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“There is no meaning in life a priori. Life is nothing until it is
lived; but it is yours to give it a meaning, and the value of it is

nothing but the meaning that you choose.”
– Jean-Paul Sartre
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Abstract

With the emergence of the Internet of Things (IoT), more and more devices
are getting equipped with communication capabilities, often via wireless radios.
Their deployments pave the way for new and mission-critical applications: cars
will communicate with nearby vehicles to coordinate at intersections; industrial
wireless closed-loop systems will improve operational safety in factories; while
swarms of drones will coordinate to plan collision-free trajectories. To achieve
these goals, IoT devices will need to communicate, coordinate, and collaborate
over the wireless medium. However, these envisioned applications necessitate
new characteristics that current solutions and protocols cannot fulfill: IoT
devices require consistency guarantees from their communication and demand
for adaptive behavior in complex and dynamic environments.

In this thesis, we design, implement, and evaluate systems and mechanisms
to enable safe coordination and adaptivity for the smallest IoT devices. To
ensure consistent coordination, we bring fault-tolerant consensus to low-power
wireless communication and introduce Wireless Paxos, a flavor of the Paxos
algorithm specifically tailored to low-power IoT. We then present STARC,
a wireless coordination mechanism for intersection management combining
commit semantics with synchronous transmissions. To enable adaptivity in the
wireless networking stack, we introduce Dimmer and eAFH. Dimmer combines
Reinforcement Learning and Multi-Armed Bandits to adapt its communication
parameters and counteract the adverse effects of wireless interference at runtime
while optimizing energy consumption in normal conditions. eAFH provides
dynamic channel management in Bluetooth Low Energy by excluding and
dynamically re-including channels in scenarios with mobility. Finally, we
demonstrate with BlueSeer that a device can classify its environment, i.e.,
recognize whether it is located in a home, office, street, or transport, solely
from received Bluetooth Low Energy signals fed into an embedded machine
learning model. BlueSeer therefore increases the intelligence of the smallest IoT
devices, allowing them to adapt their behaviors to their current surroundings.
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1

Introduction

The emergence of the Internet of Things (IoT) brings communication capabilities
to classical embedded systems. Whether via wireless radios or wired networking,
these networked systems, previously only composed of memory, computation,
and input/output peripherals, can now exchange information and cooperatively
solve complex tasks. For example, cyber-physical systems in factories rely
on IoT devices to monitor and control industrial processes in real-time [1],
while swarms of drones cooperate to fly in formations and avoid collisions [2].
These connected devices form the basis of the Internet of Things, a computing
paradigm where objects and machines are augmented with computing power
and communicate locally or over the Internet.

Today, we continue to see a strong growth in the adoption and deployment of
wireless-enabled IoT systems: four billion new Bluetooth devices were shipped
in 2020 alone [3], network operators served nearly two billion active cellular
IoT connections in 2021 [4], and we expect 200 million connectivity-augmented
vehicles to be driving around in 2025 [5]. Two current trends can explain
the rise of IoT deployments across the globe: first, the wide availability and
low cost of embedded components, which saw a sharp increase in computing
capabilities over the years while maintaining their low power consumption; and
secondly, an increasing demand for data, driven by the need for more efficiency,
measurability, and transparency.

The prospects of communication-able devices deployed everywhere are
leading to the birth of new and more complex distributed applications: we
expect cars to form platoons with nearby vehicles, coordinate at intersections
or while merging incoming traffic, and to become partly or fully autonomous
in the future. Smartwatches equipped with heart rate sensors and smart
glucose-meters prelude the development of full on-body sensor networks that
will help practitioners monitor patients from afar and alert them of emergencies
in real-time. Resource-limited devices such as IoT cameras will be expected
to execute deep machine learning models and will require processing support
from neighboring systems and edge devices. Local interaction thus becomes
paramount for wireless IoT systems: devices locally need to communicate,
coordinate, and collaborate to solve complex tasks.

3



4 CHAPTER 1. INTRODUCTION

These new functionalities will be expected from all types of IoT devices:
from cars with large computing resources down to drones and deployed actuators
relying on small batteries. In this thesis, we refer to the smallest and least-
powerful IoT devices as Low-Power IoT. These devices are marked by severe
limitations on all fronts:

• Limited energy budget, usually by relying on small batteries, with an
expected operational lifetime measured in tens of hours (earphones) up
to months (sensors in remote areas);

• Limited computing resources, currently ≤ 5 MB RAM and ≤ 100 MHz
CPU and in general, several order of magnitudes below typical computers;

• Limited bandwidth, with datarate usually below 5 Mbit/s; and

• Unreliable communication.

Collaborative IoT. In parallel to the growth of IoT, cloud computing has
taken an important place in today’s computing landscape. Many IoT deploy-
ments send all the data they produce to the cloud for storage and processing.
However, constantly relying on the cloud for high-performance computation is
not a luxury all low-power IoT systems can afford: the low datarates and packet
losses induce high communication delays that are impractical in time-critical
applications. For instance, drone coordination cannot constantly probe the
cloud to compute quick evasive maneuvers. Instead, low-power IoT devices
must rely on their embedded resources and local interaction to achieve their
goals. Coordination over unreliable communication thus becomes a prime
objective for future low-power IoT systems.

Adaptive IoT. Yet, the continual growth of deployed IoT devices leads to
an overcrowding of the shared wireless spectrum. Each new device deployed
brings an additional traffic burden and must share the wireless resources
with past, present, and future deployments. Along with an increased risk of
message collisions over the air, the superposition of all local traffic results in
an unpredictable environment to external observers: the wireless medium acts
inherently as a dynamic environment. The presence of mobile devices, whether
in the form of humans using smartphones while walking or mobile machines,
further reinforces the dynamicity of tomorrow’s wireless environment. New
IoT systems must integrate mechanisms to detect, react, and adapt to changes
to their wireless environments, both within their network stack and at the
application level.

1.1 Motivation and Goals

Wireless IoT systems provide support for a wide range of applications, from
headphones and city-wide sensor deployments up to tomorrow’s transportation
system and Industry 4.0. Within the low-power IoT paradigm, many of those
applications must, however, operate with limited energy supplies and should
maximize their operational lifetime between two battery charges. In addition to
energy constraints, low-power wireless systems must also deal with unreliable
communication. For the past decades, the scientific and industrial communities
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designed communication standards [6, 7], methods [8], and protocols [9] to
improve reliability over lossy links and multi-hop deployments. Some of those
techniques, such as synchronous transmissions, achieve up to 99.99% reliability
over multiple hops while remaining energy-efficient. However, most protocols
remain best-effort in nature and can suffer from degraded performance under
sudden and unaccounted external interference.

Challenges. Distributed applications building upon coordination between
members, such as swarms of drones maneuvering or industrial closed-loop con-
trol, require strict guarantees from their coordination mechanisms: participants
must agree on a unique decision, as inconsistencies can have drastic impacts
on the operational safety, e.g., in industrial environments. In low-power IoT,
the coordination or agreement process shall support communication failures,
such as packet losses and delayed receptions, and participant failures, such as
devices crashing due to depleted energy storage or simply unable to maintain
communication due to mobility. While fault-tolerant consensus is a well-studied
field in wired networks, such as in datacenters, most proposed solutions are
often deemed unfit to work over low-power wireless communication due to high
communication and overhead costs. The first challenge tackled by this thesis
therefore relates to providing network-wide agreement with guarantees in the
context of low-power IoT, where communication and devices are subject to
failures.

A second challenge stems from user mobility and the wireless medium’s
dynamic and unpredictable behavior. As the number of IoT deployments
grows, so does the use of wireless resources. External data traffic, especially
aperiodic or bursty, causes the medium to act as a dynamic environment, where
communication performance cannot be accurately predicted and can quickly
degrade as external interference arises. This is particularly problematic in
low-power wireless communication, where transmissions are often over-powered
by concurrent WiFi signals and where transmissions are kept to a minimum to
save energy [10]. Further, some IoT devices subject to mobility challenges see
their environment constantly changing as they move around, and should adjust
their behavior accordingly. For example, phones should automatically turn
silent mode on once entering a theater, while wireless headsets should limit
noise cancellation near roads to ensure the safety of their users. To tackle this
challenge, we argue for adaptive IoT systems equipped with mechanisms able to
recognize their environment, detect changes within, and able to autonomously
react to maintain performance even under unforeseen perturbations. Such
mechanisms should be implemented as part of the wireless network stack,
for example, by updating protocol parameters at runtime, or can act as a
middleware informing applications of sudden changes.

Goals. From these starting observations, our goals are two-fold:

1. We want to enable complex coordination for low-power IoT systems.
Therefore, we tackle the problem of network-wide fault-tolerant consensus,
where both communication and participants can fail. Specifically, the
coordination mechanism must provide consistency guarantees even in the
presence of such failures.

2. We aim to improve the adaptivity and resilience of wireless systems.
Therefore, we must give IoT devices the ability to detect changes to their
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Figure 1.1. Structure of the thesis. Part I introduces the motivation
and goal of the work, Part II covers the challenge of collaborative
IoT, and Part III tackles the challenge of intelligent and adaptive
IoT.

wireless environments and enable them with mechanisms to react to them,
for example, by updating protocol behaviors in their wireless stack. We
do so both via traditional methods and by relying on recent advances in
machine learning, therefore bringing intelligence to low-power IoT and
wireless networking.

Approach. In this thesis, we use experimental computer science methods.
We design, implement, and evaluate systems, typically network protocols or
middlewares, to bring this vision of a collaborative, intelligent, and adaptive
IoT to a state of reality. We make our design and source code freely accessible
to enable their use and improvement by the community.

Outline. This thesis is a collection of five articles published over the past
years and is organized into three parts. Part I provides an introduction to
the topic covered in this thesis. It starts with a motivation and overview
of the field, background information necessary to understand the appended
publications, and a survey of the current state-of-the-art. It then provides a
research statement, lists the scientific contributions compiled in this thesis,
and concludes the overview of this work. Part II includes two articles and
investigates the problem of consensus and coordination in low-power IoT.
Part III compiles three articles and covers the topic of intelligent and adaptive
IoT. Fig. 1.1 depicts how this thesis is structured.

1.2 Background

This section introduces the core concepts this thesis builds upon. First, we
provide an overview of low-power wireless communication, with a focus on
short-range technologies such as IEEE 802.15.4 and Bluetooth Low Energy, as
well as a primer on synchronous transmissions. Secondly, we present standard
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Figure 1.2. Communication in Bluetooth Low Energy. In non-
connected mode, an advertiser pseudo-periodically advertises its
presence on all advertisement channels while a scanner listens for
packets to connect to. In connected mode, the central and peripheral
communicate periodically, hopping between frequencies for each
connection event.

problem definitions and algorithms for consensus in distributed systems. Finally,
we provide a brief introduction to embedded intelligence, with a focus on tiny
machine learning and reinforcement learning.

1.2.1 Low-Power Wireless Communication

Due to their limited energy supplies, low-power wireless IoT devices often rely
on energy-efficient radios and low-power standards restricting communication
to either low datarates or limited coverage. Low-power wide area networks
(LPWAN), such as LoRa [11] and Sigfox [12], aim to connect battery-powered
devices over large areas; they provide ranges up to a few kilometers but severely
limit datarates down to tens of kbit/s [11]. In contrast, wireless personal
area networks (WPAN) provide short-range communication, usually tens of
meters, with datarates up to a few Mbit/s. IEEE 802.15.4 [6] and Bluetooth
Low Energy (BLE) [7] are the two most prominent standards for narrowband
short-range networking in use today. Both operate on the 2.4 GHz ISM band,
but IEEE 802.15.4 also supports sub-GHz bands and provides ultra-wideband
support above 3 GHz.

IEEE 802.15.4. IEEE 802.15.4 is a widespread standard specifying the
physical and medium access control layers for low-rate WPAN. Zigbee, Wire-
lessHART, and Thread are common network protocols built upon IEEE 802.15.4.
The standard targets reliable wireless communication for home automation and
industrial environments. In the 2.4 GHz band, the standard uses an O-QPSK
modulation scheme, Direct Spread Spectrum Sequence (DSSS) for forward
error correction, and provides a datarate of 250 kbit/s. It divides the ISM
band into 16 2-MHz channels and specifies two medium access mechanisms:
CSMA/CA and time-slotted channel hopping (TSCH). Devices usually form
mesh or tree architectures to communicate over multiple hops.
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Table 1.1. Conditions for successful synchronous transmissions in
802.15.4-2.4 GHz.

Effect Constructive Interf. Capture Effect

Identical Data? Identical Possibly different
Power difference - ≥ 3 dB
Time difference ≤ 0.5 µs ≤ 160 µs

Bluetooth Low Energy. Introduced as part of Bluetooth 4.0 in 2010
and now in version 5.3 [7], Bluetooth Low Energy (BLE) mainly targets
point-to-point communication and local broadcasting. Although it shares its
name with Bluetooth Classic, it is a radically different protocol. BLE uses
a GFSK modulation scheme and provides datarates ranging from 125 kbit/s
in coded modes up to 2 Mbit/s in uncoded modes. It divides the spectrum
into 40 2-MHz wide frequency channels, 37 reserved for data traffic and 3 for
advertisements and broadcasts. BLE has two operation modes: connected and
non-connected mode. The non-connected mode is used to locally broadcast
data, disclose the presence of connectable devices, or initialize a connection
between a central device (e.g., smartphone) and a peripheral (e.g., headphones).
Once a connection is established, the devices periodically communicate on
the 37 dedicated data channels via frequency hopping, as depicted in Fig. 1.2.
Bluetooth Mesh, a third protocol introduced by the Bluetooth Special Interest
Group, builds upon BLE to provide mesh communication by relying on BLE
advertisements combined with a flooding mechanism to disseminate messages
over multiple hops.

Synchronous Transmissions. Wireless radios are broadcast-oriented
innately: any antenna in the vicinity of a transceiver receives a radio signal if
the channel conditions are favorable. When two transmissions overlap, their
radio waves add up, often leading to an illegible signal at the receptive end.
We refer to this physical behavior as destructive interference. For long, all
overlapping transmissions were considered destructive and avoided at all costs.
However, when two transmitters transmit identical data at the same time,
the resulting identical radio waves superpose in what is called constructive
interference and can be successfully decoded by the receiver. Ringwald and
Römer showed the first use of such constructive superposition, a concept
named Synchronous Transmissions (ST), with a protocol called BitMAC, by
superposing On-Off Keying symbols [13]. Later, A-MAC extended the concept
from bits to small packets by concurrently acknowledging request messages [14].
Glossy goes a step beyond and provides network-wide, fast floods supporting
mobile nodes without the need for expensive routing [9]. To work in IEEE
802.15.4, constructive interference requires a synchronization error smaller than
0.5 µs, which corresponds to an IEEE 802.15.4 chip period.

Later works softened the claims of constructive interference. Wilhehm et
al., as well as Liao et al., argue that what we observe is rather non-destructive
interference: the received signal can be decoded but is nonetheless degraded by
the collision [15,16]. The DSSS coding scheme used in the physical layer of IEEE
802.15.4 is hypothesized as the reason packets survive such interference. Yet,
Al Nahas et al. empirically show that BLE-based synchronous transmissions are
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feasible with Blueflood [17], a BLE-based Glossy counterpart, both for coded
and uncoded BLE transmission [17, 18]. Lobba et al. also demonstrate the
feasibility of synchronous transmissions using IEEE 802.15.4 ultra-wideband
radios [19].

Capture Effect. While synchronous transmissions provide an efficient
and fast method to build one-to-all dissemination mechanisms in low-power
wireless networking, the data-equality requirements of constructive interference
can hinder the design space of higher-level protocols building upon the concept.
Instead, we can rely on a second physical behavior to loosen the ST requirements:
the capture effect. In IEEE 802.15.4, a signal can be distinguished from
concurrent transmissions and successfully decoded if its received-signal strength
is at least +3 dB higher than the sum of all concurrent signals. The capture
effect supports scenarios where each transmitted data is different but requires
that the strongest signal is received no later than 160 µs after a receiver
radio first picks up a concurrent transmission, which corresponds to the on-
air preamble duration. Chaos builds upon the capture effect and in-network
processing to deliver efficient network-wide data aggregation [20], while Mixer
integrates network coding to achieve efficient concurrent many-to-many data
sharing [21]. With uncoded BLE transmissions, a successful capture effect
requires a signal strength difference of +7 dB, which complicates the design of
capture-based protocols [17].

1.2.2 Distributed Consensus Algorithms

In the field of distributed computing, a distributed system is composed of
participants distributed across a network that collaborate to execute a common
task. The ability to reach a decision, defined as a consensus, is a fundamental
problem of distributed systems [22]. To reach a consensus, a group of par-
ticipants must reach an agreement on a single data item. Coordination of
drones, distributed databases, leader election, and state-machine replication
are few examples of applications where consensus is required. In fact, multiple
problems in distributed systems can be reformulated as consensus problems,
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and thus solved if we solve consensus [23]. A correct solution to the consensus
problem must have the following properties:

• Validity: the agreed value has been initially proposed;

• Agreement: all correct processes agree on the same, unique value;

• Termination: every process decides in a bounded time; and

• Integrity: if all correct processes choose value v, then any correct process
must choose v.

FLP impossibility. It is common in distributed systems to specify the
assumptions used on the processes and network by relying on well-defined
models. In a synchronous system, all processes execute in lock-steps, or rounds.
Within a round, a process can receive messages, execute a computation step,
and send messages. Processes have, therefore, a known upper bound on their
step time and message delivery is also bounded. In contrast, the asynchronous
model assumes no upper time bound on process computation and message
delivery.

One of the most influential results in distributed systems is known as the
FLP impossibility [22]. Fischer et al. prove that in an asynchronous system
with crash failures, it is impossible to design an algorithm for consensus fulfilling
all the above properties. As message deliveries are finite but unbounded, it is
impossible to distinguish between a failed process and a delayed message. This
leads to possibly infinite executions, and validity, agreement, and termination
cannot be all satisfied together. To solve consensus, we must therefore adopt
at most a partially synchronous model: although the system behaves asyn-
chronously at first, eventually, the system will have bounded process step-time
and message delivery time.

Commit and process-failures. A common sub-category of consensus is
known as the commit problem, and is often found in distributed databases. In
the commit problem, a group of participants must either agree to all commit a
transaction, or all reject it. A single process, often known as the coordinator,
proposes a single transaction. 2-Phase Commit (2PC) and 3-Phase Commit
(3PC) are two notable protocols for distributed commit [24, 25]. 2PC works in
two phases:

1. The coordinator sends a voting request to all participants along with
the transaction. Each participant answers by either agreeing to the
transaction, or rejecting it.

2. Once all answers are received, the coordinator sends a global-commit re-
quest if all participants agree, or a global-reject if at least one participant
rejected the transaction in phase 1. Every participant must acknowl-
edge the phase 2 request. Once all acknowledgements are received, the
transaction is considered successful by the coordinator.

However, 2PC is a blocking protocol. If both the coordinator and a partic-
ipant fail during the second phase, it is impossible to decide on committing
or rejecting the transaction; the protocol blocks any further commit. In some
applications, 2PC also cannot accept any new commit request unless the current
one has succeeded. In contrast, 3-Phase Commit (3PC) introduces a third
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phase, the pre-commit round, between the voting and commit steps. The third
phase allows 3PC to become non-blocking, but some corner cases may lead to
inconsistencies in the decision.

Process failures are an important challenge in distributed systems and
can have disastrous consequences if the algorithms do not account for such
events. Some typical failure models are crash-failure, where a process stops
responding, crash-recovery, where a process eventually recovers (but can lose its
internal state), or Byzantine-faults, where some processes are actively working
to undermine the progress of the global task.

Fault-tolerant consensus. Commit is a special case of consensus: while
commit focuses on a unique transaction and participants can either commit or
reject it, consensus supports more than one initial proposition. The participants
then reach a consensus by agreeing on one unique proposed item. When
processes can fail, we often refer to the problem as fault-tolerant consensus.

Paxos and Raft are two well-known solutions for fault-tolerant consensus [26–
28]. As long as a majority of processes are operational and reachable, Paxos
eventually achieves consensus. Paxos assumes an asynchronous, non-Byzantine
system with crash-recovery: messages can be dropped and delayed, but not
tampered with; the network can be partitioned; nodes can crash and recover,
and have access to persistent storage. However, Paxos requires eventual
synchrony to terminate: eventually, a majority of nodes will have bounded
message delays.

In Paxos, processes can take up to three different roles: (a) proposers
propose a value to agree on, and act as coordinators for the protocol’s execution.
Unlike 2PC and 3PC, where at most one coordinator must be present, Paxos
supports the presence of multiple proposers. (b) acceptors reply to proposers
requests by accepting proposals. They informally act as the system’s distributed
memory. (c) learners do not participate in the consensus: they only learn the
agreed value once a consensus is met.

The protocol consists of two phases: the Prepare phase and the Accept
phase, and is depicted in Fig. 1.3. In an informal, high-level perspective, Paxos
executes as follows:

1. During the Prepare phase, a proposer starts a consensus by contacting a
majority of acceptors. By doing so, it learns if a value has already been
accepted by any participant, and ensures that no older requests can go
through.

2. In the Accept phase, the proposer adopts the latest accepted value if any
has been accepted so far, and requests a majority of acceptors to accept
this value. Once a majority has been reached, the value is considered
chosen; no different value can be chosen afterwards.

1.2.3 Embedded Intelligence

With their recent advances, Artificial Intelligence (AI) and Machine Learning
(ML) have established themselves as important methods for decision-making
processes. First in computer vision, followed by natural language processing
and speech recognition, deep neural networks were shown to outperform many
traditional methods formerly considered state-of-the-art. Learning techniques
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can be divided into broad categories, where some concepts overlap (e.g., semi-
supervised learning) [29]. The three most common categories are:

• Supervised learning : a dataset of features and corresponding labels is
available, the goal is to find a generalized function mapping features to
labels;

• Unsupervised learning : an unlabeled dataset is available, the goal is to
find if a hidden structure exists within; and

• Reinforcement learning : an environment, simulator, or traces are available,
the goal is to find a sequence of interactions (a policy) leading to a desired,
final state.

Deep learning, a sub-field of machine learning, is characterized by neural-
network models relying on multiple consecutive layers, sometimes up to a
hundred layers. Deep models therefore consist of millions of parameters (e.g.,
weights), that must be stored and retrieved when executing the model. For
example, the ResNet101 model, used in computer vision, contains 44.7M pa-
rameters. BERT, a state-of-the-art model for many natural language processing
applications, includes 110M parameters and can go up to 330M [30]. Storing
such models require hundreds of Megabytes of storage up to Gigabytes, as their
parameters are often using 32-bit floats. As such, deep learning often rely on
cloud resources for training, and such heavy models can only be executed on
powerful devices.

Tiny Machine Learning. However, we see a growing need for machine
intelligence that can be executed on limited devices: for example, face recogni-
tion and augmented reality on smartphones, as well as speech recognition and
classification on embedded IoT devices. The reasons to rely on an embedded exe-
cution rather than offloading computation to the cloud, are three-fold: reducing
latency when communication is sporadic or throughput is limited, reducing the
amount of data sent to save energy, as well as preserving privacy by not sending
sensitive data at all. Standard deep models, however, are too large to be stored
and executed on resource-constrained platforms. Several approaches reduce
their memory footprint to enable their on-device execution: smaller models im-
plementing efficient operations naturally require fewer parameters; for example,
MobileNet achieves accuracy on-par with ResNet101 while requiring only 3.5M
parameters [31]. Quantization optimizes both model size and execution time:
by transforming the parameters from a floating-point representation down to
an integer representation, often using an 8-bit format per weight, the model
takes up less space and avoids floating-point arithmetic altogether, therefore
saving energy in the process [32]. Relying on optimized operations such as
in binary neural networks or by using sparse-matrices multiplication further
improves on-device model executions [33,34]. Finally, some approaches split
the neural-network into chunks and offloads the computation to neighboring
platforms, edge devices, or the cloud [35,36]. The use of machine learning on
limited devices is often referred to as Tiny Machine Learning (TinyML).

Reinforcement Learning. Reinforcement Learning (RL) refers to a sub-
field of machine learning concerned with sequential decision processes, where
learning occurs via interaction with an external environment [37]. The goal
of an RL solution is to learn what to do, i.e., select the best action, in the
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Figure 1.4. The basic Reinforcement Learning (RL) model.

current situation. More importantly, a sequence of actions is often necessary
to reach a desired state. Instead of requiring a dataset comprising input
and labels, RL methods rely on a reward signal quantifying how beneficial
reaching a new state is, where the reward reinforces the system’s knowledge
of the benefits or detriments of taking a given action. In some problems, the
reward is not immediate, but obtained at the end of a sequence of actions.
Therefore, RL solutions maximize the reward function over time rather than
the immediate reward. Formally, the agent seeks to maximize the cumulative
reward Rt ≜

∑∞
τ=t γ

τ−trτ , where rτ is the reward obtained when transitioning
at time τ , and γ ∈ [0, 1) a constant called the discount factor, where a small
discount factor will force the agent to maximize immediate reward while a high
discount maximizes long-term rewards. Sutton and Barto summarize the three
main characteristics of RL problems as follows:

1. The problem is a closed-loop system,

2. There is a lack of prior knowledge, and

3. The consequences of actions play out over extended time periods [37].

Fig. 1.4 illustrates the basic interaction in RL problems. The learning
algorithm, called the agent, is surrounded by and interacts with its external
environment. The agent obtains observations, i.e., input features, by observing
the state of the environment, and acts by selecting and applying an action.
The environment then returns both its new internal state and the reward
obtained by the agent’s decision. During training, the agent must carefully mix
exploration and exploitation, by either choosing action randomly to discover
new sequences, or by applying the best action to maximize the reward. Most
RL problems can be represented as Markov Decision Processes (MDPs) [38], an
extension of Markov chains for decision-making processes. While Markov chains
represent state transitions as a probabilistic distribution, the transitions in
MDP are affected both by the agent’s decision and some randomness. Formally,
an MDP is represented by the tuple (S,A,P,R), where S is the set of possible
states, A the set of possible actions, P the transition probability function and
R a reward function. The MDP is said to be finite if S is finite. Most RL
results suppose a finite MDP.

Q-Learning. Q-learning is a well-known method for RL problems [37].
In Q-learning, an agent learns an action-value function Q(s, a) representing
the expected cumulative reward the agent should get when starting in state s,
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using action a such as:

Q(s, a) ≜ E
[
Rt | st = s, at = a

]
(1.1)

If the environment can be modeled as an MDP, then we can find the optimal
function Q∗(s, a) that follows Bellman’s principle of optimality [39]:

Q∗(s, a) = E
[
rt + γmaxa′Q∗(s′, a′) | st = s, at = a

]
(1.2)

where rt is the immediate reward received, γ the discount factor, and s′ the
state reached at time t+1. By iteratively trying actions and receiving rewards,
we can update a Q-function that ultimately converges to the optimal Q∗(s, a),
i.e., we learn the optimal sequence of actions that maximizes the reward.

While Q-learning algorithms have historically used a tabular approach in
estimating the Q-function [37], Mnih et al. demonstrated that deep neural
networks can act as Q-function approximators [40]. Deep Q-networks (DQN)
have been successfully used to solve various problems, for example datacenter
cooling [41], wireless modulation [42], and CSMA/CA optimization [43]. The
advantage of DQN over tabular approaches is the ability to solve problems
with continuous states and the generalization property of neural networks.

1.3 Related Work

In this section, we present a curated selection of works that represent the
current state of the literature in the field of this thesis. We categorize related
work in the following aspects: (a) the intersection of distributed systems and
wireless networking, with a focus on providing consistency in low-power IoT, (b)
the optimization of adaptive wireless protocols, detecting external interference,
and the use of AI for wireless networking, and (c) methods for environment
detection and the applications of wireless fingerprinting.

1.3.1 Wireless Distributed Systems

We first provide a survey of concepts of distributed systems applied to low-power
wireless communication, with topics ranging from failure detection, reliable
communication, and consensus.

Failure detection. In a wireless deployment, an unresponsive node can
be caused either by a node failure, (temporary) communication failures due to,
e.g., interference, or a node moving out of range due to mobility. Detecting
the cause of unresponsiveness is non-trivial, as communication faults and node
failures are sometimes hard to distinguish [44]. Ruiz et al. propose MANNA,
a self-diagnostic and self-healing solution to fault management using active
requests [45]. Miao et al. use correlation patterns to detect possible silent faults
in wireless sensor networks [46]. Jhumka and Mottola combine theoretical and
systems approaches to tackle the problem of neighborhood view consistency,
i.e., the accuracy and correctness of localized neighbor information [47, 48].
While they prove that it is impossible to design a localized solution to strong
neighborhood view consistency, they propose a localized algorithm for weak
view consistency. By aggregating the 2-hop neighbor information, their solution
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raises signals whenever a transient fault or node crash has occurred in the
vicinity.

Message delivery. In wireless networks, the communication substrate is
often subject to faults, particularly message delivery failures. Several reliable
transport protocols, some sharing similarities with TCP, have been proposed to
tackle the problem of guaranteeing message delivery. To provide reliable data
acquisition for a structural monitoring deployment, Xu et al. propose Wisden,
a data transport protocol combining end-to-end as well as hop-by-hop recovery
mechanisms [49]. Paek et al. go further with RCRT and incorporate congestion
control in addition to reliable delivery in low-power wireless networks [50].
Kumar et al. endowed TCP with several optimizations to fit it to resource-
constrained wireless nodes [51]. Building on synchronous transmissions and
LWB [52], VIRTUS brings virtual synchrony to low-power wireless networks [53].
Virtual synchrony provides reliable atomic multicast, i.e., VIRTUS guarantees
the message delivery to all recipients of the multicast, while guaranteeing that
messages are delivered in order. Time-critical cyber-physical systems, such
as industrial control systems, have stringent requirements in terms of latency
but often can survive few message losses [54]. Thus, reliable data delivery
is not imperative in such deployments. Instead, bounded-delivery protocols
fulfill the requested time requirements. Chipara et al. propose a centralized
deadline-based scheduler to ensure on-time delivery [55]. Li et al. extend it for
emergency alarms over wireless [56]. With TTW, Jacob et al. show that wireless
solutions can replace wired field buses in industrial settings [54]. By building
on synchronous transmissions, TTW provides end-to-time timing predictability,
high reliability, and low latency.

Consensus. Due to the multi-hop and mobile nature of some wireless de-
ployments, distributed wireless consensus require novel solutions often tailored
to the specificities of the network architecture. Benchi et al. use epidemic rout-
ing and the One Third Rule to achieve agreement in opportunistic networks [57].
Chockler et al. augment nodes with collision detectors to enable fault-tolerant
consensus in single-hop ad-hoc deployments [58], while Turquois further allows
consensus in the presence of Byzantine faults in single-hop networks [59]. With
JAG, Boano et al. take full advantage of the destructive behavior of jamming
signals, as JAG uses wireless jamming to acknowledge one-hop agreement
requests [60]. Köpke investigates the performance of 2-Phase Commit (2PC)
for wireless sensor networks [61]. The author shows that both low-latency
and high-reliability MAC and routing layers are necessary to provide commit
semantics with adequate performance in sensor networks. With RedMAC
and the routing protocol Net, Köpke provides a wireless stack able to run
the original 2PC for 16 participants under 2 min. However, the author only
hints at additional improvements, such as multicast and aggregation, but does
not provide a dedicated 2PC design tailored to wireless communication. In
contrast, Borran et al. extends Paxos with a new communication layer for
802.11 opportunistic networks [62]. The authors build a tree to route and
collect acceptor responses.

Building on top of synchronous transmissions and reusing concepts from
Chaos [20], Agreement in the Air (A2) introduces 2-Phase Commit (2PC)
and 3-Phase Commit (3PC) to low-power lossy networks, providing commit
guarantees with low-latency and high reliability [63]. Later, Spina et al. propose



16 CHAPTER 1. INTRODUCTION

a new approach to 2&3PC named XPC [64], combining Chaos with Glossy
floods. Compared to A2, their approach has the advantage of terminating
faster during aborts while providing similar latencies for successful commits.
After the publication of Paper A of this thesis (see Chapter 2), Spina worked
on a different Paxos implementation, reusing the approach used in XPC,
called WISP [65]. The author obtained performance of the same order as the
one provided in our Paper A for Paxos but higher latency variation in their
Multi-Paxos implementation.

Consensus algorithms also play an important part in the design of blockchain
technologies, and several works investigate wireless consensus in the context
of blockchains operating on IoT devices. wChain relies on aggregation by
appending all messages received from lower-tier followers to the next transmis-
sion to speed up dissemination, three phases, and a quorum of responders to
lead the agreement [66]. Xu et al. implement Raft, a (non-Byzantine) fault-
tolerant consensus algorithm similar to Paxos, to drive consensus for a private
blockchain distributed over IoT devices. By relying on the majority-approach
and fault-tolerance of Raft, the authors support malicious jamming affecting
parts of the wireless medium [67]. SENATE provides Byzantine and Sybil
fault-tolerant consensus for multi-hop wireless networks [68]. By relying on a
selfish ALOHA competition to select a quorum, SENATE ensures that mali-
cious nodes cannot represent a majority of the participants and further execute
a byzantine agreement to drive the consensus. The authors use the example of
agreement at a road intersection to evaluate their protocol.

Vehicle coordination. Vehicle-to-vehicle communication usually relies on
cellular technologies, e.g., LTE or 5G, or IEEE 802.11p, to communicate [69].
In contrast, in Chapter 3, we argue that using low-power radios allows more
participants, e.g., bikes and pedestrians, to coordinate. In the case of a road
intersection, a coordination protocol must ensure the safety of its participants
while minimizing the delay a vehicle or pedestrian must observe before being
able to cross. Dresner and Stone propose AIM, a centralized intersection
management protocol relying on the cellular infrastructure [70]. Ferreira et
al. propose Virtual Traffic Lights, a decentralized solution where cars elect a
leader mimicking traffic lights to control the intersection [71]. In contrast, we
propose in Chapter 3 a leader-based solution using commit semantics, where
access to the intersection is based on the waiting time of the participating
vehicles.

1.3.2 Adaptive Low-Power Wireless

An adaptive system is a system able to detect internal or external changes and
able to modify its behavior to counteract the effects of such disturbances. In
this thesis, we use adaptivity to refer to reaction to external adverse effects on
the wireless medium, e.g., wireless interference. The term can however have a
broader sense in the literature, e.g., adapting to new internal data traffic.

Detecting changes. Collision avoidance through channel assessment is a
common approach to adapt to the medium in wireless communication and is
standard in IEEE 802.15.4 [6], although channel assessment can only detect
interference on the sender-side. Several works propose metrics to measure and
quantify link quality, and its evolution through time. Srinivasan et al. as well as
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Munir et al. propose to use link burstiness as a metric for routing [72,73]. Noda
et al. propose the Channel Quality metric as a measure of channel availability
over time [74]. MUSTER additionally relies on available energy at relays to
enable energy-efficient routing [75]. To adapt to internal data traffic changes,
the Low-power Wireless Bus (LWB) centrally schedules communication and
adjusts its round interval and slot attribution [52]. Blink builds on top of
LWB and goes a step beyond, providing delivery guarantees to deadline-based
flows while maintaining adaptivity to changing traffic demands [76]. Because
LWB, and thus Blink, are based on network-wide Glossy floods [9], they are
impervious to node mobility and, to some extent, link quality. However, we
show in our Paper C (see Chapter 4), that interference nonetheless degrades
the performance of LWB.

Resource management in BLE. Spörk et al. propose a channel-exclusion
mechanism to improve Bluetooth Low Energy communication in the pres-
ence of interference by relying on the per-channel Packet Delivery Ratio [77].
Mast et al. extends the idea with channel re-inclusion, by re-including chan-
nels after static timeouts [78]. Independently of Mast et al., we introduce in
Chapter 5 eAFH, a channel-management mechanism for BLE able to both
dynamically deactivate and re-include channels via exploration and dynamic
timeouts. We show that exponentially increasing timeouts are better equipped
to deal with varying interference and that eAFH increases channel diversity by
more than 40% compared to state-of-the-art approaches. Other works propose
to modify the Channel Selection Algorithm (CSA) used by BLE to better
avoid interfered channels: Pang et al. introduce the Interference Awareness
Scheme (IAS) featuring a new CSA weighing the channels by the probability
that interference is present [79]. Cheikh et al. introduce SAFH and also rely
on weights to improve channel selection [80]; channels with low frame error
rates have a lower probability to be used next or are excluded altogether, while
good channels are more likely to be used. However, modifying the CSA is more
cumbersome than excluding channels. The CSA must be implemented both
by the central and peripheral, while only the central is required to implement
the exclusion strategy. Park et al. improve energy consumption and QoS
in BLE with AdaptaBLE [81], by controlling the transmission power, BLE
physical mode, and connection interval. BLEX modifies the communication
scheduling behavior of the Zephyr RTOS to adapt to different Quality of Service
requirements [82].

AI for networking. A recent trend employs machine learning, and espe-
cially Reinforcement Learning, to learn optimal parameters in wireless protocols
and to enable adaptive behaviors. At the physical layer, Vrieze et al. set out
to entirely learn a modulation scheme [42]. Using a known preamble, policy-
gradient methods, and two independent agents, their system iteratively tries to
modulate and demodulate the transmitted preamble over a noisy channel, until
both agents can reconstruct the message. The agents converge to a rotated
version of 16-QAM, without any prior knowledge of modulation techniques. At
the data link layer, Amuru et al. as well as Mastronarde et al. learn contention
for 802.11 CSMA/CA, both using post-decision state-based learning [43,83].
Meyer and Turau use tabular Q-Learning to identify hidden traffic patterns
for Guaranteed Time Slots allocation in CSMA/CA [84]. Kwon et al. use
multi-agent deep RL to learn transmission power, therefore controlling the
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communication range to optimize energy [85]. Savaglio et al. introduce QL-
MAC, a duty-cycled protocol adapting in sleep and active periods to minimize
energy consumption without impacting communication and able to react to
data traffic changes [86]. Similarly, Trinh et al. rely on Q-Learning to optimize
duty-cycling [87].

Dakdouk et al. propose a channel selection scheme for IEEE 802.15.4-
TSCH using multi-armed bandits [88]. Zhang et al. use multi-armed bandits
to optimize Glossy floods [89]. In their work, each IoT platform runs Exp3
independently, where an arm represents the number of retransmission in a flood.
In Chapter 4, we also tackle the problem of adaptivity in glossy-based commu-
nication. While Zhang et al. focus on static environments where interference
does not evolve and try to find the optimal per-node retransmission parameter,
we instead look at adaptivity in the presence of intermittent interference. We
combine a centralized deep Q-Learning mechanism to react to interference with
distributed multi-armed bandits to optimize energy in normal conditions.

Similar to our argumentation in this thesis, Restuccia and Melodia argue
that deep-RL can be used to reconfigure the wireless stack to adapt to wireless
changes [90]. They propose DeepWiERL, a hardware-software framework
to execute and train DRL on IoT platforms. They combine computation
over FPGAs, transfer learning, and deep reinforcement learning to create self-
adaptive behaviors. Joseph et al. go a step further and argue for self-driving
radios, a paradigm where the wireless stack learns its optimal configuration
from high-level only specifications of the scenario [91]. However, they simply
create and train a new DQN whenever a new scenario is defined, which is
memory-intensive and requires a training environment at hand. In contrast,
we argue that training a general RL agents able to control the parameters of
the network stack should suffice to cover different application scenarios.

1.3.3 Environment Detection and Wireless Fingerprinting

Wireless signals are not limited to the sole exchange of information over distance.
A significant body of work demonstrates that the characteristics of wireless
signals form unique fingerprints, that allow the accurate position estimation
of a device, detecting and locating a person within a room, or estimating the
activity and movement of persons. In this section, we present several results
building upon wireless fingerprints.

RF localization. The wireless medium is a complex environment whose
characteristics evolve with time and location. The objects surrounding a device
equipped with a wireless radio, e.g., walls, doors, and windows, cause signal
reflections and attenuation. If the location of specific transmitting devices,
known as anchors, is given, it is possible to estimate the location (i.e., precise
position) of a receiver without the need for an energy-hungry GPS. Typical
approaches combine signal attenuation, time of arrival, time difference of arrival,
and angle of arrival to estimate the position of a specific device within, e.g.,
a room. However, indoor environments complicate the localization due to
multi-path fading and obstacles. Bahl and Padmanabhan introduce RADAR,
an RF-based indoor localization system via triangulation [92]. The authors use
the K-Nearest Neighbors, empirical measurements, and propagation models to
estimate a user position and track moving targets within an office environment.



1.3. RELATED WORK 19

Giorgetti et al. propose relative localization via self-organized maps [93]: a
device estimates its relative position within a network in the absence of an-
chors. Yang et al. combine the fingerprint map, i.e., a map containing RSS
measurements at different locations as in RADAR, with the distance walked
between two measurements to create a high-dimensional fingerprint space and a
stress-free map. They then use a nearest-neighbor approach to find the nearest
location at query time. More coarse-grained, Chow et al. perform locality
classification, i.e., they classify the user position within pre-defined sections of
the area of interest [94]. Li et al. review potential attacks on localization and
propose statistical methods to mitigate their adverse effects [95]. Among others,
jamming, line-of-sight, and signal strength attenuation, replay attacks and
routing path alteration are listed as possible attacks on such algorithms. Deep
learning has also been demonstrated to perform well in RF localization [96].
Several works investigate the use of Bluetooth and BLE packets as a driver for
localization and distance estimation [97, 98]. Bertuletti et al. demonstrate that
RSS measures are noisy and lead to a 30% distance estimation error [97], while
Zhuang et al. achieve <3 meters localization using BLE advertisements [98].

Device fingerprinting. The wireless medium is not the only component
molding a signal with identifiable elements. Wireless radios also imprint
unique characteristics onto physical transmissions due to imperfections in their
circuitry. For example, modulation shifts, self-interference, amplitude clipping,
and frequency offset are possible impairments caused by the wireless radio
of a device, and are different even for two devices sold by a manufacturer
as identical. With such knowledge, it is possible to identify the sender of a
transmission from its unique fingerprint. Such identification can be used, for
example, as a replacement for computation-intensive cryptography for device
authentication. Brik et al. introduce PARADIS, a system identifying wireless
senders via support vector machines and K-nearest neighbors [99]. Nguyen
et al. rely instead on unsupervised learning and Gaussian mixture models,
creating clusters of fingerprints and checking whether a MAC address is used
by more than one device, therefore detecting communication attacks [100].
Peng et al. show that device fingerprints are consistent over long periods of
time by classifying devices 18 months after collecting data and training their
classifier [101]. Sankhe et al. present ORACLE, a highly accurate CNN-based
device classification system [102]. However, Al-Shawabka et al. demonstrate that
changing wireless conditions can greatly impact the performance of CNNs [103].

Device-free localization. Instead of locating a wireless device within
an environment, wireless perturbations can also be used to detect a person or
object of interest within an environment, even if such person does not wear a
wireless transceiver; we then speak of device-free localization. Zhang et al. show
how received signal perturbations within a grid deployment can estimate the
position of a person [104]. SCPL is both able to count and localize multiple
subjects using device-free localization [105], by first iteratively counting and
canceling the impact of a single subject until no perturbations persist, and
later quantifying the RSS perturbations within cells to localize targets. Mager
et al. evaluate the effect of altered environments, e.g., when furniture is moved,
over the performance of device-free localization and present mechanisms to
mitigate such effects [106].

Activity detection. Not only do wireless perturbations allow the detection
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and location estimation of device-free humans, but their variations over time can
also be used to estimate the current activity of the target. Sigg et al. execute
device-free activity recognition and distinguish between lying, standing, walking,
and crawling at several locations by deploying one transmitter and one receiver
in a corridor [107]. Sigg et al. also show that the RSSI of WiFi transmissions
received by a phone are sufficient to detect the presence and activity of humans
nearby the device [108]. In CARM, Wang et al. rely instead on the CSI and
combine features extracted from multiple receivers to distinguish between eight
activities [109]. Wang et al. further combine localization and activity recognition
in one system and introduce auto-encoders to automatically extract informative
features from the wireless signals [110]. Apart from wireless fingerprinting,
microphones, cameras, accelerometers, and sometimes even barometers, are
common instruments to execute Human Activity Recognition (HAR) [111–113].

Environment detection. While the localization problem focuses on
accurate position estimation, environment detection instead aims at categorizing
the type of environment into general classes such as home, office, street, or shop.
Several works establish acoustic sensing as an accurate enabler for environment
detection. Ma et al. rely on microphones and Hidden Markov Model classifiers
to distinguish between 12 environments such as bus, car, street, and office, from
3-second long audio recordings and achieve up to 93% accuracy [114]. However,
the authors do not discuss the problems of privacy arising from relying on
microphones to infer surroundings. Heittola et al. represent audio fingerprints as
histograms and compare new recordings with previous histograms to distinguish
between ten environments [115]. Choi et al. combine microphone and camera
inputs to detect the user position and activity [116]. Liang and Wang introduce
a CNN to parse a smartphone’s accelerometer data and distinguish which
transport (such as bus, car, bike) the user is using [117]. In this thesis, we
argue in Chapter 6 that Bluetooth Low Energy advertisements received by
a device are sufficient to classify its surrounding environments, and are less
intrusive than audio-based systems due to the randomized addresses used by
BLE advertisers.

1.4 Research Statement and Contributions

Within the Internet of Things ecosystem, low-power wireless IoT devices stand
out for their reliance on resource-limited hardware, their stringent energy
limitations, and their use of unreliable wireless communication. Nonethe-
less, we expect low-power IoT systems to support a broad set of applications,
ranging from swarms of drone control, wireless closed-loop industrial systems,
safety-critical monitoring infrastructures, and deep learning inference. Such
applications will require IoT devices to communicate, coordinate, and collabo-
rate to reach their goals. Further, as the number of IoT deployments grows,
so does the use of the wireless resources and overall data traffic. IoT systems
must be able to detect and react to changes in their wireless environment to
deal with highly dynamic and unpredictable external changes.

Collaborative IoT. Although many wireless standards and protocols
have reached a mature state and can provide communication with high packet
delivery, many lack the theoretical guarantees required to enable safe and
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consistent coordination between devices. In particular, wireless IoT systems
lack efficient solutions to the problem of fault-tolerant consensus, where devices
coordinate over an unreliable wireless medium. Consequently, this thesis first
focuses on answering the following question:

RQ1: How can we provide low-latency coordination mechanisms with consis-
tency guarantees for low-power wireless IoT, where connectivity is unreliable
and devices can fail?

We provide our answer to this question in Papers A and B. Paper A
introduces a general communication primitive providing fault-tolerant consen-
sus, while Paper B focuses on the application of vehicular coordination at
intersections with safety guarantees.

Adaptive IoT. Due to the ever-growing number of IoT systems deployed,
we see an overcrowding of the wireless spectrum. Concurrent wireless traffic
is becoming increasingly difficult to predict and provision against. In parallel,
some IoT devices face mobility challenges, where they must adapt their behavior
to their current surroundings. IoT systems require detection mechanisms able
to recognize their environments and identify changes within. For example, the
network stack used by such devices should autonomously react to external
perturbations to counteract their effects on the overall performance of the
system; while wireless headphones should adapt noise cancellation based on
the environment. We formulate the challenge of environment identification and
autonomous reaction in two questions and answer them in the last part of this
thesis:

RQ2: How can we design methods able to detect changes to the wireless medium
and react to them to maintain key performance metrics?

RQ3: How can resource-limited devices accurately recognize their environment
solely from low-power sensors?

Papers C and D answer the question of autonomous detection and reaction
in two different wireless standards, while Paper E focuses on environment
detection. Paper C introduces an adaptive communication primitive relying
on reinforcement learning to detect and react to external wireless interference.
Paper D proposes a channel-management system for Bluetooth Low Energy with
a special focus in dynamic environments and mobile scenarios. Finally, Paper E
demonstrates that it is possible to distinguish between different environments
such as homes, offices, or shops, solely from Bluetooth Low Energy signals fed
into an embedded ML model.

Contributions

Paper A - Paxos Made Wireless: Consensus in the Air

This paper addresses the problem of fault-tolerant consensus in low-power
wireless networks. While consensus is a mature field of research in wired
networks, we argue that typical solutions of the wired domain do not satisfy
the performance requirements of resource-constrained wireless networking. We
introduce Wireless Paxos, a new flavor of Paxos fitted to the characteristics of
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low-power wireless networking: we show that Paxos can be transformed from a
unicast scheme to a many-to-many scheme, which can be efficiently executed in
low-power wireless networks. We co-design the consensus algorithm along with
the lower layers of the network stack to greatly improve the latency of consensus
and have tighter control on the transmission policy. The overall result is a
broadcast-driven consensus primitive using in-network processing to compute
intermediate results in Paxos. Our solution builds on top of Synchrotron [63],
a kernel for synchronous transmissions inspired by Chaos [20], providing a
basis for highly reliable and low-latency networking in low-power wireless
with support for in-network processing. Our results show that Wireless Paxos
requires only 289 ms to complete a consensus between 188 nodes in testbed
experiments. Furthermore, we show that Wireless Paxos stays consistent even
when injecting node failures.

Personal contribution. I am the main author and main designer of
Wireless Paxos1. The chapter was published as a paper at the International
Conference on Embedded Wireless Systems and Networks (EWSN), 2019 [118],
and was nominated as candidate for the best paper award at the conference.

Paper B - STARC: Low-power Decentralized Coordination Primitive
for Vehicular Ad-hoc Networks

This paper revisits the coordination problem with a focus on vehicle-to-vehicle
(V2V) communication. V2V communication is expected to improve road usage
efficiency through cooperative driving, platooning, and autonomous intersection
management by replacing traffic lights with digital counterparts. However,
such V2V coordination protocols must ensure the safety of all road users by
guaranteeing consistency among participants and perform timely even under
communication failures. We introduce STARC, a decentralized reservation-
based protocol that uses low-power wireless radios to enable energy-efficient
vehicle-to-vehicle communication. We build our coordination protocol on top
of Synchrotron, a low-latency and energy-efficient communication primitive for
all-to-all communication [63]. With STARC, traffic participants reserve lanes
to cross intersections. Our mechanism allows users to reserve lanes through
an intersection by providing transaction semantics and distributed commits.
As a result, vehicles have unique access to different parts, i.e., lanes, of the
intersection, ensuring that at most, one car can use a given lane. We show
that STARC reduces average waiting times by up to 50% compared to a fixed
traffic light schedule in traffic volumes with less than 1000 vehicles per hour.
Moreover, we show that the protocol supports dynamic priority strategies and
we illustrate a platoon extension that allows STARC to outperform traffic
lights even with traffic loads surpassing 1000 vehicles per hour.

Personal contribution. I am the second author and a co-designer of
STARC2. The chapter was published as a workshop paper at the International
Workshop on Intelligent Transportation and Connected Vehicles Technologies
(ITCVT) at the Network Operations and Management Symposium (NOMS),
2020 [119].

1Available at github.com/iot-chalmers/wireless-paxos
2Available at github.com/ds-kiel/starc
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Paper C - Dimmer: Self-Adaptive Network-Wide Flooding with
Reinforcement Learning

In this paper, we observe that many low-power protocols are invariant to their
environment dynamics and deal with interference through over-provisioning.
Instead, we argue that low-power wireless networking should adapt to the
wireless medium to meet a target performance, even under varying conditions,
while still ensuring energy efficiency. We introduce Dimmer as a self-adaptive,
all-to-all communication primitive. Dimmer builds on top of LWB [52] and
uses deep Reinforcement Learning to tune its flooding parameters to match
the current properties of the wireless medium. By learning how to behave from
unlabeled traces, Dimmer adapts to different interference types and patterns,
and is even able to tackle previously unseen interference. We evaluate our
protocol on two deployments of resource-constrained nodes and show that
Dimmer outperforms baselines such as non-adaptive ST protocols (∼27%)
and PID controllers, and show a performance close to hand-crafted and more
sophisticated solutions, such as Crystal (∼99%).

Personal contribution. I am the main author and main designer of
Dimmer3. The chapter was published as a paper at the IEEE International
Conference on Distributed Computing Systems (ICDCS), 2021 [120].

Paper D - eAFH: Informed Exploration for Adaptive Frequency
Hopping in Bluetooth Low Energy

This paper tackles the problem of frequency management in the context of
dynamic environments and mobility. Due to the ever-growing traffic in the
already crowded 2.4 GHz band, the quality of Bluetooth Low Energy connec-
tions drastically varies with nearby wireless traffic, location, and time of day.
These dynamic environments demand new approaches for channel management
by both dynamically excluding frequencies suffering from localized interfer-
ence and adaptively re-including channels, thus providing sufficient channel
diversity to survive the rise of new interference. We introduce eAFH, a new
channel-management approach in BLE with a strong focus on efficient channel
re-inclusion for mobile scenarios. eAFH introduces informed exploration as
a driver for inclusion: using only past measurements, eAFH assesses which
frequencies we are most likely to benefit from re-inclusion into the hopping
sequence. As a result, eAFH adapts in dynamic scenarios where interference
varies over time. We show that eAFH achieves 98-99.5% link-layer reliability
in the presence of dynamic WiFi interference with 1% control overhead and
40% higher channel diversity than state-of-the-art approaches.

Personal contribution. I am the main author and main designer of eAFH4.
The chapter was published as a paper in the Proceedings of the International
Conference on Distributed Computing in Sensor Systems (DCOSS), 2022 [121].

3Available at github.com/ds-kiel/dimmer
4Available at github.com/ds-kiel/eAFH
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Paper E - BlueSeer: AI-Driven Environment Detection via BLE
Scans

In this paper, we argue and demonstrate that it is feasible to infer an envi-
ronment, i.e., we can distinguish between a home, an office, or a street, solely
from packets received with a Bluetooth Low Energy radio. IoT devices rely on
environment detection to trigger specific actions, e.g., for headphones to adapt
noise cancellation to their surroundings. While phones feature many sensors,
from GNSS to cameras, small wearables must rely on the few energy-efficient
components they already incorporate. In this paper, we demonstrate that a
Bluetooth radio is the only component required to accurately classify envi-
ronments and present BlueSeer, an environment-detection system that solely
relies on received BLE packets and an embedded neural network. BlueSeer
achieves an accuracy of up to 84% differentiating between 7 environments
on resource-constrained devices and requires only ∼ 12 ms for inference on a
64 MHz microcontroller unit.

Personal contribution. I am the first author and a co-designer of
BlueSeer5. The chapter was published as a paper in the Proceedings of
the ACM/IEEE Design Automation Conference (DAC), 2022 [122], and was
nominated as candidate for the best paper award at the conference.

1.5 Conclusions and Emerging Directions

In this thesis, we argue that the next generation of low-power IoT devices will
communicate, coordinate, and collaborate to execute distributed applications
of ever-increasing complexity in challenging and dynamic environments. Future
IoT systems will also exhibit adaptive behaviors and react to external events
to optimize their performance. We identify two key challenges such systems
must face to reach these goals: (1) low-power IoT devices will require efficient
coordination mechanisms providing consistency and safety guarantees, and
(2) they will need methods to recognize their external environments, detect
changes within, and react to them to maintain key performance metrics.

This thesis presents five key mechanisms to facilitate collaboration and
adaptivity in future IoT systems. To enable efficient coordination, we show
that solutions of the wired domain can be adapted and coupled to low-level
wireless communication primitives, therefore ensuring low energy consumption
and low latency while maintaining their consistency guarantees even in the
presence of unreliable transmissions and participant failures. To endow IoT
devices with adaptive behaviors, we introduce methods able to distinguish
environments solely from wireless signals, detect external changes to the wireless
medium, and adapt to possibly unseen events in mobile and dynamic scenarios.
Particularly, we demonstrate the practicality of embedded machine learning in
decision-making processes on resource-limited platforms.

We identify three directions that we believe future IoT systems can benefit
from. Future IoT deployments should be self-forming and depict self-adaptive
behaviors: they should coordinate to find the optimal communication strate-
gies or parameters, and provide consistency guarantees in their configuration.

5Available at github.com/ds-kiel/blueseer
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Secondly, embedded machine learning, especially in the form of reinforcement
learning, is a promising approach to enable decision-making on limited hard-
ware, as it allows devices to find the optimal strategy even if such a strategy is
unknown to the designer. We argue that an AI-enabled wireless stack would
be able to optimally adapt to dynamic and challenging environments, even in
previously unseen conditions. Finally, while we provide consistent coordination
in the presence of network and device failures, we assume the absence of ad-
verse processes actively undermining the coordination process via malicious
communication, i.e., we assume no Byzantine failures. As many multi-hop IoT
deployments rely on devices to relay messages, Byzantine-fault tolerant mecha-
nisms that are practical in real deployments, i.e., efficient in terms of message
exchanges and energy consumed, are required in safety-critical applications
where adversarial actors can add devices to a system.
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