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Abstract
The design and fabrication of a wideband millimetre‐wave 0‐dB coupler is proposed in
this paper using gap waveguide technology for low‐loss and high‐power applications in
30‐GHz frequency band. To overcome the fabrication challenges in millimetre‐wave
frequencies, the gap waveguide technique is utilised. Two gap waveguide‐based coaxial‐
and waveguide‐fed 0‐dB couplers are designed with broadband performance, high return
loss, acceptable coupling flatness and high isolation. For verifying the performance of the
proposed structures, a prototype of the waveguide‐fed 0‐dB coupler is manufactured and
measured. The measurement results show that the return and insertion losses and the
isolation of the fabricated 0‐dB coupler is better than 18 dB, 0.5 and 18 dB, respectively,
in the specified frequency range from 26.2 to 34 GHz. Moreover, the breakdown power
level of the proposed millimetre‐wave structures is in kWorders to satisfy the high‐power
requirements.
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1 | INTRODUCTION

In the microwave circuits and systems, it is important to find
an effective solution for routing signals via a common mi-
crowave component while maintaining high isolation between
two signals. Microwave 0‐dB couplers or crossovers are known
as two crossing transmission lines used in microwave systems
and circuits, which achieve the above‐mentioned functionality.
0‐dB couplers are widely used in feed networks of antenna
arrays, Butler matrix for beam‐forming technique and high‐
density printed circuit boards. Low insertion loss, input
matching, high isolation, appropriate power handling, wide
operating bandwidth and compact structure are known
important parameters for a 0‐dB coupler.

A variety of structures and methods have been presented in
the literature for microwave 0‐dB couplers, such as multi‐
section couplers [1–4], intact and defected ground structures
[5–11], and microstrip to coplanar waveguide transition [12–
14]. For technologies of microstrip, substrate integrated
waveguide and low‐temperature co‐firing ceramic in

microwave and millimetre‐wave bands, the main limiting fac-
tors are high dielectric loss, limited power handling and un-
wanted leakage via substrate modes, all deteriorating the
performance of the printed 0‐dB couplers.

At millimetre‐wave frequencies and high power applica-
tions, waveguide 0‐dB couplers are often used as the best
candidates because of the high performance, great isolation
and high power handling capabilities. Unfortunately, extremely
accurate and high precision fabrication processes should be
used to design and fabrication of this kind of structures by
using costly and time‐consuming manufacturing procedures
such as diffusion bonding, metal brazing techniques etc. The
aforementioned challenges can be overcome with gap wave-
guide technology (GWT). With the development of numerous
new millimetre‐wave applications in the recent years, GWT has
gotten a lot of attention [15–17]. There is a clear need to
develop GWT that not only maintains the advantages of other
technologies but also addresses the above mentioned fabrica-
tion and assembly challenges, especially at millimetre‐wave
frequency range. According to the review of literature, GWT
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has been used to design a wide range of microwave and high‐
frequency components, such as planar array antenna [18–22],
filter [23–26], coupler [27–30], phase shifter [31, 32] and switch
[33, 34].

Recently, millimetre‐wave microwave 0‐dB couplers using
printed ridge gap waveguide (RGW) are proposed and fabri-
cated [35, 36]. Over a 13% operational bandwidth in 30 GHz
frequency band, the measurement results indicate that the re-
turn loss of the proposed coupler is better than 15 dB, the
insertion loss is about 0.5 dB, and the isolation level of the
input port and the other two ports is higher than 15 dB. The
printed 0‐dB coupler's key disadvantages are its high loss, poor
separation, and low power handling capability that prevent its
usage in high power millimetre‐wave applications. In addition,
to the authors' knowledge, millimetre‐wave hollow waveguide
0‐dB couplers have been rarely reported in the literature. In
this contribution, the aim of the present study is to utilise
GWT to develop and fabricate waveguide 0‐dB couplers which
can be utilised in antenna beam forming networks.

The paper is organised as follows. Section 2 and Section 3
are devoted to design and simulation of RGW and groove gap
waveguide (GGW)‐based 0‐dB couplers. The details of the
manufacturing and measurement procedures are presented in
Section 5. Finally, Section 4 presents the conclusions and
summary.

2 | DESIGN OF RGW‐BASED 0‐DB
COUPLER

As shown in Figure 1, in RGW and GGW structures, the
frequency stop‐band of a parallel plate waveguide with one
perfect electric conductor and one perfect magnetic conductor
plates is utilised to confine the propagation of the electro-
magnetic waves along desirable paths. The desired stop fre-
quency band from 20 to 40 GHz is achieved by choosing
a = 1 mm, d = 3 mm, p = 1.8 mm, and g = 0.5 mm.

At high operating frequency bands, the 0‐dB couplers are
placed in the planar structures to prevent the interference of
electromagnetic waves at the line intersection. As shown in
Figure 2, by cascading two 3‐dB hybrid couplers, a conven-
tional 0‐dB coupler can be achieved. The feeding ports of 0‐dB
coupler are ports 1–4. When a wave is fed into port 1, it will
not appear at ports 2 and 4. Also, the wave fed into port 4 will
not emerge at ports 1 and 2. Low insertion loss and high return
loss and isolation are the most important parameters of a 0‐dB
coupler.

Topology of the designed RGW‐based 0‐dB coupler
formed with two cascaded hybrid 3‐dB couplers is depicted in
Figure 3. The width and length of the coupling section should
be adjusted to achieve the desired power splitting ratio. After
optimisation, the optimised design values are given as
w0 = 1 mm, w1 = 0.95 mm, w2 = 1.12 mm, w3 = 2.56,
l1 = 8.67 mm and l2 = 6.49 mm. The proposed 0‐dB coupler
S‐parameters are simulated and illustrated in Figure 4. The
results indicate the narrowband behaviour of the structure.
The insertion loss and the return loss are better than −0.1 and

F I GURE 1 Topology of ridge and groove gap waveguide (GGW)
structures

F I GURE 2 The configuration of a conventional 0‐dB coupler

F I GURE 3 The configuration of RGW‐based 0‐dB coupler. Top metal
plate is not shown

F I GURE 4 Simulated S‐parameters of RGW‐based 0‐dB coupler
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15 dB over the frequency band from 29 to 31 GHz, respec-
tively. Moreover, the isolation level of port 1 and ports 2 and
four is higher than 17 and 35 dB at 30 GHz, respectively. The
electric field distribution of the RGW‐based 0‐dB coupler
depicted in Figure 5 verifies the S‐parameters results.

3 | DESIGN OF WIDEBAND GGW‐
BASED 0‐DB COUPLER

The SIW‐based and rectangular waveguide cruciform direc-
tional couplers are composed of two crossed waveguide sec-
tions in which some metal posts are employed to control the
signal flow in the desired direction [37]. In this type of cou-
plers, the coupling level between the output ports can effec-
tively be adjusted in the range of 0.5–7 dB by tuning the
position and dimension of metal posts. Here, in order to
implement a wideband 0‐dB coupler, we can use a combination
of two 3‐dB cruciform directional couplers.

The configurations of the proposed four‐port GGW‐based
0‐dB couplers are illustrated in Figure 6. Observe that the
coupler topology is composed of two GGW branches crossing
each other at right angles. Port 1 is the input port, port 3 is
through port, and ports 2 and 4 are isolated ports. In the
coupling zone, some metallic pins (Pin 2, Pin 3 and Pin 4) are
arranged to control the division of the input signal for
achieving the required 0‐dB coupling and isolation specifica-
tions. Also, one pin (Pin 1) is inserted at each GGW branch
close to the coupling region to minimise the reflections.

To feed the 0‐dB coupler with the standard connectors or
waveguides, transitions from GGW to the SubMiniature A
(SMA) connector and rectangular waveguide are required, as
depicted in Figure 6. In the coaxial‐fed case, each GGW
branch of the 0‐dB coupler is interconnected to a SMA
connector. The electromagnetic fields from the TE10 mode of
GGW mode is transformed to the transverse electro‐mag-
netic mode of coaxial connector in this transition. To make
an impedance matching over the required bandwidth, the
length of probe and its distance to the end wall should be

tuned. In the waveguide‐fed case, the 0‐dB coupler is excited
with standard Ka‐band rectangular waveguides (WR‐28:
7.11 � 3.56 mm2) from the bottom plate. Each branch of the
0‐dB coupler is connected with a transition from GGW to
WR‐28. As shown in Figure 6b, to make an appropriate
impedance matching, metal bricks with extensions to the
waveguide ports are inserted in the ends of grooves on the
bottom plate of the structure. To minimise the reflection, all
the parameters of the transition section should be optimised.

The 0‐dB coupler is intended to operate at 30 GHz fre-
quency band with maximum bandwidth, reflection level below
−20 dB, isolation level greater than 20 dB and insertion loss
less than 0.5 dB. To achieve these specifications, by considering
the error function as

F I GURE 5 Electric field distribution of the RGW‐based 0‐dB coupler
at 30 GHz

F I GURE 6 The configuration of wideband GGW‐based 0‐dB
couplers. (a) Coaxial‐fed case. (b) Waveguide‐fed case. The top metal plates
are not shown
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The geometrical dimensions of proposed 0‐dB coupler struc-
ture are optimised with the help of Computer Simulation
Technology Microwave Studio software at M frequency sam-
ples (fm) over the defined frequency range. The optimised
values for the design parameters are tabulated in Table 1.

The simulated S‐parameters of RGW‐based 0‐dB couplers
are illustrated in Figure 7. In the simulations, the metallic
structure is assumed to be aluminium with σ = 3.6 � 107 S/m.
The results reveal that for both coaxial‐and waveguide‐fed
structures, the input reflection level is below −20 dB, while
the isolation between input port and output ports 3 and 4 are
better than 20 dB over the frequency range of 25.7–34.5 GHz.
The simulated transmission coefficients of input port to output
port 3 is larger than −0.2 dB from 26.3 to 34 GHz. Observe
that at frequencies below 26 GHz, the near cut‐off behaviour
of the rectangular waveguide‐fed structure leads to deteriorate
the input reflection coefficient. Figure 8 shows the electric field
distribution of the GGW‐based 0‐dB couplers at 30 GHz.

The size and location of matching pin (d1: distance to side
wall; s1: distance to coupling region) will significantly have an

TABLE 1 Design parameters of coaxial‐
fed (I) and waveguide‐fed (II) GGW‐Based 0‐
DB couplers

Component Parameter Value (I) (mm) Value (II) (mm)

Pin 1 Dimension 0.43 0.56

Distance to side wall 2.08 1.18

Distance to coupling region 3.37 2.67

Pin 2 Dimension 0.4 0.77

Distance to side wall 1.79 1.33

Pin 3 Dimension 1.71 1.96

Distance to side wall 2.62 2.17

Pin 4 Dimension 1.54 2.13

Grooves Width of side grooves 8.69 8.77

Width of centre groove 14.87 14.92

WR‐28 transition Length of brick ‐ 4.95

Height of brick ‐ 1.42

Width of brick ‐ 0.60

SMA transition Length of probe 2.12 ‐

Distance to side wall 1.79 ‐

Bottom metal plate Thickness 10 10

Top metal plate Thickness 1 1

Feed waveguides Length ‐ 7.11

Width ‐ 3.56

Abbreviation: SMA, SubMiniature A.

(a)

(b)

F I GURE 7 Simulated S‐parameters of wideband GGW‐based 0‐dB
couplers. (a) Coaxial‐fed case. (b) Waveguide‐fed case
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effect on the amount of return loss at the input port. Also
other pins control the division of the input signal to output
ports. To investigate the role of these geometrical dimensions
in the performance of 0‐dB coupler, some parameter studies
are performed and the results are drawn in Figure 9. Further
studies shows that there is no serious challenge in the fabri-
cation process, because available fabrication techniques ensure
an accuracy of 0.05 mm.

To evaluate the power handling capacity of the proposed 0‐
dB coupler, the structure is excited by an electromagnetic wave
with 1‐W power. The simulated maximum electric field in the
structure is 50,291 V/m. Since the air breakdown is 3 MV/m,

F I GURE 8 Electric field distribution of the GGW‐based 0‐dB
couplers at 30 GHz. (a) Coaxial‐fed case. (b) Waveguide‐fed case

F I GURE 9 Simulated reflection coefficient of wideband waveguide‐
fed GGW‐based 0‐dB coupler by swiping Pin 1 position

F I GURE 1 0 Photograph of the fabricated prototype of waveguide‐
fed GGW‐based 0‐dB coupler

F I GURE 1 1 Measured S‐parameters of manufactured wideband
waveguide‐fed GGW‐based 0‐dB coupler
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the power handling capacity of the structure can reach up to
3.5 kW [34].

4 | FABRICATION AND
EXPERIMENTAL RESULTS

For the proof of concept and to validate the simulation results,
a prototype of proposed high‐power waveguide‐fed 0‐dB
coupler is fabricated in low‐loss AA6061 aluminium by stan-
dard milling techniques. The photograph of the fabricated
prototype is shown in Figure 10. The measurements are per-
formed by using the Agilent 8722ES vector network analyser.

The simulated and measured results for S‐parameters of 0‐
dB coupler against frequency for comparison are illustrated in
Figure 11. Themeasured reflection and isolation levels are better
than 18 dB, while the insertion loss of 0‐dB coupler is less than
0.5 dB over the frequency range of 26.2–34 GHz. There is a
reasonable agreement between the measurement and simulation
results, and the software simulation is confirmed by the mea-
surements. Some minor deviations between the experimental
and simulation results may be attributed to the manufacturing
tolerances and miss‐alignment of the WR‐28 feeding adaptors.

To evaluate the proposed design, the performance of the
present work is compared with some similar previously re-
ported 0‐dB couplers in Table 2. The proposed coupler has a
broad bandwidth of 25.9% with excellent return loss and
insertion loss in comparison with the other similar structures.
Although the SIW‐ and printed RGW‐based 0‐dB couplers
have usually smaller size due to dielectric substrate, their power
handling capacity and bandwidth are lower. In the future, it is
expected to use this design to realise feed network of high gain
dual‐polarised slot antenna arrays.

5 | CONCLUSION

In this paper, two wideband coaxial‐ and waveguide‐fed 0‐dB
couplers based on GWT have been proposed for 30 GHz
applications. Gap waveguide technology has been used to
remove fabrication and assembling challenges. The return loss
and isolation levels of the manufactured 0‐dB coupler are

higher than 18 dB in the frequency range of 26.2–34 GHz. The
proposed 0‐dB coupler with high power handling and wide
band operation is an appropriate candidate for Ka‐band sat-
ellite telecommunication applications.
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