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A B S T R A C T   

Sensor type (accelerometers only versus inertial measurement units, IMUs) and angular velocity computational 
method (inclination versus generalized velocity) have been shown to affect the measurements of arm and trunk 
movements. This study developed models for conversions between accelerometer and IMU measurements of arm 
and trunk inclination and between accelerometer and IMU measurements of inclination and generalized (arm) 
velocities. Full-workday recordings from accelerometers and IMUs of arm and trunk postures and movements 
from 38 warehouse workers were used to develop 4 angular (posture) and 24 angular velocity (movement) 
conversion models for the distributions of the data. A power function with one coefficient and one exponent was 
used, and it correlated well (r2 > 0.999) in all cases to the average curves comparing one measurement with 
another. These conversion models facilitate the comparison and merging of measurements of arm and trunk 
movements collected using the two sensor types and the two computational methods.   

1. Introduction 

Work-related diseases and disorders are a major global health 
problem. Musculoskeletal disorders (MSDs) are one of the main causes 
of quality-years lost due to ill health and disability (Murray, 2018) and 
account for 4/10 of the global compensation costs of occupational and 
work-related accidents and diseases (ILO, 2015). In addition to heavy 
manual handling, vibration and psychosocial factors, awkward postures, 
repetitive movements and movements at high velocities are considered 
risk factors for MSDs (Balogh et al., 2019; Lötters et al., 2003; Nordander 
et al., 2016; Punnett, 2014; Sluiter et al., 2001; van Rijn et al., 2010). 
These latter MSD risk factors are also common in the working population 
(Eurofound, 2012, 2016). Assessments of physical workload, postures 
and movements are usually estimated using self-reports or systematic 
observations (Burdorf, 2010; Coenen et al., 2018; Violante et al., 2016; 
Yung et al., 2019). These methods are versatile, can collect information 
about exposures retrospectively and have, at least in the past, allowed 
for collecting data from large samples at a relatively low cost when 

compared to technical measurements (Burdorf et al., 1997; Trask et al., 
2014). However, self-reports and systematic observations usually pro
duce crude exposure estimates, and often, the accuracy (Koch et al., 
2016) and reliability of estimations of upper arm movements or postures 
are low (Forsman, 2017; Lind et al., 2019, 2020; Rhén and Forsman, 
2020; Takala et al., 2010). The use of technical measurement in
struments such as accelerometer-based inclinometers has drastically 
increased in the last two decades. Such instruments can record kine
matic data with high precision and continuous data that can be used for 
comparisons of occupational groups and for studying exposure-effect 
relationships (Balogh et al., 2019; Nordander et al., 2016). In the last 
5–10 years, an increasing number of studies have shifted from using 
inclinometers based on triaxial accelerometers (hereafter referred to as 
‘accelerometers’) to inclinometers that use inertial measurement units 
(IMUs), which combine accelerometers with gyroscopes, and sometimes 
magnetometers (Fan et al., 2021), for their comparatively high accuracy 
(Chen et al., 2018; Yang et al., 2017). 

Currently, many research groups are monitoring the exposure of 
occupational groups using inclinometers based on either accelerometers 
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or IMUs (Table 1). Recent lab-based studies have indicated that esti
mates of angular velocities from instruments based on accelerometers 
are not comparable to those of optical-based motion capture systems, 
which are regarded as the gold standard in the measurement of move
ments, and that measurements based on accelerometers combined with 
gyroscopes substantially improve the accuracy (Chen et al., 2018; Yang 
et al., 2017). It is because optical-based motion capture systems calcu
late angles and velocities based on the changes of a vector between two 
markers on a body segment, while accelerometer-based systems calcu
late those parameters based on the changes of the gravitation vector 
determined from readings of three accelerometers. Since the acceler
ometers are inherently sensitive not only to gravitation but also to ac
celerations, kinematic results from those systems are less accurate at 
higher velocities. Additionally, in a field-based study, Fan et al. (2021) 
observed statistically significant deviations in the measurements of the 
angular velocities of the trunk and arms obtained using accelerometers 
combined with gyroscopes (the average median inclination velocity was 
15.9◦/s for the arms and 7.6◦/s for the trunk) when compared to mea
surements derived solely from accelerometers (the corresponding ve
locities were 32.9◦/s and 20.2◦/s, i.e. more than double as high). The 
study also found statistically significant deviations in the estimates of 
angles expressed as percentiles or accumulated time in different angular 

ranges, but these deviations were marginal. The study indicates the need 
for the possibility of converting measurements of arm and trunk angular 
velocities based on accelerometers to those obtained by accelerometers 
combined with gyroscopes. To the best of our knowledge, such con
version models have not yet been presented in the scientific literature. 
Additionally, two different types of angular velocities (i.e., the inclina
tion velocity and generalized velocity) are currently used to report 
angular velocities of the arm in the scientific literature in field studies 
(Table 1). For the arms, generalized velocity includes both inclinational 
velocity and axial rotation velocity; therefore, these types of angular 
velocity computational methods produce different results (Fan et al., 
2021). As a result, conversion models are also needed between these 
different velocities. However, to the best of our knowledge, such a 
conversion model has not been presented in the scientific literature. 
Hence, both the sensor type, such as accelerometers versus IMUs, and 
the angular velocity computational methods such as generalized veloc
ity and inclination velocity are two important factors to adjust for when 
comparing the results between two studies. 

To overcome the difficulties of comparing or merging kinematics 
data derived from different sensor types and angular velocity compu
tational methods, the aim of this study was illustrate a possible solution 
that facilitates comparisons or merging of data by conversion models 
based on full work days of one occupational group (warehouse order 
pickers), which can be used for the conversion of distributions of 
accelerometer-based data of postures (i.e., arm and trunk inclination 
angles) and movements, i.e., inclination velocities (arm and trunk) and 
generalized velocities (arm) to those from IMUs, and vice versa. 

2. Material and methods 

For this study, conversion models were developed based on full- 
workday accelerometer-based data and IMU-based data from a 

Abbreviations 

IMUs inertial measurement units 
MSDs Musculoskeletal disorders 
acc accelerometers 
RMSE Root mean square error  

Table 1 
Examples of field studies and laboratory-based studies using inclinometers based solely on triaxial accelerometers (acc) or inertial measurement units (IMUs) to 
monitor movements of the arm or trunk.  

Study (nr) Sensor type 
(acc, IMU1 or 
IMU2) 

Arm movements 
(inclination velocity or 
generalized velocity) 

Trunk movements 
(sagittal or lateral 
inclination velocity) 

Type of work Origin(i.e., in which 
country the study 
was carried out) 

Moriguchi et al. (2011) acc Generalized velocity Sagittal Real work 
tasks 

Brazil 

(Byström et al., 2002; Christmansson et al., 2002; Heiden et al., 
2019; Kazmierczak et al., 2005; Wahlström et al., 2016) 

acc Generalized velocity Sagittal Real work 
tasks 

Sweden 

(Heilskov-Hansen et al., 2014; Juul-Kristensen et al., 2001) acc Generalized velocity No trunk Real work 
tasks 

Denmark 

(Arvidsson et al., 2006a, 2006b, 2012; Balogh et al., 2006, 
2016, 2019; Dahlqvist et al., 2018; Hansson et al., 2006, 
2010; Jonker et al., 2009, 2011, 2013; Nordander et al., 
2008, 2016; Unge et al., 2007; Wahlström et al., 2010;  
Åkesson et al., 2012) 

acc Generalized velocity No trunk Real work 
tasks 

Sweden 

(Dahlqvist et al., 2016; Rislund et al., 2013) acc Generalized velocity No trunk Simulated 
work tasks 

Sweden 

Veiersted et al. (2008) acc Inclination velocity No trunk Real work 
tasks 

Norway 

(Douphrate et al., 2012; Ettinger et al., 2013; Hess et al., 2010) acc Inclination velocity No trunk Real work 
tasks 

USA 

Nourollahi-Darabad et al. (2020) acc Inclination velocity No trunk Real work 
tasks 

Iran 

Yang et al. (2017) IMU1 Generalized velocity No trunk Simulated 
work 

Sweden 

(Fethke et al., 2020; Schall et al., 2021) IMU1 Inclination velocity Both Real work 
tasks 

USA 

(Granzow et al., 2018; Kersten and Fethke, 2019; Schall et al., 
2016) 

IMU1 Inclination velocity No trunk Real work 
tasks 

USA 

(Chen et al., 2018, 2020) IMU1 Inclination velocity No trunk Simulated 
work tasks 

USA 

Peppoloni et al. (2016) IMU2 Inclination velocity No trunk Simulated 
work tasks 

Italy 

Note: IMU1 refers to inertial measurement units that fuse triaxial accelerometer data with gyroscope data, and IMU2 refers to inertial measurement units that fuse 
triaxial accelerometer data with gyroscope data and magnetometer data. 
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randomly selected sample of a population of manual material handlers 
(Fan et al., 2021). In the development of the conversion models, angles 
and velocity amplitudes up to the 95th percentiles were used, including 
arm accelerometer-based inclination angles up to 73◦ and trunk 
accelerometer-based sagittal inclination angles from − 28◦ to 50◦. 
Furthermore, accelerometer-based generalized velocities up to 254◦/s 
were used for the arm, and accelerometer-based inclination velocities up 
to 150◦/s were used for the trunk. 

2.1. Participants 

The participants’ personal characteristics are displayed in Table 2. 
Their self-rated work ability was recorded using a single-item question 
on work ability (Ahlström et al., 2010), where “0” indicates not being 
able to work and “10” corresponds to having a work ability at its best. 
Prior to participating in the study, all participants gave written informed 
consent, and the study was approved by the Regional Ethics Committee 
in Stockholm, Sweden (2017/1586–31/4). 

The participants performed either order picking (N = 28) or pallet
izing (N = 10), and both tasks (Fig. 1) involved frequent movements of 
the arm and trunk. The order picking tasks involved frequent manual 
handling of packages weighing 0.22–11 kg. The packages were picked 
from shelves between ankle height and shoulder height and placed in 
cardboard boxes at waist level on a hand cart. The cardboard boxes 
(0.40–12 kg) were thereafter transported to a conveyer belt to which 
they were manually transferred. To complete one order, which included 
approximately 50–60 packages, took approximately 5–10 min. The 
participants who performed palletizing received the cardboard boxes via 
the conveyer belt. At the palletizing station, the cardboard boxes were 
manually lifted off the conveyer belt to a pallet placed on the floor 
approximately 1 m from the conveyer belt. The cardboard boxes were 
manually stacked up to a level of 180–190 cm. The palletizers handled 
approximately 45–50 orders per workday. 

2.2. Study design and measurements 

2.2.1. Inclinometer measurements 
Full-workday accelerometer recordings of the dominant arm and the 

trunk of the participants were used. The movements of the dominant 
arm and the trunk were recorded with two inertial measurement units 
(AX6, Axivity Ltd, Newcastle, UK, dimensions: 23 × 32.5 × 8.9 mm, 
mass 11 g). The AX6 has been used previously for measurements of arm 
postures (Wærsted et al., 2019) and builds on the AX3 (Axivity Ltd, 
Newcastle, UK), which has been validated for estimating physical ac
tivity level (Godinho et al., 2016; Schmal et al., 2018). The AX3 and AX6 
include a triaxial accelerometer, but the AX6 also has a triaxial gyro
scope and a triaxial magnetometer. For this study, a sampling frequency 
of 25 Hz, an acceleration range of ±8 g and a gyroscope range of 
±1000◦/s were used. The magnetometer was disabled similar to most 
reviewed studies (Table 1) due to potential magnetic interference in 

industrial settings (Robert-Lachaine et al., 2017). 
The IMU that was used to record trunk movements was positioned to 

the right side of the thoracic spine at the level of the thoracic vertebrae 
1–2 (Skotte et al., 2014). The IMU that was used to record dominant 
upper arm movements was positioned on the dominant arm with its 
superior edge just distal to the insertion of the medial deltoid muscle 
(Hansson et al., 2006). The IMUs were attached to the skin using 
double-sided adhesive tape and covered with a polyurethane film 
(Opsite Flexifix, Smith & Nephew AB, Mölndal, Sweden) (Fiona and 
Robert, 2013). 

The reference position for the arm (0◦ arm elevation) was recorded as 
the median value of 3 s while the participants were seated and leaning 
their trunk laterally over the backrest of a chair with their arm hanging 
vertically while holding a 2 kg dumbbell in the hand (Hansson et al., 
2006). The reference position for the trunk (0◦ flexion/extension) was 
also based on the median value of a 3-s time window, with the partici
pant standing still in full balance in an upright position after having 
returned from a toe stand (Fan et al., 2021). To determine the sagittal 
direction (flexion/extension), the triaxial median value of a 3-s window 
was measured when the participants bent forward at an arbitrary angle 
(Hansson et al., 2006). 

2.3. Data processing 

The computation of the inclination angles and the velocities are 
described in detail in Fan et al. (2021). 

2.3.1. Postures – inclination angles 
The inclination angle of the trunk and the arm was calculated as the 

angle between the sensor direction of each sample and the sensor di
rection at the reference posture. The accelerometer data inclination 
angles were computed as described by Hansson et al. (2001, 2006) with 
a low-pass filter for accelerometer signals of 5 Hz (Hansson et al., 2001) 
and 3 Hz (Chen et al., 2018). For the IMU signals, the Kalman filter 
validated by Chen et al. (2018) was used with the same recommended 
coefficients. The Kalman filter was used to integrate the gyroscope sig
nals with the accelerometer signals. For the arm, the inclination 
included both abduction and flexion postures and movements, while for 
the trunk, the inclination only comprised the inclination in the sagittal 
plane, with the forward projection being positive (Hansson et al., 2001). 

2.3.2. Movements – computational methods of generalized and inclination 
angular velocity 

The generalized velocity was computed as described by Hansson 
et al. (2001). A triaxial accelerometer measures acceleration and grav
itation in its three axial directions. For instance, if an accelerometer is 
held statically in a vertical direction, the full vector of gravitation is in 
the z-axis. If the vector is normalized to 1 g, the coordinates of the 
gravitational vector in the accelerometer (x,y,z) is (0,0,1). If it is rotated 
a little and held statically again, the x and/or y values will increase while 
the z-value decreases. When it remains static, the total normalized 
amplitude of the vector will be 1 (as in both above cases). But during 
movements, the total amplitude will be above or below 1 (since the 
acquired vectors then also include accelerations, which can be positive 
or negative). The vector therefore needs to be divided with its ampli
tude, so that it becomes normalized and reaches the unit sphere. In the 
computation, for all times, the vectors are normalized to the amplitude 
of 1, i.e., reaching the unit sphere. The generalized velocity was then 
computed (in degrees per second) as the angle between two samples 
divided by the time between those two samples. The angle between two 
samples can be calculated by seeing the distance between the two vec
tors’ endpoints on the unit sphere as the base of an equilateral triangle 
with two sides of the length one. If we call that distance l and the angle 
between two sample ΔS, we have 

Table 2 
Personal characteristics of the participants.  

N 38 
Men, n (%) 25 (66) 
Women, n (%) 13 (34) 
Right-hand dominant, n (%) 35 (92) 
Left-hand dominant, n (%) 3 (8) 
Agea, median (range) 24 (19–59) years 
Body massa, median (range) 77 (52–93) kg 
Staturea, median (range) 178 (163–196) cm 
BMI, mediana (range) 24.2 (18.6–30.8) kg/m2 

Self-rated work abilitya, median (range) 9 (5–10) 
≤2 years’ work experience in order pickinga, n (%) 17 (49%) 
≥3 years’ work experience in order pickinga, n (%) 18 (51%)  

a 3 subjects did not provide information regarding their personal 
characteristics. 
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ΔS= 2 arcsin(l / 2), with l =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x0)
2
+ (y1 − y0)

2
+ (z1 − z0)

2
√

(1)  

where (x0, y0, z0) and (x1, y1, z1) are coordinates of S0 and S1 which are 
the gravitation vectors transformed to the body coordinate system at an 
initiative time point and a later time point (see Fig. 2). This generalized 
velocity includes the rotations around all three of the sensor axes. The 
inclination velocity was computed as the absolute value of the change in 
the inclination angle between two samples divided by the time between 
those two samples. It may be hard to explain how the axial rotation is 
included, and if the arm is rotated around its own axis when the arm is 
hanging vertically (zero degrees inclination), there is an axial rotation 
around the vertical line (the z-axis) that will not be measured by the 
accelerometer, since the gravity vector will be constantly, and only, in 
the z-direction. If, however, the arm is in an inclination angle of for 
example 45◦ and is rotated, for instance 1◦, around its own axis (i.e. axial 
rotation), there will be a deltaS above zero. The z-component of the 
gravity vector will stay constant during that rotation, but there will be 
changes in the x- and y-components. This axial rotation will be included 
in the generalized velocity – since there is a change in the gravitational 
axis, but not in the inclination velocity – since the inclination angle is 
unchanged. Therefore, the only case where the axial rotation is not 
included in the generalized velocity, is in that specific case of a vertical 

arm. In short, the inclinational velocity is the difference in inclinational 
angles between two samples (divided by the sampling time), while the 
generalized velocity is the angular difference of the gravitation vector, 
on the unit circle, between two samples (divided by the sampling time). 

For the arm, both the generalized velocity and the inclination ve
locity were computed since they have both been frequently used in the 
research literature (see Table 1). For the trunk, only the (sagittal) 
inclination velocity was computed, since only that computational 
method has been used in research studies. 

2.4. Development of conversion models 

Distribution-based conversion models were developed to facilitate 
the conversion of measurements obtained from one sensor type to 
another sensor type, as well as (for the arm) from one angular compu
tational method to another. In this development, for each subject, the 
data of each included sensor type and computational method were or
dered and placed in columns next to each other. Then, distribution 
comparison curves were plotted by going from 0 to the value (◦ or ◦/s) of 
the 95th percentile, in 1000 equidistant steps on the x-axis, finding the 
row of that angle or velocity in the x-axis column, and taking the y-axis 
value from the same row. For instance, the upper arm had two such 
distributions computed for the postures (angles; see Fig. 5) and four 

Fig. 1. Samples of work tasks for (a) order picking and (b) palletizing.  

Fig. 2. Illustration of a generalized angle ΔS with S0 and S1 being the gravitation vectors transformed to the body coordinate system from sample 0 and sample 1, and 
l being Cartesian distance from S0 to S1. The sphere is a unit sphere. 
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Fig. 3. A representative sample of the inclination angle signals from the accelerometers with a 5-Hz low-pass filter (in black) and from the IMU (in red) from 
one subject. 

Fig. 4. A representative sample of the angular velocity signals of the generalized velocity from the accelerometer with a 5-Hz low-pass filter (in black), the incli
nation velocity from the accelerometer (in blue), the generalized velocity from the IMU (in yellow), and the inclination velocity from the IMU (in red) from one 
subject (same as in Fig. 3). 

Fig. 5. The (a) amplitude probability distribution function and (b) the cumulative distribution function from a representative subject illustrating the deviations of the 
inclination angle using measurements based on only accelerometers with a 5-Hz low-pass filter (in gray) versus IMUs (in red). Angles up to the 95th percentile of the 
accelerometer-based angles are included in the graphs and in the development of conversion models. 
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distributions for the movements (angular velocities; Fig. 6). Then, the 
distributions between different sensor types and computational methods 
of the same measure were paired on an individual level to form a con
version curve, e.g., each x-axis value of the upper arm elevation 
measured by the accelerometer was paired with the corresponding value 
in the ordered upper arm elevation data measured by the IMU of the 
same person. After pairing was performed for each individual, a group 
mean conversion curve was computed between each pair of methods/ 
sensor types by averaging all individual conversion curves on each x-axis 
value (see Figs. 7–9). 

After initial analyses of three fitting models, a second-degree poly
nomial model, a third-degree polynomial model and a power function 
model as approximations of the conversion curves, the power function 
model was chosen (see Eq. (2)); with two parameters, it was a suffi
ciently good approximation for all conversions. 

y= bxm (2)  

where x is a value in the group mean conversion of one sensor type and/ 
or velocity computational method, and y is the corresponding value of 
another sensor type and/or velocity computational method. For the 
trunk sagittal inclination, where there are positive and negative angles, 
the amplitude was used to fit the power function, but the sign was kept 
for the conversion from one sensor type to another. 

The model was fitted for each comparison combination, and the 
prediction curves of these models are shown in red in Figs. 7–9. 

3. Results 

Data were acquired from all 38 participants. On average, 7.3 (range: 
3.8–8.4) hours were collected per participant during the measurement 
day. 

3.1. Examples of posture and angular velocity traces 

Fig. 3 shows a short time window of the arm inclination angle from 
the performed measurements with an accelerometer and with an IMU 
(Kalman filtered accelerometer and gyroscope fusion). Typically, as in 
this example, the accelerometer signal fluctuates largely around the IMU 
signal. 

As shown in Fig. 4, the velocity varies both due to sensor type (i.e., 
accelerometers only versus IMUs) and due to the angular velocity 
computational method (i.e., inclination versus generalized velocity). As 
Fig. 4 shows, the highest velocity is generally produced from the 
generalized velocity from the accelerometers, followed by the inclina
tion velocity from the accelerometers, the generalized velocity from the 
IMUs, and the lowest for the inclination velocity from the IMUs. The 
velocities of the other two combinations are usually, as in this example, 

in the middle. The figure shows two black peaks (the generalized ve
locity from the accelerometer), of which the first peak is also a peak for 
the blue trace (the inclination velocity from the accelerometer). The first 
peak can, hence, be assumed to be a rapid inclination movement, while 
the second peak may include axial rotation of the arm. 

3.2. Examples of distribution functions 

The amplitude probability distribution function and the cumulative 
distribution function of the upper arm angle of one subject’s full- 
workday measurement and of the two sensor types are shown in 
Fig. 5. The two angle signals, which are similar in their traces of Fig. 3, 
are also close to each other in their distributions. While the figure rep
resents only one subject, the similarity of the two angles is typical. 

The four velocities of the same subject (as in Fig. 5) are shown in 
Fig. 6. The figure illustrates clear deviations in the frequency distribu
tion and the cumulative distribution between the four velocity types, 
and, as in Fig. 4, it shows that for this subject (who was typical), the 
generalized velocity from the accelerometer has the highest frequency of 
high velocities, while the inclination velocity from the IMU shows the 
highest frequency of low velocities. 

3.3. Comparison and conversion of angles from two sensor types 

Fig. 7 shows comparisons of the distributions of the upper arm angles 
measured with accelerometers and with IMUs. The figures show both the 
individual comparison curves and the average curves. As the average is 
close to the line of unity, the distributions of the two sensor types are 
similar. In each diagram, the curve of the fitted conversion formula is 
also shown. Table 3. 

The model used for the conversion formulas was a power function, i. 
e., with one coefficient and exponent to be fitted. The fitted parameters 
are shown in Table 2, together with goodness of fit measures. It can be 
seen from Fig. 7 and Table 3 that the models show close fits to the 
average curves but also that the coefficients and exponents are close to 
one, which was expected since the average curves in these posture cases 
are close to the line of unity. 

3.4. Comparison and conversion of the velocities of different sensor types 
and computational methods 

Examples of the comparison curves of the different ways of 
measuring the velocity (i.e., sensor type and velocity computational 
method) are shown for the upper arm in Fig. 8 and for the trunk in Fig. 9. 
These comparisons show that, in contrast to the posture curves, the re
lations between the distributions of the angular velocity diverge clearly 
from the line of unity and show a power-type shape. Table 4. 

The parameters of the power function (one coefficient and one 

Fig. 6. The frequency distributions of the four ve
locities (a) and the cumulative distribution function 
(b) from a representative sample from one subject. 
The four arm velocities are from measurements with 
only accelerometers with a 5-Hz low-pass filter or 
with IMUs computed as inclination velocity or as 
generalized velocity. The arrows illustrate, schemat
ically, how the individual comparison curves in 
Figs. 7–9 are computed. Velocities up to the 95th 
percentile of the generalized velocity from the 
accelerometer measurements are included in the 
graphs and in the development of the conversion 
models.   
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Fig. 7. Comparisons of the angular distributions of 
the accelerometers (with a 3-Hz low-pass filter) 
versus IMUs for the upper arm (left) and the trunk 
(right). The comparison curves of the distributions of 
individuals in a specific task (in thin colored solid 
lines), the average curves of individuals in a specific 
task (in thick colored solid lines), the average curves 
of all individuals (in black), and the result of the fitted 
power functions (in red) and standard deviations (in 
dashed lines)the parameters of which are shown 
(these parameters are also listed in).   

Fig. 8. Comparisons of the distributions of the 
angular velocities of the upper arm from different 
sensor-velocity combinations including accelerome
ters with a 3-Hz low-pass filter versus IMUs and 
inclination velocity versus generalized velocity. The 
comparison curves of the distributions of individuals 
in a specific task (in thin colored solid lines), the 
average curves of individuals in a specific task (in 
thick colored solid lines), the average curves of all 
individuals (in black), and the result of the fitted 
power functions (in red) and standard deviations (in 
dashed lines) – the parameters of which are shown 
(these parameters are also listed in.   

Fig. 9. Comparisons of the distributions of the incli
nation velocities of the trunk from the two sensors: 
(a) accelerometers (with a 3-Hz low-pass filter) versus 
IMUs and (b) IMUs versus accelerometers (with a 3- 
Hz low-pass filter). The comparison curves of the 
distributions of individuals in a specific task (in thin 
colored solid lines), the average curves of individuals 
in a specific task (in thick colored solid lines), the 
average curves of all individuals (in black), and the 
result of the fitted power functions (in red) and 
standard deviations (in dashed lines), the parameters 
of which are shown (these parameters are also listed 
in).   
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exponent) are shown for all conversions in Table 4 (arm: 24 conversion 
models) and Table 5 (trunk: 4 conversion models). Again, the fitted 
power functions correlate very well with the average curves. There are, 
however, relatively large variations between the individual curves and 
the average curves. Examples of standard deviation curves are shown in 
Figs. 8 and 9, and the average standard deviations are listed in Tables 4 
and 5. These large standard deviations between the model curve and the 
individual curves show that the conversions, although they are the well- 
fitted functions of the average curves, do not converge exactly for each 
individual. Nevertheless, with the large deviations between the 

measurements (of different sensors and/or velocity computational 
methods), also at the individual level, the conversion models improve 
the individual accuracy, so it is better to use the conversion formulas. 
These deviations also illustrate that in cases where the accuracy of the 
velocity measure at the individual level is important (for example, when 
associations between exposure and health are investigated), IMUs 
should be preferred for the measurements. Table 5. 

Table 3 
Conversion model parameters, amplitude (b) and exponent (m), for postures (angles) and goodness of fit measures. The right column shows the average standard 
deviations around the average curves. For the trunk, the amplitude is converted using the corresponding formula, while the sign is kept through the conversion.  

Angle Converted from Converted to b m R-Square RMSE Average standard deviationa  

Sensor type Sensor type 

Dominant arm, elevation Accelerometer (5Hz) IMU 1.11 0.98 0.9991 0.60 0.82  
IMU Accelerometer (5Hz) 0.90 1.02 0.9992 0.58 0.80  
Accelerometer (3Hz) IMU 1.13 0.98 0.9994 0.52 0.84  
IMU Accelerometer (3Hz) 0.88 1.02 0.9994 0.50 0.82 

Trunk, sagittal inclination Accelerometer (5Hz) IMU 0.87 1.03 0.9967 0.77 1.00  
IMU Accelerometer (5Hz) 1.09 0.98 0.9970 0.80 0.87  
Accelerometer (3Hz) IMU 0.93 1.01 0.9978 0.66 0.78  
IMU Accelerometer (3Hz) 1.05 0.99 0.9978 0.70 0.78  

a The average value of the standard deviations of all velocities around the average curve. 

Table 4 
The fitted parameters, the coefficient b and the exponent m of the power function, in the conversion models for the angular velocity of the upper arm, and goodness of 
fit descriptors.  

Converted from Converted to b m R-Square RMSE Average standard deviationa 

Sensor type Computational method Sensor type Computational method 

accelerometer (5Hz) generalized accelerometer (5Hz) inclinational 0.237 1.171 0.9992 1.27 5.91 
accelerometer (5Hz) generalized IMU inclinational 0.056 1.347 0.9995 0.68 7.61 
accelerometer (5Hz) generalized IMU generalized 0.308 1.094 0.9996 0.75 7.82 
accelerometer (5Hz) inclinational accelerometer (5Hz) generalized 3.564 0.845 0.9991 2.01 10.07 
accelerometer (5Hz) inclinational IMU inclinational 0.271 1.165 0.9999 0.20 5.26 
accelerometer (5Hz) inclinational IMU generalized 1.183 0.933 0.9998 0.50 5.78 
IMU inclinational accelerometer (5Hz) generalized 9.019 0.734 0.9995 1.45 21.26 
IMU inclinational accelerometer (5Hz) inclinational 3.081 0.861 0.9999 0.39 9.00 
IMU inclinational IMU generalized 3.328 0.805 1.0000 0.19 3.14 
IMU generalized accelerometer (5Hz) generalized 3.032 0.910 0.9997 1.16 16.23 
IMU generalized accelerometer (5Hz) inclinational 0.845 1.071 0.9998 0.62 7.53 
IMU generalized IMU inclinational 0.226 1.241 1.0000 0.12 2.23 

accelerometer (3Hz) generalized accelerometer (3Hz) inclinational 0.212 1.213 0.9994 0.91 4.36 
accelerometer (3Hz) generalized IMU inclinational 0.062 1.398 0.9997 0.49 6.32 
accelerometer (3Hz) generalized IMU generalized 0.341 1.131 0.9998 0.52 6.28 
accelerometer (3Hz) inclinational accelerometer (3Hz) generalized 3.719 0.817 0.9993 1.35 7.05 
accelerometer (3Hz) inclinational IMU inclinational 0.345 1.165 0.9999 0.31 4.27 
accelerometer (3Hz) inclinational IMU generalized 1.450 0.931 0.9996 0.68 4.95 
IMU inclinational accelerometer (3Hz) generalized 7.611 0.711 0.9998 0.78 13.14 
IMU inclinational accelerometer (3Hz) inclinational 2.488 0.861 0.9998 0.47 5.74 
IMU generalized accelerometer (3Hz) generalized 2.628 0.883 0.9999 0.62 9.62 
IMU generalized accelerometer (3Hz) inclinational 0.681 1.072 0.9997 0.66 5.04 
accelerometer (5Hz) generalized accelerometer (3Hz) inclinational 0.152 1.213 0.9994 0.91 4.36 
accelerometer (3Hz) inclinational accelerometer (5Hz) generalized 4.256 0.845 0.9991 2.01 10.07  

a The average value of the standard deviations of all velocities around the average curve. 

Table 5 
The fitted parameters, the coefficient b and the exponent m of the power function, in the conversion models for the angular velocity of the trunk, and goodness of fit 
descriptors.  

Converted from Converted to b m R-Square RMSE Average standard deviationa 

Sensor type Computational method Sensor type Computational method 

accelerometer (5Hz) inclinational IMU inclinational 0.284 1.085 0.9994 0.27 2.07 
IMU inclinational accelerometer (5Hz) inclinational 3.169 0.927 0.9995 0.61 4.74 
accelerometer (3Hz) inclinational IMU inclinational 0.352 1.075 0.9993 0.31 1.94 
IMU inclinational accelerometer (3Hz) inclinational 2.648 0.933 0.9993 0.63 3.89  

a The average value of the standard deviations of all velocities around the average curve. 
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4. Discussion 

In this study, 36 conversion models were developed to convert 
accelerometer-based data of postures (8 models) and velocities (28 
models) of the arm and the trunk and generalized velocities (arm) to 
those from IMUs, and vice versa. The models were based on full- 
workday measurements of 38 warehouse workers, which included two 
distinctive different work tasks and included both men and women. The 
conversion models can facilitate the comparison or merging of mea
surements collected using different sensor types (i.e., accelerometers 
only versus IMUs), different low-pass cut-off frequencies for the accel
erometer signals (3 and 5 Hz), and using different computational 
methods (i.e., inclination versus generalized velocity). 

4.1. Previous studies of sensor comparison 

Previous laboratory-based studies (Chen et al., 2018; Yang et al., 
2017) and a recent field-based study (Fan et al., 2021) have shown that 
measurements of arm velocities from accelerometers only deviate from 
those using IMUs, especially when velocities are high; e.g., Yang et al. 
(2017) observed that the 90th percentile of an arm swing velocity of 
arms swings from accelerometers only was observed to be 1.7 times as 
high as that from IMUs (Yang et al., 2017). However, none of these 
studies provided information on conversion models that could be used 
across a range of angular velocities. Additionally, this study presents 
conversion models that include the two commonly used velocity “types” 
for arm movements, i.e., inclination velocity and generalized velocity. 

4.2. Methodological considerations 

Both the accelerometer data and IMU data were derived from the 
same instruments, i.e., AX6. Because of this, the sensor ensembles 
compared were positioned at the same anatomical position and on the 
same surface, in contrast to previous laboratory-based studies in which 
the measurements were from different instruments placed on top of each 
other (Dahlqvist et al., 2016; Korshoj et al., 2014), which is usually not 
the case in field studies. Having the same placement reduced the po
tential difference related to soft-tissue artifacts (Leardini et al., 2005; 
Peters et al., 2010) and to differences in the distance to the shoulder 
joint, which, because of the centripetal force during arm movements, 
would induce differences in the accelerometer signals (Bernmark and 
Wiktorin, 2002). The IMU data measurements did not include magne
tometers; therefore, the developed conversion models may not be fully 
suitable for those data in which magnetometers have been included to 
derive the angular velocities. However, as shown in Table 1, magne
tometers are seldom used in field studies due to magnetic interference in 
industrial settings (Robert-Lachaine et al., 2017), and hence, any re
striction caused by not including magnetometers is limited. Addition
ally, the use of magnetometers was not seen as a feasible alternative due 
to the risk of magnetic interference at the study location. 

Figs. 7 and 8 show interindividual deviations in the conversion 
curves. There are differences between the average curves of the two 
included tasks, which indicate a task dependency on the conversion 
curves. The task specific average curves were however not statistically 
different, and the conversion models were based on the full group 
average curves. Axial rotation of the arm is included in the generalized 
velocity, and individuals may use various degrees of axial rotations 
when performing their work tasks. Additionally, as whole-body move
ments introduce accelerations that are pick-up by the accelerometers, 
walking may increase the velocity measurements of the accelerometers, 
more than so for the IMU velocity measurements, so difference in 
amount of walking may also make a difference in the average curves. 

A limitation of the study was that the data used for the developed 
conversion models were from one job, which mainly included two 
different work tasks. Since different jobs may also include different 
typical movement patterns, the conversion models may be somewhat 

different in other jobs. This may restrict the model’s generalizability. 
Therefore, caution should be applied when using the conversion models 
on other occupational groups until the models have been tested on more 
occupations. Also, the conversion models can be improved by including 
other occupational groups. The difficulties of comparing angular arm 
velocity data between different occupations despite them using the same 
instruments (especially if their velocity data is derived from acceler
ometers without gyroscopes) are not restricted to the developed con
version models, but this applies to most comparisons of merging of data 
from different occupations, or perhaps even work tasks. Therefore, more 
attention is warranted to address this issue, to enable more accurate 
comparisons of the arm velocity exposures. 

The number of participants in this study was large enough to obtain a 
tight confidence range around the average curve, but if the models are 
used on smaller samples (which they still are recommended to be, again 
because of the large deviations between the unconverted velocities), it 
should be understood that the true conversion curves deviate among 
individuals. The majority of the participants were male (66%), and a 
balanced sample in terms of sex was not targeted. Additionally, having a 
larger proportion of men, as in the current study, is in agreement with 
the general larger proportion of men in this type of job (78%) in Sweden 
(SCB, 2020). Based on this, we did not aim to build separate conversion 
models based on sex or to test to what extent this can improve the 
precision of the models. Hence, more research is needed to test whether 
future conversion models need to be adjusted for task-related factors 
such as job type or task and individual factors such as sex or anthro
pometric parameters. 

The developed conversion models were based on wide ranges of 
angles and angular velocities. Accelerometer-based generalized angular 
velocities of the arm up to 250◦/s were included (the 95th percentiles in 
this group of workers). These velocities are relatively high compared to a 
general working population. The 90th and 99th percentiles of the 
dominant upper arm generalized accelerometer-based velocity for 
warehouse workers were 204◦/s (SD, 57) and 416◦/s (SD, 118), 
respectively (Fan et al., 2021). This can be compared to 79◦/s and 
217◦/s of the right arm among baggage handlers (Wahlström et al., 
2016), 108◦/s and 287◦/s of the right arm among hairdressers 
(Wahlström et al., 2010) and 35◦/s and 142◦/s of the right arm among 
paper mill workers (Heiden et al., 2019). Having such relatively high 
velocities as well as the relatively large sample size increased the power 
of the conversion models even at the higher velocities in the model, as 
shown in Fig. 8. 

The time signals of the different sensors and computational methods 
varied substantially from each other and in complex patterns (Figs. 3 
and 4). When comparing two distributions (Figs. 7–9), the average 
curves are always monotonously increasing. Additionally, in studies of 
physical workload, distribution-based parameters are commonly used. 
Therefore, the distributions of each measure were used for the conver
sion models. In a previous study (Fan et al., 2021), the 10th, 50th and 
90th percentiles of different sensors and computational methods were 
compared. In this study, continuous conversion models were developed 
and allow conversions of a wide range of angles and velocities, covering 
the needs of most studies that measure postures and movements of the 
trunk and arms. 

4.3. Practical application and examples of applied use on others’ data 

The resulting conversion models and the use of such models are 
important. To illustrate this, in a previous study, the 90th percentile full- 
shift arm velocity was reported to be approximately 27◦/s among nurses 
(left: 27◦/s and right: 27◦/s) (Schall et al., 2016). The arm velocities 
were mentioned as lower when compared to dentists (left: 54◦/s and 
right: 67◦/s) (Jonker et al., 2009), automobile disassembly workers 
(101◦/s) (Kazmierczak et al., 2005), hairdressers (left: 108◦/s and right: 
108◦/s) (Wahlström et al., 2010), material pickers (left: 131◦/s and 
right: 164◦/s) (Christmansson et al., 2002), and hospital cleaners 
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(traditional organizations: 193◦/s) (Unge et al., 2007). Furthermore, the 
nurses were also stated to have similar 90th percentile arm velocities as 
air traffic controllers (left: 31◦/s and right: 37◦/s) (Arvidsson et al., 
2006a). Given the nature of nurses’ tasks, it may be unexpected that 
their arm velocities were stated to resemble those in an occupation with 
a higher degree of sedentary behavior, such as air traffic controllers. 
These large deviations in arm velocity between nurses and the other 
occupational groups and the resemblance with air traffic controllers can, 
to a large extent, be attributed to differences in both sensor type and 
angular velocity computational method. While the study on nurses used 
inclination velocities from IMUs, the others used generalized velocities 
from accelerometers (see Table 1). 

When applying the developed conversion formula for the 90th 
percentile arm velocity from accelerometer-based generalized velocity 
converted to IMU-based inclination velocity (y = b*xm, second line in 
Table 4), the values decrease considerably, e.g., from 67◦/s to 16◦/s for 
the dentists (i.e., 0.056 * 67 1.347), from 101◦/s to 28◦/s for the auto
mobile disassembly workers, from 108◦/s to 31◦/s for the hairdressers 
and from 193◦/s to 67◦/s for the hospital cleaners. Hence, the 90th 
percentile arm velocity among nurses (27◦/s) were likely close to that of 
the automobile disassembly workers and slightly lower than the 
hairdressers. 

This example illustrates the need for conversion of values across 
studies that have applied different sensor types and angular velocity 
computational methods. For example, both Kersten and Fethke (2019) 
and Granzow et al. (2018) performed comparisons with unconverted 
velocities. It can, however, be assumed that the velocities of the two 
latter studies as well as in Schall et al. (2016) more accurately display 
the ‘true’ arm velocity since these measurements were based on IMUs 
instead of accelerometers only. 

In a recent study, the arm inclination velocities of bakers were 
recorded using accelerometers (Nourollahi-Darabad et al., 2020). The 
90th percentile arm velocity of the bakers of 163◦/s was compared with 
hairdressers’ velocity of 108◦/s (Wahlström et al., 2010) and car 
disassembly workers, velocity of 101◦/s (Kazmierczak et al., 2005). 
Since the latter two were based on generalized velocities using accel
erometers, the arm velocity of the bakers needs first be converted from 
163◦/s to 315◦/s ( the last line in Table 4: Converted velocity = 4.256 * 
163 0.845). Hence, the difference in the arm velocities of the bakers to the 
other occupations increases substantially after applying the conversion. 
Furthermore, several studies have used time-based parameters (Gran
zow et al., 2018; Kazmierczak et al., 2005; Schall et al., 2016; Wahlström 
et al., 2010), for example, the percent time in low (<5◦/s) and high 
(>90◦/s) upper arm velocities; these parameters may be computed after 
conversion of the cutoff limits. In addition, the percent time in a neutral 
posture for at least 3 s, the percent time at a low velocity for at least 3 s, 
and the percent time with both neutral posture and low velocity. Of 
course, when comparing this kind of variable, it is very important that 
the postures and velocities are comparable. These parameters are 
derived from the time signals. The conversion formulas may again be 
used for the cutoff limits, but because of the large difference in the shape 
of the velocity signals (see Fig. 4), the parameters should likely still not 
be compared with ditto from measurement with other sensors and/or 
velocities. 

The results of the current study, as well as in a few previous studies 
(Fan et al., 2021; Yang et al., 2017), illustrate the need to harmonize the 
metrics for the report of angular velocities for both the arm and the 
trunk. As shown in the current study and from the examples above, 
comparisons with measurements obtained using different sensor types 
and different velocity computational methods can yield large differences 
in estimated velocities. As Yang et al. (2017) and Chen et al. (2018) 
showed, IMUs are more accurate than accelerometers in kinematics 
measurements – so from the point of accuracy, of these two sensor types, 
IMUs are preferable in both lab-based and field studies. In cases when 
planned measurements of angular velocities are to be compared with 
previously collected measurements based on accelerometers – because 

of the large interindividual deviations related to accelerometers (see 
Figs. 7–9), it is preferred to use IMUs and apply the conversion models to 
compute the velocities from accelerometers. Concerning the angular 
velocity computational methods for the trunk, only the inclination ve
locity has been used. The inclination velocity may be more intuitive than 
the generalized velocity since the former is simply the derivation of the 
inclination angle, while the latter additionally includes axial rotation. 
Concerning the angular velocity computational methods for the arm, 
cross-sectional associations between the generalized arm velocity and 
neck/shoulder complaints and symptoms have been observed (Balogh 
et al., 2019; Nordander et al., 2016), but there are no corresponding 
studies including the inclination velocity of the arm. Given the 
complexity of the shoulder joint and the lack of evidence from longi
tudinal data that have included comparisons of both measures, there is 
currently insufficient information to rank their respective strength in 
associations with work-related MSDs. Hence, more studies are needed to 
determine one common standard metric for the report of angular arm 
velocities. 

5. Conclusions 

Previous research shows that both sensor type (i.e., accelerometers 
only versus IMUs) and angular velocity computational method (i.e., 
inclination versus generalized velocity) greatly affect the measurements 
of arm and trunk movements. To overcome these deviations, 4 angular 
(posture) and 24 angular velocity (movement) conversion models for the 
distribution of the data were developed to convert accelerometer-based 
kinematic results of the arm and the trunk to those from IMUs, and vice 
versa. The models were based on full-workday measurements of 38 
warehouse workers, which included two distinctively different work 
tasks and included both men and women. A power function with one 
coefficient and one exponent was used, and it correlated well (r2 >

0.999), in all cases, to the average curves comparing one measurement 
with another. These conversion models facilitate the comparison or 
merging of measurements collected using different sensor types (i.e., 
accelerometers only and IMUs) and using different computational 
methods (i.e., inclination velocity and generalized velocity). While the 
detailed conversion models were based on measurements from a rela
tively high number of workers, future studies are needed to test the 
transferability of the conversion models in work tasks other than manual 
handling operations. 
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