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1. Introduction

The Katz–Sarnak heuristics [25] is concerned with the distribution of low-lying zeros 
in families of L-functions and predicts that this distribution is determined by a certain 
random matrix model called the symmetry type of the family (see also [32] and the 
references therein). In this paper we are interested in families of L-functions attached 
to elliptic curves, where quantities related to low-lying zeros have been studied for a 
comparatively long time due to their close relation to the average rank of the elliptic 
curves in the family via the Birch and Swinnerton-Dyer conjecture; see, e.g., [3,18,20,21]. 
For families of elliptic curves defined over the rationals, the systematic investigation of 
low-lying zeros and the Katz–Sarnak heuristic started with papers by Miller [30] and 
Young [35,36] in the early 2000’s. More recent contributions include [14,19,22,23] that 
focus on lower order terms in the one-level density and the corresponding predictions of 
the L-functions ratios conjecture.

In the present paper we investigate families of L-functions attached to elliptic curves 
defined over the function field Fq(t). Recall that additional tools are available in the 
function field setting since, for example, the Riemann Hypothesis is a celebrated theorem 
due to Deligne [15]. Already the pioneering work by Katz and Sarnak [25] studied low-
lying zeros in families of quadratic twists of elliptic curves defined over Fq(t) in the 
limit where both q and the degree of the twists, i.e. the degree of the polynomials that 
parameterize the family, tend to infinity. However, it is expected that keeping q fixed 
while the degree of the twists tend to infinity is a closer analogue of quadratic twist 
families in the number field setting. Important results in this direction were proved 
by Rudnick [31] and Bui–Florea [4] who investigated the low-lying zeros of quadratic 
Dirichlet L-functions in the hyperelliptic ensemble. More recently, Comeau-Lapointe [9]
investigated expected values of traces of high powers of the Frobenius class and the one-
level density of families of quadratic twists of elliptic curves in this context and used 
the results to give upper bounds on the average rank in these families. In this paper, we 
refine results in [9] to isolate lower order terms and compare the structure of our results 
with the results of Rudnick [31] for quadratic Dirichlet L-functions.

In recent years, there has been an increased interest in a variety of different aspects of 
higher order characters and twists; see, e.g., [1,7–13,28,29]. Motivated by this develop-
ment, we investigate expected values of traces of high powers of the Frobenius class and 
the one-level density of families of cubic twists of elliptic curves of the form y2 = x3 +B

defined over Fq(t). In this case we are not able to isolate lower order terms and we discuss 
what is needed in order to obtain refined results also in this situation.

We now turn to a precise description of our results.

1.1. Setup

Fix a prime p �= 2, 3 and let q = pm for some power m ∈ Z≥1. For simplicity, 
assume q ≡ 1 mod 6. Let E be an elliptic curve defined over Fq(T ) given by the minimal 
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Weierstrass equation y2 = x3 + Ax + B, where A, B ∈ Fq[T ], and such that the prime 
at infinity has additive reduction.1 Then the L-function attached to E is (cf., e.g., [34, 
Lecture 1])

L(u,E) :=
∏

P |ΔE

(
1 − aP (E)udeg(P )

)−1 ∏
P �ΔE

(
1 − aP (E)udeg(P ) + u2 deg(P )

)−1
,(1.1)

where ΔE = 4A3 + 27B2 is the discriminant of E and

#E(P ) = qdeg(P ) + 1 − aP (E)qdeg(P )/2.

Here E(P ) is the curve2 obtained from reducing E modulo a prime polynomial P and 
#E(P ) denotes the number of Fqdeg(P ) -rational points on the non-singular locus of E(P ). 
If it is clear which elliptic curve we are referring to, we will simply write aP instead of 
aP (E). Recall, in particular, that with the above normalization the Hasse–Weil bound 
states that |aP | ≤ 2. Recall also that L(u, E) is a polynomial of degree

nE := deg(ME) + 2(deg(AE) + 1) − 4

all of whose zeros lie on the “critical line” |u| = q−1/2, where ME is the product of prime 
polynomials with multiplicative reduction and AE is the product of prime polynomials 
with additive reduction (see [34, Lecture 1]). Furthermore, L(u, E) satisfies the functional 
equation

L(u,E) = ε(E)(√qu)nEL

(
1
qu

,E

)
,

where ε(E) ∈ {±1} is the root number of the elliptic curve E.
We are interested in investigating the one-level density of the zeros of these L-

functions. That is, for an even Schwartz test function f , we define the one-level density 
of E as

D(E, f) :=
∑
θ

f

(
nE

θ

2π

)
,

where the sum is over all θ ∈ R such that q−1/2eiθ is a zero of L(u, E), counted with 
multiplicity. Since L(u, E) is a polynomial with all its zeros on the critical line, we can 
find a unitary nE × nE matrix ΘE (in fact a conjugacy class of unitary matrices), called 
the Frobenius, such that

1 That the prime at infinity has additive reduction is a simplifying assumption that makes the correspond-
ing Euler factor of the L-function L(u, E) trivial. This assumption can be removed with some work. See 
[34, Lecture 1] and Appendix A.1 for details.
2 If P is a prime of good reduction, then E(P ) is in fact an elliptic curve.
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L(u,E) = det(1 −√
quΘE). (1.2)

Defining the one-level density of a unitary nE × nE matrix U as

D(U, f) =
nE∑
j=1

∑
n∈Z

f

(
nE

(
θj
2π − n

))
,

where θj (1 ≤ j ≤ nE) are the eigenangles of U , we immediately get the relation3

D(E, f) = D(ΘE , f).

Finally, we may apply Poisson summation to obtain, for any unitary nE × nE matrix,

D(U, f) = 1
nE

∑
n∈Z

f̂

(
n

nE

)
Tr(Un). (1.3)

Hence, for Schwartz test functions f whose Fourier transforms are supported in (−α, α), 
to determine the expected value of D(E, f) as E ranges over some family of elliptic 
curves, it is enough to determine the expected value of Tr(Θn

E) for n < αnE .

1.2. Quadratic twists

The first family we will be interested in is the family of quadratic twists of a given 
elliptic curve E. That is, if E : y2 = x3 +Ax +B and D is a polynomial, then we define 
the quadratic twist of E by D as the curve with affine model

ED : y2 = x3 + AD2x + BD3.

As D varies, these equations will give distinct elliptic curves if and only if the polynomials 
D are square-free and coprime to the discriminant ΔE of E. Moreover, we see that all 
the primes that divide D will have additive reduction and that if D is monic and of even 
degree then the prime at infinity will have the same reduction type on ED as it did on 
E (see Appendix A). Therefore, the degree of L(u, ED) will be

nED
= nE + 2 deg(D).

From now on, and throughout the parts of this paper dealing with quadratic twists, we 
will assume that N ∈ Z+ is even. Hence, if we consider the family of twists coming from 
the set

3 Recall that we define the one-level density of the elliptic curve E as a sum over all θ ∈ R such that 
L(q−1/2eiθ, E) = 0.
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HN (ΔE) :=
{
D ∈ Fq[T ] : D monic, square-free, coprime to ΔE and deg(D) = N

}
,

then we see that this will form a family of distinct elliptic curves all of whose Frobenius 
elements have the same size.

For any D ∈ HN (ΔE) let ε(ED) denote the root number of the L-function attached 
to ED. Then (by [2, Proposition 4.3])

ε(ED) = εN ε(E)χD(ME),

where χD =
(
D
·
)

is the Kronecker symbol and εN = ±1, depending only on the value of 
deg(D) = N . Therefore we define the sets

H+
N (ΔE) :=

{
D ∈ HN (ΔE) : χD(ME) = εN ε(E)

}
and

H−
N (ΔE) :=

{
D ∈ HN (ΔE) : χD(ME) = −εN ε(E)

}
.

We will typically, however, just write H±
N (ΔE) to mean either the set H+

N (ΔE) or the 
set H−

N (ΔE).
It was recently proven by Comeau-Lapointe [9] that, for ε > 0, n ∈ Z≥1 and N >

4nE + 16, the averages of traces of powers of ΘED
satisfy4,5

〈
Tr(Θn

ED
)
〉
H±

N (ΔE) = η2(n) + Oε

(
(n + N)N2nE+11

(
1

qN/8 + 1
qεN

+ qn/2

q(1−ε)N

)
+ n2

qn/4

)
,

(1.4)

where (see [17, Theorem 4])

η2(n) :=
∫

O(nE+2N)

Tr(Un) dU =
{

1 2|n,
0 2 � n.

This is then enough to deduce that if supp(f̂) ⊂ (−1, 1), then

〈
D(ED, f)

〉
H±

N (ΔE) =
∫

O(nE+2N)

D(U, f) dU + O

(
1
N

)
. (1.5)

4 Here, and throughout this paper, we use the convention that for any finite and non-empty set S and 
any function φ on S, 〈φ〉S = 1

|S|
∑

s∈S φ(s).
5 Note that the family considered in [9] is not the same as the one stated here. However, one may easily 

deduce this result from that of [9].
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Remark 1.1. For every sufficiently nice family of elliptic curves F , the Katz–Sarnak 
heuristic predicts that

〈
D(E, f)

〉
F =

∫
G

D(U, f) dU,

where G is a compact Lie group indicating the symmetry type of the family and dU is the 
Haar measure on G. Recall that the one-level densities of the three orthogonal symmetry 
types O, SO(even) and SO(odd) agree for test functions whose Fourier transforms are 
supported in (−1, 1). Therefore, for the sake of tidiness, we have chosen to state all 
results in terms of the symmetry type O.

Remark 1.2. In (1.4) and (1.5) the implied constants depend on E. All implied constants 
in the rest of this paper are similarly allowed to depend on the base elliptic curve. More-
over, throughout this paper we implicitly restrict our attention to non-empty families 
H±

N (ΔE). Note that a family of this type is empty only if ME = 1 so that the root 
number is constant (see Lemma 3.4).

In this paper, we are interested in determining lower order terms in the estimate (1.4). 
Specifically, to deduce the exact form of the error term O( n2

qn/4 ).

Theorem 1.3. Let E be an elliptic curve defined over Fq(T ) and given by the minimal 
Weierstrass equation y2 = x3 + Ax + B, where A, B ∈ Fq[T ]. Let n ∈ Z≥1 and assume 
that ME is not a prime of odd degree dividing n. Then, for any ε > 0 and N > 4nE +16, 
we have

〈
Tr(Θn

ED
)
〉
H±

N (ΔE) = η2(n)
(

1 +
Tr
(
Θn/2

sym2E

)
qn/4

+ D(n)
qn/2

)

+ Oε

(
(n + N)N2nE+11

(
1

qN/8 + 1
qεN

+ qn/2

q(1−ε)N

))
,

where Θsym2E is the Frobenius element attached to the symmetric square L-function 
L(u, sym2E) and D(n) is given by (3.4); in particular, D(n) � τ(n) + deg(ΔE).

Remark 1.4. In the case where ME is a prime of odd degree dividing n, then the result 
still holds with the only difference that there is an additional contribution to D(n). See 
(3.6) and the brief discussion thereafter for further details.

While we are able to improve the error term slightly by finding some secondary terms, 
we retain the error term containing the expression qn/2

q(1−ε)N and so we are not able to 

extend the range of supp(f̂) in (1.5). However, we are able to write down a term in the 
one-level density that is reminiscent of the deviation term that Rudnick found for the 
hyperelliptic ensemble (cf. [31, Corollary 3]).
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Corollary 1.5. Let E be an elliptic curve defined over Fq(T ) as in Theorem 1.3 and let 
f be an even Schwartz test function. If supp(f̂) ⊂ (−1, 1), then

〈
D(ED, f)

〉
H±

N (ΔE) =
∫

O(nE+2N)

D(U, f) dU + devE(f)
N

+ Oε

(
1

N2−ε

)
,

where

devE(f) = f̂(0)
(

− 1
q

L′(q−1, sym2E)
L(q−1, sym2E) +

∑
P �ΔE

deg(P )
|P | + 1

∞∑
d=1

a∗1,P 2d

|P |d

−
∑
P |ΔE

deg(P )
∞∑
d=1

a∗1,P 2d − a∗2,Pd + 1
|P |d

)
,

a∗1,Pd is the P d-th coefficient of L
′(u,E)

L(u,E) , a∗2,Pd is the P d-th coefficient of L
′(u,sym2E)

L(u,sym2E) and 

|P | = qdeg(P ).

In the family of L-functions L(u, χD) attached to quadratic characters, Rudnick [31, 
Corollary 3] showed that the one-level density is asymptotically the same as for the 
unitary symplectic matrices with a deviation term of the form

dev(f) = f̂(0)
∑
P

deg(P )
|P |2 − 1 − f̂(1) 1

q − 1 .

For f of small support, the main terms in the one-level density come from the prime 
squares. We note that χD(P 2) = χ2

D(P ) and thus the contribution of the prime squares 
to the explicit formula is determined by the logarithmic derivative of

L(u, χ2
D) = RD(u)ζq(u),

where RD is a finite Euler product. Taking logarithmic derivatives, there is a simple pole 
at u = q−1. The residue of ζ ′q/ζq corresponds to the matrix integral whereas one can 
show that 〈

R′
D(q−1)

RD(q−1)

〉
H2g+1(1)

=
∑
P

deg(P )
|P |2 − 1 + O(q−g).

To see the term containing f̂(1) in dev(f), one needs to analyze also the contribution 
from the primes to the explicit formula. As we need to restrict to functions that have 
f̂(1) = 0, we do not see such a term in Corollary 1.5.

Now, for the quadratic twists of an elliptic curve, we again need to look at the contri-
bution of the prime squares to the explicit formula. Here we obtain terms that contribute 
to the main term matrix integral, whereas the logarithmic derivative of
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L(u, sym2ED) = SD(u)L(u, sym2E),

where SD is a finite product of Euler factors, contributes the deviation terms in devE(f)
(see Section 3.6). Note in particular that, similar to the quadratic character case, 
L(u, sym2ED) is essentially constant as we vary D, changing only by a finite Euler 
product.

Finally, we note the close connection between the formulas in the quadratic character 
and quadratic twist cases. Indeed, by substituting 1 for all the a∗1,P 2d in the sum over 
primes of good reduction in devE(f), we get exactly the part of dev(f) corresponding to 
the same set of primes.6

1.3. Cubic twists

Performing a quadratic twist of an elliptic curve has the nice property that if L(u, E) =∑
F aFu

deg(F ), then L(u, ED) =
∑

F aFχD(F )udeg(F ). Therefore, one natural extension 
is to consider twists of the L-function L(u, E) by other characters, that is, to consider 
L-functions of the form

L(u,E, χ) :=
∑
F

aFχ(F )udeg(F ).

Comeau-Lapointe [9, Theorem 12.1] considered the families where χ runs over characters 
of fixed order 
 �= 2, and proved that these families have unitary symmetry type. This 
change of symmetry type is to be expected as when you twist by non-quadratic characters 
the L-functions L(u, E, χ) fail to be L-functions of elliptic curves and therefore loses the 
orthogonal symmetry inherent in families of elliptic curve L-functions.

However, in this paper we choose to twist at the level of elliptic curves instead of at 
the level of L-functions. That is, if the elliptic curve has the special form

Ẽ : y2 = x3 + B,

with B ∈ Fq[T ], then, for any polynomial D ∈ Fq[T ] coprime to B, we define the cubic 
twist of Ẽ as the curve with affine model

ẼD : y2 = x3 + BD2.

Similar to the case of quadratic twists, as long as D is chosen to be cube-free and coprime 
to B, these will be distinct elliptic curves and all the primes that divide D will have 
additive reduction. Furthermore, if we consider only the case 3| deg(D), then the prime 

6 Note that RD and ζq(u) are related to the constant coefficients 1 in exactly the same way as SD and 
L(u, sym2E) are related to the coefficients a∗

1,P 2d .
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at infinity will have the same reduction type on ẼD as it did on Ẽ (see Appendix A) 
and hence the degree of L(u, ẼD) will be7

nẼD
= nẼ + 2 deg(rad(D)).

Therefore, if we define the set

FN (B) :=
{
D ∈ Fq[T ] : D monic, cube-free, (D,B) = 1,

deg(rad(D)) = N, deg(D) ≡ 0 mod 3
}
,

then the cubic twists by this family will form a family of distinct elliptic curves all of 
whose Frobenius elements have the same size.

Theorem 1.6. Let Ẽ be an elliptic curve defined over Fq(T ) and given by the minimal 
Weierstrass equation y2 = x3 + B, where B ∈ Fq[T ]. Then, for any ε > 0 and n ∈ Z≥1, 
we have

〈
Tr(Θn

ẼD
)
〉
FN (B) = η2(n) + Oε

(
qn/2e2n

Nq( 1
2−ε)N + η2(n)n

qn/4
+ 1

qn/3
+

n(deg(ΔẼ) + τ(n))
qn/2

)
,

where τ is the number of divisors function. Moreover, for any Schwartz test function 
satisfying supp(f̂) ⊂ (−α, α) for some α < 1

2 − 2
4+log q , we get

〈
D(ẼD, f)

〉
FN (B) =

∫
O(n

Ẽ
+2N)

D(U, f) dU + O

(
1
N

)
. (1.6)

Similar to Corollary 1.5, the main term in (1.6) comes from considering the prime 
squares whose contribution is the sum of the matrix integral and a term determined by 
the logarithmic derivative of L(u, sym2ẼD). However, unlike the quadratic twist family, 
L(u, sym2ẼD) is not essentially constant as D varies (see Section 4) and thus we get 
some cancellation that prevents us from obtaining a deviation term.

The next obvious thing to consider is the contribution from the prime cubes. Using 
Lemma 2.3, we find that the contribution from the prime cubes is determined by the 
logarithmic derivative of L(u, sym3ẼD)L(u, ẼD)−1. However, since the coefficients of 
L(u, ẼD) are not obtained by a simple twist of a character (as in the quadratic twist 
case), we get that L(u, sym3ẼD) is still not essentially constant as D varies. Although, 
L(u, sym2ẼD) and L(u, sym3ẼD) will have parts that are essentially constant.

In order to describe these essentially constant parts, we need to introduce some no-
tation. For any prime P and any Ẽ, define

7 Note that here we have to use the radical of D. This was not necessary for the quadratic twists since 
we were assuming D to be square-free in that case and hence equal to its radical.



10 P. Meisner, A. Södergren / Finite Fields and Their Applications 84 (2022) 102096
λP = λP (Ẽ) := 1
qdeg(P )/2

∑
F mod P

(
F 2 −B

P

)
3
,

where 
( ·
P

)
3 is the cubic residue symbol modulo P .8 The quantity λP behaves nicely with 

respect to cubic twists. Namely,

λP (ẼD) =
(
D

P

)2

3
λP (Ẽ) (1.7)

(cf. Lemma 4.1). Moreover, we get that λP + λP = −aP , where as usual aP denotes the 
P -th coefficient of L(u, Ẽ). Therefore, it is possible to write a∗1,Pd in terms of the λP

and then determine how these vary with D. However, we can show that approximately 
half of the time |λP | �= 1 (see Corollary 1.9), and hence λP can typically not be a root 
of 1 − aPu + u2. Therefore, while possible, writing a∗1,Pd in terms of λP is in general not 
so nice. Using Lemma 4.2 and (1.7) to identify parts of a∗1,P 2(ẼD) and a∗1,P 3(ẼD) that 
are essentially constant as we vary D, we get the following theorem.

Theorem 1.7. Let Ẽ be an elliptic curve defined over Fq(T ) and given by the minimal 
Weierstrass equation y2 = x3 + B, where B ∈ Fq[T ]. Then, for any ε > 0 and n ∈ Z≥1, 
we have

〈
Tr(Θn

ẼD
)
〉
FN (B) = − n/2

qn/2

∑
deg(P )=n

2

2(|λP |2 − 1) + n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

)

+ D̃1(n) + D̃2(n)
qn/2

+ Oε

(
qn/2e2n

Nq( 1
2−ε)N + 1

q3n/8 +
n(deg(ΔẼ) + τ(n))

qn/2
+ 1

Nqn/2

)
,

where τ is the number of divisors function and D̃1(n) and D̃2(n) are defined in (4.10)
and (4.11); in particular, D̃1(n), D̃2(n) � 1.

Remark 1.8. Note that the presence of the terms q−3n/8 and nτ(n)q−n/2 in the error 
term means that we could absorb the tertiary main term (D̃1(n) + D̃2(n))q−n/2 into the 
error term. However, these error terms come from trivially bounding primes of degree 
at most n

4 and the primes of bad reduction, respectively, while D̃1(n) is written as a 
sum over primes of degree n

2 and D̃2(n) is written as a sum over primes of degree n
3 . 

Therefore, if one is careful, one would (at least for small n) be able to remove these error 
terms and make the tertiary main term a sum over all primes of degree dividing n and a 
real main term. This process would involve extending Lemma 4.2. While not difficult, it 
would result in a less clean statement of Theorem 1.7. Note also that this new tertiary 
main term may no longer be bounded by q−n/2.

8 We assume q ≡ 1 mod 6 so that the cubic residue symbol is well defined.
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It is not clear that Theorem 1.7 gives us what we were hoping for. That is, a term 
of size q−n/3 that is related to the Frobenius of L(u, sym3Ẽ) in some way which would 
lead to a deviation term for the one-level density that involves the logarithmic derivative 
of L(u, sym3Ẽ). However, using some heuristic arguments, we can see a way that this 
appears.

1.4. Heuristics and conjectures

Using the Weil bound and comparing Theorems 1.6 and 1.7, we get the following 
immediate corollary:

Corollary 1.9. For any m ∈ Z≥1, we have

m

qm

∑
deg(P )=m

|λP |2 = 1
2 + O

(
1

qm/3

)
.

Heuristically, replacing |λP |2 with its average of 1
2 , we can show that

n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

)
≈ η3(n)

qn/3

(
Tr
(
Θn/3

sym3Ẽ

)
+ 1

2Tr
(
Θn/3

Ẽ

))

(see Section 5), where

η3(n) :=
{

1 3|n,
0 3 � n.

This naturally leads to the following conjecture:

Conjecture 1.10. Let Ẽ be an elliptic curve defined over Fq(T ) and given by the minimal 
Weierstrass equation y2 = x3 + B, where B ∈ Fq[T ]. Then, for any n ∈ Z≥1, we have

〈
Tr(Θn

ẼD
)
〉
FN (B) = η2(n) + η3(n)

qn/3

(
Tr
(
Θn/3

sym3Ẽ

)
+ 1

2 Tr
(
Θn/3

Ẽ

))
+ D̃(n)

qn/2
(
1 + o(1)

)
,

where D̃(n) can be written as a sum over primes of degree dividing n and is bounded by 
(and might be considerably smaller than) qn/8.

Therefore, passing to the one-level density, we get an idea of what kind of deviation 
term we could expect in cubic twist families. As this relies on the conjecture and the 
proof would be essentially the same as the one of Corollary 1.5, we state only that the 
deviation term should contain the two terms
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−f̂(0) L′(q−3/2, sym3Ẽ)
q3/2L(q−3/2, sym3Ẽ)

and − f̂(0) L′(q−3/2, Ẽ)
2q3/2L(q−3/2, Ẽ)

,

as well as a third term which can be expressed as a sum over primes and will depend on 
D̃(n).

Outline of the paper

In Section 2, we define the symmetric power L-functions and prove several relations 
that will be needed throughout the later sections. In Section 3, we briefly discuss the 
quadratic twist family as the majority of the work in getting a reasonable error term is 
already done in [9]. In Section 4, we consider the cubic twist family and prove Theo-
rems 1.6 and 1.7. In Section 5, we give a heuristic argument for Conjecture 1.10. Finally, 
in Appendix A we discuss the choices we made in choosing our families and indicate how 
one could extend our work to “fuller” families.
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2. Symmetric power L-functions

Let E be any elliptic curve defined over Fq(T ). Recall the definition of the L-function 
attached to E

L(u,E) :=
∏

P |ΔE

(
1 − aP (E)udeg(P )

)−1 ∏
P �ΔE

(
1 − aP (E)udeg(P ) + u2 deg(P )

)−1
,

which converge for |u| < q−1. If P � ΔE , then we define αP and βP such that

1 − aPu + u2 = (1 − αPu)(1 − βPu). (2.1)

In addition, when P |ΔE, we set αP = aP and βP = 0. In other words, we define αP and 
βP such that the inverse of the Euler factor at P equals

LP (u,E) =
(
1 − αPu

deg(P ))(1 − βPu
deg(P )),

where βP = 0 if E has bad reduction at P .
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For m a positive integer, we define

L(u, symmE) :=
∏

P �ΔE

m∏
i=0

(
1 − αi

Pβ
m−i
P udeg(P )

)−1 ∏
P |ΔE

LP

(
udeg(P ), symmE

)−1
,(2.2)

where LP (u, symmE) is a polynomial of degree at most m + 1 with bounded coeffi-
cients.9 We refer the reader to [6, Section 1.2] for more information on symmetric power 
L-functions, and the references therein (specifically [16] and [33]) for more general state-
ments and proofs. See also [27] for symmetric power L-functions of elliptic curves defined 
over Q.

Proposition 2.1 (Parts of Theorem 1.1 of [6]). For any elliptic curve E defined over 
Fq(T ) and any positive integer m, L(u, symmE) is a polynomial of degree nsymmE all of 
whose roots have norm q−1/2. Hence, we can find a matrix ΘsymmE ∈ U(nsymmE) such 
that

L(u, symmE) = det
(
1 −√

quΘsymmE

)
.

Remark 2.2. It follows from [5, Lemma 2.1] that nsymmE � m for all positive integers 
m, where the implied constant depends on E.

It will be useful to have notation for L(u, symmE) also when m = 0 and −1. Therefore, 
we define

L(u, sym0E) := ζq(u) and L(u, sym−1E) := 1,

where ζq(u) is the usual zeta function of Fq[T ] defined as

ζq(u) :=
∑

F monic
udeg(F ) = 1

1 − qu
.

2.1. A symmetric power trace formula

We define a∗m,Pk = a∗m,Pk(E) such that

L′(u, symmE)
L(u, symmE) = 1

u

∑
P

deg(P )
∞∑
k=1

a∗m,Pku
k deg(P ). (2.3)

If m is a positive integer, then we can use (2.3) together with Proposition 2.1 to get a 
formula for the trace of the Frobenius element:

9 In fact, if P has multiplicative reduction, then LP (u, symmE) = (1 −αm
P u). However, if P has additive 

reduction, then the situation is more complicated.
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−qn/2Tr(Θn
symmE) =

∑
d|n

n

d

∑
deg(P )=n

d

a∗m,Pd . (2.4)

If m is not a positive integer, then we see that

a∗0,Pk = 1 and a∗−1,Pk = 0 (2.5)

for all P and k. Thus, even though there is no Frobenius matrix associated with m =
0, −1, we can still determine their respective sums in the right-hand side of (2.4):

∑
d|n

n

d

∑
deg(P )=n

d

a∗m,Pd =
{
qn m = 0,
0 m = −1.

(2.6)

2.2. Useful lemmas

Combining equations (2.1), (2.2) and (2.3), we see that if m is a positive integer and 
P is a prime of good reduction, then

a∗m,Pk = η2(m) +

m−1

2 �∑
j=0

(
α
k(m−2j)
P + β

k(m−2j)
P

)
. (2.7)

Further, for any prime P , we have the bound

|a∗m,Pk | ≤ 2(m + 1). (2.8)

Note that by (2.5), we see that (2.7) and (2.8) also hold for m = 0, −1.
We can now use (2.7) to relate the coefficients of the logarithmic derivatives of different 

symmetric power L-functions.

Lemma 2.3. If P is a prime of good reduction and m is a positive integer, then

a∗1,Pmd = a∗m,Pd − a∗m−2,Pd .

Proof. Applying (2.7), we get

a∗m,Pd − a∗m−2,Pd =

m−1

2 �∑
j=0

(
α
d(m−2j)
P + β

d(m−2j)
P

)
−


m−3
2 �∑

j=0

(
α
d(m−2−2j)
P + β

d(m−2−2j)
P

)
= αdm

P + βdm
P

= a∗1,Pmd ,

which is the desired result. �



P. Meisner, A. Södergren / Finite Fields and Their Applications 84 (2022) 102096 15
Next, we are able to use Lemma 2.3 to obtain a nice formula that relates traces of 
different symmetric powers. But first, we need to introduce some notation that will be 
useful in order to optimize the contribution of the primes of bad reduction to our error 
terms. For any D ∈ Fq[T ], and any n > 0, we denote

Dn =
∏
P |D

deg(P )=n

P. (2.9)

Lemma 2.4. Let E be any elliptic curve defined over Fq(T ).

(1) Let m|n. Then, if m ≥ 3, we have∑
d|n
m|d

n

d

∑
deg(P )=n

d

a∗1,Pd = −q
n

2m

(
Tr
(
Θn/m

symmE

)
− Tr

(
Θn/m

symm−2E

))

+ O

(
m
∑
d| n

m

deg(ΔE,n/dm)
)
.

(2) If 2|n, then∑
d|n
2|d

n

d

∑
deg(P )=n

d

a∗1,Pd = −qn/2−qn/4 Tr
(
Θn/2

sym2E

)
+
∑
d|n
2|d

n

d

∑
deg(P )=n

d
P |ΔE

(
a∗1,Pd−a∗2,Pd/2+1

)
.

Proof. To prove (1), we first observe that∑
d|n
m|d

n

d

∑
deg(P )=n

d

a∗1,Pd =
∑
d| n

m

n

dm

∑
deg(P )= n

dm

a∗1,Pmd .

Splitting the sum over primes into primes of good and bad reduction, we find that the 
primes of bad reduction contribute∑

d| n
m

n

dm

∑
deg(P )= n

dm
P |ΔE

a∗1,Pmd �
∑
d| n

m

deg(ΔE,n/dm).

Now, when m ≥ 3, for the primes of good reduction, we use Lemma 2.3 as well as (2.4)
to get∑
d| n

m

n

dm

∑
deg(P )= n

dm
P �ΔE

a∗1,Pmd =
∑
d| n

m

n

dm

∑
deg(P )= n

dm
P �ΔE

(
a∗m,Pd − a∗m−2,Pd

)

= −q
n

2m

(
Tr
(
Θn/m

symmE

)
− Tr

(
Θn/m

symm−2E

))
+ O

(
m
∑
d| n

m

deg(ΔE,n/dm)
)
,
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where the error term again comes from the primes of bad reduction.
Finally, to prove (2) we can still use Lemma 2.3 on the primes of good reduction. 

However, we also have to use (2.5) and (2.6) in conjunction with (2.4) to get

∑
d|n2

n

2d
∑

deg(P )= n
2d

P �ΔE

a∗1,P 2d =
∑
d|n2

n

2d
∑

deg(P )= n
2d

P �ΔE

(
a∗2,Pd − 1

)

= −qn/2 − qn/4Tr
(
Θn/2

sym2E

)
−
∑
d|n
2|d

n

d

∑
deg(P )=n

d
P |ΔE

(
a∗2,Pd/2 − 1

)
,

and the result follows. �
We can now use these relations to bound sums of a∗m,Pk over primes P of a fixed 

degree for various combinations of m and k.

Lemma 2.5. Let E be any elliptic curve defined over Fq(T ).

(1) If m is any positive integer, then

∑
deg(P )=n

a∗m,P � m

n
qn/2.

(2) If m ≥ 3, then

∑
deg(P )=n

a∗1,Pm � m

n

(
qn/2 + deg(ΔE,n)

)
.

(3) For prime squares, we have

∑
deg(P )=n

a∗1,P 2 = −qn

n
+ O

(
qn/2 + deg(ΔE,n)

n

)
.

Proof. To prove (1), we see from (2.4) that

∑
deg(P )=n

a∗m,P = −qn/2

n
Tr
(
Θn

symmE

)
−
∑
d|n
d>1

1
d

∑
deg(P )=n

d

a∗m,Pd .

Since ΘsymmE is a unitary matrix of size nsymmE × nsymmE , we get |Tr(Θn
symmE)| ≤

nsymmE � m by Remark 2.2. Moreover, for the prime sum, we use the bound in (2.8)
and bound the number of primes of degree n by q

n/d

to obtain the result.
d n/d
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Now, for (2), we apply Lemma 2.3 and (1) to get∑
deg(P )=n

a∗1,Pm =
∑

deg(P )=n

(
a∗m,P − a∗m−2,P

)
+ O

(m
n

deg(ΔE,n)
)

� m

n

(
qn/2 + deg(ΔE,n)

)
,

where the error term O
(
m
n deg(ΔE,n)

)
comes from using (2.8) for the primes of degree 

n that divide ΔE .
Finally, for (3), we still apply Lemma 2.3 but now we can only apply (1) on the sum 

of a∗2,P and need to use (2.6) on the sum of a∗0,P = 1. That is, we get

∑
deg(P )=n

a∗1,P 2 =
∑

deg(P )=n

(
a∗2,P − a∗0,P

)
+ O

(
deg(ΔE,n)

n

)

= −qn

n
+ O

(
qn/2 + deg(ΔE,n)

n

)
,

which completes the proof. �
These first few lemmas are crucial in picking out the lower order terms in the family 

of quadratic twists. However, they are a little less useful for the family of cubic twists. 
In that case, we will need the following two lemmas.

Lemma 2.6. Let E be any elliptic curve defined over Fq(T ). For any m ≥ 2, we have

−qn/2 Tr(Θn
E) =

∑
d|n
d≤m

n

d

∑
deg(P )=n

d

a∗1,Pd + O

(
mq

n
2(m+1) + n

∑
d|n
d>m

deg(ΔE,n/d)
)
.

Proof. We see from (2.4) that it suffices to bound∑
d|n
d>m

n

d

∑
deg(P )=n

d

a∗1,Pd .

Applying Lemma 2.5, we bound this sum by∑
d|n
d>m

(
dq

n
2d + d deg(ΔE,n/d)

)
� mq

n
2(m+1) + n

∑
d|n
d>m

deg(ΔE,n/d),

and the claimed estimate follows. �
Finally, we note that if we fix an elliptic curve Ẽ : y2 = x3 + B and perform a cubic 

twist by D for some D ∈ FN (B), then we get that
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deg
(
ΔẼD,n/d

)
� deg

(
ΔẼ,n/d

)
+ deg(Dn/d).

Thus, in Section 4, we will need a bound of a modified expected value of deg(Dn/d) as 
D ranges over FN (B).

Lemma 2.7. We have

1
|FN (B)|

∑
D∈FN (B)

n
∑
d|n

deg(Dn/d) � nτ(n),

where τ is the number of divisors function.

Proof. We have that

1
|FN (B)|

∑
D∈FN (B)

n
∑
d|n

deg(Dn/d) = 1
|FN (B)|

∑
D∈FN (B)

n
∑
d|n

∑
P |D

deg(P )=n
d

deg(P )

= n
∑
d|n

∑
deg(P )=n

d

deg(P )
(∣∣{D ∈ FN (B) : P |D}

∣∣
|FN (B)|

)

� n
∑
d|n

∑
deg(P )=n

d

deg(P )
qdeg(P ) � n

∑
d|n

d≥ n
N

1 � nτ(n),

where we have used Remark 4.8 to bound |{D∈FN (B):P |D}|
|FN (B)| . �

3. Quadratic twists

In this section, we prove Theorem 1.3 and Corollary 1.5.

3.1. A formula for a∗1,Pk(ED)

Recall that we are considering an elliptic curve given by the equation

E : y2 = x3 + Ax + B,

where A, B ∈ Fq[T ], and that for every D ∈ H±
N (ΔE), we have the quadratic twist

ED : y2 = x3 + AD2x + BD3. (3.1)

While it is well known how a∗1,Pk(ED) behaves as we vary D, we will prove it here to illus-
trate the differences between the quadratic twists and the cubic twists (cf. Section 4.1).
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Lemma 3.1. For any elliptic curve E with discriminant ΔE, prime P and D ∈ H±
N (ΔE), 

we have

aP (ED) =
(
D

P

)
aP (E),

where for any F, G ∈ Fq[T ], 
(
F
G

)
is the quadratic residue symbol.

Proof. Recall that aP (ED) is defined such that the relation

#ED(P ) = qdeg(P ) + 1 − aP (ED)qdeg(P )/2 (3.2)

holds. Let us compute #ED(P ). Since ED(P ) is a curve given by the cubic equation 
(3.1), reduced modulo P , we get that there is exactly one point lying above the point 
at infinity. For the finite points F ∈ Fq[T ]/(P ), the number of points lying above F on 
ED(P ) is ⎧⎪⎪⎨⎪⎪⎩

2 if F 3 + AD2F + BD3 is a non-zero square mod P ,
1 if F 3 + AD2F + BD3 ≡ 0 mod P ,
0 if F 3 + AD2F + BD3 is a non-square mod P .

Therefore, we may capture the number of points on ED(P ) as a character sum:

#ED(P ) = 1 +
∑

F mod P

(
1 +
(
F 3 + AD2F + BD3

P

))
, (3.3)

where the first term in the right-hand side is the contribution from the point lying over 
the point at infinity.

Now, if P � D, then for every F mod P , we can find a unique G mod P such that 
F = GD. Hence

#ED(P ) = 1 +
∑

G mod P

(
1 +
(

(GD)3 + AD2(GD) + BD3

P

))

= qdeg(P ) + 1 +
(
D

P

) ∑
G mod P

(
G3 + AG + B

P

)

= qdeg(P ) + 1 −
(
D

P

)
aP (E)qdeg(P )/2.

Comparing this to (3.2) completes the proof for all primes P � D.
On the other hand, if P |D, then we see that (3.3) becomes

#ED(P ) = 1 +
∑

F mod P

(
1 +
(
F

P

))
= qdeg(P ) + 1.
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It follows that aP (ED) = 0 =
(
D
P

)
aP (E), which concludes the proof. �

Lemma 3.1 has the following immediate consequence.

Corollary 3.2. With αP (ED) and βP (ED) defined as in (2.1), we have

αP (ED) =
(
D

P

)
αP (E) and βP (ED) =

(
D

P

)
βP (E).

Consequently,

a∗1,Pk(ED) =
(
D

P

)k

a∗1,Pk(E).

Proof. If P � DΔE , then we get by Lemma 3.1 that

1 − aP (ED)u + u2 =
(

1 − αP (E)
(
D

P

)
u

)(
1 − βP (E)

(
D

P

)
u

)
,

so that

αP (ED) =
(
D

P

)
αP (E) and βP (ED) =

(
D

P

)
βP (E).

Hence, by (2.7) we obtain

a∗1,Pk(ED) = αk
P (ED) + βk

P (ED) =
(
D

P

)k

a∗1,Pk(E).

Moreover, for P |DΔE , we get by (2.3) and Lemma 3.1 that

a∗1,Pk(ED) = (aP (ED))k =
(
D

P

)k

(aP (E))k =
(
D

P

)k

a∗1,Pk(E),

which completes the proof. �
3.2. A trace formula

The starting point for our proof of Theorem 1.3 is the following trace formula. Com-
bining Corollary 3.2 with (2.4), we get

〈
Tr
(
Θn

ED

)〉
H±

N (ΔE) = − q−n/2

|H±
N (ΔE)|

∑
d|n

n

d

∑
deg(P )=n

d

a∗1,Pd

∑
D∈H±

N (ΔE)

(
D

P

)d

.

For convenience, we define



P. Meisner, A. Södergren / Finite Fields and Their Applications 84 (2022) 102096 21
MT±(n,N) := −q−n/2
∑
d|n
2|d

n

d

∑
deg(P )=n

d

a∗1,Pd

|H±
N (PΔE)|

|H±
N (ΔE)|

and

ET±(n,N) := − q−n/2

|H±
N (ΔE)|

∑
d|n
2�d

n

d

∑
deg(P )=n

d

a∗1,Pd

∑
D∈H±

N (ΔE)

(
D

P

)
.

3.3. Estimating M±(n, N)

We see that in order to compute MT±(n, N) it is enough to prove the following 
proposition.

Proposition 3.3. For any prime P , we have

|H±
N (PΔE)|

|H±
N (ΔE)|

=
{ |P |

|P |+1 + O(q−N/2) P � ΔE ,

1 P |ΔE .

We first note that the case where P |ΔE is trivial as in this case H±
N (PΔE) = H±

N (ΔE). 
The proof of the remaining part of the proposition, i.e. the case where P � ΔE , follows 
immediately from the following two lemmas.

Lemma 3.4. Let E be an elliptic curve defined over Fq[T ]. If ME �= 1, then, for any 
Δ ∈ Fq[T ] (not necessarily the discriminant of E), we have

|H±
N (Δ)| = 1

2 |HN (Δ)| + OΔ(qN/2).

Moreover, if ME = 1, then either H+
N (Δ) = HN (Δ) or H−

N (Δ) = HN (Δ).

Proof. The second part of the lemma follows immediately from the formula for the root 
number ε(ED). For the first part, we have

|H±
N (Δ)| =

∑
D∈HN (Δ)

1
2
(
1 ± εN ε(E)χD(ME)

)
= 1

2 |HN (Δ)| ± εN ε(E)
2

∑
D∈HN (Δ)

χD(ME).

Now, by quadratic reciprocity, we have that

χD(ME) = (−1)
q−1
2 deg(ME)NχME

(D).

Furthermore, we observe that
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GΔ(u, χME
) :=

∑
(D,Δ)=1

μ2(D)χME
(D)udeg(D) =

∏
P �Δ

(
1 + χME

(P )udeg(P ))
=
∏
P |Δ

(
1 + χME

(P )udeg(P ))−1 ∏
P |ME

(
1 − u2 deg(P ))−1L(u, χME

)
ζq(u2) .

Hence, the above generating series can be analytically extended to the region |u| ≤ q−1/2

and we conclude that

∑
D∈HN (Δ)

χD(ME) = (−1) q−1
2 deg(ME)N

2πi

∮
Γ

GΔ(u, χME
)

uN+1 du � qN/2 max
u∈Γ

|GΔ(u, χME
)| ,

where Γ = {u : |u| = q−1/2}. We also note that

max
u∈Γ

∣∣∣∣∣ ∏
P |Δ

(
1 + χME

(P )udeg(P ))−1 ∏
P |ME

(
1 − u2 deg(P ))−1

∣∣∣∣∣ = OΔ(1).

Finally, we use the fact that the Riemann Hypothesis is known for the L-function 
L(u, χME

) to get that there exists a unitary matrix ΘME
of size M ×M, where M ≤

deg(ME) − 1, such that L(u, χME
) = det(1 −√

quΘME
). Thus

max
u∈Γ

|L(u, χME
)| = max

|u|=1
det(1 − uΘME

) � 2deg(ME) = O(1),

and the result follows. �
Next, we estimate the size of HN (Δ).

Lemma 3.5. For any Δ ∈ Fq[T ], we have

|HN (Δ)| = qN−1(q − 1)
∏
Q|Δ

|Q|
|Q| + 1 + OΔ(1),

where the product is over all prime divisors of Δ.

Proof. For any Δ ∈ Fq[T ], let

GΔ(u) :=
∑

(D,Δ)=1

μ2(D)udeg(D) =
∞∑
k=0

|Hk(Δ)|uk.

We can then write GΔ(u) as an Euler product:

GΔ(u) =
∏ (

1 + udeg(Q)) =
∏ (

1 + udeg(Q))−1 ζq(u)
ζq(u2) .
Q�Δ Q|Δ
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Hence, we get that GΔ(u) can be meromorphically extended to the region |u| < 1 with 
a simple pole at u = q−1. Therefore, if Γ = {u : |u| = 1

2}, then

|HN (Δ)| = −Resu=q−1

(
GΔ(u)
uN+1

)
+ 1

2πi

∮
Γ

GΔ(u)
uN+1 du

= qN−1(q − 1)
∏
Q|Δ

|Q|
|Q| + 1 + OΔ(1),

which is the desired result. �
Remark 3.6. Note that the error terms in Lemmas 3.4 and 3.5 only depend on the number 
of prime divisors of Δ. Thus, it follows that the error term in Proposition 3.3 can be 
made independent of the prime P .

Using Proposition 3.3, together with the fact that

|P |
|P | + 1 = 1 − 1

|P | + 1 ,

we get that every prime in the inner sum of MT±(n, N) contributes a term of a∗1,Pd

while the primes such that P � ΔE also contribute a term of

−a∗1,Pd

(
1

|P | + 1 + O
(
q−N/2

))
.

Combining this with Lemma 2.4, we get

MT±(n,N) := −q−n/2
∑
d|n
2|d

n

d

∑
deg(P )=n

d

a∗1,Pd

|H±
N (PΔE)|

|H±
N (ΔE)|

= −q−n/2
∑
d|n
2|d

n

d

∑
deg(P )=n

d

a∗1,Pd + q−n/2
∑
d|n
2|d

n

d

∑
deg(P )=n

d
P �ΔE

a∗1,Pd

(
1

|P | + 1 + O

(
1

qN/2

))

= η2(n)
(

1 +
Tr
(
Θn/2

sym2E

)
qn/4

+ D(n)
qn/2

)
+ O

(
1

qN/2

)
,

where

D(n) :=
∑
d|n

n

d

∑
deg(P )=n

d

a∗1,Pd

|P | + 1

2|d P �ΔE
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−
∑
d|n
2|d

n

d

∑
deg(P )=n

d
P |ΔE

(
a∗1,Pd − a∗2,Pd/2 + 1

)
� τ(n) + deg(ΔE). (3.4)

3.4. Bounding ET±(n, N)

To bound ET±(n, N), we refer to the work of Comeau-Lapointe [9]. To align with the 
notation from [9], we define

HN,C = {D ∈ HN (ΔE) : D ≡ C mod NE},

where NE is the conductor of the elliptic curve E as defined in, e.g., [34, Lecture 1] (see 
also [9, Section 2.1]). In particular, with our notation, we have nE = deg(NE) − 4.

Next, we define

SC(n,N) := − n

qn/2|HN,C |
∑

deg(P )=n

a∗1,P
∑

D∈HN,C

(
D

P

)
.

Then, [9, Proposition 7.2] shows that for any ε > 0, N > 4nE + 16 and C coprime to 
NE , we have

SC(n,N) �ε (n + N)N2nE+11
(

1
qN/8 + 1

qεN
+ qn/2

q(1−ε)N

)
.

Moreover, as we saw in the proof of Lemma 3.4, as long as P �= ME ,

∑
D∈H±

N (ΔE)

(
D

P

)
= 1

2
∑

D∈HN (ΔE)

(
1 ± εN ε(E)

(
D

ME

))(
D

P

)
� qN/2, (3.5)

and so as long as ME is not a prime of degree dividing n,

ET±(n,N)

= − q−n/2

|H±
N (ΔE)|

∑
d|n
2�d

n

d

∑
deg(P )=n

d

a∗1,Pd

∑
D∈H±

N (ΔE)

(
D

P

)

=
∑

C mod NE
(C,NE)=1

χC(ME)=±εN ε(E)

|HN,C |
|H±

N (ΔE)|
SC(n,N) + O

(
1

q(n+N)/2

∑
d|n
d≥3

n

d

∑
deg(P )=n

d

|a∗1,Pd |
)

= Oε

(
(n + N)N2nE+11

(
1

qN/8 + 1
qεN

+ qn/2

q(1−ε)N

)
+ 1

qN/2+n/6

)
.
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Finally, in the case that ME = P , then by using (3.5), we see that

∑
D∈H±

N (ΔE)

(
D

P

)
= ±εN ε(E)|H±

N (ΔE)| + O
(
qN/2). (3.6)

Therefore, if additionally deg(P ) = n
d for some odd d|n, then this prime would contribute 

a term

∓εN ε(E)n
d

a∗1,Pd

qn/2

to ET±(n, N), which we could incorporate into the term D(n)q−n/2 from the previous 
subsection.

3.5. Proof of Theorem 1.3

We are now in position to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Combining the results from the previous subsections, for any ε >
0 and N > 4nE + 16, we have〈

Tr
(
Θn

ED

)〉
H±

N (ΔE) = MT±(n,N) + ET±(n,N)

= η2(n)
(

1 +
Tr
(
Θn/2

sym2E

)
qn/4

+ D(n)
qn/2

)

+ Oε

(
(n + N)N2nE+11

(
1

qN/8 + 1
qεN

+ qn/2

q(1−ε)N

)
+ 1

qN/2+n/6

)
.

We may then absorb the term q−N/2−n/6 into the other error terms which gives the 
desired result. �
3.6. Proof of Corollary 1.5

Recall that we have, for any unitary N ×N matrix U ,

D(U, f) :=
N∑
j=1

∑
n∈Z

f

(
N

(
θj
2π − n

))
= 1

N

∑
n∈Z

f̂
( n

N

)
Tr(Un),

where the θj run over the eigenangles of the matrix U . In particular, since we know that

∫
O(N)

Tr(Un) dU =
{
N if n = 0,
η2(n) if n �= 0,
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we get that∫
O(nE+2N)

D(U, f) dU = 1
nE + 2N

∑
n∈Z

f̂

(
n

nE + 2N

) ∫
O(nE+2N)

Tr(Un) dU

= f̂(0) + 2
nE + 2N

∞∑
n=1

f̂

(
2n

nE + 2N

)
.

Now, we note that since Tr(U−n) = Tr(Un) = Tr(Un) for orthogonal matrices, we 
may trivially extend the results of Theorem 1.3 to negative integers n as well. Hence, 
using Theorem 1.3 to average over the quadratic twist family, we find that if supp(f̂) ⊂
(−1 + δ, 1 − δ) for some δ > 0, then

〈
D(ΘED

, f)
〉
H±

N (ΔE) = 1
nED

∑
n∈Z

f̂

(
n

nED

)〈
Tr(Θn

ED
)
〉
H±

N (ΔE)

= f̂(0) + 2
nE + 2N

(1−δ)(nE
2 +N)∑

n=1
f̂

(
2n

nE + 2N

)(
1 +

Tr
(
Θn

sym2E

)
qn/2

+ D(2n)
qn

)
(3.7)

+ Oε

⎛⎝(1−δ)(nE+2N)∑
n=1

(n + N)N2nE+10
(

1
qN/8 + 1

qεN
+ qn/2

q(1−ε)N

)⎞⎠ .

We divide the right-hand side above into pieces that we analyze separately.
Firstly, we note that the error term in (3.7) is bounded by

Oε

(
N2nE+12

(
1

qN/8 + 1
qεN

+ q(ε−δ)N
))

= Oε

(
1

qε′N

)

for some ε′ > 0 as long as ε < δ. Next, we use the assumption that supp(f̂) ⊂ (−1 +δ, 1 −δ)
to extend the sum to be over all positive n. Hence, we can write the main term in (3.7)
as

f̂(0) + 2
nE + 2N

(1−δ)(nE
2 +N)∑

n=1
f̂

(
2n

nE + 2N

)

= f̂(0) + 2
nE + 2N

∞∑
n=1

f̂

(
2n

nE + 2N

)
=

∫
O(nE+2N)

D(U, f) dU. (3.8)

For the secondary terms in (3.7), we split the sum over n into two parts. Let φ(N)
be any function (to be determined later). Then, we use the fact that f is a Schwartz 
function to get that f̂(x + y) = f̂(x) + O(y) and so
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φ(N)∑
n=1

f̂

(
2n

nE + 2N

) Tr
(
Θn

sym2E

)
qn/2

=
φ(N)∑
n=1

(
f̂(0) + O

( n

N

)) Tr
(
Θn

sym2E

)
qn/2

= f̂(0)
φ(N)∑
n=1

Tr
(
Θn

sym2E

)
qn/2

+ O

(
φ(N)
N

)
. (3.9)

Next, combining (2.3) and (2.4), we get that

L′(u, sym2E)
L(u, sym2E) = − 1

u

∞∑
n=1

Tr
(
Θn

sym2E

)
(√qu)n .

Therefore, extending the sum in (3.9) to be over all positive n, while gaining an additional 
error term of order q−φ(N)/2, we find that the main contribution from (3.9) equals

− f̂(0)
q

L′(q−1, sym2E)
L(q−1, sym2E) .

For the remaining terms with n > φ(N), we use the fact that f̂ is bounded to get

∑
φ(N)<n≤(1−δ)(nE

2 +N)

f̂

(
2n

nE + 2N

) Tr
(
Θn

sym2E

)
qn/2

� q−φ(N)/2.

Combining the above observations, we set φ(N) = N ε and conclude that

2
nE + 2N

(1−δ)(nE
2 +N)∑

n=1
f̂

(
2n

nE + 2N

) Tr
(
Θn

sym2E

)
qn/2

= − f̂(0)
N

L′(q−1, sym2E)
qL(q−1, sym2E)

+ Oε

(
1

N2−ε

)
.

Finally, we consider also the remaining secondary term in (3.7). Similarly as in the 
treatment of the first secondary term above, we get that

2
nE + 2N

(1−δ)(nE
2 +N)∑

n=1
f̂

(
2n

nE + 2N

)
D(2n)
qn

= f̂(0)
N

∞∑
n=1

∑
d|2n
2|d

( ∑
deg(P )= 2n

d
P �ΔE

deg(P )a∗1,Pd

qn(|P | + 1)

−
∑

deg(P )= 2n
d

deg(P )
(
a∗1,Pd − a∗2,Pd/2 + 1

)
qn

)
+ Oε

(
1

N2−ε

)

P |ΔE
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= f̂(0)
N

( ∑
P �ΔE

deg(P )
|P | + 1

∞∑
d=1

a∗1,P 2d

|P |d −
∑
P |ΔE

deg(P )
∞∑
d=1

a∗1,P 2d − a∗2,Pd + 1
|P |d

)
+ Oε

(
1

N2−ε

)
.

This concludes the proof of Corollary 1.5.

4. Cubic twists

In this section, we prove Theorems 1.6 and 1.7.

4.1. A formula for aP (Ẽ)

Recall that we denote by Ẽ an elliptic curve given by the equation

Ẽ : y2 = x3 + B, (4.1)

where B ∈ Fq[T ], and that for every D ∈ FN (B), we consider the cubic twist

ẼD : y2 = x3 + BD2.

For any elliptic curve Ẽ of the above form, and any prime P , we define

λP = λP (Ẽ) := 1
qdeg(P )/2

∑
F mod P

(
F 2 −B

P

)
3
,

where 
( ·
P

)
3 is the cubic residue symbol on Fq[T ]/(P ) ∼= Fqdeg(P ) . Note in particular that 

the Weil bound implies that |λP | ≤ 1.
Similar to the case of quadratic twists, we will use the fact that aP (ẼD) can be 

expressed in terms of the number of points of ẼD(P ) (as a character sum) and then 
use this information to understand how these coefficients change as we vary D. See [24, 
Chapter 18] for related explicit formulas in the number field setting.

Lemma 4.1. For any elliptic curve Ẽ given by an equation of the form (4.1), prime P
and D ∈ FN (B), we have

aP (Ẽ) = −(λP + λP ) (4.2)

and

λP (ẼD) =
(
D

P

)2

3
λP (Ẽ). (4.3)

Proof. Recall that

#Ẽ(P ) = qdeg(P ) + 1 − aP (Ẽ)qdeg(P )/2.
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We also know from our discussion in Section 3 that there will always be exactly one point 
lying above ∞ on Ẽ(P ). Moreover, since our curves have the form (4.1), we observe that 
for a prime P and a finite point F ∈ Fq[T ]/(P ), the number of points lying over F on 
Ẽ(P ) is ⎧⎪⎪⎨⎪⎪⎩

3 if F 2 −B is a non-zero perfect cube mod P ,
1 if F 2 −B ≡ 0 mod P ,
0 if F 2 −B is not a perfect cube mod P .

We capture this information in the character sum

#Ẽ(P ) = 1 +
∑

F mod P

(
1 +
(
F 2 −B

P

)
3

+
(
F 2 −B

P

)2

3

)

= qdeg(P ) + 1 +
∑

F mod P

((
F 2 −B

P

)
3

+
(
F 2 −B

P

)2

3

)
= qdeg(P ) + 1 + (λP + λP )qdeg(P )/2,

which proves (4.2).
To prove (4.3), we first consider the case when P � D. Then D is invertible modulo P

and so

λP (ẼD) = 1
qdeg(P )/2

∑
F mod P

(
F 2 −BD2

P

)
3

=
(
D2

P

)
3

1
qdeg(P )/2

∑
F mod P

(
(FD−1)2 −B

P

)
3

=
(
D

P

)2

3
λP (Ẽ),

where the last equality comes from the fact that as F runs over all the elements mod P
so does FD−1. Finally, if P |D, then we get

λP (ẼD) = 1
qdeg(P )/2

∑
F mod P

(
F

P

)2

3
= 0,

which clearly equals 
(
D
P

)2
3 λP (Ẽ) in this case. �

It is tempting to try to conclude from (4.2) that λP = −αP . This is true if and only 
if |λP | = 1. However, we will see that the expected value of |λP |2, for primes P of large 
degree, is 1

2 (cf. Corollary 1.9) and so λP is in general not equal to −αP . Therefore, it is 
not necessarily true that αP (ẼD) =

(
D
)2

αP (Ẽ). This causes some minor issues when 
P 3
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we calculate the expected values of traces of the Frobenius, as we need to first write 
everything in terms of λP instead of the more natural αP . The following lemma presents 
the essential parts of this reformulation.

Lemma 4.2. If P is a prime of good reduction for Ẽ, then we have the following:

(1) a∗1,P = −(λP + λP ),
(2) a∗1,P 2 = λ2

P + λ
2
P + 2(|λP |2 − 1),

(3) a∗1,P 3 = −(λ3
P + λ

3
P ) − 3(|λP |2 − 1)(λP + λP ).

Proof. For (1), we have that

a∗1,P = aP = −(λP + λP ).

To prove (2), we note that

a∗1,P 2 = α2
P + β2

P = (αP + βP )2 − 2 = (λP + λP )2 − 2 = λ2
P + λ

2
P + 2(|λP |2 − 1).

Finally, for (3), we have that

a∗1,P 3 = α3
P + β3

P = (αP + βP )3 − 3(αP + βP ) = −(λP + λP )3 + 3(λP + λP )

= −(λ3
P + λ

3
P ) − 3(|λP |2 − 1)(λP + λP ),

which concludes the proof. �
4.2. Trace formulas

Applying Lemma 2.6 with m = 2 and using Lemmas 2.5 and 4.2, we obtain

− qn/2Tr(Θn
Ẽ

) = n
∑

deg(P )=n

a∗1,P + n

2
∑

deg(P )=n
2

a∗1,P 2 + O

(
qn/6 + n

∑
d|n
d>2

deg(ΔẼ,n/d)
)

= −η2(n)qn/2 − n
∑

deg(P )=n

(λP + λP ) + O

(
η2(n)nqn/4 + qn/6 + n

∑
d|n

deg(ΔẼ,n/d)
)
.

Therefore, if for every prime P , we define

EP = EP (N) := 1
|FN (B)|

∑
D∈FN (B)

(
D

P

)
3
, (4.4)

then we get
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〈
Tr(Θn

ẼD
)
〉
FN (B) = η2(n) + n

qn/2

∑
deg(P )=n

(
λPEP + λPEP

)
+ O

(
η2(n)n
qn/4

+ 1
qn/3

+
n(deg(ΔẼ) + τ(n))

qn/2

)
, (4.5)

where we have used Lemma 2.7 to bound the contribution from the primes of bad 
reduction dividing elements in FN (B).

On the other hand, if we apply Lemma 2.6 with m = 3 instead of m = 2, together 
with Lemma 4.2, then we get a different trace formula:

− qn/2Tr(Θn
Ẽ

) = −n
∑

deg(P )=n

(
λP + λP

)
+ n

2
∑

deg(P )=n
2

(
λ2
P + λ

2
P + 2(|λP |2 − 1)

)

− n

3
∑

deg(P )=n
3

(
λ3
P + λ

3
P + 3(|λP |2 − 1)(λP + λP )

)
+ O

(
qn/8 + n

∑
d|n

deg(ΔẼ,n/d)
)
.

Now, we note that as long as P � D, we have |λP (ẼD)|2 = |λP (Ẽ)|2 and λ3
P (ẼD) =

λ3
P (Ẽ). Therefore, if we define

M(n,N) := − n/2
qn/2

∑
deg(P )=n

2

2(|λP |2 − 1) |FN (PB)|
|FN (B)| , (4.6)

S(n,N) := n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

) |FN (PB)|
|FN (B)| , (4.7)

E(n,N) := n

qn/2

∑
deg(P )=n

(
λPEP + λPEP

)
− n/2

qn/2

∑
deg(P )=n

2

(
λ2
PEP + λ

2
PEP

)
+ n/3

qn/2

∑
deg(P )=n

3

3(|λP |2 − 1)
(
λPEP + λPEP

)
,

(4.8)

with each λP = λP (Ẽ), then we have

〈
Tr(Θn

ẼD
)
〉
FN (B) = M(n,N) + S(n,N) + E(n,N) + O

(
1

q3n/8 +
n(deg(ΔẼ) + τ(n))

qn/2

)
,

(4.9)

where we use the same bounds as in (4.5), together with Remark 4.8, to handle the 
primes of bad reduction.

Hence, in order to prove Theorems 1.6 and 1.7, we need to bound EP and compute 
|FN (PB)|
|FN (B)| , which we can view as the probability that a random D ∈ FN (B) is coprime 

to P .
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4.3. Bounding EP (N)

In this short subsection, we prove the following bound on EP (N).

Proposition 4.3. For any ε > 0 and any prime P , we have

EP (N) �ε
e2 deg(P )

Nq( 1
2−ε)N .

Proof. We denote the cubic residue symbol modulo P by

ψP =
( ·
P

)
3

and consider the generating series

G(u, ψP ) :=
∞∑

N=0

∑
D∈FN (B)

ψP (D)uN .

Every D ∈ FN (B) can be written as D = D1D
2
2, where deg(D1D2) = N , 3| deg(D1D

2
2)

and D1, D2 are monic, square-free, coprime to each other and coprime to B. Using this, 
we obtain that

G(u, ψP ) = 1
3

∑
D1,D2

(D1D2,B)=1

μ2(D1D2)ψP (D1D
2
2)
(
1 + ξ

deg(D1D
2
2)

3 + ξ
2 deg(D1D

2
2)

3

)
udeg(D1D2)

= 1
3
(
H0(u, ψP ) + H1(u, ψP ) + H2(u, ψP )

)
,

where ξ3 is a primitive cube root of unity and

Hj(u, ψP ) :=
∑

D1,D2
(D1D2,B)=1

μ2(D1D2)ψP (D1D
2
2)ξ

j deg(D1D
2
2)

3 udeg(D1D2).

Writing Hj(u, ψP ) as a product over primes, we get

Hj(u, ψP ) =
∏
Q�B

(
1 + ψP (Q)(ξj3u)deg(Q) + ψ2

P (Q)(ξ2j
3 u)deg(Q)

)
= L(ξj3u, ψP )L(ξ2j

3 u, ψ2
P )H̃j(u, ψP ),

where L(u, ψP ) is the L-function attached to the Dirichlet character ψP and H̃j(u, ψP )
is a function that has an Euler product with factors of the form 

(
1 + O(u2 deg(Q))

)
for 

all Q � B (respectively, 
(
1 + O(udeg(Q))

)
for Q | B), and so is analytic in the region 

|u| < q−1/2.



P. Meisner, A. Södergren / Finite Fields and Their Applications 84 (2022) 102096 33
Now, since ψP and ψ2
P are both non-trivial Dirichlet characters modulo P , we get 

that Hj(u, ψP ) is analytic in the region |u| < q−1/2 and hence so is G(u, ψP ). Therefore, 
if Γ := {u : |u| = q−1/2−ε}, then we use [26, Proposition 1.2]10 to get

∑
D∈FN (B)

(
D

P

)
3

= 1
2πi

∮
Γ

G(u, ψP )
uN+1 du � max

u∈Γ

(
|G(u, ψP )|

|u|N
)

�ε e
2 deg(P )q( 1

2+ε)N .

To conclude, we refer to Corollary 4.6 below which implies that |FN (B)| ∼ cNqN for 
some non-zero constant c. �
4.4. Proof of Theorem 1.6

Using the results from the previous subsections, we are now ready to complete the 
proof of Theorem 1.6.

Proof of Theorem 1.6. Applying Proposition 4.3 to (4.5), we get

〈
Tr(Θn

ẼD
)
〉
FN (B) = η2(n) + n

qn/2

∑
deg(P )=n

(
λPEP + λPEP

)
+ O

(
η2(n)n
qn/4

+ 1
qn/3

+
n(deg(ΔẼ) + τ(n))

qn/2

)
= η2(n) + Oε

(
qn/2e2n

Nq( 1
2−ε)N + η2(n)n

qn/4
+ 1

qn/3
+

n(deg(ΔẼ) + τ(n))
qn/2

)
.

Hence, if supp(f̂) ⊂ (−α, α) for some α < 1
2 − 2

4+log q , we use (1.3) to get

〈
D(ΘẼD

, f)
〉
FN (B) = 1

nẼ + 2N
∑
n∈Z

f̂

(
n

nẼ + 2N

)〈
Tr(Θn

ẼD
)
〉
FN (B)

= f̂(0) + 2
nẼ + 2N

α(n
Ẽ

+2N)∑
n=1

f̂

(
n

nẼ + 2N

)〈
Tr(Θn

ẼD
)
〉
FN (B)

= f̂(0) + 2
nẼ + 2N

α(
n
Ẽ
2 +N)∑
n=1

f̂

(
2n

nẼ + 2N

)

+ Oε

⎛⎝ 1
N

α(n
Ẽ

+2N)∑
n=1

(
qn/2e2n

Nq( 1
2−ε)N + η2(n)n

qn/4
+ 1

qn/3
+

n(deg(ΔẼ) + τ(n))
qn/2

)⎞⎠
10 Note that Lumley [26] is assuming that q ≡ 1 mod 4. However, this assumption is not important for the 
proof of [26, Proposition 1.2] and the same result holds also in the case q ≡ 3 mod 4.
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=
∫

O(n
Ẽ

+2N)

D(U, f) dU + O

(
1
N

)
,

where we fix a sufficiently small ε and use (3.8) in the last step. �
4.5. The probability of being coprime to P

Recall that for the quadratic twists, we proved in Proposition 3.3 that

|H±
N (PΔE)|

|H±
N (ΔE)|

= |P |
|P | + 1 + O

(
q−N/2)

for all P � ΔE . To pick out the lower order terms in Theorem 1.7, we need a similar 
result for FN (B) with an error term that decays as N tends to infinity. Proving such 
a result is a little more delicate due to the fact that the generating series for HN(ΔE)
has a simple pole at q−1, whereas the generating series for FN(B) has a double pole at 
q−1. That being said, the rest of this subsection will be devoted to proving the following 
proposition.

Proposition 4.4. Let P be a prime of degree m. If P � B, then

|FN (PB)|
|FN (B)| = 1 +


N
m �∑

a=1

(
−2
qm

)a (
1 − am

N

)
+ O

(
1

Nqm

)
,

whereas if P |B, then

|FN (PB)|
|FN (B)| = 1.

The case where P |B is trivial since in this case FN (B) = FN (PB). Thus, we will 
consider only the case P � B. Towards this goal, we define the generating series

G(u;B) :=
∞∑

N=0
|FN (B)|uN .

For any analytic function K(u) defined in an open neighborhood of the origin, we define 
[ud]K(u) as the dth coefficient in the Taylor expansion of K(u) around 0. Therefore,

|FN (PB)|
|FN (B)| = [uN ]G(u;PB)

[uN ]G(u;B) .

Similar to when we bounded EP (see Proposition 4.3), we note that every element in 
FN (B) can be written as D1D

2
2 where deg(D1D2) = N , 3| deg(D1D

2
2) and the Di are 

monic, square-free, coprime to each other and coprime to B. Hence, we obtain that
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G(u;B) = 1
3

∑
D1,D2

(D1D2,B)=1

μ2(D1D2)
(
1 + ξ

deg(D1D
2
2)

3 + ξ
2 deg(D1D

2
2)

3

)
udeg(D1D2)

= 1
3
(
H0(u;B) + H1(u;B) + H2(u;B)

)
,

where ξ3 is a primitive cube root of unity and

Hj(u;B) :=
∑

D1,D2
(D1D2,B)=1

μ2(D1D2)ξ
j deg(D1D

2
2)

3 udeg(D1D2)

=
∏
Q�B

(
1 + (ξj3u)deg(Q) + (ξ2j

3 u)deg(Q)
)
.

It is clear that H1(u; B) = H2(u; B) and so we can write

G(u;B) = 1
3
(
H0(u;B) + 2H1(u;B)

)
.

Lemma 4.5. Let ε > 0 and d ∈ Z≥0. Then there exists a linear polynomial L such that

[ud]H0(u;B) = L(d)qd + Oε

(
q( 1

2+ε)d).
Furthermore, there exists a constant C such that

[ud]H1(u;B) = Cqd + Oε

(
q( 1

2+ε)d).
Proof. We have

Hj(u;B) =
∏
Q�B

(
1 + (ξj3u)deg(Q) + (ξ2j

3 u)deg(Q)
)

=
∏
Q

(
1 − (ξj3u)deg(Q)

)−1∏
Q

(
1 − (ξ2j

3 u)deg(Q)
)−1

H̃j(u;B)

= 1(
1 − ξj3qu

)(
1 − ξ2j

3 qu
)H̃j(u;B),

where

H̃j(u;B) =
∏
Q|B

(
1 + O

(
udeg(Q))) ∏

Q�B

(
1 + O

(
u2 deg(Q)))

is absolutely convergent in the region |u| < q−1/2. Let ε > 0 and Γ = {u : |u| = q−1/2−ε}. 
Then Hj(u;B)

ud+1 is meromorphic in the region bounded by Γ with poles at u = 0 and u = q−1

if j = 0, and with poles at u = 0, u = ξ3q
−1 and u = ξ2

3q
−1 if j = 1, 2. Hence,
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1
2πi

∮
Γ

Hj(u;B)
ud+1 du � max

u∈Γ

(
|Hj(u;B)|

|u|d
)

�ε q
( 1
2+ε)d.

On the other hand, if j = 0, then

1
2πi

∮
Γ

H0(u;B)
ud+1 du = Resu=0

(
H0(u;B)
ud+1

)
+ Resu=q−1

(
H0(u;B)
ud+1

)
.

Moreover, we note that

Resu=0

(
H0(u;B)
ud+1

)
= [ud]H0(u;B)

and

Resu=q−1

(
H0(u;B)
ud+1

)
= lim

u→q−1

d

du

(
(u− q−1)2

(1 − qu)2
H̃0(u;B)
ud+1

)
= −

(
(d + 1)H̃0(q−1;B) − q−1H̃ ′

0(q−1;B)
)
qd,

which proves the result for j = 0. Finally, if j = 1, then we have

1
2πi

∮
Γ

H1(u;B)
ud+1 du = Resu=0

(
H1(u;B)
ud+1

)

+ Resu=ξ3q−1

(
H1(u;B)
ud+1

)
+ Resu=ξ2

3q
−1

(
H1(u;B)
ud+1

)
,

where

Resu=0

(
H1(u;B)
ud+1

)
= [ud]H1(u;B)

and

Resu=ξ3q−1

(
H1(u;B)
ud+1

)
= lim

u→ξ3q−1

(u− ξ3q
−1)H̃1(u;B)

(1 − ξ3qu)(1 − ξ2
3qu)ud+1

= −
(
H̃1(ξ3q−1;B)

(1 − ξ2
3)ξd3

)
qd = −C1q

d.

By a similar calculation, we find that the residue at ξ2
3q

−1 equals −C2q
d for a suitable 

constant C2. Setting C = C1 + C2 completes the proof. �
Lemma 4.5 has the following immediate consequence.
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Corollary 4.6. Let L and C be as in Lemma 4.5. Then, we have

|FN (B)| = 1
3
(
L(N) + 2C

)
qN + Oε

(
q( 1

2+ε)N).
Proof. Using Lemma 4.5, we obtain

|FN (B)| = [uN ]G(u;B) = 1
3[uN ]

(
H0(u;B) + 2H1(u;B)

)
= 1

3
(
L(N) + 2C

)
qN + Oε

(
q( 1

2+ε)N),
as desired. �

In order to prove Proposition 4.4, we need to know how to pass from [ud]G(u; B) to 
[ud]G(u; PB). Fortunately, using the fact that Hj(u; PB) has an Euler product, it is 
straightforward to pass from [ud]Hj(u; B) to [ud]Hj(u; PB).

Lemma 4.7. Let d ∈ Z≥0 and let P be a prime of degree m such that P � B. Then

[ud]Hj(u;PB) =

 d
m �∑

a=0
(−1)a

(
ξjm3 + ξ2jm

3

)a
[ud−am]Hj(u;B).

Proof. From the definition of Hj(u; B), we see that

Hj(u;B) =
(
1 + (ξj3u)m + (ξ2j

3 u)m
)
Hj(u;PB)

and it follows that

[ud]Hj(u;B) = [ud]Hj(u;PB) +
(
ξjm3 + ξ2jm

3

)
[ud−m]Hj(u;PB).

Rearranging, we then get

[ud]Hj(u;PB) = [ud]Hj(u;B) −
(
ξjm3 + ξ2jm

3

)
[ud−m]Hj(u;PB)

= [ud]Hj(u;B) −
(
ξjm3 + ξ2jm

3

)
[ud−m]Hj(u;B) +

(
ξjm3 + ξ2jm

3

)2
[ud−2m]Hj(u;PB),

and iterating this procedure, we obtain

[ud]Hj(u;PB) =

 d
m �∑

a=0
(−1)a

(
ξjm3 + ξ2jm

3

)a
[ud−am]Hj(u;B).

This concludes the proof of the lemma. �
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Using Lemmas 4.5 and 4.7, we now complete the proof of Proposition 4.4.

Proof of Proposition 4.4. It follows from Lemmas 4.5 and 4.7 that if P � B, then

|FN (PB)| = [uN ]G(u;PB) = 1
3[uN ]

(
H0(u;PB) + 2H1(u;PB)

)
= 1

3


N
m �∑

a=0
(−1)a[uN−am]

(
2aH0(u;B) + 2

(
ξm3 + ξ2m

3
)a

H1(u;B)
)

= |FN (B)| + 1
3


N
m �∑

a=1
(−1)a

(
2aL(N − am) + 2C

(
ξm3 + ξ2m

3
)a)

qN−am

+ Oε

(
q( 1

2+ε)(N−m)).
Hence, by Corollary 4.6, we find that |FN (PB)|

|FN (B)| equals

1 +
1
3
∑
N

m �
a=1 (−1)a

(
2aL(N − am) + 2C

(
ξm3 + ξ2m

3
)a)

qN−am + Oε

(
q( 1

2+ε)(N−m))
1
3
(
L(N) + 2C

)
qN + Oε

(
q( 1

2+ε)N)
= 1 +


N
m �∑

a=1

(
−2
qm

)a (
1 − am

N

)
+ O

(
1

Nqm

)
,

which is the desired result. �
We conclude this subsection with an observation that is useful in the proof of 

Lemma 2.7.

Remark 4.8. We can use the same ideas as above to prove that for any prime P , we have

|{D ∈ FN (B) : P |D}|

≤ 2
∣∣{D ∈ Fq[T ] : D monic, cube-free and deg(rad(D)) = N − deg(P )

}∣∣
� (N − deg(P ))qN−deg(P ) � |FN (B)|

qdeg(P ) .

Indeed, the first inequality is obvious as we have removed the conditions of being coprime 
to B and deg(D) ≡ 0 mod 3, and the factor 2 accounts for the two cases P‖D and P 2‖D. 
The second bound follows by the same proof as that of Corollary 4.6 with the minor 
change that here we only need to consider H0(u; 1) as we have removed the conditions 
(D, B) = 1 and deg(D) ≡ 0 mod 3.
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4.6. Proof of Theorem 1.7

We now have everything we need to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. Recall from (4.9) that

〈
Tr(Θn

ẼD
)
〉
FN (B) = M(n,N) + S(n,N) + E(n,N) + O

(
1

q3n/8 +
n(deg(ΔẼ) + τ(n))

qn/2

)
.

Using Proposition 4.3 to bound E(n, N), we get

E(n,N) = n

qn/2

∑
deg(P )=n

(
λPEP + λPEP

)
− n/2

qn/2

∑
deg(P )=n

2

(
λ2
PEP + λ

2
PEP

)
+ n/3

qn/2

∑
deg(P )=n

3

3(|λP |2 − 1)
(
λPEP + λPEP

)
�ε

qn/2e2n

Nq( 1
2−ε)N .

Finally, we use Proposition 4.4 to estimate M(n, N) and S(n, N). We obtain

M(n,N) = − n/2
qn/2

∑
deg(P )=n

2

2(|λP |2 − 1) |FN (PB)|
|FN (B)|

= − n/2
qn/2

∑
deg(P )=n

2

2(|λP |2 − 1) + D̃1(n)
qn/2

+ O

(
1

Nqn/2

)
,

where

D̃1(n) := −n

2
∑

deg(P )=n
2

P �B

2(|λP |2 − 1)

 2N

n �∑
a=1

(
−2
qn/2

)a (
1 − an

2N

)
� 1, (4.10)

and

S(n,N) = n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

) |FN (PB)|
|FN (B)|

= n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

)
+ D̃2(n)

qn/2
+ O

(
1

Nqn/2

)
,

where

D̃2(n) := n

3
∑

deg(P )=n
3

P �B

(
λ3
P + λ

3
P

) 
 3N
n �∑

a=1

(
−2
qn/3

)a (
1 − an

3N

)
� 1. (4.11)
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This completes the proof. �
5. Heuristics and conjectures

In this section, we return to the heuristic arguments in Section 1.4. We first prove 
Corollary 1.9.

Proof of Corollary 1.9. First, we note that

n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

)
� 1

qn/6
.

Hence, setting the right-hand sides of Theorems 1.6 and 1.7 equal to each other for 
n = 2m, we find that

− m

qm

∑
deg(P )=m

2(|λP |2 − 1) = 1 − 2m/3
qm

∑
deg(P )= 2m

3

(
λ3
P + λ

3
P

)
+ O

(
m

qm/2

)

= 1 + O

(
1

qm/3

)
. (5.1)

Furthermore, by the Prime Polynomial Theorem, we get

− m

qm

∑
deg(P )=m

2(|λP |2 − 1) = −2m
qm

∑
deg(P )=m

|λP |2 + 2 + O

(
m

qm/2

)
. (5.2)

Finally, equating the right-hand sides of (5.1) and (5.2), we find that

m

qm

∑
deg(P )=m

|λP |2 = 1
2 + O

(
1

qm/3

)
,

as desired. �
Next, we turn our attention to Conjecture 1.10. For evidence of the conjecture, we 

first consider the term

n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

)
from the right-hand side of Theorem 1.7. For primes of good reduction, we use (2.7) and 
Lemma 4.2 to write
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a∗3,P = α3
P + β3

P + αP + βP

= a∗1,P 3 + a∗1,P

= −
(
λ3
P + λ

3
P

)
− 3(|λP |2 − 1)(λP + λP ) + a∗1,P

= −
(
λ3
P + λ

3
P

)
+ (3|λP |2 − 2)a∗1,P .

Hence, if we replace |λP |2 with its average value when averaging over deg(P ) = n
3 and 

assume that the contribution of the primes of bad reduction will be of lower order, then 
we get

n/3
qn/2

∑
deg(P )=n

3

(
λ3
P + λ

3
P

)
≈ − n/3

qn/2

∑
deg(P )=n

3

a∗3,P + n/3
qn/2

∑
deg(P )=n

3

(3|λP |2 − 2)a∗1,P

≈ − n/3
qn/2

∑
deg(P )=n

3

a∗3,P − 1
2
n/3
qn/2

∑
deg(P )=n

3

a∗1,P

∼ η3(n)
qn/3

(
Tr
(
Θn/3

sym3Ẽ

)
+ 1

2Tr
(
Θn/3

Ẽ

))
.

In the final step above, we applied (2.4) together with the assumption that the sums in 
the second line constitute the dominant contribution to the respective trace.

Finally, by a similar argument we find that

− n/2
qn/2

∑
deg(P )=n

2

2(|λP |2 − 1) ≈ n/2
qn/2

∑
deg(P )=n

2

1 ∼ η2(n).

Assuming that the tertiary main term is handled in the way described in Remark 1.8
and that all error terms are sufficiently small, we arrive at Conjecture 1.10.

Appendix A. Comments on families of twists

One criterion for a family of function field L-functions to be considered “nice” and 
thus have interesting symmetries is that all members of the family have the same degree 
of the conductor, or equivalently, that all L-functions in the family are polynomials of 
the same degree. Ideally, when considering a certain class of L-functions, one would like 
the family to contain all the L-functions in that class of a given degree.

For the cubic twists, we consider only the family FN(B) and all L-functions of twists 
of Ẽ by a polynomial D ∈ FN (B) have degree nẼ + 2N . However, since the condition 
deg(D) ≡ 0 mod 3 is included in the definition of FN (B), we clearly see that there are 
cubic twists of Ẽ that do not come from FN (B) and, indeed, some of them will have 
L-functions of degree nẼ + 2N .

It is easy to check that every finite prime that divides D will have additive reduction 
on ẼD (or ED). Each of these primes will then contribute P 2 to the conductor of ẼD
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and so the degree of L(u, ẼD) will always be roughly nẼ + 2 deg(rad(D)). It remains to 
check what happens to the prime at infinity.

A.1. Reduction at the prime at infinity

Let E : y2 = x3 + Ax + B with A, B ∈ Fq[T ]. Define a := deg(A) and b := deg(B). 
To analyze what happens at the point at infinity, we let S := 1/T and write

A(T ) = S−aA∗(S), B(T ) = S−bB∗(S)

and analyze what happens at S = 0 for the curve given by the equation

y2 = x3 + S−aA∗x + S−bB∗.

Setting


 = max {�a/4�, �b/6�}

and

Y = S3
y, X = S2
x,

we rewrite the equation as

Y 2 = X3 + S4
−aA∗X + S6
−bB∗. (A.1)

We now note that

A∗(0), B∗(0) �= 0

unless A = 0 or B = 0. Moreover, by our choice of 
, we have

4
− a, 6
− b ≥ 0

and either

4
− a < 4 or 6
− b < 6.

Hence, (A.1) is a minimal Weierstrass equation for S = 0. Therefore, if P∞ is the prime 
at infinity, then we define

E(P∞) : Y 2 = X3 + S4
−aA∗X + S6
−bB∗ mod S. (A.2)

We are now ready to discuss the reduction type for the prime at infinity. We get 
several cases:
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(1) If a/2 < b/3, then 4
 − a > 0. Hence, reducing mod S in (A.2), we get:

(a) 6|b: Y 2 = X3 + B∗(0), so P∞ is a prime of good reduction;
(b) 6 � b: Y 2 = X3, so P∞ is a prime of additive reduction.

(2) If a/2 > b/3, then 6
 − b > 0. Hence, reducing mod S in (A.2), we get:

(a) 4|a: Y 2 = X3 + A∗(0)X, so P∞ is a prime of good reduction;
(b) 4 � a: Y 2 = X3, so P∞ is a prime of additive reduction.

(3) If a/2 = b/3, then it must be that 2|a and 3|b. If a/2 = b/3 is an even integer, then 
reducing mod S in (A.2), we get Y 2 = X3 + A∗(0)X + B∗(0).

(a) If 4A∗(0)3 + 27B∗(0)2 �= 0, then P∞ is a prime of good reduction.
(b) If 4A∗(0)3 + 27B∗(0)2 = 0, then P∞ is a prime of multiplicative reduction.

On the other hand, if a/2 = b/3 is an odd integer, then we get that 4
 − a = 2 and 
6
 − b = 3. Hence, reducing mod S in (A.2), we find:

(c) Y 2 = X3, so P∞ is a prime of additive reduction.

A.2. The cubic twist family

We deal with the case of the cubic twists first as there are less cases to consider. In 
this case, we have

Ẽ : y2 = x3 + B

and

ẼD : y2 = x3 + BD2.

Therefore, we see that since A = 0 we always have a/2 < b/3 and hence are only ever 
in case (1) above. The following chart captures, for D cube-free and coprime to B, what 
happens to the prime at infinity and how this affects the degree of the conductor:

b mod 6 2 deg(D) mod 6 Ram. for Ẽ Ram. for ẼD n
ẼD

− n
Ẽ

0 0 good good 2 deg(rad(D))
0 �≡ 0 good additive 2(deg(rad(D)) + 1)
�≡ 0 −b additive good 2(deg(rad(D)) − 1)
�≡ 0 �≡ −b additive additive 2 deg(rad(D))

As a consequence, to create a family of cubic twists in which all curves have the same 
degree of the conductor, we define the set
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F̂N (B) :=
{
D ∈ Fq[T ] : D monic, cube-free, (D,B) = 1,deg(rad(D)) = N

}
.

As we see above, the ramification at infinity depends only on the congruence of deg(D)
mod 3. Hence, we define

F̂N ;k(B) :=
{
D ∈ F̂N (B) : deg(D) ≡ k mod 3

}
and, when b is even,

JN (B) := F̂N ;−b/2(B) ∪ F̂N−1,−b/2+1(B) ∪ F̂N−1,−b/2+2(B).

In addition, we define

KN (B) :=

⎧⎪⎪⎨⎪⎪⎩
JN (B) 6|b,
JN+1(B) b is even and 6 � b,

F̂N (B) b is odd.

From all this, we may now conclude that the family

{
ẼD : D ∈ KN (B)

}
consists of all cubic twists of Ẽ with L-functions of degree nẼ + 2N .

Finally, we note that F̂N ;0(B) = FN (B). It is relatively easy to see how one would 
adapt our methods in Section 4 to deal with the “full” family KN (B). One would just 
have to split everything into the relevant cases and the same proofs would work. Hence, 
we leave this as a comment and end the discussion here.

A.3. The quadratic twist family

In the case of quadratic twists, we have

E : y2 = x3 + Ax + B

and

ED : y2 = x3 + AD2x + BD3.

We observe that the conditions on the degrees (from the cases at the end of Ap-
pendix A.1) aren’t changed by twisting by D ∈ H±

2N (ΔE). Moreover, in the case that 
a/2 = b/3, we get

4
(
(AD2)∗(0)

)3 + 27
(
(BD3)∗(0)

)2 = 4A∗(0)3 + 27B∗(0)2
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since D∗(0) = 1. Therefore, the reduction at the prime at infinity is not changed by 
quadratic twists by D ∈ H±

2N (ΔE) and nED
= nE + 2 deg(D).

In the case of D ∈ H±
2N+1(ΔE), one may enumerate all the cases that appear in 

Appendix A.1 as we did for the cubic twist family to develop a “full” family of quadratic 
twists consisting of all the twists that give a specific degree of the conductor. Doing so 
is a tedious process and not illuminating so we end here and just state that, as in the 
cubic case, one could use the same methods to extend our results to this “full” family.
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