulation
case study based on the Chalmers distribution grid. The results presented in
Section 7.3 showed that, even without coordination, the distribution
system can benefit from the implementation of multiple MG-EMSs
that locally optimize their DA resource scheduling. The MG energy
scheduling solution that would benefit the DSO the most did not benefit the
MGs, as their cost would be the same compared to the base case. Based on
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these findings, it can be suggested that the cost difference between the opti-
mal solution for the MGs and the optimal solution for the DSO could be used
to define the remuneration that the MG owners should receive for modifying
the dispatch of their MGs’ resources in order to satisfy the DSO’s operational
targets.

• RQ2, which was formulated to investigate improvements that can be applied to
the BES model to consider real-life performance characteristics and the impact
of degradation without increasing the complexity of the MODEFlex model, two
more accurate energy dispatch models were developed i.e., Model-3 and Model-
4 given in Section 5.2.1. These models combined the measurement-based BES
model with cycle aging models dependent on throughput and DoD, respec-
tively. The incorporated measurement-based BES model can capture realistic
performance characteristics, while the cycle aging models can assess the impact
of the energy scheduling solution to the capacity of the BES. Model-3 formu-
lated an LP energy scheduling problem and Model-4 formulated an MILP
energy scheduling problem i.e., incorporating the measurement-based
model and the cycle aging models did not increase the complexity
of the MODEFlex problem. The calendar aging was also calculated after
the final dispatch decisions for a comprehensive evaluation of the degradation.

The validation of the MODEFlex model with simulations and demonstrations
at the HSB LL and Brf Viva BMGs proved the feasibility and effective-
ness of integrating a more detailed mathematical BES model to the
linear MODEFlex problem. In the demonstrations at the HSB LL in par-
ticular, there was a considerable improvement in the BES responses when the
measurement-based model was used, as compared to the BES responses when
the conventional BES model was used. As a result, the daily undelivered BES
energy over the total request was reduced from 13.3% to 3.7% at the same
time as the BES usage was increased. This result indicated a more reliable
implementation of the BES dispatch according to the measurement-
based model, as the BES could more accurately follow the schedule that
reflected the targets of the BMG operator.

• RQ3, which was formulated to investigate the impact of BES degradation
on the cost of the optimal MG energy schedule, the simulation study of the
long-term operation of the HSB LL BMG was used to evaluate the BMG’s
operation cost and BES degradation resulting from the implementatio of the
optimal BES dispatch, which was obtained from solving the developed energy
management model. The results in Section 5.3.1 showed that the proposed
Model-3 and Model-4 could reduce the annual energy and degradation
cost by up to 3.1% compared to when degradation cost was omitted from
the objective function. Moreover, it was shown that it is possible to have
more flexible limits on the SoE levels of the BES and allow more
BES capacity to be used, if these models are employed. On the other hand,
if degradation is neglected in the BES dispatch, conservative limits should be
applied to prolong the BES lifetime.
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• RQ4, which was formulated to inquire about the effect of load forecasting er-
rors on the MG’s operation costs, a comparative analysis was performed where
the developed BMG energy management model was employed in multiple test
cases investigating all possible combinations of the different optimization meth-
ods i.e., DO and SO, and solution approaches i.e., DA and RH dispatch, that
were studied in the thesis. Short-term and high-resolution load forecasts pro-
vided from ML forecasting models were used as input in each test case. The
main conclusion that can be drawn from the results presented in Section 5.3.4.2
is that, even without high computational requirements or extreme
forecasting precision, a near-optimal dispatch can be achieved with
a BMG total cost no higher than 1% of the optimal cost, which would
be the cost if the up to 12% daily MAPE of the forecasts could be eliminated.
It was also shown that more accurate forecasts could mostly contribute
to reducing the peak power cost, which was 20.2% higher than the
optimal. All ML models resulted in almost equal MG operation costs and
using simpler forecast models such as LR and simpler methods or solution
approaches such as DO or DA dispatch did not increase the associated costs.
This was a promising result, as these simplifications could be used in joint op-
eration and planning studies to simultaneously enable faster and sufficiently
accurate solutions.

• RQ5, which was formulated to investigate how the techno-economically fea-
sible MG flexibility could be assessed and which factors affect its economic
value, the detailed models of two FSs i.e., FS-B and FS-C, were separately
incorporated in the MODEFlex model. Since the MODEFlex model could
combine FS models with the energy scheduling model, it could be employed to
calculate the flexibility amount that would be both technically available and
economically beneficial. The stochastic formulation of the MODEFlex model
was used to introduce a methodology of stochastic flexibility assessment in
Chapter 6, determine the offered flexibility amount and estimate the value of
flexibility for the FSP. An analysis of the economic value of flexibility for the
DSO was performed considering multiple flexibility prices and assuming that
the flexibility is procured for peak shaving i.e., to reduce the subscription fee
of the DSO.

The dispatch of flexibility according to the bid was ensured in all simulations
for Cases A-C in the study described in Section 6.2 thanks to the RH dispatch
which was combined with the SO MODEFlex model. Thus, the payment of
penalties was avoided, which increased the economic value of flexibility for the
studied BMG. The value of flexibility was at least 56% and 7% of the
daily BMG operation cost under the considered πfl,Cap

m in Cases A-B,
respectively. These cases, unlike Case C, also benefited the DSO.

Regarding the factors that affected the economic value it was shown that
increasing the BES size did not significantly affect the daily value
of the BMG’s flexibility, however, long-term studies could give different
results, as the degradation cost was found to be smaller with the
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larger BESs. The simulations also showed that the 7.2 kWh BES could
provide more flexibility than the 14.4 kWh BES depending on the notification
time and flexibility price πfl,Cap

m , as the BMG would benefit more from using
the additional capacity of the larger BES for ESs instead of the FS.

• RQ6, which was formulated to investigate how the coordinated operation of
the DSO’s grid with multiple grid-connected MGs could be employed to achieve
optimal flexibility allocation and dispatch, a bilevel multi-follower optimization
problem was developed and its application is discussed in Chapter 8. In the
bilevel framework, the DSO acted as the leader and the MGs i.e., the FSPs,
as the followers. The DSO used the DSO-MGs’ interaction to solve the bilevel
problem and indirectly dispatch the MG flexible resources through flexibility
price signals. The bilevel model was validated on a 33-bus radial distribution
network in a study that assessed the value of local flexibility and its impact on
the dispatch of the MG resources. The results of the study showed that FS-C
could provide incentives for both the DSO and the MGs depending
on the chosen capacity limit P Cap

m . Not all MGs would necessarily benefit
simultaneously, however.

The key findings from the thesis’ studies reveal how MG/BMG owners and grid
operators can benefit from practical applications of the developed MODEFlex model.
As the simulation and demonstration results proved, the model can be used by
MG/BMG owners both for close to real-time energy management (i.e., with time
scale of 5-15 minutes), in order to reduce the expected MG operation cost in short-
term, and for long-term assessment studies such as, for example, the monthly or
annual estimation of a building’s energy cost, which can help the MG/BMG operator
choose the most economic operation strategy. Thus, the model contributes to a more
accurate estimation of the economic benefits associated with participation of the MG
customers to ESs and FSs. The model can also be used by MG operators to quantify
the MG’s flexibility potential and assess the value of the MG flexibility.

For the purpose of understanding their financial and technical benefits, system oper-
ators can use the proposed coordination schemes to assess the impact of the DSOs’
and MGs’ coordination and demonstrate the DSOs’ and MGs’ interoperability in
pilot test sites. The bilevel optimization model and the methodology of flexibility
assessment can contribute to investigate the appropriate flexibility prices or incen-
tives, for both the DSOs and the MGs, that would lead to the dispatch of the desired
flexibility depending on the system’s needs. The bilevel model, in particular, could
provide valuable info about the benefit of implementing an LFM ran by a DSO.
Finally, the computational efficiency of the MODEFlex model, even in its stochastic
formulation, confirmed that flexibility could be dispatched promptly (close to real-
time) within a day, which can contribute to the reduction of the system’s needs for
grid capacity reserves, if multiple MGs participate in the provision of FSs.
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9.2 Lessons learnt from real-life demonstrations
The demonstrations at the two demo sites validated the BES dispatch models and
showed that the measurement-based BES model that was developed for each site
was suitable for close to real-time BMG energy management. The BESs could follow
the requests that were transmitted from the BMG-EMS, as long as certain operation
conditions were satisfied. For example, it was important that the SoE limits of the
BMG-EMS would be stricter than the SoC limits of the current limiter function of
the BES DC/DC converter. Furthermore, there were additional challenges at each
demo site that affected the BES response to the power request commands.

In Brf Viva, the optimal BES dispatch could accurately be implemented for both the
conventional and the measurement-based BES model, with only negligible deviations
from the obtained solution. Nevertheless, it was not an easy task to employ the BES
scheduling models with the designed BMG-EMS, which dispatched the BESs as a
system and the power request was equally divided to all BESs. Each BES could
end in a different SoC level and this problem was intensified by a maintenance
function implemented by each BMS. Therefore, the demonstration at the Brf Viva
buildings was only possible after temporarily deactivating this function. Otherwise,
the system of BESs would only reliably deliver the rated power within a much
stricter SoE range, which was approximately 40%-70%, than the range allowed by
the current limiter function, which was 27%-80%.

The results in the HSB LL BMG also showed very good response of the BES. Larger
charging requests were not always met, due to the SoH of some battery cells. This
is why the value of using the measurement-based model was more evident for this
demo site. To improve the performance of the conventional BES model, the BMG
operator would need to impose additional charging power limits, which would limit
the BES in the whole operational SoE region.

Apart from the accuracy of the BES scheduling models, there are several other
factors that may influence the results and the expected costs of the applied BES
schedule. One of these factors is the forecast models that are integrated in the
BMG-EMS. These models should forecast the load, PV generation, the electricity
price (if necessary) with small errors to ensure an accurate cost estimation of the
implemented energy scheduling solution. Another factor is the BES degradation
model and the considered BES stress factors and degradation parameters. The
degradation model and parameters may vary for each specific BES type. Moreover,
degradation impacts the performance of the BES, which means that the parameters
of the measurement-based BES scheduling model might have to be re-adjusted.

9.3 Future research
In this thesis, the MG energy management was studied with an emphasis on BES
flexibility. Although the BES modeling and degradation was studied in greater
detail than the majority of the literature on MG energy management, there are still
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areas that require further research. Moreover, the accuracy of the estimated aging
can vary depending on the BES chemistry. The aging models used in this thesis
might not be applicable to all Li-ion BESs and it is therefore advised that tests with
different aging models are conducted to further guarantee the benefits in terms of
cost reduction for the BMG.

Apart from the accuracy of the mathematical model of the BES, the forecasting
errors associated with the input data to the MG-EMS could also influence the results.
The thesis studied the effects of short-term and high-resolution forecasting errors of
the load profile. The impact of errors of similar types of forecasts should also be
investigated for other inputs to the MODEFlex model. Moreover, the forecast error
distribution over the time horizon should be modeled in greater detail for a more
accurate uncertainty representation in scenario-based SO.

The thesis also studied the interaction between grid-connected MGs and the DSO
considering two FS models for flexibility dispatch. Coordination of multiple BES-
based MGs or BESs with the control devices of the main grid is a very interesting
research area, as existing approaches have so far been using the conventional BES
model and neglecting the impact of degradation. It would also be useful to study
other types of MGs (e.g., MGs that are based on different resources) and also differ-
ent configurations of distribution systems with multiple interconnected MGs. If the
research gaps that were identified during the work of this thesis are further explored,
there will be a deeper understanding of the benefit of BES flexibility both for the
MG owner and for the DSO.

Studies with different BES sizes, in particular, should be conducted to explore ad-
ditional values of flexibility offered with either FS. Furthermore, the bilevel model
could easily be modified to be tested with higher time resolution (i.e., intra-hour
dispatch of flexibility) and different time horizons to increase understanding of the
system’s flexibility. However, it should be noted that the high computation time
will introduce limitations, which would most likely have to be addressed by reducing
the optimality gap i.e., by potentially accepting sub-optimal solutions.

Following are some topics, which are suggested for future research:

• The use of the measurement-based model resulted in a more reliable implemen-
tation of the BES scheduling model and simplified the MODEFlex problem.
Thus, advanced AC OPF models with fewer relaxations, such as the second-
order cone programming (SOCP) BFM, can be used for the distribution net-
work operation, when coordination between the DSO’s grid operation and the
MG operation is considered. As a result, this coordination can further be
developed to consider dispatching the MG energy and flexibility for other pur-
poses such as network loss minimization. Another suggestion is to coordinate
the operation of distribution grid components and MGs’ resources. For exam-
ple, it would be particularly interesting to study the benefits of coordinating
the operation of on-load tap changers with the dispatch of BESs.

• Future research should expand the MODEFlex model to include the cost of
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calendar aging. This can be a challenging task, especially when the MODEFlex
model is formulated as an MILP model e.g., Model-4 in Section. 5.2.1, as more
integrality constraints will have to be added to the MILP problem in order
to incorporate the calendar aging cost. Even when the MODEFlex model
incorporates linear models to calculate cycle-based degradation such as e.g.,
Model-3 Section 5.2.1, it is expected that integrality constraints cannot be
avoided altogether, if the optimization problem is to account for the impact
of DoD of each BES cycle, which is a requirement for an accurate assessment
of calendar aging.

• The MODEFlex model should also be applied for the island operation mode,
where the MG’s cost minimization should consider seamless transition between
the grid-connected and island mode of operation. The trade-off between MG
resiliency and cost minimization is a very interesting subject, as these two
objectives are expected to result in different utilization of the MGs’ resources,
especially of the BESs.

• Future studies can explore the effects of short-term and high-resolution PV
forecasting errors on the optimal solution of the MODEFlex problem when ML
models are used to obtain the forecasts. Note that the development of such
models would be quite different in comparison to the ML models that were used
for the short-term and high-resolution load forecasting in the thesis. Different
ML techniques and training data would have to be employed, as short-term PV
forecast is all the more based on sky imagery mechanisms [170]. It would also
be interesting to study multiple time-scale scheduling horizons and investigate
which horizon length and which time scales would be suitable to minimize the
effects of the forecasting errors in close to real-time MG energy and flexibility
dispatch. Finally, the effect of the forecast errors may also be studied for MGs
with different mix of resources to analyze whether the forecasting accuracy
requirements should variate depending on the MG system.

• The MODEFlex model could also be extended to study other revenue streams
and quantify the BES degradation induced by each BES service. It would be
valuable to compare revenue streams and assess the economic benefits of both
portable and stationary BESs as flexible energy resources for a BMG owner.
Second-life applications of BESs should also be considered. Participation of
residential BESs in frequency regulation would be an interesting topic for
future research, although it should be noted that frequency regulation is more
practical at the aggregated level, due to minimum capacity requirements [76]
and because it depends on signals from the grid operator [171], which would
complicate the control of multiple small-scale BESs.

• Future studies could apply the versatile methodology for flexibility assessment
and dispatch proposed in the thesis to a wide range of case studies that can
employ the MODEFlex model with different selected time horizon lengths
and flexibility activation periods, as these factors are a significant part of
the flexibility evaluation. For example, the MODEFlex model with minor
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modifications can be used to derive the bidding curve of the MG in case the
DSO operates an LFM to procure flexibility. In addition, it could be used
in a bilevel optimization framework for distribution grid expansion planning,
which could reveal additional values of flexibility for the FSPs and the DSO.

• Reinforcement learning could be used to develop a model for optimal allocation
and dispatch of flexibility using decentralized coordination, like the bilevel
optimization problem, avoiding at the same time the centralized optimization
at the DSO level which requires full information regarding MGs’ resources and
operational targets.
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Appendix A

Abstracts

This appendix presents the abstracts of the publications which were listed in Section
1.7. The numbers below correspond to the numbers given for each paper in the same
section.

• Paper I: Effect of short-term and high-resolution load forecasting errors on
microgrid operation costs
The aim of this paper is to evaluate the effect of the load forecasting er-
rors to the operation costs of a grid-connected microgrid. To this end, a
microgrid energy scheduling optimization model was tested with determinis-
tic and stochastic formulations under two solution approaches i.e., day-ahead
and rolling horizon optimization. In total, twelve simulation test cases were
designed receiving as input the forecasts provided by one of the three imple-
mented machine learning models: linear regression, artificial neural network
with backpropagation, and long short-term memory. Simulation results of the
weekly operation of a real residential building (HSB Living Lab) showed no sig-
nificant differences among the costs of the test cases for a daily mean absolute
percentage forecast error of about 12%. These results suggest that operators of
similar microgrid systems could use simplifying approaches, such as day-ahead
deterministic optimization, and forecasts of similar, non-negligible accuracy
without substantially affecting the microgrid’s total cost as compared to the
ideal case of perfect forecast. Improving the accuracy would mainly reduce
the microgrid’s peak power cost as shown by its 20.2% increase in comparison
to the ideal case.

• Paper II: Scenario-based stochastic optimization for energy and flexibility
dispatch of a microgrid
Energy storage is one of the most important components of microgrids with
non-dispatchable generators and can offer both energy and flexibility services
when the microgrid operates in grid-connected mode. This paper proposes a
scenario-based stochastic optimization model that can be used to determine
the energy and flexibility dispatch of a residential microgrid with solar and
stationary battery systems. The objective of the model is to minimize the
expected energy and peak power cost as well as the battery aging cost, while
maximizing the expected revenue from flexibility. The formulated stochastic
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A. Abstracts

optimization problem is solved in rolling horizon with the uncertainty model
being dynamically updated to consider the most recent forecast profiles for so-
lar power and electricity demand. The benefits of the proposed approach were
demonstrated by simulating the daily operation of a real building. The results
showed that the estimated flexibility was successfully dispatched yielding an
economic value of at least 7% of the operation cost of the building microgrid.
The model can be used by flexibility providers to assess their flexibility and
design a bidding strategy as well as by system operators to design incentives
for flexibility providers.

• Paper III: Values and impacts of incorporating local flexibility services in
transmission expansion planning
This paper presents a cost-based TSO-DSO coordination model to quantify the
value of local flexibility services and analyze its impact on the transmission
grid expansion and the system operation. Flexibility is provided to the DC
power flow transmission grid model by microgrids within the integrated AC
power flow distribution grid model. The model’s objective is to minimize
the overall cost of transmission investments and procured flexibility and is
achieved using a bilevel optimization approach where the power exchanges on
all connected grid interfaces are controlled. Case studies using a combined
test system of the IEEE RTS-96 transmission network interfacing multiple 33-
bus distribution grids were performed to validate the model and assess the
values and impacts of local flexibility on the transmission system expansion.
The results showed that the proposed model modified the investment plan and
dispatch of flexibility resources reducing the investment and operation cost of
the transmission system.

• Paper IV: Market-based energy management model of a building microgrid
considering battery degradation
This paper presents a model for energy management system of a building mi-
crogrid coupled with a battery energy storage. The model can be used to
dispatch the battery as a flexible energy resource using a market-based set-
ting. The battery is modeled considering battery degradation and real-life
operation characteristics derived from measurements at a residential building.
The performance of the model was evaluated first with simulations and inte-
grated afterwards to an energy management system, which was demonstrated
at a real residential building (HSB Living Lab) equipped with photovoltaic
and battery storage systems. The simulation results showed that the build-
ing owner, and subsequently the residents, could benefit from the proposed
model in reduced annual cost up to 3.1% under the considered pricing scheme.
The demonstration results showed that dispatch under the measurement-based
model could decrease the undelivered energy over the daily requested amount
from the battery from 13.3% to 3.7%. Thus, the proposed model, which cou-
ples the measurement-based dispatch with battery degradation, can lead to
a more accurate estimation of the building operation cost and an improved
overall performance of battery as a flexible resource in building microgrids.
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• Paper V: Energy scheduling strategies for grid-connected microgrids: A
case study on Chalmers campus
This paper focuses on the optimal energy management of grid-connected mi-
crogrids with battery energy storage systems. The microgrid energy manage-
ment and the optimal power flow of the distribution network are formulated
as mixed-integer linear optimization problems to evaluate microgrid energy
scheduling strategies including cost minimization, maximum use of own re-
sources, and minimum energy exchange with the upstream network. The real
distribution network of Chalmers University of Technology campus is used as
a case study. The study results show that economic optimization yields an an-
nual microgrid cost reduction of 4%. Alternatively, if the microgrid minimizes
the energy exchange, virtual islanding operation (zero energy exchange) for
3211 hours can be achieved within a year. The results also present the effects
on the operation and cost of the distribution system and highlight a trade-off
between microgrid cost minimization and battery lifetime.

• Paper VI: Chalmers campus as a testbed for intelligent grids and local
energy systems
This paper presents an overview of a testbed for intelligent distribution grids,
local energy systems, and energy flexible buildings, which is being developed
at the campus of Chalmers University of Technology in Gothenburg, Sweden.
It describes the test sites, the functionalities, and the planned demonstration
activities within the scope of on-going research projects. The proposed demon-
strations include a local energy market platform, energy management solutions
for microgrids and smart buildings, as well as voltage control in distribution
grids. The paper aims to show how the physical energy supply systems of the
university are being adapted to integrate the communication and control set-
ups that provide the technical requirements for smart grid interoperability. As
an example, the on-site implementation of remote battery control is presented,
where initial results show the feasibility and potential benefits of the external
control. Finally, challenges and lessons learned during the development of the
testbed are highlighted.
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Appendix B

Software

Expect for the bilevel optimization model, all other optimization models were de-
veloped in GAMS [126], where the interface with the CPLEX optimizer [172] was
used to solve the formulated optimization problems on a PC with 4.2 GHz Intel(R)
Core(TM) i7-7700K CPU and 64 GB of RA. A GAMS to MATLAB [125] interface
was also used to set up the simulations i.e., prepare the input data, run GAMS, and
save the results. In scenario-based SO, a mix of fast backward/forward methods
in the SCENRED tool of GAMS was used after the scenario generation to create a
reduced number of scenarios.

The bilevel optimization model was developed in Pyomo 6.0.1. interfacing the
Gurobi 9.1.2 optimizer and Python 3.9.4, which was used to set up the simula-
tions. The bi-level optimization problem was solved on a computer with a 3.40 GHz
Intel Core i7-10875H processor and 32 GB of RAM.
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Appendix C

Input Data for the Test Cases

This appendix presents the input data that were used in each test case. These
include load consumption, PV generation, and electricity prices. The electricity
prices are presented in USD, where the average 2018 USD to SEK ratio was used,
which is 1:8.6921.

C.1 Network tariffs and fees

The energy and power grid tariffs as well as the reimbursement fee that have been
used in the studies of the thesis can be seen in Table C.1. The power grid tariffs are
scaled down in each study to apply to the chosen time horizon.

C.2 Electrical distribution system of Chalmers Uni-
versity of Technology

Fig. C.1–C.3 show the load consumption and PV generation profiles of the Chalmers
distribution network, MG-A, and MG-B, respectively. The electricity prices that
were used in the case study are shown in Fig. C.4.

Table C.1: Network tariffs and fees.

MG company
Energy transmission cost (¢/kWh) 0.8
Peak power tariff ($/kW/month) 5.0
Reimbursement fee (¢/kWh) 0.3

10 kV distribution grid
Energy transmission cost (¢/kWh) 0.4
Peak power tariff ($/kW/month) 4.3
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C. Input Data for the Test Cases
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Figure C.1: Load consumption and PV generation in 2016 of the electrical distri-
bution system of Chalmers University of Technology.
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Figure C.2: Load consumption and PV generation of MG-A.
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Figure C.3: Load consumption and PV generation of MG-B.
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Figure C.4: Electricity prices of the case study on the electrical distribution system
of Chalmers University of Technology (Nordpool spot market prices in 2016).
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Figure C.5: Building load consumption and PV generation at HSB LL (2018).

C.3 HSB Living Lab

Fig. C.5 shows the HSB LL building load consumption and PV generation in 2018
(where that the profiles are interrupted, it means that data was unavailable), which
were used as input to the simulation studies. The input data to the simulation
studies also include the 2018 Nordpool spot market prices, which are shown in Fig.
C.6.

Fig. C.7 shows the building load consumption and PV generation that was used as
input to the BMG-EMS of HSB LL in the demonstrations. The load and PV gen-
eration profile corresponds to the first scheduling horizon, when the demonstration
started. As the RH approach was used, the input changed every ∆t minutes. For
the HSB LL demonstration it was ∆t = 15 minutes. The electricity prices that were
used in the demonstrations are given in Fig. C.8.
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Figure C.6: Electricity prices used as input in the simulation studies of HSB LL
(2018).
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Figure C.7: Daily building load consumption and PV generation at HSB LL
(February, 2020).
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Figure C.8: Electricity prices used as input in the demonstrations at HSB LL
(February, 2020).
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Figure C.9: Building load consumption and PV generation at Brf Viva (February,
2020).
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Figure C.10: Electricity prices used as input the simulation studies and demon-
strations at Brf Viva (February, 2020)

C.4 Brf Viva
Fig. C.9 shows the building load consumption and PV generation that was used as
an input to the Brf Viva test case (both in simulations and demonstrations). An
error was introduced in these input data to account for the effect of the forecast
error. The load and PV generation profiles correspond to the inputs used for the
first 24-hour scheduling horizon, when the demonstration started (at time 09:30).
As the RH approach was used, the input changed every ∆t minutes. For the Brf
Viva simulations and demonstrations it was ∆t = 5 minutes. The electricity prices
that were used are given in Fig. C.10.
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