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Triple negative breast cancer (TNBC) metastases are assumed to exhibit similar func-
tions in different organs as in the original primary tumor. However, studies of metasta-
sis are often limited to a comparison of metastatic tumors with primary tumors of their
origin, and little is known about the adaptation to the local environment of the meta-
static sites. We therefore used transcriptomic data and metabolic network analyses to
investigate whether metastatic tumors adapt their metabolism to the metastatic site and
found that metastatic tumors adopt a metabolic signature with some similarity to pri-
mary tumors of their destinations. The extent of adaptation, however, varies across dif-
ferent organs, and metastatic tumors retain metabolic signatures associated with
TNBC. Our findings suggest that a combination of anti-metastatic approaches and
metabolic inhibitors selected specifically for different metastatic sites, rather than solely
targeting TNBC primary tumors, may constitute a more effective treatment approach.

triple negative breast cancer | metastasis | gene expression | genome-scale metabolic models |
systems biology

The most aggressive subtype of breast cancer is basal-like triple negative breast cancer
(TNBC), which is associated with a poor prognosis, invasiveness, early relapse, and dis-
tant metastasis. Since TNBC tumors do not express progesterone receptor, estrogen
receptor, or human EGF receptor-2 (HER2), they will not respond to hormonal ther-
apy or medicines that target HER2 (1, 2). Therefore, available effective therapies for
basal TNBC are still very limited. The main cause of death in patients with TNBC is
metastasis, which allows tumor cells to migrate from the primary site into the circula-
tory system and invade and colonize other organs. During the metastatic process,
cancer cells are faced with significant challenges in their new microenvironments,
which they must overcome to survive (3). The ability of tumor cells to overcome these
unique barriers and to meet biosynthetic and bioenergetic demands during the meta-
static cascade is critical for successful colonization in other organs, yet remains poorly
understood.

Metabolic reprogramming is known to be a general strategy of cancer cells to obtain
nutrients from nutrient-deprived environments and to sustain their transformed state,
promoting survival and uncontrolled proliferation (4). While the impact of metabolic
reprogramming on the metastatic process is poorly understood, accumulating data sug-
gest that metastatic cancer cells must prioritize different metabolic programs distinct
from the primary tumor (TP) to survive during each step of the metastatic process and
successfully colonize (5). Moreover, different metastatic sites can pose distinct meta-
bolic challenges to the tumor cell, and meeting the metabolic demand of these host
organs is crucial to maintain tumor cell proliferation (6). Understanding the mecha-
nisms of molecular and metabolic plasticity in metastatic cancer cells may reveal clinical
approaches to treat metastatic disease.

We therefore performed an analysis of RNA sequencing (RNA-seq) data from
TNBC TPs, paired distant metastases in six different tissues, and TPs of these six tis-
sues together with RNA-seq data from healthy tissue data obtained from Genotype-
Tissue Expression (GTEx) to systematically investigate the tissue-specific characteristics
of metastatic tumors (TMs). We conducted a comprehensive analysis of RNA-seq pro-
files from these TMs, their matched TPs, and healthy tissues, including batch correc-
tion, dimensionality reduction, clustering, deconvolution analyses, and gene set analysis
(GSA), to study their characteristics. We then reconstructed their metabolic networks
to investigate the metabolic features of TNBC metastatic tumors (TNBC-TMs) and
compared them with those of TPs of the destination tissue. Our analysis showed that
TNBC-TMs express a metabolic network that is in an intermediate state between TPs
of the tissues of their origin and their destinations. Our metabolic network analysis also
showed that each of the metastases had specific reactions that were not active in either
their tissue of origin (TNBC TP) or metastatic site. Furthermore, our cross-tissue
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metabolic analysis allowed us to identify significantly changed
metabolic pathways in cancers that may be considered as poten-
tial therapeutic targets.

Results

Integrative Analysis of TP, Metastatic, and Healthy Tissue
Transcriptome Profiles. We obtained RNA-seq count data
from the Gene Expression Omnibus GSE110590 dataset for
different cancer subtypes and their associated TMs (7). Samples
with basal-like subtype of TNBC and their paired TMs in six
different distant tissues (brain, lung, liver, lymph node, adrenal
gland, and skin) were selected for this study (S/ Appendix, Table
S1). Throughout this paper, “breast-TP” refers to the basal-like
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subtype of TNBC. We also retrieved transcriptome profiles from
The Cancer Genome Atlas (TCGA) for TPs and paired adjacent
normal tissue (NT) samples corresponding to the tissues of ori-
gin and destination of the GSE110590 dataset. Healthy tissue
profiles associated with the six TMs as well as breast were col-
lected from the GTEx database (8). Our study therefore involved
a comparison of metastatic TNBC transcriptomes with TPs,
paired-normal, and healthy tissues corresponding to the TMs’
tissue of origin (breast) and destinations (Fig. 14). The collected
count data from these three different sources were normalized
and combined along their common genes. To reduce variation
between datasets, we used log-transformed quantile-normalized
transcript per million (TPM) in an empirical Bayes framework
(9, 10). The resulting expression distributions and relative log
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Comparison of basal TNBC metastatic and primary tumors, healthy tissues, NTs, and other TPs. (A) Study design. From GSE110590, we extracted

only samples for basal-TNBC subtype including TPs (breast-TPs) and metastases in brain, lung, liver, lymph node, adrenal gland, and skin (TNBC-TMs) and
matched them with the TPs of their metastatic organs and their associated NT adjacent to the tumor from TCGA and healthy tissues from GTEx. We per-
formed identical processing of all samples to obtain TPM values. We then utilized several techniques to characterize the differences between TNBC-TMs,
breast-TPs, and the TPs of the metastatic sites across tissue types. (B) General overview of integrated datasets using HHK clustering on median TPM values
of each gene among all samples for each condition. The dendrogram is colored based on the optimal number of clusters as determined from the silhouette
plot. BRCA represents breast invasive carcinoma; ACC, adrenocortical carcinoma; Ad, adenocarcinoma; Adrenal G., adrenal gland; PCPG, pheochromocytoma
and paraganglioma; Sc, squamous cell carcinoma. (C) UMAP plot of all samples in the combined dataset. Points are colored by the associated tissue, and the

shape of each point represents the condition: healthy tissue (HT), TM, TP, or NT.
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Fig. 2. Intermediate state of TNBC-TMs between breast-TPs and TPs of the metastatic organs. (A) PCA plot for breast-TP and the associated TM in distinct
tissue types. In all three groups, TM samples (maroon) lie between breast-TP samples (pink) and the TP samples of their metastatic organs and are closer to
TPs of their metastatic organs. (B) Deconvolution analysis of the TNBC-TM samples using median expression levels of breast-TPs and TPs of the metastatic
destination tissues as references. The result of the analysis is the fraction of similarity of each TM sample (maroon) to the TPs of the destination tissue.
A value of 1 on the y axis indicates the maximum proportion of “destination tissue_TP contribution”, meaning maximum similarity to median expression lev-
els of “destination tissue_TP” as reference, and 0 indicates the minimum proportion of “destination tissue_TP contribution.” Boxplot represents the distribu-
tion of the proportion of “destination tissue_TP contribution” for TMs. The points, breast-TPs (pink), and TPs of the tissue of destination (colored by cancer
type) deconvolution fractions are shown as references. AdrenalG., adrenal gland; BRCA represents breast invasive carcinoma.

expression analysis (11) of TPM and batch-corrected TPM
showed that these three datasets from different resources can be
analyzed jointly after normalization followed by batch effect
removal and that the resulting batch-adjusted TPM of a gene
was comparable across different samples (SI Appendix, Figs. S1
and S2).

To obtain a general overview of the integrated data, we per-
formed Hybrid Hierarchical K-means (HHK) clustering (12, 13)
on the gene expression profiles of all the conditions. The esti-
mated optimal number of clusters by the silhouette coefficient
(14) was used in the HHK algorithm for cutting (coloring) their
associated dendrograms (Fig. 1B and SI Appendix, Fig. S3). The
clustering dendrogram of median TPM across groups and also
the uniform manifold approximation and projection (UMAP)
(15) plot of all samples in the integrated dataset resulted in clus-
tering by tissue and cancer type, showing that both metastatic
and primary tumors are more similar to their surrounding tissue
than to other tumors (Fig. 10).

TNBC-TMs Exhibit Characteristics of Both Their Tissue of
Origin and Their Destination. We next performed dimensional-
ity reduction analysis for each metastatic tumor and TPs of the
origin and the destination tissues. Principal component analysis
(PCA) showed that TMs formed a distinct cluster much closer to
TPs of the tissues of destination, while the two TP groups were
clearly separated (Fig. 24). This trend was observed for all the
TM samples in brain, lung, and liver that had more than three
metastatic samples. Thus, this analysis suggests that the expression

PNAS 2022 Vol. 119 No.35 2205456119

profiles of TMs represent an intermediate state between TPs
from the tissue of origin and the tissue of destination, with a pro-
file closer to that of the destination tissue TP. To further investi-
gate this phenomenon and quantify the similarities, we applied a
deconvolution analysis pipeline (16) using median expression lev-
els of TPs from the TMs’ tissue of origin and destination as refer-
ences to quantify the “TP_origin:TP_destination” fraction for all
metastatic samples. The result revealed substantial similarities
among TMs and TPs of their destinations, although the trends
of divergence from their tissue of origin varied across different
metastatic sites (Fig. 2B). Reducing the number of signature
genes used in the deconvolution analysis led to an increase in
similarity between each of the TM profiles and TP profile of their
destination tissue (S/ Appendix, Fig. S4A). To assess whether infil-
trating cells were responsible for the trend of divergence, we per-
formed a Pearson correlation analysis between TM purity scores
and their distances to breast TP. The analysis did not show any
significant correlation between purity and the distance to the
median expression level of breast TP as reference (SI Appendix;
Fig. S4B).

Although the comparability of genes across the final inte-
grated dataset was validated, the small number of metastatic
samples in each destination tissue and the use of different
resources for metastatic and primary tumors are potential limi-
tations of the analysis. Therefore, the skin cutaneous melanoma
(SKCM) cohort, as the only cancer in the TCGA project that
is focused on metastatic cases, was used to validate our findings.
We retrieved samples of distant metastases to the adrenal gland,
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brain, lymph nodes of the axilla, and lymph nodes of the head,
face, and neck because these tissues were associated with larger
sample sizes than the other distant metastatic regions and their
sites of biopsy were similar to TP samples of the same tissue in
TCGA. The aggregated samples were then normalized to allow
comparison across datasets (SI Appendix, Fig. S5 A and B). A
similar deconvolution analysis as described above was used to
evaluate the similarity of SKCM TM expression profiles to
those of TPs from their origin and destination tissues (S/
Appendix, Fig. S5C). As was observed in the previous deconvo-
lution analysis, reducing the number of signature genes used in
the deconvolution increased the similarity between each of the
TM profiles and the TP profile of their destination tissue (57
Appendix, Fig. S6A). These analyses also showed that melanoma
distant metastases to lymph nodes maintained more similarities
to their tissue of origin, suggesting a tumor-specific behavior
for adaprtation to metastatic sites. We repeated the Pearson cor-
relation analysis between purity of TMs and their similarities to
the median expression level of TPs of the host tissue. Lymph
node-axilla TMs were selected due to a larger sample size, and
the results did not show any significant correlation between
immunohistchemistry (IHC) purity and similarity to the
median expression level of TPs of the host tissue (87 Appendix,
Fig. S6B). The SKCM cohort analysis further supports the
divergence of TMs from their tumors of origin.

Gene Signatures and Biological Processes Differentiate TMs
from Their Tissue of Origin. To further investigate the features
that define the divergence between TNBC-TMs and their origi-
nal TPs, we performed differential expression (DE) analysis
(17) between the TM profiles (grouped by destination tissue)
and the breast-TPs. DE analysis was performed for TNBC
metastases to brain, liver, and lung, while metastases to adrenal
gland and lymph node were excluded from this analysis because
the number of samples was too low to achieve sufficient statisti-
cal power. The results showed widespread similarities in overex-
pressed and underexpressed genes across TNBC metastases to
brain, liver, and lung. We identified 64 and 148 genes that
were commonly overexpressed and underexpressed, respectively,
in all TM profiles relative to breast-TPs (p,qj < 0.01 and
[logofold change (FC)| > 1) (Fig. 34). However, each of the
TM groups had specific over- and underexpressed genes that
were not differentially expressed in either of the other groups
relative to breast-TPs, suggesting an organ-specific adaptation
of metastatic breast cancer cells when they colonize in their dis-
tant metastatic sites. The most changes in terms of differentially
expressed genes (DEGs) relative to breast-TPs were seen in
TNBC metastases to the brain. Patterns of gene expression
among the specific over- or underexpressed genes for each of
the TNBC-TM types showed that the expression pattern of
TMs tended to be more similar to that of their tissues of desti-
nation than to their tissue of origin, particularly with TPs from
the destination tissue (Fig. 3B).

To further understand the processes associated with the
divergence between breast-TPs and their associated metastases
to brain, lung, and liver, we performed directional and nondir-
ectional GSAs (18) of the DE analysis results using the Kyoto
Encyclopedia of Genes and Genomics (KEGG) and hallmark
gene set collections (19). The directional GSA results revealed
robust enrichment of metabolic pathways (xenobiotic metabo-
lism, oxidative phosphorylation, fatty acid metabolism, bile
acid metabolism, and retinol metabolism) and immune
response functions (complement system and coagulation) in
metastatic tumors compared to breast-TPs (Fig. 3C). In

https://doi.org/10.1073/pnas.2205456119

contrast, gene sets related to proliferation processes, signaling
pathways, and the inflammatory response were significantly
enriched in breast-TPs, such as G2M checkpoint, E2F targets,
MYC targets, mitotic spindles, tumor necrosis factor (TNF)-a
signaling, interferon responses, allograft rejection, and the
unfolded protein response pathway, suggesting that genes asso-
ciated with these pathways are down-regulated across metastatic
tumors. When the direction of gene expression changes in the
GSA was ignored (nondirectional), fewer gene sets were found
to be significantly enriched in DEGs and were primarily associ-
ated with brain and liver metastases. Furthermore, metabolic
pathways accounted for the most significant changes in TMs
relative to TPs of their tissue of origin, although the extent and
direction of these changes were adjusted specifically to the dif-
ferent metastatic sites (Fig. 3D and S/ Appendix, Fig. S7). Gene
sets associated with estrogen responses, which are signatures of
breast cancers, were also underexpressed in TMs in comparison
with breast-TPs, suggesting that TMs lose some of the defining
characteristics of their parental tumors.

The other processes enriched in breast-TPs compared to metasta-
ses were associated with metastasis and the epithelial-mesenchymal
transition (EMT), representing the early stages of the metastatic
cascade. Other enriched signaling pathways and processes were
MYC (20, 21), interleukins and their associated pathways
(22, 23), interferon-a and -y responses (24), the JAK-STAT3
pathway (25, 26), and TNFa and the signaling factors and tran-
scription factors activated by TNFa (27). These pathways are
considered key to the induction of invasion and metastasis in
tumor cells. The protein secretion gene set and unfolded-protein
response, which is associated with endoplasmic reticulum stress
(28), were also enriched in breast-TPs versus TNBC-TMs.
Enrichment of these signaling pathways and processes correlated
with the enrichment of EMT and cell-cell junction and extracel-
lular matrix—associated gene sets, reflecting the interplay of these
pathways with feed-forward and feed-back loops to regulate plas-
ticity of the EMT in tumor cells during metastasis (29).

In addition to the significant enrichment of EMT-associated
processes in breast-TPs versus TNBC-TMs, expression of genes
associated with metabolic pathways including glycolysis, bile
acid metabolism, xenobiotic metabolism, and oxidative phos-
phorylation (OXPHOS) were also changed. The enrichment of
EMT correlated with the enrichment of glycolysis in breast-
TPs, whereas OXPHOS was enriched in TNBC-TMs. This
observation supports the hypothesis that metabolic reprogram-
ming and the metastatic cascade are linked to promote the
stages of cancer progression and metastasis.

EMT-associated transcription factors orchestrate profound
metabolic reprogramming that allows tumor cells to survive in
an ever-changing microenvironment, though accumulating evi-
dence suggests that the relationship between EMT and metabo-
lism is mutual, and under some conditions such as hypoxia and
nutrient deprivation, metabolic changes can promote EMT
(30) and start the metastatic cascade. For example, increased
expression of hexokinase 2 (HK2), which catalyzes the irrevers-
ible reaction of glucose to glucose-6-phosphate as the first rate-
limiting step of glycolysis, can facilitate EMT by decreasing the
pH of the tumor microenvironment, activating intracellular
signaling including snail/ERK2, and up-regulating matrix met-
alloprotease activity (31). Increased expression of lactate dehy-
drogenases (LDHs), which convert pyruvate to lactate, induce
lactate accumulation in the tumor microenvironment (32).
Extracellular lactate would acidify the tumor microenvironment
and facilitate matrix degradation (33) and immune evasion
(34), resulting in migration and mobility of tumor cells. Both
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Fig. 3. Divergence of TNBC-TMs from breast-TPs based on DEGs and GSA. (A) Venn diagrams of the number of common and specific over-expressed genes
(red) and under-expressed genes (blue) in TNBC-TMs compared with breast-TPs. (B) Heatmap of differentially over- and under-expressed genes of each
metastasis. DEGs of each of the TMs distinct from the other metastases were combined, and the final subset of genes was extracted from breast-TP and
TPs of the tissue of metastatic sites and their matched healthy tissues for brain, liver, and lung. The pattern of expression is similar to the tissue of destina-
tion in both under-expressed (Left) and over-expressed (Right) genes. (C) Results of the directional GSA of DE analysis results for TNBC metastases in lung,
liver, and brain versus paired breast-TPs. Only the Hallmark gene set collection is shown here, and sets with <10 genes were excluded. The more significant
(lower value) of the two directional P values for each gene set is shown in the heatmap as a logjo-transformed value. The distinct directional gene set
P values (pagj.dist.dir) are calculated for coordinated increases (Padj,dist-dir-up) @Nd decreases (Pag;dist-dir-down) iN €xpression. The value is also “signed,” meaning
that gene sets with a more significant decrease than increase (Pagjdist-dir-down < Padjdist-dir-up) @re negative (enriched in breast-TPs); otherwise, they are posi-
tive (enriched in TNBC-TMs). Only gene sets with a pagjdistair €SS than 0.01 in at least one TM are shown. (D) Nondirectional GSA results for three comparisons.
The “p.non.directional” value for each gene set is filtered based on non.dir P values less than 0.01 and shown in the heatmap as a logio-transformed P value. HT,

healthy tissue; IL, interleukin; NFxB, nuclear factor kB; UV, ultra violet; UVresponse-DN represents genes down-regulated in response to UV radiation.

HK2 and LDHA/B were underexpressed in TNBC-TMs rela-
tive to breast-TPs, which supports metastatic colonization,
including seeding, formation of tumor cell-matrix interactions,
extracellular matrix remodeling, and finally, outgrowth (87
Appendix, Fig. S8A). Metastatic colonization in distant organs
relies on increased adenosine 5'-triphosphate (ATP) production
through the mitochondrial OXPHOS pathway to sustain high
proliferative capacities of tumor cells (35, 36). For example,
NDUFBS8 and NDUFS7, which are subunits of the mitochon-
drial membrane respiratory chain reduced nicotinamide-
adenine dinucleotide dehydrogenase (Complex 1), and
SLC25A4 as a mitochondrial adenosine 5’-diphosphate/ATP
transporter were overexpressed in TMs compared with breast
TPs. Furthermore, Aldolase B (ALDOB), which induces the
incorporation of fructose into glycogen and lipids, was overex-
pressed in TMs compared with breast TPs, presumably to
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sustain highly proliferative capacity of tumor cells and promote
metastatic colonization (36-38).

Significantly changed genes associated with EMT, glycolysis,
and OXPHOS pathways showed a mixture of expression changes
between TMs and TPs of their tissue of origin, while the direction
and extent of these changes were different for each destination tis-
sue, indicating a context-dependent behavior in different microen-
vironments. Furthermore, some genes associated with “Pancreas
Beta Cell” in the hallmark gene set, which was highly enriched in
TMs compared to breast-TPs, showed a strong tissue dependency.
The overexpressed genes, including FOXA2, SLC2A2, PKLR, and
HNFIA, are liver-enriched genes, and STXBPI, SST, ABCCS,
CHGA, and NKX2-2 are brain-enriched genes (39), which were
overexpressed in liver-TM and brain-TM compared to breast-TP
(SI Appendix, Fig. S8B), respectively, further supporting the con-
text dependency of reprogramming of TMs.
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Altogether, these results emphasize the reprogramming of
TMs to adapt to the new environment of their destination
organs to survive and colonize, while these processes could be
reversed again under some circumstances to promote EMT fol-
lowed by metastasis and cellular migration to other tissues.

Metabolic Modeling of TNBC TPs and Paired Metastases in
Different Tissues. Consistent with the GSA results, deconvolu-
tion analysis using only genes associated with metabolism
exhibited a more striking coordinated shift of metastatic sam-
ples to TPs of their destination sites than was observed when
all genes were considered (Fig. 44). Repeating the same analysis
for SKCM TMs provided further support of the significant
coordinated metabolic shift toward TPs of their destination tis-
sues when using only metabolic genes (ST Appendix, Fig. S9).
Demonstration of metabolic reprogramming requires not only
gene expression data but also cellular context, including infor-
mation of the associated reactions and metabolites.

To further investigate the metabolic adaptation of TNBC-
TMs to their metastatic sites, we employed genome-scale meta-
bolic modeling. Genome-scale metabolic models (GEMs) provide
a scaffold to integrate gene expression data and interpret the
information in a metabolic context. Using the Humanl GEM
(40) as a reference of human metabolism, we generated 33
condition-specific models that included four groups of healthy
tissue-, TM-, TP-, and paired NT-specific models based on
RNA-seq data. Structural comparison of the TM models with
models of their tissue of origin and metastatic site showed that
metabolic signatures of metastases are more similar to that of
their destination organs than that of their tissue of origin (Fig.
4B). An overview of relationships across reaction structures of all
the models using UMAP revealed a strict and distant segregation
of brain and liver clusters from the others, highlighting extensive
metabolic reprogramming of TM cells based on their metastatic
sites to ensure successful colonization (SI Appendix, Fig. S10).
These findings based on the reaction content of each model again
reaffirmed the extensive metabolic divergence of TMs from the
TPs of their origin tissue.

To obtain a more comprehensive picture of the metabolic
alterations that metastatic basal TNBC tumor cells undergo to
overcome distinct metabolic challenges posed by microenviron-
ments of their metastatic sites, we sought to identify metabolic
pathways and metabolites associated with genes that are signifi-
cantly differentially expressed (metastasis vs. breast-TP). We
performed a GSA for which gene sets were metabolic pathways
(subsystems) or metabolites of the metabolic network. The sub-
system GSA revealed an enrichment of pathways associated with
amino acid metabolism, lipid metabolism, xenobiotic metabolism,
bile acid metabolism, glycolysis/gluconeogenesis, and OXPHOS
in metastases (Fig. 4C). The GSA results show that TNBC-TMs
employed distinct metabolic signatures dependent on their host
tissues, meaning that the extent and direction of the enriched
gene sets were different among liver, lung, and brain metastases.

Metastatic TNBC Cells Exhibit Divergent Metabolic Features
with Some Similarities to TPs of Their Destination Tissues.
We next assessed whether metastatic TNBC cells retain any
metabolic features from their parental tumors in their distinct
metastatic sites. The models were grouped by metastatic tissue,
including each of the TNBC-TMs, breast-TPs, TPs of metastatic
site, and their matched healthy and NT models. By comparing
the reactions included in the models of each group, we found
that TMs had specific reactions that were not included in the
other models of their group (Fig. 54 and Dataset S1).

https://doi.org/10.1073/pnas.2205456119

Furthermore, TM models contained some common reactions
with their parental breast-TPs that were not present in other
models in the group, indicating that metastatic TNBC tumors
retained some unique signatures from their origin (Fig. 54 and
Dataset S2). We next extracted the associated subsystems from
the metabolic models to identify which metabolic pathways are
potentially important during metastasis and colonization of a
new microenvironment. Metastatic-specific reactions were mostly
associated with transport (43.7%) and peptide metabolism
(9.15%), though exchange reactions and bile acid biosynthesis
were also identified as important (SI Appendix, Fig. S11A4). The
retained signature reactions from breast-TPs in their TMs also
belonged to transport reactions, drug metabolism, exchange reac-
tions, bile acid biosynthesis, and bile acid recycling subsystems
(SI Appendix, Fig. S11B). Taken together, these results highlight
that the metabolic phenotype of TNBC-TMs shows an interme-
diate state between their parental tumors and the TPs of their
metastatic sites by retaining signatures from their parental tumors.
Furthermore, the TM GEMs contain some specific reactions that
may support the ability of TMs to overcome the challenges of
colonization and proliferation in their new microenvironments.

The results presented above highlight tissue-specific adapta-
tion patterns by which TM cells survive in their secondary sites.
We therefore sought to compare the metabolic functionality of
these TMs with the TPs of their destination tissues to elucidate
the metabolic shift that occurs in TNBC-TMs. To this end, we
used the GECKO (41) framework, which integrates GEMs with
enzyme kinetic data to generate enzyme-constrained GEMs
(ecGEM) to calculate flux distributions for functional compari-
son of metabolic models (40). We conducted flux variability
analysis on each of the ecGEMs of TPs and TMs under the
same nutrient conditions while maximizing biomass production
(ST Appendix, Fig. S12). To quantify the flux differences, the
fold changes of reaction capacities of both the TM and destina-
tion tissue TP ecGEMs versus the breast-TPs were calculated.
Comparison of reaction flux capacities showed that metabolic
reprogramming of TNBC-TMs in some parts is correlated with
metabolic programs of TPs of their metastatic sites, which differ
depending on the organ. However, TNBC-TMs and TPs of
their metastatic sites could also have specific metabolic character-
istics compared with breast-TDPs.

It is well known that prioritized metabolic strategies in
TNBC include elevated glucose uptake, glutamine uptake, activ-
ity of LDHA/B, and decreased glutamine synthesis (42). The
flux comparison analyses displayed either a coordinated decrease
or no change in dependency of TMs on glutamine compared
with breast-TDPs, while the increased uptake of different resour-
ces, especially branched chain amino acids (BCAAs) as well as
other nonessential amino acids, was observed. Some cancer cells
are known to display glutamine addiction despite glutamine
being a nonessential amino acid, where the high rate of gluta-
mine uptake is required for uptake of additional amino acids
and reduced nicotinamide-adenine dinucleotide phosphate
(NADPH) production for redox control (43). Cancers become
dependent on glutamine to provide nitrogen for nucleotide and
protein synthesis, although the amount of this dependency varies
across different cancer types (44). For example, brain TMs
exhibited reduced dependency on glutamine metabolism and
more dependency on the other amino acid pathways compared
with breast-TPs, in correlation with the brain-TP metabolic pro-
gram, but the capacity of glucose uptake remained unchanged
(81 Appendix, Fig. S13). It is possible that the microenvironment
of the brain plays a key role in this phenomenon. Although gene
expression levels of glycolytic enzymes have been shown to
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Fig. 4. Divergence of TNBC-TMs from breast-TPs based on metabolic signatures. (A) Deconvolution analysis of the TNBC-TM samples using median expres-
sion levels of metabolism-associated genes in breast-TPs and TPs of the tissue of destination as references. The result of the analysis is the fraction of simi-
larity of each TM sample (maroon) to the TPs of the tissue of its destination based on only their metabolic genes. Boxplot represents the distribution of the
proportion of “destination tissue_TP contribution” for TMs. (B) Heatmaps showing comparison of reaction content of GEMs specific to TNBC-TMs in distinct
tissues with breast-TPs as their tumor of origin and GEMs specific to TPs of the tissue of destination and their matched healthy tissue (HT) and NTs, based
on the Jaccard index. (C) Subsystem directional GSA results for the comparisons of breast-TPs in distinct tissues with breast-TPs. Shown are the log;o-trans-
formed “distinct directional” P values (p.dist.dir) for subsystems with P value < 0.01 in at least one comparison. The log,o-transformed P values are signed,
meaning that gene sets significantly enriched in expression increases are positive, while those enriched more in expression decreases are negative. Ad, ade-
nocarcinoma; AdrenalG., adrenal gland; BRCA represents breast invasive carcinoma; Sc, squamous cell carcinoma.
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increase in brain metastasis (45), the availability of glucose in the
brain interstitial space is lower than that of blood (46, 47).
Moreover, an increase in glucose uptake compared with breast
tumors is not a known feature of breast cancer brain metastasis
(48). Brain interstitial space contains high levels of glutamine
and other nonessential amino acids and also BCAAs (49), which
can serve as energy resources for metastasizing cancer cells to sur-
vive and thrive in the brain by mimicking brain cells (50). Our
analysis showed a decrease in glutamine uptake capacity in both
brain-TM and brain-TP compared with breast-TPs, demonstrat-
ing the extensive dependency of TNBC tumors on glutamine,
which can be considered a significant signature of this cancer
type. However, this may not be prioritized in their associated
TMs to the same extent. Divergent metabolic patterns were also
observed in the other TNBC-TMs (87 Appendix, Figs. S14 and
S15). Overall, these results suggest that TNBC-TMs display dif-
ferent metabolic phenotypes distinct from the metabolic strategy
of breast TPs in response to the TM microenvironment.

Identification of Metabolic Pathways and Genes as Potential
Drug Targets for Cancer Treatment. To determine important
reactions and subsystems that could potentially constitute drug
targets, we extracted the union of specific reactions from GEMs
of TPs and TMs and excluded reactions that were involved in
any of the healthy tissues or NT GEMs. The remaining reactions
highlighted the importance and abundance of several metabolic
pathways in metastatic and/or primary tumors (S/ Appendix, Fig.
S16 and Dataset S3). Abundant reactions belonged to transport
reactions, peptide metabolism, protein degradation, drug metabo-
lism, and cholesterol metabolic pathways. Among the extracted
transport reactions, two reactions were associated with carnitine
in fatty acid oxidation (FAO), which is important for cancer cells
to overcome nutrient and energy deficiencies to survive and
maintain uncontrolled proliferation (51, 52). The other interest-
ing specific transport reactions in skin-TM and brain-TP
involved xanthurenate, a catabolic derivative of tryptophan, sug-
gesting the importance of tryptophan metabolism in cancer.
Depletion of tryptophan from the local space has long been
known to be a common feature of cancers to promote immune
suppression, and several inhibitors of this pathway are currently
undergoing clinical trials (44).

Finally, we conducted gene essentiality analysis on all the
generated models to determine which genes, when deleted,
reduce the production of biomass to near zero. Genes found to
be essential across all models were excluded to ignore core meta-
bolic reactions, which are required for basic metabolic processes
in many tissues (Fig. 5B). Among the remaining essential genes,
we considered those that were essential for metastatic and/or
primary tumors but not essential for healthy and adjacent nor-
mal tissues to focus on potential drug targets with minimal side
effects. Phenylalanine, tyrosine, and tryptophan metabolism-
related genes, including tryptophan 2,3-dioxygenase (7D02),
indoleamine 2,3 dioxygenase (/DOI), kynureninase (KYNU),
kynurenine monooxygenase (KMO), and arylformamidase
(AFMID), were among the essential genes for breast-TP, lung-
TM, liver-TM, lymph node-TM, and the TPs of destination
tissues, with minimal effect on healthy tissue GEMs. A pre-
dicted essential gene for brain-TM and its matched TP (brain-
TP), skin-TM and its matched TP (skin-TP), adrenal gland
(PCPG)-TP, and adrenal gland (ACC)-TP was GOT2, which
also belongs to tyrosine and tryptophan metabolism. These
observations emphasize the key role of this metabolic subsystem,
particularly tryptophan metabolism and the kynurenine path-
way, in different cancers (44, 53, 54) and more importantly
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TNBC-TMs. The other predicted essential genes for metastatic
and primary tumors were associated with nicotinate and nicotin-
amide metabolism (e.g., QPRT, NADSYNI, and HAAO) (55).
Vitamin D metabolism-related genes including CUBN, LRP2,
GG, and CYP27BI, which form an NADPH-dependent enzyme
complex together, were essential for skin-TP and TNBC tumor
growth. The essentiality of AKRIDI and AKRIC4 for breast-TP
growth highlighted the importance of a-keto reductases in bile
acid biosynthesis and retinol metabolism pathways for breast
cancers and specifically TNBC invasion (56-58). Some bile
acid biosynthesis-related genes, including HSD3B7, AMACR,
CYP39A1, CYP46A1, CYPJAL, and CYP8BI, and FAO-related
genes such as EHHADH and HSD17B4 also showed essentiality
for TNBC growth. An interesting observation is that most of the
predicted essential genes for different cancers and TNBC distant
metastases encode for NADPH-dependent enzymes. Available
drugs that can target many of these genes and enzymes were col-
lected from the DrugBank database (59) or from literature for
those compounds that do not have any records in the database
(SI Appendix, Table S2).

Collectively, these results highlight the importance of several
metabolic pathways contributing to tumor viability, such as
tryptophan metabolism, kynurenine pathway, nicotinate and
nicotinamide metabolism, vitamin D metabolism, and bile acid
biosynthesis and recycling, which may hold potential as drug
targets in cancer and metastasis treatment.

Discussion

Metastasis is the primary contributor to death for patients with
TNBC, which is associated with poor prognosis and an aggres-
sive phenotype. The molecular mechanisms involved in TNBC
metastasis continue to be investigated, and the metabolic
reprogramming of TNBC tumors during metastasis, coloniza-
tion, and growth in distant organs is an important component.
It is clear that we must understand the metabolic characteristics
of TNBC cells, which metastasize to different organs, in order
to understand how these TMs overcome challenges posed by
their ever-changing microenvironment during the metastatic
cascade. This understanding is crucial for effective therapy and
prevention.

Recently, several studies have explored how molecular mech-
anisms and metabolic strategies employed by cancer cells in
their primary microenvironment change during the different
stages of metastasis across different cancers (29, 42, 56, 60, 61).
However, metabolic reprogramming of TMs in distant organs
remains poorly understood. Moreover, given the critical impor-
tance of metabolic adaptation of tumor cells to their secondary
tissues to support and enable colonization, survival, and uncon-
trolled proliferation in the new nutrient-deprived environment
(5, 6), it has been suggested that TMs may exhibit phenotypes
similar to those of the TPs of their metastatic sites. Here, we
show the importance of targeting both metabolic reprogram-
ming and the metastatic cascade using combination therapy.
This approach is more adapted to the organ hosting the metas-
tasis than to its original TP and could be beneficial for targeted
treatment of TNBC-TMs.

Quantifying the distances of TMs from TPs of their origin
and of their destinations revealed that TNBC-TMs in different
tissues are more similar to the TPs of those metastatic sites.
The extent of the divergence was dependent on metastatic tis-
sue and reflected an intermediate state between the TPs of ori-
gin and destination. We identified genes that were significantly
differentially expressed in TNBC-TM:s in liver, lung, and brain

https://doi.org/10.1073/pnas.2205456119 9 of 11


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205456119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205456119/-/DCSupplemental

Downloaded from https://www.pnas.org by Chalmers University of Technology on September 2, 2022 from | P address 129.16.140.40.

10 of 11

compared with breast-TPs, and many were involved in EMT,
metastasis-associated processes, and metabolic pathways. The
extent and direction of significantly enriched gene sets varied
across the TMs in different tissues. It has emerged that crosstalk
between signaling pathways associated with metastasis (e.g., Snail/
ERK2), and metabolic enzymes, including HK2 and LDHA/B,
can facilitate EMT (30-34, 62). Furthermore, metabolic reprog-
ramming to enhance fructose metabolism through up-regulation
of ALDOB and ATP production through OXPHOS promotes
the metastatic colonization at distant organs (35-38). Consistent
with our results, Jin et al. (63) investigated breast cancer using
single-cell RNA-seq data and showed that reprogramming of
lipid metabolism facilitates colonization and adaptadon to the
brain microenvironment. The critical role of lipid metabolism
and, more specifically, fatty acid biosynthesis in breast cancer
brain metastasis was further supported by another study by Fer-
raro et al. (64).

Using only metabolic-associated genes, TNBC-TMs exhibited
more similarity to TPs of the destination tissues. The results also
confirmed the coordinated metabolic shift of TNBC-TMs from
breast-TPs to TPs of their destination tissues. A similar pattern
of metabolic shift was observed for SKCM TMs, suggesting that
the coordinated metabolic shift of TMs from TPs of their origin
toward TPs of their destination organs could be a common phe-
nomenon in different types of TMs. It was recently demon-
strated that highly metastatic breast cancer cells enhance their
metastatic adaptation to their ever-changing microenvironments
during stages of metastasis by engaging both glycolysis and
OXPHOS as metabolic strategies (60). This phenomenon is
required during the metastatic cascade to maximize metabolic
flexibility, which allows TM cells to respond to rapidly changing
metabolic demands and nutrient deprivation in their new micro-
environment (42). Using gene sets extracted from the Human-
GEM network, we observed significant enrichment in both
glycolysis and OXPHOS pathways for lung, liver, and brain
metastases compared to breast-TPs, although the extent of this
increase was dependent on the metastatic site.

Since basal TNBC cells are known to prioritize specific met-
abolic programs, including excessive uptake of glutamine and
glucose to ensure their survival and invasiveness (42), our
results suggest a change in prioritized metabolic strategy of
TNBC-TMs compared with breast-TPs. While the changed
metabolic program in TNBC-TMs was consistent with TPs of
their destination, the TMs also employed metabolic programs
distinct from both TPs of their origin and destination. These
functional changes were primarily associated with transport
reactions and uptake capacity of different nutrients. In addi-
tion, specific reactions of TNBC-TMs as well as the retained
metabolic signatures from the TPs of the origin were also asso-
ciated with transport reactions, emphasizing the capability of
TM:s to obtain nutrients from their microenvironments to sur-
vive circulation and specific distal tissues.

We identified therapeutically relevant pathways by extracting
reactions present only in cancer-specific models and by identi-
fying genes uniquely essential to these models. Phenylalanine,
tyrosine, and tryptophan metabolism, the kynurenine pathway,
nicotinate and nicotinamide metabolism, vitamin D meta-
bolism, and bile acid biosynthesis and recycling pathways were
the most important subsystems among metabolism of cancer
cells, which constitute potential drug targets for both primary
and metastatic tumors. Enhanced expression of enzymes,
including IDO1/IDO2/TDQO2, the main rate-limiting enzymes
in the kynurenine pathway, correlate with increased survi-
val, EMT, drug resistance, and decreased anoikis in different
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cancers (54). Although inhibitors targeting IDO1 showed
promising results in early-stage clinical trials for cancer, a phase
3 trial result was disappointing (65), suggesting that TDO2
might be able to substitute for IDO1 when it is inhibited.
However, tryptophan metabolism remains an important target
for cancer therapy. Therefore, some inhibitors for TDO2 and
dual IDO1/TDO2 enzymes have been developed (53). Our
results also suggest KYNU, KMO, AFMID, and GOT2 genes as
potential drug targets from tryptophan metabolism, especially
for TNBC, the paired TMs in lung and liver, and TPs of lung
and liver. Moreover, the predicted importance of bile acid bio-
synthesis and recycling metabolic pathways in our analyses repre-
sent additional interesting approaches in therapeutic development
for TNBC TP and TMs.

Since patients in the metastatic dataset were at the late stage
of breast cancer and generally received chemotherapy com-
pounds, the conclusions drawn might be affected by these treat-
ments. Although none of the treatments had direct known
effects on metabolism, it is a potential limitation of our study.
Another potential limitation of our study could be small sample
sizes. Future studies comparing matched, therapy-naive, post-
neoadjuvant therapy, and distant metastases with bigger sample
sizes will be required to expand upon the evidence presented
here on site-specific metabolic adaptation of TM cells.

In conclusion, TM cells differentially engage distinct metabolic
strategies similar to those of TPs of the destination tissues to sus-
tain their survival and proliferation depending on the local micro-
environments in the metastatic sites. It is therefore important
when developing therapeutic strategies involving metastasis to rec-
ognize that TNBC TMs are distinct cancer types that exhibit
similarities to TPs of the metastatic tissues while retaining some
key signatures from their parental TNBC TPs.

Materials and Methods

All the materials and methods associated with omics data collection and analysis
are detailed in S/ Appendix. This includes RNA-seq data retrieval, data process-
ing, statistical methods, HHK clustering, dimensionality reduction, DE and GSA,
network integrative analysis, and deconvolution analysis. All details on recon-
struction, comparison, evaluation, and simulations of metabolic network models
can also be found in S/ Appendix.

Data, Materials, and Software Availability. All the datasets used in this
manuscript are available in public repositories, and references are given in the
text (see the "Data retrieval and processing” subsection in SI Appendix, SI
Material and Methods). Correspondence and requests for materials should be
addressed to nielsenj@chalmers.se. Reconstructed GEMs and ecGEMs for TPs,
TMs, HTs and NTs are available at https://github.com/FaribaRoshanzamir/
Metastatic-TNBC (66). All other methods and algorithms used in this study are
publicly available, and refrences are given in the text (see SI Appendix, SI
Material and Methods). All study data are included in the article and/or support-
ing information.
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