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A B S T R A C T

Annotated driving scenario trajectories are crucial for verification and validation of autonomous vehicles.
However, annotation of such trajectories based only on explicit rules (i.e. knowledge-based methods) may
be prone to errors, such as false positive/negative classification of scenarios that lie on the border of two
scenario classes, missing unknown scenario classes, or even failing to detect anomalies. On the other hand,
verification of labels by annotators is not cost-efficient. For this purpose, active learning (AL) could potentially
improve the annotation procedure by including an annotator/expert in an efficient way. In this study, we
develop a generic active learning framework to annotate driving trajectory time series data. We first compute
an embedding of the trajectories into a latent space in order to extract the temporal nature of the data.
Given such an embedding, the framework becomes task agnostic since active learning can be performed using
any classification method and any query strategy, regardless of the structure of the original time series data.
Furthermore, we utilize our active learning framework to discover unknown driving scenario trajectories. This
will ensure that previously unknown trajectory types can be effectively detected and included in the labeled
dataset. We evaluate our proposed framework in different settings on novel real-world datasets consisting
of driving trajectories collected by Volvo Cars Corporation. We observe that active learning constitutes an
effective tool for labeling driving trajectories as well as for detecting unknown classes. Expectedly, the quality
of the embedding plays an important role in the success of the proposed framework.
. Introduction

New business models and the digitalization of society has revolu-
ionized the automotive sector, like many other industries. Self-driving
ehicles are considered to be one of the new trends that is of high
mportance for the future of the automotive industry with many social
nd technological impacts. It, alongside the social aspects, could pro-
ide promising solutions to reduce accidents in traffic, ease gridlock
ssues and allow for more comfortable and productive commutes. In
rder to comfortably integrate Autonomous Drive (AD) in society, it
ust be safe and tested properly. One important part of ensuring this

s collecting and annotating large amounts of driving scenarios, which
an then be used for further verification and validation of autonomous
rive functionality in virtual and real test environments.

The importance of obtaining a robust and high quality dataset of
riving scenarios can be seen in several steps of AD testing and verifi-
ation (Hoseini et al., 2021b). However, annotation of driving scenario
rajectories could become costly and time-consuming. This is due to the
nnotation task being heavily dependent on human interaction, either
o manually label traffic scenario trajectories or verifying the quality
f the labels provided by humans. Furthermore, the data concerning
utonomous vehicles comes in the form of time series data, containing
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information about the motions of various road objects, such as cars
and other types of vehicles. The complicated nature of this data could
increase the risk that an automated annotation algorithm misses rare
classes or miss-classifies fringe cases. These are some of the issues that
need to be addressed in order to provide scenario catalog/database
completeness and also in order to better understand the traffic/driving
behavior.

In this paper, we investigate the effectiveness of active learning
to annotate AD time series trajectory data. Active learning provides
solutions for accurate and robust data labeling at a low cost (Cohn
et al., 1996; Settles, 2009). In this paradigm, a small dataset is initially
annotated. Then, only the most informative trajectories (data points)
are queried to be labeled by an expert/human. One can consider active
learning as a sequential decision making procedure wherein at every
step, two operations are performed: (i) select the next trajectory to
be labeled, and (ii) update the classification model using the newly
labeled trajectory. Its concept is beyond data labeling and annotation;
it is studied for example for decision making in troubleshooting as
well (Chen et al., 2017).

Our contribution is multifold. First, we develop a generic active
learning framework for time series data. As will be discussed in the
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related work section, previous work on active learning for time series
tasks is limited because it is specialized to specific types of sequential
and temporal data, or assumes a specific classification method (Peng
et al., 2017b; Liang et al., 2020; Gweon and Yu, 2021). Instead, we
separate the modeling of temporal aspects of the data from active
learning and classification. This enables us to apply a wide range of
different active learning and classification paradigms. To achieve this,
we first embed the time series into a latent space in order to extract the
temporal and sequential nature of the data. In this work, we study dif-
ferent latent space representations including multivariate Time Series
t-Distributed Stochastic Neighbor Embedding (mTSNE) (Nguyen et al.,
2017; Van der Maaten and Hinton, 2008), Recurrent Auto-Encoder
(RAE) (Demetriou et al., 2020) and Variational Recurrent Auto-Encoder
(VRAE). To obtain the VRAE embedding, we adapt our developed
framework for RAE in Demetriou et al. (2020) to the variational setting.
Given such an embedding, any classification method and active learn-
ing query strategy can be used. In this work, we investigate Support
Vector Machines (SVM) and Neural Networks (NN) in combination with
the query strategies entropy, margin and random sampling.

Second, detecting unknown driving behavior is of high importance
for autonomous vehicles. Therefore, we extend the active learning
framework to unknown class detection, where the driving trajectories
to be queried do not necessarily correspond to an a priori known tra-
jectory type. We achieve this by initially querying known classes, such
that the model uncertainty of future unknown classes becomes higher
than for the known classes. A reasonable querying strategy should then
query the unknown classes at a higher rate. The same embeddings,
query strategies and classifiers used for trajectory classification are
going to be investigated for this purpose as well.

Third, we investigate novel real-world datasets provided by Volvo
Cars Corporation. The datasets consist of information about various
driving scenario trajectories which can help advance research on AD.

Finally, we evaluate the performance of the framework (both of
active classification and unknown class detection) on the previously
mentioned datasets, with promising results.

This paper is an extension of our preliminary work presented in Jarl
et al. (2021) wherein we briefly introduced the classification of time
series trajectory data using active learning. In this work, we addition-
ally, (i) elaborate further on the proposed framework and discuss its
generality and different specifications, (ii) perform more investigations
on factors that influence the performance of active learning, such as
the choice of classifier, class distribution and the allocated budget,
(iii) perform additional experimental studies for example on the rate of
the improvements by different active learning strategies, and
(iv) extend the active learning framework to detect unknown classes.

The rest of the paper is organized as follows. In Section 2, we
review the related work on active learning. In Section 3, we describe
the data and its preparation used in this study. In Section 4, we
introduce the latent space representations and the embedding methods
to be employed within the active learning framework. In Section 5, we
describe the framework for active learning, including the classification
models and the query strategies. In Section 6, we extend the framework
to identify the trajectories with unknown class labels. In Section 7, we
perform the experimental studies, and finally, in Section 8, we conclude
the paper.

2. Related work

Active learning has been well studied in different contexts and
domains, where most of the early work can be found in the survey
of Settles (2009). It covers, among other methods, uncertainty based
query strategies such as entropy and margin sampling, which are
utilized in this work.

The study in Houlsby et al. (2011) uses predictive entropy with the
Gaussian Process Classifier to yield a Bayesian active learning method

called BALD. The method is then investigated for deep learning along

2

with some approximate methods based on drop-out (Gal et al., 2017;
Kirsch et al., 2019). Bossér et al. (2021) have studied several model-
centric and data-centric aspects of active learning with deep neural
network models. They show that the margin query strategy yields
higher performance compared to alternatives on MNIST and CIFAR-
10 datasets, which is consistent with the study in Körner and Wrobel
(2006). Johansson et al. (2021) investigates active learning with the
margin query strategy for drug discovery in particular for reaction yield
prediction in order to identify the successful reactions with a minimal
experimental cost. Pimentel et al. (2020) studies anomaly detection
using active learning.

Active learning can be performed in the form of querying class labels
or querying pairwise relations. The former is more common (Cohn
et al., 1996; Gal et al., 2017; Hanneke, 2007), and has been widely
used in several applications such as robotics, text analysis, image clas-
sification, medicine, computer vision, manufacturing and log data anal-
ysis (Johansson et al., 2021; Tong, 2001; Yan et al., 2018; Peng et al.,
2021, 2017b). Querying pairwise relations, on the other hand, has been
mainly studied in the context of semi-supervised learning and inter-
active clustering (Ashtiani et al., 2016; Awasthi et al., 2017), where
some works extend the clustering models on positive and negative edge
weights such as correlation clustering and shifted min cut (Bansal et al.,
2004; Haghir Chehreghani, 2017) to (inter)active learning.

Active learning has also been studied for classification of temporal
and sequential data. The work in Peng et al. (2017a) develops an
informativeness measure for time series classification based on the
nearest neighbor classification method, where (Peng et al., 2017b)
adapts it for battery event detection. Similarly, the works in Liang et al.
(2020), Gweon and Yu (2021) study active learning focused on the
nearest neighbor paradigm in different settings such as model selection.
The Transfer Active Learning (TAL) method (Kinyua and Jouandeau,
2021) combines active learning with transfer learning especially for
deep learning. The work in van Leeuwen et al. (2021) considers the
robustness and quality of assigned labels via a zoom-in step. The safe
active learning work in Zimmer et al. (2018) models time series by
a Gaussian process with a nonlinear exogenous input structure while
taking some safety constraints into account. The work in Júnior et al.
(2017) studies active learning for animals, vessels, and human move-
ments trajectories, where the extracted features do not represent the
full temporal nature of the data. We note that active learning has been
used in other contexts than classification as well, for example sampling
the time points over time series (Singh et al., 2005).

However, these methods suffer from several limitations such as
tuning critical hyper parameters, being specialized to specific types
of sequential and temporal data, or assuming a specific classification
method (e.g., the nearest neighbor method). Unlike these task/method-
specific methods, we develop a generic active learning framework for
temporal data (time series) that can employ any active learning strategy
(informativeness measure) and can be used with any classification
method such as Support Vector Machines and Neural Networks. We
achieve this by separating the modeling of temporal aspects of the data
from active learning and classification.

3. Data

The datasets used in this work are provided by Volvo Cars Corpo-
ration (VCC). They are in time series format and contain information
about objects surrounding the ego car. These objects correspond to
other vehicles, which we refer to as target cars. We extract and use
the lateral and longitudinal road positions of the surrounding vehicles
in order to obtain three different kinds of trajectories, namely target car
left drive by, target car right drive by and target car cut in. For simplicity,
we drop the word ‘target’ from the scenario names and call them left
drive by, right drive by and cut in. Note that the framework we adopt in
this study is generic and different types of scenarios could be added for

a similar analysis. However, in this work we are particularly interested
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Fig. 1. The latent space representation generated by mTSNE, with (a) 1024 points in each class and (b) 10% cut ins. The colors red, white and blue correspond to the cut in,
ight drive by and left drive by classes, respectively.
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Table 1
The number of data points in the three datasets used in this work, with 𝛼 being the
percentage of cut ins.

Data set Annotated set Unlabeled set Test set

𝛼 = 33 10 2211 615
𝛼 = 10 10 1769 492
𝛼 = 5 10 1563 435

in AD functionality for congested traffic on the highway. Therefore, the
previously mentioned trajectory types are of high importance for the
test and release of the AD functionality in our case.

We begin by splitting each of the datasets into three parts: a initially
annotated set, a unlabeled set and a test set. These sets can then be
used to perform active learning experiments, as explained in Section 5.
Then, some of the cut ins are removed to achieve the desired class dis-
tribution. The next step is to transform the time series trajectories into a
latent space, wherein the temporal aspects are taken into account. After
such an embedding, we sometimes call a trajectory a data point, as it is
then represented by a vector. The number of data points (trajectories)
in each set for every class distribution can be seen in Table 1, where 𝛼
s the percentage of cut ins. Each set contains an equal number of left
nd right drive by data points. Finally, it should be mentioned that our
atasets were already manually labeled by VCC through expert domain
nowledge. These ground truth labels allow us to easily evaluate our
ctive learning framework.

. Latent space representation for active learning

As mentioned, the first step is to model the temporal and sequential
rder of the trajectories. For this purpose, we embed the trajectories
nd obtain a data point in a latent space for each trajectory. In this
ection, we describe the different trajectory embedding methods we
nvestigate in this paper.

.1. mTSNE with Dynamic Time Warping

One way to embed the trajectories into a latent space, is to use
TSNE together with Dynamic Time Warping (DTW) (Van der Maaten

nd Hinton, 2008; Hoseini et al., 2021a). It first computes the pair-
ise distances between trajectories using Dynamic Time Warping, and

hen applies a combination of stochastic neighbor embedding and t-
istributed neighbor embedding. To obtain the distance between two
rajectories, DTW matches the indices in these time series with some
estrictions on the alignment. For example one index in a shorter
rajectory might correspond to several indices in a longer trajectory.
his is repeated for all pairs of trajectories in order to obtain the matrix
f pairwise distances between trajectories (shown by 𝐃).
3

High dimensional pairwise distances 𝐃𝑖𝑗 are then converted into
probabilities of pairwise similarities using an exponential conditional
distribution. The conditional probability

𝑝𝑗|𝑖 =
exp

(

−𝐃2
𝑖𝑗∕2𝜎

2
𝑖

)

∑

𝑘≠𝑖 exp
(

−𝐃2
𝑖𝑘∕2𝜎

2
𝑖
) (1)

is used to imply the probability the 𝑖th trajectory (data point) would
pick the 𝑗th trajectory as its neighbor if both were drawn in proportion
to their probability density under a Gaussian distribution centered
around the 𝑖th one. For the low dimensional embedded data points 𝐱𝑖
and 𝐱𝑗 the low dimensional conditional probability 𝑞𝑗|𝑖 can be computed
n a similar way as shown in Eq. (2).

𝑗|𝑖 =
exp

(

−‖𝐱𝑖 − 𝐱𝑗‖2∕2𝜎2𝑖
)

∑

𝑘≠𝑖 exp
(

−‖𝐱𝑖 − 𝐱𝑘‖2∕2𝜎2𝑖
) , (2)

If the low dimensional data points {𝐱𝑖} correctly model the high
imensional distances between trajectories, 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 will be close to
ach other. Stochastic neighborhood embedding (SNE) aims to find a
ow dimensional representation (in the form of a vector 𝐱𝑖 for every 𝑖th
rajectory) that minimizes the difference between 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖.

To demonstrate how mTSNE obtains embeddings for our datasets,
in Fig. 1, we illustrate the latent space representation generated by
mTSNE, with (a) 1024 data points in each class, and (b) 10% cut ins.
The colors red, white and blue respectively correspond to the cut in,
right drive by and left drive by classes. Here we set the perplexity to
37.5, and we see that SNE separates the classes well in two dimensions.

4.2. RAE and VRAE embeddings

An alternative approach to produce the latent space representation
is using a combination of Recurrent Neural Networks (to extract the
temporal aspects of the trajectories) with (Variational) Auto-Encoders
(to yield a latent space representation — an embedding). We investi-
gate such a representation in two settings: (i) Recurrent Auto-Encoder
(RAE), and (ii) Variational Recurrent Auto-Encoder (VRAE).

The schematic structure of RAE is shown in Fig. 2(a) adapted from
the model we have developed in Demetriou et al. (2020) for trajectory
generation. Fig. 2(b) shows the general structure of VRAE, that includes
an additional layer mapping each trajectory (data point) to a distri-
bution in the latent space. The Auto-Encoder has two stacked LSTM
cells and 64 features in the hidden state as well as in the latent space.
To verify the performance of the autoencoder, we have performed a
small study with 8, 32, 64 and 128 features in latent space. As seen in
Fig. 3, 64 features yield the most stable and accurate results. In Fig. 2,
the variables 𝑝1,… , 𝑝𝑛 represent a sequence of feature vectors that
correspond to a driving trajectory, which is input to the autoencoder.
In order to address the variable-length problem with the trajectories in
our datasets, we group together the trajectories of a certain length to
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Fig. 2. The general structure of (a) the Recurrent Auto-Encoder (RAE) and (b) the Variational Recurrent Auto-Encoder (VRAE) we use for embeddings.
Fig. 3. A comparison of different dimensions of RAE. 64 latent features yields the highest and most stable F1 score.
form a batch, which is then fed as input to the network. In this fashion,
all trajectories within a batch have the same length.

VRAE ensures a coherent latent space, which implies the data points
in close proximity will be located close to each other even in the
latent space. VRAE encodes the data points as distributions rather than
explicit points, then a new sample is drawn from these distributions as
input to the decoder.
4

5. The active learning paradigm

The goal of active learning is to label the most informative data
points with a minimal number of human interactions. In our frame-
work, the active learning procedure uses the latent representation of
the time series data as input. To perform active learning, we follow
Algorithm 1, which begins by training the classification model on
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Fig. 4. A subset of queried trajectories using (a) margin and (b) entropy query strategies.
Fig. 5. Comparing the performance of mTSNE, RAE and VRAE in different settings.
a small annotated dataset. Next, we classify the unlabeled data and
calculate the informativeness of each data point according to the chosen
query strategy. The most informative data point is then queried to be
annotated by an expert and is subsequently moved to the annotated set.
After every query, the classifier is retrained. This iterative procedure
continues until the allocated budget is spent.
Algorithm 1: Active Learning
Result: Labels a number of data points and classifies the rest.

rain the classifier on a small amount of initially labeled data;
hile budget > 0 do

Classify the unlabeled data points;
Calculate informativeness for each unlabeled data point;
Query the most informative data point(s) to an expert;
Add queried data point(s) to the annotated data set and
remove them from the unlabeled set;

Retrain the classifier using the (new) annotated set;
nd

5.1. Classification models

In this study, we examine two classification models, SVM and fully
connected neural network (NN). For SVM, the radial basis function
is used as the kernel. For the parameters 𝑐 and 𝛾 we use the values
5

suggested by Scikit-Learn. Performing cross-validation by inspection,
these parameter values provided good enough results. The NN consists
of two hidden layers with respectively 128 and 256 neurons. VRAE
seems to require a larger capacity. Thus, we use a larger NN with
that, consisting of 5 hidden layers with 64, 128, 256, 128 and 64
neurons. Each layer is batch normed and ReLU is used as the non-linear
activation function. To optimize, we use the Adam optimizer applied to
the respective cross entropy loss.

5.2. Query strategies

We investigate the three commonly-used query strategies random,
margin and entropy. As discussed in Bossér et al. (2021), they rep-
resent different aspects of active learning for neural networks. Let
U denote the unlabeled set. Random assigns a uniformly distributed
informativeness to each data point in U,

𝐼𝑅𝑖 ∼ unif(0, 1). (3)

The second strategy, called margin, computes the informativeness
for every unlabeled data point 𝐱𝑖 ∈ 𝑈 as

𝐼𝑀𝑖 = −[𝑃𝐶 (�̂� = 𝑐1|𝐱𝑖) − 𝑃𝐶 (�̂� = 𝑐2|𝐱𝑖)], (4)

where 𝐱𝑖 is the latent space representation of the data point, 𝐶 rep-

resents a classifier, �̂� is a random variable that corresponds to the
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Fig. 6. The F1 score for the three query strategies using datasets with 𝛼 = 33, 10. We illustrate the results for each embedding, mTSNE (a)–(b), RAE (c)–(d) and VRAE (e)–(f).
predicted label by the classifier, 𝑃𝐶 is the probability of �̂� = 𝑐𝑗 given
𝐱𝑖 (here 𝑗 = 1, 2), 𝑐1 and 𝑐2 are respectively the most probable and the
second most probable classes for 𝐱𝑖 to belong to predicted by classifier
C. The data point with the smallest margin is then queried.

The third query strategy is entropy, which assigns the informative-
ness based on the entropy of the predictive distribution:

𝐼𝐸𝑖 = −
∑

𝑐𝑗

𝑃𝐶 (�̂� = 𝑐𝑗 |𝐱𝑖) log(𝑃𝐶 (�̂� = 𝑐𝑗 |𝐱𝑖)). (5)

We note that here the summation is w.r.t. all class labels {𝑐𝑗}. The
entropy can be viewed as the total amount of information in the entire
distribution. The data point with the highest 𝐼𝐸𝑖 is queried.

6. Discovering unknown classes

In this section, we extend the proposed framework to employ active
learning for finding unknown classes. To do so, we assume that the
classification model (SVM or NN) is only trained based on two classes,
whereas there might exist more classes in the set of unlabeled data
which belong to an unknown class. Then, the goal is to identify such
data points with unknown class labels. This can potentially be used for
anomaly detection as well.

For this purpose, we hypothesize that when performing active learn-
ing, after a sufficient number of data points is queried from the existing
(known) classes, then a reasonable querying strategy might query
6

mainly from the unknown classes. The reason is that the classification
model then becomes confident about the existing classes and yields the
highest uncertainty for the data points with unknown class labels.

Here, we treat the cut in class as the unknown class, where the
classification models use only the data points labeled as left and right
drive by. Thus, the entire model including the embeddings (e.g., the
Auto-Encoders) are trained on only left and right drive by data points.
We use the number of queried cut ins w.r.t. the total number of queried
data points a measure of performance.

To justify our idea of using active learning for unknown class
detection, here we carry out a preliminary study to investigate what
type of trajectories the active learning method tends to query. Fig. 4
shows a subset of queried trajectories using the margin (Fig. 4(a)) and
entropy (Fig. 4(b)) strategies (note that in our datasets, the velocity is
relative to the ego vehicle). With both query strategies we observe that
several double cut ins and decelerative cut ins are queried, which are
rare forms of cut in trajectories. This discovery indicates the potential
for active learning to be used for the purpose of finding unknown
classes or even anomalies of a certain class.

7. Experimental studies

In this section, we investigate the different components of the pro-
posed framework for active learning of the AD trajectories: embedding,
query strategy, classifier and class distribution. The embeddings used
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Fig. 7. The F1 score using NN classifier.
Fig. 8. Comparing the F1 score using SVM and NN for each embedding.

re mTSNE, RAE and VRAE combined with the SVM or NN classifica-
ion models. We consider three query strategies, random, margin and
ntropy. The class distributions studied are balanced classes, 10% and
% cut ins. In order to validate the results, all experiments are averaged
ver 10 runs and the faded colored lines represent the variance. We
se the F1 score as the evaluation metric, since it is suitable for data
ith imbalanced classes. The F1 score is the harmonic mean between
recision and recall, and is one of the most commonly used metrics.
nknown class detection is performed using the dataset with 10% cut

ns, regarding the cut in class as the unknown class.

.1. Investigation of embeddings for active learning

Fig. 5 shows the results when using different embeddings with SVM
first row) and NN (second row) as the classification model. We observe
hat mTSNE achieves the highest F1 score. RAE also performs well
n particular with NN. The VRAE embedding yields less promising
7

results. The reason for why mTSNE outperforms the other embeddings
is probably that its latent space is highly separable (as shown for
example in Fig. 1), which makes the classification task easy.

The reason why VRAE performs worse could be explained simply by
the nature of VRAE. Each trajectory is mapped to a distribution in the
latent space with a larger error margin. This means that the margins
between the classes are blurred and these points are a mixture of the
two bordering classes. Such points might not give more information
compared to a randomly drawn point and hence it becomes difficult
to classify. Margin queries data points that have a high likelihood to
belong to two different classes, and entropy queries those with the
highest uncertainty of belonging to the most certain class. This would
indicate that both margin and entropy query the data points that likely
fall between the classes.

7.2. Investigation of query strategies

In this section, we study and compare the different query strategies.
Fig. 6 illustrates the three query strategies for different embeddings
using the SVM classifier. In Figs. 6(a) and 6(b), margin and entropy
outperform random achieving a high F1 score much faster, for the
datasets with 𝛼 = 10, 33.

Figs. 6(c) and 6(d) show the result for RAE embedded data. A similar
behavior to mTSNE is observed, where using SVM the non-random
query strategies (entropy and margin) yield better performance for both
class distributions. In particular, entropy obtains a stable and high F1
score in this setting. A general trend observed for the mTSNE and RAE
embedded data is that SVM in combination with margin query tends
to yield larger fluctuations, but with a stable baseline. This behavior
is especially visible in Fig. 6(c), where margin fluctuates more than
entropy. A possible reason could be that margin, as the name indicates,
queries the data points with the smallest margin. This means that SVM
is more sensitive w.r.t. the new data points queried by margin, as the
separating hyperplane can change its direction rapidly with new data

points.
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Fig. 9. Comparing the performance of class distributions containing 33%, 10% and 5% cut ins. SVM is used with (a) mTSNE, (b) RAE and (c) VRAE embeddings.
Fig. 10. The rate of change of F1 score for each embedding using the SVM classifier.
Looking at Fig. 6(e), it is clear that entropy does not perform well
hen using VRAE. We also observe that there is no big difference be-

ween margin and random. However, this embedding yields in overall
ower performance compared to mTSNE and RAE. As mentioned before,
n this case the queried data points probably come from the boundary
pace between the classes, and do not provide more information than
randomly queried data point.
8

7.3. Investigation of choice of classifiers

In this study, we investigate the choice of classification model
for active learning in our datasets. It has been observed that active
learning is more effective in combination with SVM for all embeddings.
This trend can be seen when comparing Fig. 7 (which uses NN) to
Fig. 6 (which uses SVM), where there is no significant difference in
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Fig. 11. Number of cut ins queried against budget size during 330 queries.
performance among the query strategies when we use an NN. For RAE,
NN gives a higher F1 score than SVM, but for mTSNE and VRAE using
SVM yields better performance compared to NN, as seen in Fig. 8.
However, SVM tends to show larger fluctuations than NN, because of
higher sensitivity to newly queried data points.

The observation that the entropy and margin query strategies do not
perform better in the case of using an NN, indicates the benefits from
active learning do not contribute to the improved performance. This
observation is consistent with the study in Johansson et al. (2021) on
active learning for chemical reaction prediction. This behavior seems
to be due to the fact that an SVM can recognize general patterns fast,
while an NN needs longer time to learn (due to its larger capacity). On
the other hand, an NN is capable of learning more complex patterns
and features.

Since the VRAE embedding yields overall worse results than the
other embeddings, a larger NN consisting of five hidden layers with 64,
128, 256, 128 and 64 neurons is tested. Despite the increased capacity,
the performance does not improve. There are several factors that could
contribute to the stagnation at 0.8, such as the nature of VRAE and
model configurations. In general one can conclude that a simpler model
like SVM is sufficient and suitable to be used in combination with active

learning for our datasets.

9

7.4. Investigation of class distributions

In Fig. 9, we investigate different class distributions with 33%, 10%
and 5% cut ins, and report the F1 scores for the three embeddings (we
use SVM as the classifier). For all embeddings the class distribution with
𝛼 = 33 seems to give the best results, as it saturates the fastest and
obtains the highest F1 score. The dataset with 𝛼 = 33 only performs
slightly better than the one with 𝛼 = 10 for mTSNE and RAE, while
the difference is much larger for the VRAE embedding. Having 𝛼 =
5 yields poor performance in all cases, since the cut in class is under
represented.

Even though having an equal number of data points from each class
might be expected to yield a better performance by large margins, it is
still not a trivial matter. A higher percentage of cut ins leads to a larger
variation as well, since cut ins can come in several forms difficult to
recognize, such as double cut ins and decelerative cut ins.

7.5. Investigation of budget size

Fig. 9(a) demonstrates that with mTSNE, a high F1 score ≈ 1 can
be achieved within 25 queries for the different considered values of 𝛼.

With RAE and the SVM classifier, for 𝛼 = 33, 10 an F1 score of above
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0

Fig. 12. The queried trajectories in mTSNE latent space after 330 queries, with (a) margin, (b) entropy and (c) random using SVM.
.8 is achieved after approximately 225 queries, and for 𝛼 = 5 an F1
score of around 0.7 is achieved after 200 queries; see Fig. 9(b). Note
that SVM is not the optimal choice of classifier for RAE. Looking at
Fig. 7(b), only around 125 queries is required to obtain an F1 score
above 0.9 with RAE for 𝛼 = 10. Fig. 9(c) shows that with VRAE, the F1
score plateaus around 0.8 and 0.6 after around 250 queries for 𝛼 = 10, 5
respectively. For 𝛼 = 33, the saturation at 0.8 occurs within 25 queries.

Another way of looking at the optimal budget size is to investigate
the rate of change of the F1 score shown in Fig. 10. Consistent with the
other results, we observe that mTSNE with SVM is an optimal choice
of set up. The rate of change of F1 score reaches its plateau with the
smallest budget size and minimal fluctuations. On the other hand, it
is the set up that exhibits a meaningful behavior in the sense that the
informativeness rate decreases as more data points are queried.

7.6. Investigation of unknown class detection

Finally, we investigate unknown class detection using the proposed
active learning framework, where the cut in class is considered as the
unknown class. Fig. 11 shows the number of queried cut ins for each
embedding over 330 queries, using SVM or NN as the classification
models. Figs. 11(a) and 11(b) show the results for the mTSNE em-
bedded data. The results with SVM are more impressive compared to
NN (therefore, for the two other embeddings we focus only on SVM).
In Fig. 12, we illustrate the queried points displayed in mTSNE latent
space. We observe that the entropy and margin strategies query more
cut ins using SVM. With the NN classifier, the entropy and margin
strategies perform almost as good as the random choice. The reason
could be, as mentioned earlier, SVM is a simpler classification model
which learns and saturates faster compared to NN (which is a model
with a large capacity). Thus, SVM quickly learns the two existing classes
(left and right drive by) and then starts querying the unknown class
members. On the other hand, NN needs a lot of data for a proper
learning and continuously needs data points from left and right drive
by classes.

Figs. 11(c) and 11(d) show the unknown class detection results

for RAE and VRAE embeddings employed with SVM. Figs. 11(e) and

10
11(f) show the results for RAE and VRAE embedded with TSNE using
SVM, which could improve the results further compared to RAE and
VRAE without TSNE. We observe that in both settings the entropy or
margin querying strategies can be helpful for identifying the cut ins.
This is even more obvious when using the VRAE combined with TSNE
embedding.

8. Conclusion

In this study, we investigated the performance of active learning as
an effective tool for reliable and cost-efficient labeling of the time series
trajectory data collected from Autonomous Drive (AD) application.
For this purpose, we developed a framework wherein we first embed
the trajectories into a latent space representation (for example using
mTSNE, RAE and VRAE) in order to extract the temporal nature of
the trajectories. We then apply the active learning paradigms using
different querying strategies and classification models in the embedded
latent space. We also explored the possibilities for unknown class
detection using the proposed active learning framework.

We observe that in many settings, active learning constitutes an
effective tool. The positive effect is particularly more obvious with
the SVM classifier, for both mTSNE and RAE embeddings. The class
distribution yielding the best performance is when 𝛼 = 33, that is
only slightly better than 𝛼 = 10. The choice of a proper embedding
affects significantly the results. In particular, mTSNE yields consistently
the best performance compared to the alternatives. With mTSNE, the
entropy querying strategy used with SVM can be seen as the best option
due to high performance with a small number of queries, and a higher
stability than margin.

RAE still performs well in particular compared to VRAE. With the
RAE embedding, using an NN yields better performance than SVM,
with no explicitly significant difference in performance among the
query strategies. The VRAE embedding does not achieve a particularly
high performance regardless of the choice of the classifier. There is
no significant difference between random and margin, but entropy
performs somewhat worse in this setting.
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Regarding unknown class detection, we observe that the proposed
ctive learning framework can be useful for this task as well. In particu-
ar, when we use SVM with mTSNE embedding, we see that the entropy
r margin query strategies yield identifying more cut ins compared to
he random strategy. Due to large capacity, this is less obvious with
N.
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