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a b s t r a c t

The scattering of elastic waves by a transversely isotropic sphere in an isotropic medium
is considered. The elastodynamic equations inside the sphere are transformed to spheri-
cal coordinates and the displacement field is expanded in the vector spherical harmonics
in the angular coordinates and powers in the radial coordinate. The governing equations
inside the sphere then give recurrence relations among the expansion coefficients. Then
all the remaining expansion coefficients for the fields outside and inside the sphere
are found using the boundary conditions on the surface of the sphere. As a result, the
transition (T) matrix elements are calculated and given explicitly for low frequencies.
Using the T matrix and the theory of Foldy an explicit expression for the effective
complex wave number of transversely isotropic (hexagonal) polycrystalline materials
are presented for low frequencies. Numerical comparisons are made with previously
published results and with recent FEM results and show a very good correspondence
with FEM for low frequencies. As opposed to other published methods there is no
limitation on the degree of anisotropy with the present approach.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Scattering of waves by a single obstacle is a classical problem in mathematical physics. The wave scattered by an
bstacle can be calculated in various well-known ways, such as by the method of separation-of-variables, the T matrix

methods, integral equation methods, and finite element (FE) methods. A comprehensive overview of scattering of acoustic,
electromagnetic, and elastic waves in isotropic media is presented in a unified way by de Hoop [1] and Varadan et al. [2].
Wave propagation through an elastic medium with a distribution of inclusions is also studied by many authors, the
objective often being to characterize such media by ultrasonic means. A simple approach to deal with such problems
is presented by Foldy [3]. The theory of Foldy neglects multiple scattering and estimates the effective wave numbers of
the medium by the scattering cross section of a single inclusion and the number density of inclusions. This is used by
many authors to study wave propagation through an isotropic elastic medium with a distribution of isotropic inclusions,
see for instance [4,5].

However, there exist many anisotropic materials, which may be natural or synthetic. For instance, natural soils and
rocks, fiber composites, or the grains in a metal are all anisotropic. Studying wave propagation in anisotropic materials
is more complicated since many of the classical methods are not applicable any longer. Wave propagation in anisotropic
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aterials has, therefore, mostly been studied for unbounded and semi-bounded media. For finite obstacles, where the
nterest of the current study lies, not much has been done and then mostly for electromagnetic waves (see, [6–8]). For
echanical waves, spherically and cylindrically anisotropic obstacles are considered by some authors [9–13]. 2D scattering
f elastic waves by an anisotropic (in Cartesian coordinates) obstacle is investigated by Boström using expansions in
rigonometric functions in the angular coordinate and powers in the radial coordinate [14,15]. Recently the same method
s used for scattering of SH (torsional) waves by a transversely isotropic sphere in the special axisymmetric case and the
matrix elements are presented explicitly [16].
A special case of anisotropy appears in polycrystalline materials (typically metals), where the grains are anisotropic. If

he grains are equiaxed and randomly oriented the overall properties of the material still becomes isotropic. To estimate
ttenuation and effective wave speed in polycrystals various approximate methods are used. Most of these estimations
re using volume integral equation methods combined with some perturbation method, often the Born approximation.
or instance, Stanke and Kino [17] calculate the wave speed and attenuation using this method, Thompson et al. [18] give
n overview of scattering of elastic waves in simple and complex polycrystals, Yang et al. [19] present an explicit model
or ultrasonic attenuation in equiaxed hexagonal polycrystalline materials, and Li and Rokhlin [20] study the scattering
n general random anisotropic solids. All these methods are valid more or less for all frequencies, however, they seem
o have restrictions to relatively weak anisotropy. Recently finite element methods (FEM) have also been used to study
olycrystalline materials and investigate the attenuation and phase velocity in them, see [21–26] (these papers contain
ery readable introductions to the field and many further references).
A different type of approach is obtained if the scattering by each grain in the polycrystal material is regarded as taking

lace in the effective, homogeneous and isotropic medium of all other grains (assuming that the grains are equiaxed and
andomly oriented) thus the wave propagation in polycrystalline materials can be viewed as a special case of a distribution
f inclusions. Boström and Ruda [27] use this approach to estimate the attenuation of 2D polycrystalline materials with
rains of cubic material. Starting from the explicit transition matrix for cubic materials presented by Boström [15] the
cattering cross section is obtained and then the attenuation is estimated using an energy consideration. Such an approach
oes not have any limitation on the degree of anisotropy, however, it is restricted to low frequencies.
In this article the scattering of an elastic wave is considered for a single transversely isotropic (in Cartesian coordinates)

pherical obstacle contained in an isotropic elastic medium. The starting point is to state the anisotropic elastodynamic
quations in spherical coordinates. The equations then contain trigonometric functions only in the polar coordinate, while
or materials with lack of rotational symmetry (e.g. cubic symmetry) there are trigonometric functions in the azimuthal
oordinate as well, which lead to more complex elastodynamic equations. Expanding the displacement field in terms of
he vector spherical harmonics for the angular dependence and power series for the radial dependence, the elastodynamic
quations give recursion relations among the expansion coefficients. Using the boundary conditions on the surface of the
phere results in a system of equations for all the remaining expansion coefficients of the fields outside and inside the
phere. Solving the system of equation provides the T matrix for the scattering by a single sphere. The leading order T
atrix elements are derived explicitly for low frequencies. The attenuation and phase velocity of polycrystalline materials
ontaining transversely isotropic grains is estimated for low frequencies using the theory of Foldy and the T matrix,
ee [4,5]. It is particularly noted that the weak anisotropy assumption, which seems to be made for most other analytical
ethods, is not made in the present approach.

. Statement of the problem

The scattering of an elastic wave by a transversely isotropic sphere with radius a in a three-dimensional, homogeneous,
infinite elastic medium is considered (Fig. 1). The material of the surrounding infinite medium is assumed isotropic with
density ρ and Lamé parameters λ and µ. The description of the sphere and its material properties is left for Section 3.
Only time harmonic situations are considered and the time factor exp (−iωt), where ω is the angular frequency and t
is time, is suppressed throughout. Introducing the longitudinal and transverse wave numbers k2p = ρω2/(λ + 2µ) and
k2s = ρω2/µ, respectively, the equation of motion in terms of the displacement field u is

1
k2p

∇(∇ · u) −
1
k2s

∇ × (∇ × u) + u = 0. (1)

For a spherical obstacle it is natural to use spherical coordinates (r, θ, ϕ) to describe the field quantities. For expressing
the displacement field in the surrounding medium, it is convenient to introduce the spherical vector wavefunctions
ψτσml. Solving the governing differential equations in the isotropic medium (Eq. (1)) the following three spherical vector
wavefunctions are defined

ψ0
1σml(r, θ, ϕ) =

1
√
l(l + 1)

∇ ×

(
jl(ksr)Yσml(θ, ϕ)

)
= jl(ksr)A1σml(θ, ϕ), (2)

ψ0
2σml(r, θ, ϕ) =

1
√
l(l + 1)

∇ × ∇ ×

(
jl(ksr)Yσml(θ, ϕ)

)
=

(
j′l(ksr) +

jl(ksr)
)
A2σml(θ, ϕ) +

√
l(l + 1)

jl(ksr)A3σml(θ, ϕ),
(3)
ksr ksr
2
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Fig. 1. The transversely isotropic sphere with radius a and the incident wave.

ψ0
3σml(r, θ, ϕ) =

(
kp
ks

)3/2 1
kp

∇

(
jl(kpr)Yσml(θ, ϕ)

)
=

(
kp
ks

)3/2(
j′l(kpr)A3σml(θ, ϕ) +

√
l(l + 1)

jl(kpr)
kpr

A2σml(θ, ϕ)
)

,

(4)

where the indices run through l = 0, 1, 2, . . ., m = 0, 1, . . . , l, σ = e (even), o (odd), and the first index is denoted
τ = 1, 2, 3 for SH, SV and P wavefunctions, respectively. For l = 0 only the τ = 3 wavefunction is relevant; for l = 0
the wavefunctions for τ = 1, 2 are not defined. The upper index 0 specifies the regular wavefunctions which contain
spherical Bessel functions jl. The corresponding outgoing wavefunctions are denoted with the upper index + and contain
spherical Hankel functions h(1)

l to satisfy the radiation condition in the far field. Aτσml are the vector spherical harmonics
defined as

A1σml(θ, ϕ) =
1

√
l(l + 1)

∇ × (rYσml(θ, ϕ)) =
1

√
l(l + 1)

(
eθ

1
sin θ

∂

∂ϕ
Yσml(θ, ϕ) − eϕ

∂

∂θ
Yσml(θ, ϕ)

)
,

A2σml(θ, ϕ) =
1

√
l(l + 1)

r∇Yσml(θ, ϕ) =
1

√
l(l + 1)

(
eθ

∂

∂θ
Yσml(θ, ϕ) + eϕ

1
sin θ

∂

∂ϕ
Yσml(θ, ϕ)

)
,

A3σml(θ, ϕ) = erYσml(θ, ϕ).

(5)

ere Yσml is a spherical harmonic with the following definition

Yσml(θ, ϕ) =

√
ϵm(2l + 1)(l − m)!

4π (l + m)!
Pm
l (cos θ )

{
cosmϕ

sinmϕ

}
, (6)

where Pm
l (cos θ ) is an associated Legendre function and where σ = e is for the upper row which is even with respect to

ϕ and σ = o is for the lower row which is odd with respect to ϕ.
The surface tractions on r = a are necessary to apply the boundary conditions. The radial traction field in the isotropic

medium, which of course has the components σrr , σrθ and σrϕ , is given by

t (r) = erλ∇ · u + µ

(
2
∂u
∂r

+ er × (∇ × u)
)

. (7)

The tractions of the vector wavefunctions are thus calculated as

t (r)
(
ψ0

1σml (r)
)

= µr
d
(
jl (ksr)

)
A1σml (θ, ϕ) , (8)
dr r
3
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t (r)
(
ψ0

2σml (r)
)

= µ

[ (
2ksj′′l (ksr) +

2j′l (ksr)
r

−
2jl (ksr)
ksr2

+ ksjl (ksr)
)
A2σml (θ, ϕ)

+ 2
√
l (l + 1)

d
dr

(
jl (ksr)
ksr

)
A3σml (θ, ϕ)

]
,

(9)

t (r)
(
ψ0

3σml (r)
)

= µ

(
kp
ks

)3/2 [ (
2kpj′′l

(
kpr
)
+

2k2p − k2s
kp

jl
(
kpr
))

A3σml (θ, ϕ)

+ 2
√
l (l + 1)

d
dr

(
jl
(
kpr
)

kpr

)
A2σml (θ, ϕ)

]
.

(10)

Assuming that the sources of the incident wave lie outside the sphere (see Fig. 1), it is possible and convenient to
expand the incident wave in terms of the regular spherical vector wavefunctions as

uin(r) =

∑
τσml

bτσmlψ
0
τσml(r), (11)

here the summation is over τ = 1, 2, 3, σ = e, o, m = 0, 1, . . . and l = m,m+ 1,m+ 2, . . .. This expansion is valid out
to the sources of the incident wave. The incident wave is not specified at present, however, the expansion coefficients
bτσml are in principle known. The incident wave is scattered by the sphere, thus the outgoing scattered wave must satisfy
the radiation conditions and can be expanded in terms of the outgoing spherical vector wavefunctions in the isotropic
surrounding

usc(r) =

∑
τσml

gτσmlψ
+

τσml(r), (12)

where the expansion coefficients gτσml are to be determined. This is done by determining the transition (T) matrix, which
is defined as the linear relation between the expansion coefficients of the incident and scattered waves

gτσml =

∑
τ ′σ ′m′ l′

Tτσml,τ ′σ ′m′ l′bτ ′σ ′m′ l′ . (13)

hus, the T matrix completely specifies the scattering by the obstacle and is convenient to use when the effective
roperties in a polycrystalline material are determined. In the next section the transversely isotropic sphere is studied.

. The transversely isotropic sphere

In this section the material properties of the sphere are defined and necessary relations to determine the displacement
ield and the traction inside the sphere are explained. The transversely isotropic sphere with density ρ1 is oriented in such
way that the axis of anisotropy is perpendicular to the xy plane. Therefore, the constitutive relation, which contains five

independent stiffness constants, in the Cartesian coordinates is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
σxy
σyz
σzx

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C11 − C12 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϵxx
ϵyy
ϵzz
ϵxy
ϵyz
ϵzx

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (14)

To be able to apply boundary conditions on the sphere it is useful to apply spherical coordinates, thus the following
relation for the transformation of the stress and strain tensor from Cartesian to spherical coordinates is used

Ss = RTScR, (15)

where Ss and Sc are stress or strain tensors in the spherical and the Cartesian coordinates, respectively, and R is the
rotation matrix with the following appearance

R =

[cosϕ sin θ cosϕ cos θ − sinϕ

sinϕ sin θ sinϕ cos θ cosϕ

]
. (16)
cos θ − sin θ 0
4
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Therefore, considering the definition of the strains in spherical coordinates

ϵrr =
∂ur

∂r
, ϵϕϕ =

1
r sin θ

∂uϕ

∂ϕ
+

cot θ
r

uθ +
ur

r
,

ϵθθ =
1
r

∂uθ

∂θ
+

ur

r
, ϵθϕ =

1
2r

(
∂uϕ

∂θ
− cot θuϕ +

1
sin θ

∂uθ

∂ϕ

)
,

ϵϕr =
1
2

(
1

r sin θ

∂ur

∂ϕ
+

∂uϕ

∂r
−

uϕ

r

)
, ϵrθ =

1
2

(
∂uθ

∂r
−

uθ

r
+

1
r

∂ur

∂θ

)
,

(17)

he stress–strain relations in spherical coordinates are derived

σrr = (α1 + 2α2) ϵrr + α1ϵθθ + (α1 − β2 + β3) ϵϕϕ − 2β1 (ϵrr cos 2θ − ϵrθ sin 2θ)

− β3
(
ϵϕϕ cos 2θ

)
+ β2 ((ϵrr − ϵθθ ) cos 4θ − 2ϵrθ sin 4θ) ,

(18)

σθθ = (α1 + 2α2) ϵθθ + α1ϵrr + (α1 − β2 + β3) ϵϕϕ + 2β1 (ϵθθ cos 2θ + ϵrθ sin 2θ)

+ β3
(
ϵϕϕ cos 2θ

)
+ β2 ((ϵθθ − ϵrr) cos 4θ + 2ϵrθ sin 4θ) ,

(19)

σϕϕ = (α1 + 2α2 + 2β1 + β2) ϵϕϕ + (α1 − β2 + β3) (ϵθθ + ϵrr) + β3 ((ϵθθ − ϵrr) cos 2θ + 2ϵrθ sin 2θ) , (20)

σrθ = 2α2ϵrθ + β1 ((ϵθθ + ϵrr) sin 2θ) + β3
(
ϵϕϕ sin 2θ

)
+ β2 ((ϵθθ − ϵrr) sin 4θ − 2ϵrθ cos 4θ) , (21)

σrϕ = (2α2 + β1 − β3)ϵrϕ − (2β2 + β1 − β3)
(
ϵrϕ cos 2θ − ϵθϕ sin 2θ

)
, (22)

σθϕ = (2α2 + β1 − β3)ϵθϕ + (2β2 + β1 − β3)
(
ϵθϕ cos 2θ + ϵrϕ sin 2θ

)
, (23)

where

α1 =
1
8
(C11 + 6C13 + C33 − 4C44), α2 =

1
8
(C11 − 2C13 + C33 + 4C44)

β1 =
1
4
(C11 − C33), β2 =

1
8
(C11 − 2C13 + C33 − 4C44), β3 =

1
2
(C12 − C13).

(24)

ere, α1, α2, β1, β2 and β3 are five new stiffness constants. It is observed from Eqs. (18) to (23) that the transformation of
he stress–strain relations to spherical coordinates leads to the appearance of factors containing trigonometric functions
ith argument 2θ and 4θ . In the isotropic limit when βi = 0, i = 1, 2, 3, α1 = λ1, α2 = µ1, with µ1 and λ1 being the

Lamé parameters of the isotropic sphere, these trigonometric functions vanish and Eqs. (18) to (23) reduce to the isotropic
case.

The general elastodynamic equations of motion are

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

1
r sin θ

∂σrϕ

∂ϕ
+

1
r

(
2σrr − σθθ − σrϕ + cot θσrθ

)
− ρ

∂2ur

∂t2
= 0, (25)

∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

1
r sin θ

∂σθϕ

∂ϕ
+

1
r

(
cot θ

(
σθθ − σϕϕ

)
+ 3σrθ

)
− ρ

∂2uθ

∂t2
= 0, (26)

∂σrϕ

∂r
+

1
r

∂σθϕ

∂θ
+

1
r sin θ

∂σϕϕ

∂ϕ
+

1
r

(
3σrϕ + 2 cot θσθϕ

)
− ρ

∂2uϕ

∂t2
= 0. (27)

he stress relations Eqs. (18) to (23) and the equations of motion Eqs. (25) to (27) can of course be expressed in terms of the
isplacement components, however, these equations are not given as they become very long. Exactly as the stress–strain
elations, these equations have factors containing trigonometric functions with argument 2θ and 4θ .

To solve the system of equations inside the sphere it is convenient to use the vector spherical harmonics and expand
the displacement field inside the sphere as

u1(r, θ, ϕ) =

∑
τσml

Fτσml(r)Aτσml(θ, ϕ). (28)

he r dependent coefficients Fτσml(r) are expanded in powers of r in such a way that the regularity conditions at r = 0
re satisfied

F1σml(r) =

∞∑
j=l,l+2,...

f1σml,jr j, (29)

F2σml(r) =

∞∑
j=l−1,l+1,...

f2σml,jr j, (30)

F3σml(r) =

∞∑
f3σml,jr j. (31)
j=l−1,l+1,...

5
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ere fτσml,j (where f3σm0,−1 = 0) are unknown coefficients. Relations between these coefficients are obtained by inserting
he expansions Eqs. (29) to (31) and Eq. (28) into the equations of motion Eqs. (25) to (27). The orthogonality of the vector
pherical harmonics means that an arbitrary vector can be expanded in terms of Aτσml(θ, ϕ). Thus the equations of motion
can be expanded in terms of the vector spherical harmonics∑

τσml

Hτσml(r)Aτσml(θ, ϕ) = 0. (32)

Here Hτσml(r) is found as the scalar product of the vector spherical harmonic and the vector equation of motion. The
orthogonality of the vector spherical harmonics means that every Hτσml(r) must vanish, thus

Hτσml(r) = 0 for all τ , σ ,m, l, (33)

which gives recursion relations among the unknown coefficients inside the sphere. The explicit expression for Hτσml(r)
is complicated in the general case and is therefore not given. However, the factors containing trigonometric functions
with argument 2θ and 4θ which appear in the stress–strain relations lead to coupling between different values of l. Thus
Hτσml(r) contains the expansion coefficients fτσml,j, fτσml±2,j, and fτσml±4,j (there is also coupling between different values
of j and τ , but this happens also in the isotropic case).

The remaining unknown coefficients fτσml,j of the displacement expansion inside the sphere together with the unknown
coefficients gτσml of the scattered wave in the surrounding medium can be found by applying the continuity conditions
on the boundary of the sphere. Applying the continuity of the displacements is straightforward since the displacement
field inside and outside the sphere are both available in terms of the vector spherical harmonics (Eqs. (11), (12) and (28)),
However, to facilitate the application of the traction continuity, the traction inside the sphere needs to be expanded in
terms of the vector spherical harmonics

t (r)1 (r, θ, ϕ) =

∑
τσml

Gτσml(r)Aτσml(θ, ϕ). (34)

Since the vector spherical harmonics constitute a complete orthonormal set, the coefficients Gτσml(r) are determined from
the inner product of the traction vector and the vector spherical harmonic as

Gτσml(r) =

∫ π

0

∫ 2π

0
t (r)1 (r, θ, ϕ) · Aτσml(θ, ϕ) sin θdθ dϕ. (35)

As in the equations of motion, there is here coupling between different values of l.
All the necessary relations for solving the scattering problem is now at hand, although explicit expressions are not

given so far. It is quite possible to solve the problem for intermediate frequencies in this way, but here only the low
frequency scattering is investigated in detail. In this case leading order T matrix elements appear for l = 0, l = 1 and
l = 2 and it is possible to give explicit expressions for these. In the following sections this is accomplished with a division
depending on the value of m = 0, 1, 2.

4. Low frequency T matrix elements for m = 0

For the case with m = 0 all the fields are ϕ independent and only contain σ = e (see Eq. (6)). Consequently the
problem is axisymmetric, and can be viewed as the case when an incident P wave is parallel to the axis of anisotropy. In
this specific case when there is no σ = o part there is no coupling between SH waves and P-SV waves and they can be
studied separately. A study of the incident SH waves for such an axisymmetric problem is performed by the authors and
the T matrix elements are presented [16]. However, the leading order of the T matrix elements for the SH case behaves
as (ka)5 which is higher than the leading order of the P-SV case (as is shown in the following) and is not of the interest
in the current study. For the P-SV case the problem is decoupled into two parts for even and odd values of l, which are
tudied separately.

.1. Even–even P-SV waves

When m = 0 and σ = e the following ansatz for the displacement field inside the sphere can be made according to
q. (28) for even values of l as

u1(r, θ, ϕ) = F2e02(r)A2e02(θ, ϕ) + F2e04(r)A2e04(θ, ϕ) + . . .

+ F3e00(r)A3e00(θ, ϕ) + F3e02(r)A3e02(θ, ϕ) + F3e04(r)A3e04(θ, ϕ) + . . . ,
(36)

where the r dependent coefficients are expanded into a power series in r according to Eqs. (30) and (31)

F2e02(r) = f2e02,1r + f2e02,3r3 + . . . , F2e04(r) = f2e04,3r3 + . . . ,

3 3 3 (37)

F3e00(r) = f3e00,1r + f3e00,3r + . . . , F3e02(r) = f3e02,1r + f3e02,3r + . . . , F3e04(r) = f3e04,3r + . . . ,

6
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With this ansatz of the displacement field the equation of motion can be expanded as in Eq. (32) and the first two
coefficients Hτσml become

H3e00 =
4

7
√
5

(7β1 + 2β2)

(√
6f2e02,1 − 3f3e02,1

)
r +

1
3

(
3ρ1ω

2f3e00,1 + f3e00,3 (30α1 + 60α2 + 20β1 − 2β2)

+ 32
√
5β2f2e04,3 − 4

√
5 (7β1 + 2β2) f3e02,3 + 64β2f3e04,3

)
r3 + . . . = 0,

H3e02 =
2
21

(√
6f2e02,1 − 3f3e02,1

)
(21α2 + 6β1 − β2) r+

(
2
3
f3e02,3 (15α1 + 21α2 − 4β1 + 4β2)

+ 2
√
6f2e02,3 (β2 − α1) + 8β1f2e04,3 +

272
33

β2f2e04,3 −
56β1f3e00,3

3
√
5

−
16β2f3e00,3

3
√
5

−
56β1f3e04,3

√
5

+
112β2f3e04,3

33
√
5

+ ρ1ω
2f3e02,1

)
r3 + . . . = 0.

(38)

f course it is possible to find more Hτσml coefficients, however, they do not lead to extra relations among the fτσml,j
oefficients which are explicitly presented in Eq. (37) and those are sufficient to obtain the T matrix elements for low
requencies. It then follows from Eq. (38) and the linear independence of the powers of r that

f3e02,1 =

√
2
3
f2e02,1, f3e04,1 =

2
√
5
f2e04,3,

f3e02,3 =
1

20
√
5(7β1 + 2β2)

(
10f3e00,3(15α1 + 30α2 + 10β1 − β2) + 3

(
96

√
5f2e04,3β2 + 5f3e00,1ρ1ω

2
))

,

f2e02,3 =
1

330
√
6 (α1 − β2)

(
110f3e02,3 (15α1 + 21α2 − 4β1 + 4β2) + 40 (33β1 + 34β2) f2e04,3,

− 88
√
5 (7β1 + 2β2) f3e00,3 + 56

√
5 (2β2 − 33β1) f3e04,3 + 165ρ1ω

2f3e02,1
)

.

(39)

These relations reduce the eight unknown expansion coefficients explicitly written in the displacement expansions
Eqs. (36) and (37) to four. These are all that are needed to obtain the transition matrix for low frequencies. There is of
course no particular problem with including more terms in the displacement components which lead to more equations
that are needed for higher frequencies.

Applying continuity of the displacement at r = a gives one equation for each l = 0, 2, . . . for τ = 3 and one equation
for each l = 2, 4, . . . for τ = 2. Likewise continuity of the traction gives one equation for each l = 0, 2, . . . for τ = 3 and
one equation for each l = 2, 4, . . . for τ = 2. However, since only the low frequency T matrix elements are of interest
here, it is sufficient to consider the equations only for l = 0 and l = 2. Consequently, there are six equations to the lowest
order. The unknowns are the scattered field coefficients g3e00, g3e02 and g2e02 in Eq. (12) and the remaining expansion
coefficients inside the sphere f3e00,1, f3e00,3, f2e02,1, f2e04,3. Thus, there are six equations and seven unknowns. However,
since only the lowest order of the T matrix elements is of interest it can be assumed that there is no incident partial wave
of order l = 4 and continuity of the displacement forces f2e04,3 to vanish, so only 6 unknowns remain and the system
of equations is complete. Solving the system of equations gives the scattered field unknown coefficients gτσml in terms
of the incident field coefficients bτσml. Substituting these relations into Eq. (13) provides the T matrix elements. In the
following sections when determining other T matrix elements, the displacement field is similarly expanded only to the
necessary orders of l, which are l = 0, l = 1 and l = 2 for the θ dependence and to power 3 of r for the r dependence.
Furthermore, when applying the boundary conditions the series expansions of the spherical Bessel and Hankel functions
outside the sphere are used.

Solving the mentioned system of equations (which is done with Mathematica), the following leading order T matrix
elements are derived

T3e00,3e00 = −
ikpa
3

(
(kpa)2 −

(ksa)2µ
(
4k2p (3α2 − β1 + 3β2 + β3 − 3µ) + 3k2s (6α2 − 2β1 + 6β2 + 2β3 + 9µ)

)
4k2pM0 + 3k2sN0

)
,

T2e02,3e00 = T3e00,2e02 = −2

√
10
3

i(ksa)3
√

kp
ks

k2s (2β1 + β3) µ

4k2pM0 + 3k2sN0
,

T3e02,3e00 = T3e00,3e02 = −
4
√
5

3
i(kpa)3

k2s (2β1 + β3) µ

4k2pM0 + 3k2sN0
,

T2e02,2e02 = −2i(ksa)3
k2sM0

2 2 ,

4kpM0 + 3ksN0

7
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T3e02,2e02 = T2e02,3e02 = −2

√
2
3
i(ksa)3

√
kp
ks

k2pM0

4k2pM0 + 3k2sN0
,

T3e02,3e02 = −
4
3
i(kpa)3

k2pM0

4k2pM0 + 3k2sN0
,

(40)

here

M0 = 2α2
2 − 2β2

1 + β1β2 − β2
2 − 2β1β3 + β2β3 + α1 (3α2 − β1 + 3β2 + β3 − 3µ) − 2β1µ + 5β2µ − 4µ2

+ α2 (β2 + 2 (β3 + µ)) ,

N0 = 2M0 +
5
3
µ (9α1 + 6α2 + 2β1 − 3β2 + 4β3 + 12µ) .

(41)

f course in the isotropic limit when βi = 0, i = 1, 2, 3 and α1 = λ1 and α2 = µ1, these elements reduce to those of the
isotropic case (given by Boström [28]).

4.2. Even–odd P-SV waves

For the even–odd P-SV waves the ansatz of the displacement inside the sphere is made with odd values of l, and taking
nto account all the assumptions of the low frequency scattering, only the following terms are needed

u1(r, θ, ϕ) = F2e01(r)A2e01(θ, ϕ) + F3e01(r)A3e01(θ, ϕ), (42)

here

F2e01(r) = f2e01,0 + f2e01,2r2, F3e01(r) = f3e01,0 + f3e01,2r2. (43)

Substituting the displacement ansatz into Eq. (32) and taking H2e01 = 0 together with the linear independence of the
owers of r , the following relations among expansion coefficients are found

f2e01,0 =
√
2f3e01,0, f3e01,2 =

√
2 (α1 − α2) f2e01,2 − f3e01,0ρ1ω

2

4α1 + 6α2 − 2 (2β1 + β2)
. (44)

Again considering continuity of displacement and traction for l = 1 of τ = 2 and τ = 3 provides 4 equations which
are sufficient to find the four unknowns g2e01, g3e01, f2e01,2 and f3e01,0 and the T matrix elements are determined as

T2e01,2e01 = −
2
9
i (ksa)3

(
1 −

ρ1

ρ

)
,

T3e01,2e01 = T2e01,3e01 = −

√
2
9

i
√
k3pk3s a

3
(
1 −

ρ1

ρ

)
,

T3e01,3e01 = −
1
9
i
(
kpa
)3 (1 −

ρ1

ρ

)
.

(45)

As is to be expected these elements are identical to those of an isotropic sphere. This is because l = 1 corresponds to a
rigid body translation at low frequencies so these elements should only depend on the density of the sphere, not on the
stiffness properties of the sphere.

5. Low frequency T matrix elements for m = 1

In this section the scattering for m = 1 is examined. Here, unlike m = 0, the elastic waves can be even or odd with
respect to ϕ (σ = e and σ = o) and as for m = 0, they can also be even or odd with respect to θ with even and odd values
of l. Therefore the problem is decoupled into four parts, even–even, odd–even, even–odd and odd–odd with respect to ϕ

and θ , respectively. Furthermore, the appearance of the even and odd waves with respect to ϕ and the anisotropy nature
of the sphere lead to coupling between different parities of the P-SV waves and the SH waves. This can be observed in
Eqs. (2) to (6) where the displacement field in each direction (r, θ, ϕ) has the same parity with respect to θ and ϕ, if the
P-SV waves (ψ2σml and ψ3σml) have different parity compared to the SH waves (ψ1σml) with respect to both θ (l values)
and ϕ (σ values). However, the parity of the waves with respect to ϕ (σ values) does not affect the T matrix elements
when the same values of l and m are considered. Therefore the T matrix is the same for even–even and odd–even cases
and it is the same for even–odd and odd–odd cases as well. Considering this, the derivation of the low frequency T matrix
elements is only explained for the even–even and even–odd parts.
8
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.1. Even–even P-SV waves and odd–odd SH waves

For this case the already truncated ansatz (expansion to lmax = 2 at low frequencies) of the displacement field is

u1(r, θ, ϕ) = F1o11(r)A1o11(θ, ϕ) + F2e12(r)A2e12(θ, ϕ) + F3e12(r)A3e12(θ, ϕ), (46)

where the r dependent coefficients are expanded in a power series in r based on Eqs. (29) to (31) (truncation to power
3 in r)

F1o11(r) = f1o11,1r + f1o11,3r3,

F2e12(r) = f2e12,1r + f2e12,3r3,

F3e12(r) = f3e12,1r + f3e12,3r3.

(47)

In the same way as in the previous section, the following recurrence relations among the unknown coefficients can be
obtained from Eq. (32)

f2e12,1 =

√
3
2
f3e12,1,

f1o11,1 =
−1

6ρ1ω2

(
6f1o11,3 (10α2 + β1 − β3) − 4

√
15 (2β1 + β3) f2e12,3 + 3

√
10 (9β1 + 2β2 + β3) f3e12,3

)
,

f2e12,3 =

√
3
(
5f3e12,3 (10α1 + 14α2 + β1 − 6β2 + β3) +

√
10 (5β1 + 2β2 − β3) f1o11,3 + 5ρ1ω

2f3e12,1
)

10
√
2 (3α1 + β2 + β3)

.

(48)

These relations reduce the total number of unknowns to six which are g1o11, g2e12, g3e12f3e12,1, f2e12,3 and f1o11,3, and
these can be found from the six equations at hand from the continuity of the traction and displacement at the boundary
of the sphere for l = 1 and τ = 1, l = 2 and τ = 2 and l = 2 and τ = 3. Solving the system of equations the following
leading order T matrix elements (which are the same as for the case with the same values of m and l but σ = o) are
derived

T2σ12,2σ12 = −2i (ksa)3
k2sM1

4k2pM1 + 3k2sN1
,

T3σ12,2σ12 = T2σ12,3σ12 = −2

√
2
3
i (ksa)3

√
kp
ks

k2pM1

4k2pM1 + 3k2sN1
,

T3σ12,3σ12 = −
4
3
i
(
kpa
)3 k2pM1

4k2pM1 + 3k2sN1
,

(49)

here

M1 = α2 − β2 − µ = C44 − µ, N1 = 2M1 + 5µ = 2C44 + 3µ, σ = e or o. (50)

The other T matrix elements (T1σ11,1σ11, T1σ11,2σ ′12, T2σ ′12,1σ11, T1σ11,3σ ′12 and T3σ ′12,1σ11, where σ ′
̸= σ ) all involve the

H waves and are of the order (ksa)5 for low frequencies. Thus they are of higher order than the leading order in the low
requency limit ((ka)3) and are not of interest here. Generally all T matrix elements which involve the SH waves are at
least of order (ksa)5 and all of them can be neglected in the low frequency limit. Therefore, in the following sections only
the T matrix elements of the P-SV waves are presented.

5.2. Odd–odd P-SV waves even–even SH waves

For this part the proper ansatz which is already truncated according to the low frequency limit is

u(r, θ, ϕ) = F1e12(r)A1e12(θ, ϕ) + F2o11(r)A2o11(θ, ϕ) + F3o11(r)A3o11(θ, ϕ). (51)

here
F1e12(r) = f1e12,2r2,

F2o11(r) = f2o11,0 + f2o11,2r2,

F3o11(r) = f3o11,0 + f3o11,2r2.

(52)

The recurrence relations follow in usual way

f2o11,0 =
√
2f3o11,0,

f2o11,2 =

√
30 (β1 + 2β2 − 3β3) f1e12,2 + 6ρ1ω

2f3o11,0 + 6 (4α1 + 6α2 + 5β1 + β3) f3o11,2
√ .

(53)
3 2 (2α1 − 2α2 − β1 − 2β2 + 3β3)

9
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Using these and the boundary conditions the T matrix elements become

T2σ11,2σ11 = −
2
9
i (ksa)3

(
1 −

ρ1

ρ

)
,

T3σ11,2σ11 = T2σ11,3σ11 = −

√
2
9

i
√
k3pk3s a

3
(
1 −

ρ1

ρ

)
,

T3σ11,3σ11 = −
1
9
i
(
kpa
)3 (1 −

ρ1

ρ

)
.

(54)

here σ = e or o. As mentioned, l = 1 corresponds to rigid body translation at low frequencies and consequently the
ransition matrix elements only depend on the density of the sphere. These elements are in fact the same as given above
n Eq. (45) for m = 0 and l = 1.

. Low frequency T matrix elements for m = 2

As for m = 1 the scattering problem for m = 2 can be decoupled into four parts. However, considering the necessary
ondition l ≥ m for the vector spherical harmonics, the smallest possible odd value of l is l = 3, which as explained above,
ead to higher order of the T matrix elements than (ka)3. Therefore, the only interesting value of l is l = 2. Considering
he coupling between even P-SV waves and odd SH waves and visa versa the problem can be considered for the cases
hat the P-SV waves are of the order l = 2 and the case with the SH waves of the order l = 2. However, it is observed
that the T matrix elements of the SH waves are of order (ksa)5 and higher which are not of interest. Therefore, only P-SV
waves of the order l = 2 remains, which of course can be either odd or even with respect to ϕ, and both cases lead to
he same T matrix elements. Thus, only the even–even P-SV waves case is investigated.

.1. Even–even P-SV waves odd–odd SH waves

The suitable displacement ansatz for the coupled even–even P-SV waves and odd–odd SH waves is

u1(r, θ, ϕ) = F1o23(r)A1o23(θ, ϕ) + F2e22(r)A2e22(θ, ϕ) + F3e22(r)A3e22(θ, ϕ). (55)

Here l = 3 is included in the ansatz only to show the coupling between SH and P-SV waves. The r dependence coefficients
of the Eq. (55) can be expanded as

F1o23(r) = f1o23,3r3,

F2e22(r) = f2e22,1r + f2e22,3r3,

F3e22(r) = f3e22,1r + f3e22,3r3.

(56)

As above this gives recursion relations among the unknown coefficients

f2e22,1 =

√
3
2
f3e22,1, f2e22,3 =

6 (5α1 + 7α2 + 6β1 + 2β3) f3e22,3 + 4
√
21β3f1o23,3 + 3ρ1ω

2f3e22,1
2
√
6 (3α1 − 3β2 + 4β3)

. (57)

These relations reduce the number of unknown coefficients inside the sphere to three and together with the three
unknown coefficients of the scattered wave there is a total of six unknowns. With the six continuity equations the system
of equations can be solved for the T matrix elements

T2σ22,2σ22 = −2i (ksa)3
k2sM2

4k2pM2 + 3k2sN2
,

T3σ22,2σ22 = T2σ22,3σ22 = −2

√
2
3
i (ksa)3

√
kp
ks

k2pM2

4k2pM2 + 3k2sN2
,

T3σ22,3σ22 = −
4
3
i
(
kpa
)3 k2pM2

4k2pM2 + 3k2sN2
,

(58)

here

M2 = α2 + β1 + β2 − β3 − µ =
1
2
(C11 − C12) − µ, N2 = 2M2 + 5µ = C11 − C12 + 3µ, σ = e or o. (59)

7. Distribution of inclusions

In this section a random distribution of spherical inclusions of equal size which are randomly orientated is considered
and phase velocity and attenuation of plane P and S waves are calculated approximately for low frequencies. This can be
10
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model of the grain scattering in a polycrystalline material, typically a metal, but this model is also valid for a particle
omposite. To deal with this problem the simple theory of Foldy [3] is used. In this theory the multiple scattering between
he inclusions is neglected, therefore its validity is generally limited to low volume concentrations of inclusions. However,
n the low frequency limit each grain scatters extremely little and neglect of the multiple scattering should be valid even
or a high concentration of inclusions. In this simple approximation the effective complex wave number K is related to
he forward scattered amplitude by the equation

K 2
i = k2i + 4πNf̄i, (60)

here the index i can be P or S for longitudinal and transverse waves, respectively, k is the wave number of the matrix, N
is the number density of inclusions and f̄i is the average (over all orientations of incidence) forward scattering amplitude
which can be calculated from the T matrix elements as [5]

f̄p = −
i
kp

∑
σml

T3σml,3σml, (61)

or the average forward scattering of P waves and

f̄s = −
i

2ks

∑
τσml
τ=1,2

Tτσml,τσml, (62)

or the average forward scattering of S waves. For low frequencies only the T matrix elements calculated explicitly in the
revious sections need to be included in the sums. Substituting Eqs. (61) and (62) into Eq. (60) the following equations
re obtained for calculating the effective wave numbers(

Kp

kp

)2

= 1 −
4π id
Vk3p

∑
σml

T3σml,3σml,(
Ks

ks

)2

= 1 −
2π id
Vk3s

∑
τσml
τ=1,2

Tτσml,τσml,

(63)

here V = 4πa3/3 is the volume of a single grain and d is the relative density of grains. The phase velocity and attenuation
of the material are related to the real and imaginary parts of the effective wave number as

αi

ki
= Im

Ki

ki
,

Ci

ci
= Re

ki
Ki

,

(64)

here ci is the phase velocity in the matrix, Ci is the effective velocity and αi is the attenuation.
However, in the low frequency limit the leading order terms of the T matrix are all imaginary, see the previous sections.

To obtain the attenuation also the leading order real part of the T matrix elements are needed. These can be obtained
from the ‘‘hermitian’’ property of the T matrix [29]

T†
· T = −ReT. (65)

where the ‘‘dagger’’ means the Hermitian conjugate. Summarizing, by doing all the indicated calculations it is possible to
obtain an explicit form of the effective wave numbers Eq. (63)(

Kp

kp

)2

= 1 + Ap + Bpi,(
Ks

ks

)2

= 1 + As + Bsi,

(66)

here the coefficients are real and given by

Ap = −
1
9

[
36M0k2p

4M0k2p + 3N0k2s
+

72M1k2p
4M1k2p + 3N1k2s

+
72M2k2p

4M2k2p + 3N2k2s
+

9 (ρ − ρ1)

ρ

+ 9

(
1 −

µk2s
(
4k2p (3α2 − β1 + 3β2 + β3 − 3µ) + 3k2s (6α2 − 2β1 + 6β2 + 2β3 + 9µ)

)
2
(

2 2
) ) ]

,

kp 4M0kp + 3N0ks

11
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Bp =
(kpa)3

9

[
(ρ1 − ρ)2

ρ2

(
1 + 2

k3s
k3p

)
+

24
(
2M2

0k
5
p + 3M2

0k
5
s + 10 (2β1 + β3)

2 µ2kpk4s
)

kp
(
4M0k2p + 3N0k2s

)2 +
48M2

1

(
2k5p + 3k5s

)
kp
(
4M1k2p + 3N1k2s

)2
+

3(
4M0k2p + 3N0k2s

)2 ( 120 (2β1 + β3)
2 µ2 k

9
s

k5p
+

[
4M0k2p + k2s (3N0 − 4µ (3α2 − β1 + 3β2 + β3 − 3µ))

− 3µ
k4s
k2p

(6α2 − 2β1 + 6β2 + 2β3 + 9µ)

]2
+ 80 (2β1 + β3)

2 µ2k4s

)
+

48M2
2

(
2k5p + 3k5s

)
kp
(
4M2k2p + 3N2k2s

)2 ],
As = −

1
9

(
27M0k2s

4M0k2p + 3N0k2s
+

54M1k2s
4M1k2p + 3N1k2s

+
54M2k2s

4M2k2p + 3N2k2s
+

9 (ρ − ρ1)

ρ

)
,

Bs =
1
9
(ksa)3

[
18
(
2M2

0k
5
p + 3M2

0k
5
s + 10 (2β1 + β3)

2 µ2kpk4s
)

ks
(
4M0k2p + 3N0k2s

)2 +
36M2

1

(
2k5p + 3k5s

)
ks
(
4M1k2p + 3N1k2s

)2
+

36M2
2

(
2k5p + 3k5s

)
ks
(
4M2k2p + 3N2k2s

)2 +
(ρ1 − ρ)2

ρ2

(
k3p
k3s

+ 2

) ]
.

(67)

In the low frequency limit the parameters Ai and Bi are small so the explicit form of the normalized attenuation and
phase velocity can with good accuracy be calculated as

αi

ki
=

Bi

2
,

ci
Ci

= 1 +
Ai

2
.

(68)

ere it is observed that for low frequencies the attenuation coefficients are dependent on the forth power of frequency
or wave number) while the phase velocities are independent of frequency.

. Numerical results for polycrystalline materials

In this section the results from the previous section are applied to transversely isotropic (also called hexagonal)
olycrystalline materials. To verify the present results comparisons are made with Yang et al. [19] and recent FE
omputations by Huang and Lowe [30], the latter only for P waves. Yang et al. [19] use a volume integral equation method
ogether with a statistical approach with a two-point correlation function (TCP) to estimate the attenuation (this method
as later been refined to a generalized TCP to better model the grain distribution in FEM, see [25]).
In FEM, single phase polycrystals are considered, so the individual grains of each model have the same mass density and

lastic constants. Also, the grains within each model are defined with uniformly randomly oriented crystallographic axes,
aking the model macroscopically homogeneous and isotropic [21,22]. These assumptions are the same as in the present
ethod. The FEM methodology is described in detail by Pamel et al. [22], where different aspects regarding background

heory, grain generation, finite element spatial discretization, material model, loading and boundary conditions for the FE
odel are addressed. The developed FE model is used to study wave propagation in polycrystalline materials with cubic
ymmetry [23] and for general anisotropy [25] and exactly the same method (with the same grains, mesh, etc.) are used
n the FE result reported here [30]. Suitable adaptations of already developed analytical methods in order to compare with
E results are also discussed in these studies. Several important issues regarding the FE model, such as determination of
ffective media parameters, estimating modeling errors and uncertainties and better incorporating FE model information
nto theoretical models are investigated by Huang et al. [26]. When comparing the FE results with the present method
he normalization is performed so that the mean grain volume in FEM determines the sphere radius (assuming spherical
rains) in the present method.
For a polycrystalline material the grains are filling the whole volume so the relative density of grains is chosen as d = 1.

his means that the spherical grains must be overlapping, but this does not matter at low frequencies where the volume
f the grains determines the scattering and it is important to get the volume that scatters correct. When the grains fill
he whole volume the question is how to choose the surrounding isotropic material when considering the scattering by
ne grain. For the density this is simple as it is the same everywhere, so in the notation from previous sections ρ = ρ1,
nd then some terms vanish in the expressions giving the attenuation and phase velocity. As is customary in this context
he Lamé constants are chosen as the Voigt averages [17,19]

λ =
1
15

(C11 + 5C12 + C33 + 8C13 − 4C44),

µ =
1

(7C11 − 5C12 + 2C33 − 4C13 + 12C44).
(69)
30
12



A. Jafarzadeh, P.D. Folkow and A. Boström Wave Motion 112 (2022) 102963

p

I
t

w

w
o
c
n
p
g
r

k
(
f
|

f
z
w
u
j
o

l
d

9

f
T
o
p

Table 1
Table of materials properties [31].
Material properties

Elasticity constants (Gpa) Density (g/cm3) Anisotropy factor Phase velocity

C11 C12 C13 C33 C44 ρ γ100 γ010 γ001 Cp/cp Cs/cs
Ti 162 92 69 180 47 4.54 1.01 0.84 1.34 0.9971 0.9920
Zn 179 37 55 69 46 7.14 0.74 6.57 0.64 0.9674 0.9594

Fig. 2. Normalized longitudinal attenuation αpa with respect to normalized frequency kpa evaluated by the present method (solid line), the method
resented in Yang et al. (2011) (dashed line) and FEM (dots), for (a) titanium and (b) zinc.

t is noted that these are different from the α1 and α2 defined in Eq. (24) contrary to the situation in 2D [27]. To measure
he anisotropy of a transversely isotropic material the following degrees of anisotropy are introduced [19]

γ100 = 2C44/(C11 − C13), γ010 = 2C44/(C33 − C13), γ001 = 2C44/(C11 − C12), (70)

hich are all equal to 1 in the case of isotropy.
In the following, the attenuation and phase velocity are calculated for two different transversely isotropic materials

ith different degrees of anisotropy. Table 1 shows the elasticity properties of titanium and zinc with their degrees
f anisotropy. From the degrees of anisotropy it is seen that titanium is rather weakly anisotropic, while zinc can be
onsidered a strongly anisotropic material. Phase velocities of titanium and zinc are also presented in Table 1 and it is
oted that with the present method they are independent of frequency for low frequencies. The normalized longitudinal
hase velocity evaluated with the present method is 0.9971 and 0.9674 for titanium and zinc, respectively. This is in
ood agreement with the ones derived with FEM for low frequencies, which are 0.9970 and 0.9632 for titanium and zinc,
espectively.

Turning to attenuation, Fig. 2 shows the normalized longitudinal attenuation αpa with respect to normalized frequency
pa evaluated by the present method (solid line), the method presented in Yang et al. [19] (dashed line) and FEM (dots) for
a) titanium and (b) zinc. In Fig. 2(b) it can be observed that the present method has a much better agreement with FEM
or low frequencies in comparison with Yang et al. [19] for zinc with higher degrees of anisotropy. Defining the error as
α − αFEM |/αFEM , Fig. 3 shows the error for longitudinal attenuation with respect to normalized frequency kpa evaluated
or the present method (solid line) and the method presented in Yang et al. [19] (dashed line) for (a) titanium and (b)
inc. Specifically, for zinc at the lowest frequency kpa ≈ 0.21 of the FEM calculations, the present method has a 7% error
hile the Yang et al. [19] error is 51%. The figure also shows that the present method is only valid for low frequencies,
p to around kpa = 0.5 the correspondence with the FE results is very good. It is noticed that the FE curve for zinc has a
ump 5.7% at kpa = 0.46 and this is due to a change of mesh [26]. This is of course an indication of the inaccuracies that
ccur in the FE results.
The normalized transverse attenuation is presented in Fig. 4 in the same manner (but without any FE results). For the

ow degrees of anisotropy of titanium the correspondence between the two methods is good for low frequencies, but the
ifference becomes substantial when the degrees of anisotropy become large for zinc.

. Concluding remarks

In the present paper the scattering by a transversely isotropic sphere in an isotropic surrounding is investigated. The
ocus is on calculating the elements of the transition matrix for low frequencies and these are obtained in explicit form.
his is then applied to calculate the attenuation and phase velocity for low frequencies in a material with many randomly
riented spheres using the simple theory of Foldy. As an application, the attenuation and phase velocity is computed for
olycrystalline titanium and zinc assuming randomly oriented grains. Comparisons are performed with the theory of Yang
13
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Fig. 3. Error of longitudinal attenuation (|α − αFEM |/αFEM ) with respect to normalized frequency (kpa) for the present method (solid line) and the
method presented in Yang et al. (2011) (dashed line), for (a) titanium and (b) zinc.

Fig. 4. Normalized transverse attenuation (αsa) with respect to normalized frequency (ksa) evaluated by the present method (solid line) and the
ethod presented in Yang et al. (2011) (dashed line), for (a) titanium and (b) zinc.

t al. [19] and also by recent FE computations by Huang and Lowe [30]. For low frequencies the correspondence with FEM
s very good but particularly for the stronger anisotropy for zinc the correspondence with Yang et al. [19] is rather poor
but as opposed to the present approach, the results of Yang et al. [19] are not limited to low frequencies).

The present approach is limited to low frequencies due to several factors. The T matrix elements are only given to
leading order, however, there is no particular problem to compute more elements to desired accuracy, see [16], but this
then becomes a numerical approach without the possibility to give explicit formulas. Use of the Foldy theory means that
multiple scattering is neglected, this can partly by improved by using more refined theories for multiple scattering. The
present approach is also limited to spherical grains, at low frequencies this should not matter, but for higher frequencies
this is questionable. All in all it seems difficult, and probably not worthwhile, to extend the present approach to higher
frequencies.

The present results can naturally be generalized in various directions. Other classes of anisotropy are of course of
interest, and these are more challenging as the materials then possess no axis of rotationally symmetry. The simplest
such case is a cubic material and work on this has in fact been started. In the present paper only spheres of the same size
and type are considered. There seems to be no particular problem with investigating also a size distribution or spheres
of different materials, a duplex material for instance.
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