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Abstract

Peridynamics is a numerical particle-based solid mechanics method that

enables the simulation of brittle and quasi-brittle materials, as well as ductile

materials. It allows cracking to appear spontaneously in the arms joining the

particles and can therefore be used to simulate progressive fracture. In this

article, we apply our version of peridynamics, which we call force flux peridy-

namics, to the simulation of concrete where the appearance of cracks plays an

important role in the global mechanical properties. It is not difficult to modify

the material parameters in peridynamics to achieve a given tensile strength or

a given compressive strength. However, it is much more difficult to choose

parameters which will model all the strength parameters of a material within

the same model. When concrete fails in compression it may split or spall show-

ing a complex relationship between compressive and tensile failure. We there-

fore set ourselves the simple task of producing a single peridynamics model

which can predict the stiffness and strength behavior of concrete in standard

compression and tension tests for which we chose the American Society for

Testing and Materials standards for the cylinder compression test, the split cyl-

inder test, and the modulus of rupture test. A parameter sensitivity study was

performed based on the cylinder compression test to tune the key peridy-

namics parameters that determine the global material behavior. The compres-

sive and tensile strengths were then determined from the combined simulation

data. While the fracture modes, crack branching pattern and also the stress–
strain curve show promising results, the maximum tensile strength was found

to be significantly larger than physical experiments suggest. This is probably

due to imperfections within real concrete at the interface between aggregate

particles and cement paste and it shows that the detailed numerical modeling

of the failure of concrete is highly complex with a large number of unknown

material parameters.

Discussion on this paper must be submitted within two months of the print publication. The discussion will then be published in print, along with the
authors’ closure, if any, approximately nine months after the print publication.

Received: 16 February 2022 Revised: 4 April 2022 Accepted: 6 May 2022

DOI: 10.1002/suco.202200153

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Structural Concrete published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete.

Structural Concrete. 2022;1–22. wileyonlinelibrary.com/journal/suco 1

https://orcid.org/0000-0001-9470-0566
mailto:jens.olsson@chalmers.se
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/suco
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsuco.202200153&domain=pdf&date_stamp=2022-08-03


KEYWORD S

concrete fracture, concrete simulation, concrete strength, force flux peridynamics, material
testing, SPH

1 | INTRODUCTION

In simple terms, we design concrete structures so that the
concrete works in compression and tensile stresses are
resisted by reinforcement, which is usually steel, and may
or may not be prestressed. However, it is not as simple as
that because in order to transfer forces from the concrete
to the reinforcement we rely on bond stresses, producing
shear and tension in the concrete. Thus, the tensile
strength of concrete is at least as important as its compres-
sive strength, but because concrete is a brittle or quasi-
brittle material its tensile strength is less than its compres-
sive strength and is very much influenced by stress con-
centrations, including preexisting shrinkage cracks and
the interface between aggregate particles and the cement
paste. Thus, there is a need for theoretical and numerical
models to use the results from simple standard material
tests to predict how concrete will behave in these situa-
tions where tensile strength is important and where the
geometry and stress state are complex.

The concrete also functions to protect the steel from
moisture which can find its way to the steel reinforce-
ment through small cracks in the covering concrete layer,
hence the prediction of fracture in concrete becomes
highly important topic for structural safety, both in terms
of sudden failure and long term durability. Recent devel-
opment in machine learning suggest new approaches to
detect appearance of cracks with image processing.1 The
understanding of how fracture develops in concrete struc-
tures is mostly derived from physical experiments. But
such experiments are time consuming, expensive and
typically carried out on simple objects like beams and
columns, making the knowledge difficult to generalize to
a more arbitrary design case.

Concrete simulation techniques are typically classi-
fied based on scale in groups of microscopic, mesoscopic,
and macroscopic techniques. Macroscopic techniques
typically smear the properties of sand, aggregate, and
cement paste into a homogeneous material either based
on a discrete approach such as the random particle
model2 or based on a continuous approach where the
fracture process is approximated as a dissipation at the
material level, where the cracks are diffused as micro-
cracks. The random particle method would appear to be
very similar to peridynamics, and predates it, but peridy-
namics is the more commonly used term today. At the
Mesoscale, concrete is typically modeled as a three-

component mix, large aggregates, cement paste and the
bonding interface between the two. Mesoscale models are
widely used in the modeling of concrete fracture because
it enables the study of effects where the proportions of
the three-component mixes are varied just like in the real
material. They also enable the study of effects from initi-
ated micro cracks and the coalesces of the micro-cracks
to form major defects in the material which may contrib-
ute to the failure, see.3 The family of microscopic tech-
niques further extend the level of detail in the modeling
of concrete to capture all the constituents of the mix. The
models can be created through a type of random distribu-
tion aided with computational techniques such as Voro-
noi diagrams or from real concrete samples through x-ray
Computed Tomography images.4

Recent development of computer-based simulation
techniques such as peridynamics and smooth particle
hydrodynamics has shown the ability to predict progressive
fracture in a variety of brittle materials,5 including con-
crete.6 Following the introduction of peridynamics by Stew-
art Silling in 20007 Gerstle et al.8,9 introduced micropolar
peridynamics by adding a pairwise moment to the bond
based formulation to tackle poission's ratio limitations and
apply it for modeling of concrete. The same approach is
later used by Yaghoobi and Chorzepa for the analysis of
fiber reinforced concrete.10 Huang, Sheng et al.11–13 work
along the same trajectory and simulate crack propagation
and failure modes for concrete with bond based peridy-
namics. An extensive review of peridynamics for modeling
brittle materials written by Javili can be found in5 and for
the application to concrete, the most recent work is sum-
marized in a review article by Hattori et al.14

Simulation of concrete using Smooth Particle Hydro-
dynamics (SPH) is typically more focused on impact
problems, such as bullet-slab penetration in Reference 15
and missile impact in Reference 16 and concrete frag-
mentation in Reference 17. Other implementations
include modeling of fiber reinforced concrete Reference
18 and flow simulation of self-compacting concrete in
Reference 19.

In the study presented here, a numerical meshless
method called Force Flux Peridynamics (FFPD) derived in
Reference 20 based on SPH and Peridynamics, is extended
to 3D simulations and applied to concrete fracture model-
ing for the first time. The varying particle sizes capabilities
with FFPD makes it an attractive choice in the real design
scenario, where different parts of a model can be
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represented with suitable accuracy. Although FFPD could
be used for modeling at different scales it is applied here
as a macroscopic technique. The purpose of working with
a macroscopic technique is to provide a method that can
be used in a realistic design situation. Although the meso
and micro scales techniques may represent simulations of
fracture more accurately, they are inherently difficult to
apply in a design situation, due to the complexity of the
setup resulting from the requirement in precision for the
representation of the concrete material in its various con-
stituent parts. Macro models, on the other hand, do not
attempt to model the individual constituents but just cap-
ture the global behavior which becomes more suitable for
a design case. Therefore, this study aims to the explore
fracture prediction enabled with FFPD in a macro setup of
concrete modeling for structural design. But before the
model can be applied in a design scenario the material
parameters for concrete need to be tuned which is the
main focus of this study.

The tuning of the numerical concrete model is
approached through a parameter sensitivity study based on
the cylinder compression test which can be seen in
Figure 1. The parameters that control the brittleness
of concrete are chosen to recreate a high strength
concrete with a compressive strength of approxi-
mately 60 MPa. The same numerical model is then
used for the split cylinder test to estimate the tension
strength. Initial puzzling results lead to the additional
modeling of the modulus of rupture and direct ten-
sion test, inspired by Raphael's study21 of concrete
tension strength where the same set of tests
were used.

The results from the parameter sensitivity study of
the compression test show great capabilities of modeling
different characteristic stress strain curves, which could
represent different concrete mixes. The results from the
tension tests, on the other hand, indicate a material
model which is significantly stronger than expected. That
could be explained through the lack of imperfections in
the material, calling for further investigation.

It should be noted that in peridynamics the contin-
uum properties of a material arise out of thousands of
interactions between individual particles. The average
properties, such as density or Young's modulus, are
quite easy to model, but fracture involves the progres-
sive failure of the material, when it is much more diffi-
cult to relate the bulk properties22 to the interaction
between particles. For this reason yield in steel is
much easier to model than fracture of concrete and
Figures 26 and 27 show results from such an analysis
using FFPD. Of course the modeling of the transfer of
force between concrete and steel is yet more
challenging.

2 | TESTING CONCRETE

The first standards for testing concrete strength was
developed in 1917 by the American Society for Testing
and Materials (ASTM). Since then two main standards
have developed, the cylinder test and the cube test. The
cylinder test has been used for this study because the
same shape of sample can be used for both compression
and tension tests.

The difficulty in evaluating the tensile strength of
concrete has been highlighted by Hannant in 1973 in a
study of aggregate size effects on the split cylinder test.23

Jerome Raphael further developed Hannant's findings
with a comprehensive study of data from 12,000 concrete

FIGURE 1 Setup for the compression concrete cylinder test. The

neoprene caps used in the physical test to distribute the load evenly

are modeled here using a spring bed on each side of the cylinder.
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tension tests. The purpose was to develop explanations
for the variation in the tensile strength that was recorded
from the split cylinder, the modulus of rupture and the
direct tension test.21 Raphael concluded that the splitting
strength was about 10% of the compressive strength.

2.1 | Cylinder test

The specimen in a concrete cylinder test has a diameter
of 150 mm and a height of 300 mm based on the ASTM
standards as described.24 A vertically oriented cylinder is
used for the evaluation of compressive strength. The cyl-
inder is placed at the center of a hydraulic press which
applies a load to produce a rate of stress 0.15–0.35 MPa/s.
To provide a uniform load distribution, neoprene caps
can be used in between the hydraulic press disc and the
two ends of the concrete cylinder. The numerical setup of
this test is illustrated in Figure 1.

2.2 | Split cylinder (Brazilian) test

The difficulty of applying pure tension to concrete has
led to the popularization of a tension strength testing
technique called the split cylinder test,25 which also goes
under the name the Brazilian test with reference to

Carneiro.26 The cylindrical specimen has the same
dimensions as in the compression test and a detailed
setup can be found.27 The tension stress is introduced to
the specimen via a diametrically applied compressive
force as shown in Figure 2. The simplicity of the split cyl-
inder test and the fact that testing equipment from the
compression test can be used has made it a widely used
for concrete strength testing.

If concrete is assumed to be a linear elastic material,
and that the conditions of plane stress apply, then the
theory of elasticity28 predicts a uniform tensile stress act-
ing horizontally on the vertical plane between the lines
along which the load is applied. The cylinder therefore
splits in two halves when the load is increased. The
numerical setup for the simulation of the cylinder test is
shown in Figure 2.

2.3 | Modulus of rupture

The modulus of rupture test estimates the tensile strength
from a transverse bending test, in which a simply sup-
ported beam-like specimen with rectangular cross-section
is loaded by one or two point loads, to give a 3 or 4 point
test. As with the split cylinder test, the tensile stress is
calculated from the load using a theory from applied
mechanics, in this case the Euler-Bernoulli theory of

FIGURE 2 Setup for the split cylinder test. The gradually thickened boundary zone that is achieved with each horizontal slice of the

cylindrical object results in a gradually increasing load intensity towards the center of the specimen.
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bending of beams. The maximum tensile stress occurs at
the bottom of the beam where the bending moment is
maximum. Thus, the maximum tensile stress is more
localized than it is in the split cylinder test. The numeri-
cal setup for the simulation of the modulus of rupture
test is illustrated in Figure 3.

2.4 | Direct tension for concrete and
steel

A direct tension test is simple in theory but more com-
plicated in practice. A cylindrical or rectangular speci-
men is clamped at each of its two ends, which are
slowly pulled apart to induce tension stress in the
object. It is challenging to ensure that the stress is

applied in a uni-axial fashion and it is therefore not a
commonly used test for concrete, and ASTM does not
provide a recommended standard.29 However, the
challenging boundary conditions are largely overcome
in a numerical setup and a homemade version of the
direct tension test is include as a third means of testing
tensile strength, see Figure 4. Another direct tesion
test is used for the simulation of steel reinforcement,
see Figure 5.

3 | FORCE FLUX PERIDYNAMICS

This section will present the most important features of
the Force Flux Peridynamcis (FFPD) theory that is used
for the simulations presented in section 2 and 4. For the

FIGURE 3 Setup for the modulus of rupture test. The cylinders that are used to load the specimen in the physical test are used to select

the particles for the application of boundary conditions.

FIGURE 4 Setup for the direct tension test. The dimensions are chosen so that the volume is similar to the other tests.
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full derivation of the theory, the reader is referred to
Reference 20.

Peridynamics is a non-local continuum theory that
was developed for the simulation of fracture phenome-
non for brittle materials and was introduced by Silling in
2000.7 Unlike classical continuum mechanics, peridy-
namics does not require cracks to be predefined but
allows cracking to appear spontaneously from an initial
intact domain. Again unlike classical continuum
mechanics which relies on the evaluation of partial deriv-
atives, peridynamics works by replacing the differentia-
tion with integration which remains valid also in the
presence of discontinuities. FFPD presents an alternative
formulation of the original Peridynamics theory and sim-
plifies the use of variable particle sizes and irregular par-
ticle distribution. This is achieved by merging concepts

from Smooth Particle Hydrodynamics (SPH)30 with the
Peridynamics theory7,31 as shown in Reference 20. The
bond force in FFPD is reformulated to allow for different
size particles while enabling an arbitrary Poisson's ratio
and modeling of ideal plastic deformation. The FFPD
continuum is approximated with a finite set of particles
with intermediate arms. Each particle Pa is connected by
arms to the neighboring particles within a distance ha
which defines a horizon H which is circular in 2D and
spherical in 3D, as illustrated in Figure 6.

3.1 | Force flux density

The most central concept in FFPD is the force flux den-
sity, S, which is defined as a function of the state of stress

FIGURE 5 Setup for the ASTM 370 test for steel reinforcement where the irregular particle distribution is illustrated above the regular

particle distribution.

FIGURE 6 A rectangular sub region of a FFPD continuum in 2D and 3D with varying sized particles. The arms are drawn for a particle

a within the horizon domain Ha which is defined by the radius ha.
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and the fiber orientation relative to that state of stress. In
3D it is given by:

S¼ 2π
3
TL, ð1Þ

where T is the tension [N] in each fiber in a particular
direction and L is the total length of the fibers per unit
volume. L has units length per unit volume, or one over
length squared 1

m2

� �
. Therefore, S has the dimensions of

stress [Pa]. The tension T in a single fiber as shown in
Figure 7b, is then calculated as:

T¼ 3S
2πL

, ð2Þ

according to equation (14) in Reference 20 for the 3D
case. To prepare for the discrete setup illustrated in
Figure 2a, the state of stress needs to be formulated based
on a direction vector q. We also want to separate the
deviatoric and volumetric parts of the stress, τ and σ,
respectively. Following the derivation in Reference 20
(section 3), Equation (2) takes the form:

T¼ 3
2πL

5
2
q �τ �qþσ

� �
: ð3Þ

To finally introduce the discrete particles and arms
into this fibremat-model we introduce the SPH kernel
function W and the weighting of particle size in terms of
mass m and density ρ. The formula for the tension in a
discrete arm between particles a and b is then given by:

Tab ¼�mamb

ρ2
∂Wab

∂rab
þ ∂Wba

∂rab

� �
5
2
qab �τ �qabþσ

� �
, ð4Þ

where ∂Wab
∂rab

is the derivative of the kernel function with
respect the unit vector, rab, along the arm. The particle

masses and kernel functions in Equation (4) are now
defined separately for particles a and b, enabling variable
parameters and thus variable particle distribution in the
domain approximation. The kernel that is defined in
section 10.1 in Reference 20 is used also for this imple-
mentation, with k¼ 2 and α¼ 4:5.

The constitutive relation based on shear modulus G
and bulk modulus K is introduced in the force flux
expression in equation (110) in Reference 20. For the 3D
case when N ¼ 3 the expression for S at particle a can be
written as:

Sa qabð Þ¼ 5G ϵab�ϵplasticab

� �
þ 3K�5Gð Þϵa, ð5Þ

where ϵab is the total engineering strain calculated using
Pythagoras' theorem, ϵplasticab is the plastic strain and ϵa is
the mean strain. By inserting Equation (5) in Equation (3)
the final expression for the arm force is given as:

Tab ¼ �mamb

ρ2
∂Wab

∂rab
þ ∂Wba

∂rab

� �
5G ϵab�ϵplasticab

� ��

þ 3K�5Gð ÞϵaÞ:
ð6Þ

The last thing that needs to be added to complete this
ideal plastic fracture model is a failure condition. Arm
failure in the original peridynamics formulation is
defined based on a strain limit which does not work in
FFPD since variable arm lengths are introduced.
Griffith's theory of fracture postulates that the failure
stress σfailure is related to the crack width c, the Young's
modulus E and the surface energy γ according to:

σfailure ≈
ffiffiffiffiffiffiffiffi
2Eγ
cπ

r
: ð7Þ

We then write the surface energy as γ¼ δσyield tension,
where δ is a constant length which is related to the

FIGURE 7 Discrete particles and arms on the left, fiber mat in the center and continuum to the right. Knowledge of the arm forces

implies a unique set of fiber tension and compression which implies a unique stress in the continuum. But the reverse does not apply.
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amount of deformation associated with the surface
energy. This length scale is independent of the initial
length of the arms. That means short arms will require a
greater strain to reach fracture than long arms. The com-
plete derivation of the theory can be found in
Reference 20.

4 | NUMERICAL SETUP OF THE
PHYSICAL TESTS

Figures 1–4 illustrate the numerical setup for the simula-
tion of the compression cylinder, the split cylinder, the
modulus of rupture and the direct tension test. Each fig-
ure contains the relevant dimensions needed to repro-
duce the numerical experiment. The dimension are
chosen to first and foremost follow the ASTM standard
for the compression cylinder and split cylinder test
according to References 24 and 27. The specimen propor-
tions of the modulus of rupture test are also base on the
ASTM standards according to Reference 32 but the size is
tuned so that it has the same volume as the cylinder spec-
imens. Since there is no ASTM standard for the direct
tension test a cylinder with a waist was used and config-
ured to have the same volume as the other test cases.
Because of the way the particles are distributed, as
explained in Section 4.1, the exact number of particles
will vary slightly for each test case.

The selection of the boundary particles that are used
to transfer load on to the test specimen varies a little
depending on the test setup. For the cylinder

compression and the direct tension test, the boundary
particles are selected by introducing a limit in the z or x
direction such that a slice of the specimen on each side
becomes part of the boundary zone. Each particle in the
boundary zone is then connected to a spring which is
loaded by gradually displacing the plate on each side of
the specimen in the direction of the large arrows, see Fig-
ures 1 and 4. For the split cylinder test a similar type of z
limit is used to select all particles above and below a cer-
tain height. The varying thickness of the top and bottom
slice in the boundary zone results in a gradually increas-
ing load intensity as y in Figure 2 approaches 0. The
boundary particles for the modulus of rupture test are
furthermore selected by moving the four loading cylin-
ders in the z-direction towards the center-line of the
beam, see Figure 3, and each particle that falls inside a
cylinder is assigned to be a boundary particle. The result-
ing boundary regions are thicker just below or above the
center of each loading cylinder, similar to the case of the
split cylinder, and thus the load is applied in a non-
abrupt way.

For each of the four test cases the bounding box (cyl-
inder, rectangular box etc.) is divided into a number of
zones to improve computational process of setting up the
topological connectivity, that is, which particle is con-
nected to which neighboring particle. The long side of
the cylinder is for example divided into 10 zones, and the
two short sides in five zones each, giving a total of
250 zones. Further details on zoning, particle and arm
count can be found in Table 2. But before the particle
connectivity can be established the particle distribution
and size calculations need to be done.

FIGURE 8 Ideal plastic model for the individual arms. The

yield strain is measured as a percentage of the arm length whereas

the plastic elongation limit is a constant length parameter

independent of arm length.

FIGURE 9 Three definitions for the size of a particle a, where

ra represents the size base on mass, volume and density for the

material, da is a size used to define the number of close proximity

neighbors and ha represent the radius of the horizon of connectivity

as shown in Figure 6.
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4.1 | Random generation of the particle
configuration

In order to describe the procedure for how to distrib-
ute the particles an approach needs to be establish
for how to estimate the size of the particles. The
first step is to generate a regular grid of particles, cal-
culate the total volume V of the object (for example the
cylinder), and divide that volume equally over all the par-
ticles. A particle radius ra, also referred to as the mass-
size, can then be obtained from the particle volume Va

using:

ra ¼
ffiffiffiffiffiffiffiffi
3Va

4π
3

r
, ð8Þ

assuming that the particle has a spherical shape. The
mass-size is illustrated in 3D in Figure 10 and the mass
size distribution is also shown as a bar graph in
Figure 11. The initial regular arrangement of the particles
is then distorted through a shaking procedure to intro-
duce noise. The procedure is described in algorithm 1 in
Figure 12 and is based on a Monte Carlo simulation.

FIGURE 10 The particle distribution illustrated where the spheres represent the mass-size r for each particle in the cylinder, before and

after the shaking and the size update. The regular starting grid is illustrated to the left and the irregular distribution to the right. The

boundary effects that result from particle size calculation in algorithm 2 described in Figure 12 are clearly seen in the two rightmost images

with larger particles on the surface of the cylinder and the largest particles at the surface edge.

FIGURE 11 The particle mass-size distribution for the

cylinder model where the particle radius ra is divided in

10 different domains ranging from 0.003 to 0.0058 m in radius.

FIGURE 12 Algorithms 1 and 2 are described in procedural

pseudo code.
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Each of the equally spaced particles are moved along a
scaled random vector in an iterative fashion for 100 itera-
tions. If the movement of a particle results in less than a
75% overlap with the closest neighboring particles and
the particle is still inside the bounding box of the object
(for example the cylinder), the movement is accepted.
Otherwise the particle stays at the previously given posi-
tion. Parameters (such as overlap allowance and move-
ment magnitude) are tuned to reach a movement
successes rate of approximately 20–30%. The procedure is
describe in pseudo code in algorithm 1 explained in
Figure 12 where xrnd,yrnd,zrnd refer to x,y,z values gener-
ated with a random function (in this case the srand()
function from the C++ stdlib.h library). After the noise
has been introduced to the regular particle arrangement

the size of the particles need to be updated. This is a little
more complicated with an irregular particle distribution.
A base-size d is introduced and assigned to each particle
as a doubling of the mass-size, such that da¼ 2ra, see Fig-
ure 9. Since all particles had the same mass-size radius
from the regular setup they will all have the same base-
size too. In order to adjust the sizes, a target number of
close proximity neighbors is defined to be 6, which is half
of the number of neighbors in a close-packing of equal
spheres where the neighbor count is 12. The size update
algorithm is run for 20 iterations to reach a reasonable
convergence and the procedure is described in algorithm
2 which is shown in Figure 12.

After the noise has been introduced and the particle
sizes has been updated the arms need to be created. This

FIGURE 13 Stress-strain curves

obtained from the concrete cylinder

compression test with 10 different values

for the plastic elongation limit δ.

TABLE 1 Parameters used for

setting up the material properties for

the concrete and the steel

Concrete Steel

ν¼ 0:2 E¼ 40 GPa ν¼ 0:28 E¼ 210 GPa

ρ¼ 2400 kg/m3 δ¼ 1e�5m ρ¼ 7800 kg/m3 δ¼ 1e�3,…,1e�4f g m

α¼ 4:5 ϵys ¼ 1=800 α¼ 4:5 ϵys ¼ 1e�3,…,5e�3f g
k¼ 2 G¼ 16:6 GPa k¼ 2 G¼ 8.2e10GPa

Lspring ¼ 0:01 m K ¼ 22:2 GPa Lspring ¼ 0:01 m K ¼ 1:6e11 GPa

kspring ¼ 3�106 N/m Δt¼ 2�10�6 s kspring ¼ 3�106 Δt¼ 8�10�9 s

Note: Parameters in bold and varied in the parameter sensitivity study.
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is done by connecting each particle pa with all the neigh-
boring particles pb within the distance of ha which is the
radius of the horizon.

The whole setup of the model is summarized follow-
ing these six steps:

1. Particles are generated with equal spacing to create a
regular grid.

2. Particles that do not lie inside the object container are
removed.

3. Initial size estimate of r,d are calculated based on the
container volume and a regular particle distribution.

4. Noise is introduced by shaking the particles for
100 iterations according to algorithm 1 described in
Figure 12.

5. Particle sizes r,d and h are updated by running algo-
rithm 2 which is described in Figure 12 for
20 iterations.

6. The arms are created by connecting each particle with
all neighbors within a distance h:

5 | LIMITATIONS

There are several limitations to this study that are worth
to be mentioned and motivated. Firstly the work pre-
sented here is limited to the numerical study of concrete
and no physical testing is performed. In that way, we do
not have a particular concrete mix to replicate but try to
capture the phenomena of concrete failure on a more
general level. However, some parameter need to be fixed
to study the effects on varying the other parameters and
the choices become a little arbitrary without having a real
concrete to replicate.

The ambition behind the study is furthermore to cre-
ate a simple rules in the small scale (particle and arm) to
recreate a complex behavior in the large scale. Therefore,
we have limited ourselves to an ideal plastic model of the
arms without strain softening, which can be seen to still
reproduce a softening behviour in the larger scale which
can be seen in Figure 13. More elaborate model can be
implemented with relative ease for further studies.

We have not dealt specifically with the reduced stiff-
ness for the particles on the free surfaces which have
fewer neighbors compared with an internal particle. The
reasoning it again to keep the model as simple as possi-
ble. The influence of the weight for each specimen is fur-
ther more neglected since it has little significance in
relation to the external load.

6 | NUMERICAL EXPERIMENTS

The numerical experiments section contains six parts. The
first part is a brief note on the numerical solver and the sec-
ond part is an introduction to the parameters that are used
in all the concrete simulations, also listed in Table 1. The
third part includes a sensitivity study for the parameters that
control the brittleness of the concrete. The compression cyl-
inder as shown in Figure 1 is used for this purpose with the
parameters from Tables 1 and 2. At the end of this
section the selected choice of parameters are listed. Some
additional results, which indicate how well the model can
reproduce the Young's modulus and the Poisson's ratio, are
also presented. The forth part includes the results from the
simulations for the four different tests. These are then com-
piled together in the comparative summary which is the
fifth and last part of this section that concerns concrete. The
final part then contains a re-adaption of the concrete simu-
lation to simulate steel reinforcement.

6.1 | Numerical solver

The numerical experiments are performed using simula-
tion assuming quasi-static conditions with an explicit

TABLE 2 Parameters used for setting up the geometry for the

concrete and steel simulations

Compression cylinder

Zone count = (8 4 4) = 128 Arms per particle ≈ 77

Arm count = 937697 Container volume
≈ 0.00530 m3

Particle count = 21504 Used load steps = 1512

Split cylinder

Zone count = (8 4 4) = 128 Arms per particle ≈ 77

Arm count = 1070642 Container volume
≈ 0.00530 m3

Particle count = 24450 Used load steps = 1227

Modulus of rupture

Zone count =
(12 4 4) = 192

Arms per particle ≈ 70

Arm count = 1043847 Container volume
≈ 0.00535 m3

Particle count = 26400 Used load steps = 1222

Direct tension

Zone count = (12 4
4) = 192

Arms per particle ≈ 76

Arm count = 1043161 Container volume
≈ 0.00530 m3

Particle count = 24128 Used load steps = 1302

Steel test (settings used for all 80 simulations)

Zone count = 256 Arms per particle ≈ 76

Arm count = 433156 Used load steps ≈ 55000

Particle count = 11392
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time integration scheme based on the central difference
method. The velocity of the particles are damped with a
carryover factor of 0.98 to dissipate energy to reach

convergence. In other words, the velocities from a previ-
ous time step are multiplied with 0.98 in each cycle. The
aim is to critically damp that the fundamental mode of

FIGURE 14 Stress-strain curves

obtained from the concrete cylinder

compression test with eight different

values for the yield strain οys.

FIGURE 15 Stress-strain curve for

concrete obtained from the compression

cylinder test where the α parameter

which controls the horizon size is

varied. The resulting average number of

neighbors is included in the legend.
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oscillation. Experience shows that for larger models a
number nearer 1.0 should be used. For more details on
the numerical solver the reader is referred to Reference
33 (section 8.1) where the central difference scheme for
peridynamics simulations is introduced in a 12 step
procedure.

6.2 | Model parameters

The material model properties for the concrete and steel
tests can be found in Table 1. The k parameter is used to
define the shape of the kernel (see section 10 in Refer-
ence 20), ν is the Poisson's ratio, ρ the density, α is used
to define the particle horizon see Reference 20, E,K,G
are the Young's, the bulk and the shear modulus, respec-
tively, ϵys is the yield strain and δ is the elongation limit.
Furthermore, the kspring is the load spring stiffness, the
Lspring refers to the initial length of the load springs and
Δt is the time step.

6.3 | Parameter sensitivity study

In order to control the brittleness of the concrete, param-
eters such as the plastic elongation limit δ and the yield
strain ϵys which are illustrated in Figure 8 need to be

specified. These parameters set the limit for how much
an arm can be stretched until it starts yielding and how
much further it can be stretched until it breaks. By vary-
ing ϵys, the peak strength of the material changes as can
be seen in Figure 14. However, the variation of ϵys also
has an impact on the softening. Lower values results in
softer peak, less abrupt failure whereas, larger values
results in a sharper peak and thus a more abrupt failure.

The variation of δ as shown in Figure 13 also has a
slight impact on the peak strength, but more importantly
seems to affect the brittleness. Larger values of δ results
in a softer stress–strain curve whereas smaller values
showcase a more sudden failure and a sharper more well-
defined peak. The variation of the horizon parameter α
as shown in Figure 15 also has an impact on the stress–
strain curve, but not to a great extent. One could expect
some changes in the behavior when the number of neigh-
bors per particle goes from an average of 54 (α¼ 4:0) to
an average of 177 (α¼ 6:0), and the tendency is that a
larger horizon results in a lower peak strength. However,
the change in peak strength in this case is <10% for a
320% change in average neighbor count, and most impor-
tantly the slope in the elastic zone (Young's modulus) is
not affected.

The forth parameter that is varied is the random seed
used in the particle shaking. A different seed results in a
different particle distribution based on the approach

FIGURE 16 Stress-strain curve for

concrete obtained from the compression

cylinder test where the random seed for

the shaking is varied.
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described in Figure 12. Whereas the random seed num-
ber does not seem to effect the peak strength or the soft-
ening behavior to a large degree, it does effect the post
peak shape of the stress–strain curve as shown in
Figure 16. Different seed number result in slightly differ-
ent failure modes since the weakness that triggers frac-
ture occur in different places each time.

6.3.1 | Parameter choice

Table 1 lists the selection of parameters that are used to rec-
reate a structural concrete mix that have a compression
strength close to 60 MPa which is used to in the rest of the
simulations. The parameters in bold font represents the
choices made from the study results presented in
Figures 13–16. Each of the parameters are also marked
with a black dashed line in the same figures. The choice of
parameters is to some extent arbitrary since there is no real
concrete that this study aim to replicate. The choices have
been made to reproduce a high strength concrete which

has a well-defined peak in the stress–strain curve and a
fracture pattern that looks believable. The results in terms
of fracture pattern and failure mode for the study with
varying elongation limit can be seen in Figures 17 and 18.
A smaller elongation limit (i.e., the bottom row) show a
damage that is more evenly spread and grows more gradu-
ally. In the case with a larger elongation limit (top row) on
the other hand the failure is more explosive and localized.
To further validate the model based on the combined
parameters from Tables 1 and 2, the compression cylinder
is also used as a test case to estimate Young's modulus and
Poission's ratio, and the results can be seen in Figure 19.

6.4 | Simulations

6.4.1 | Compression cylinder

The cylinder compression test is modeled according to
the dimensions in Reference 24 where the neoprene caps
are modeled with a layer of springs in-between the

FIGURE 17 Orthographic perspective view of the failure modes for the compression cylinders where the arms are colored based on

plastic elongation limit. Blue arms are still in the elastic range and red arms are stretched to failure. The numbers represent the value of δ
and the stress-strain results can be seen in Figure 13.
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particles that represent the concrete and the loading
plates. Additional details for the setup can be found in
Table 2 1:0�6 m per load step. After the simulation is run
based on the parameters chosen in Section 6.3.1 the
resulting fractured specimen can be seen in Figure 20,
indicating failure along a shear surface.

The total spring force that is reached before the speci-
men collapses is Pmax ¼ 1:03 MN, which is then used to
compute the compressive strength σc according to,

σc ¼Pmax

πr2
, ð9Þ

where r is the radius of the cylinder given in Figure 1.
The maximum compression strength was found to be
σc = 57.7 MPa.

6.4.2 | Split cylinder

The split cylinder tension test is modeled according to
the dimensions in Reference 27, the numerical setup is

illustrated in Figure 2 and additional details can be found
in Tables 1 and 2.

During the simulation, the loading plates in Figure 2
are moved towards the center of the specimen in the z-
direction, as indicated with the arrows, with a rate of
1:5�6 m per load step. The compressive load produces a
large localized compressive stress which is balanced by a
horizontal tensile stress. The cylinder, therefore splits
into two halves when the tensile capacity is exceeded.

The maximum applied force Pmax is obtained by sum-
ming all the force in the load springs on one side of the
specimen and the resulting tensile strength σt is then cal-
culated from

σt ¼ 2Pmax

πLD
, ð10Þ

where L is the length of the cylindrical specimen in
meters and D is the diameter of the cylinder.27 The total
spring force that was reached in the simulation is
Pmax ¼ 1:15 MN resulting in a maximum tensile strength
of σt ¼ 16:2 MPa. The fractured mode as shown in

FIGURE 18 Vertical section through the compression cylinders in Figure 17 where the internal spreading of cracks can be seen.
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Figure 21 exhibits a vertical crack through the center of
the cylinder which effectively splits the cylinder in half.
The specimen on the right in Figure 21 shows the typical
Y-shaped crack branching around the area where the
load is applied.

6.4.3 | Modulus of rupture

The Modulus of rupture test is modeled according to the
proportions suggested in Reference 32. The numerical
setup of the physical test is illustrated in Figure 3. Each
of the two loading plates is moved in the direction of the
large arrows in Figure 3 in a rate of 4�10�7 m per load
step. The two top cylinders introduce two point loads to
the beam, resulting in a constant bending moment with

tension in the bottom layer between these two points.
The failure can be expected to take place somewhere in
this zone, and the precise placement will be dictated by
the random arrangement of particles.

The maximum load Pmax is calculated by adding all
the force in the springs on either the upper side or lower
side of the specimen. The tensile strength σt is then calcu-
lated from

σt ¼PmaxL

bd2
, ð11Þ

where L is the length, b is the breadth and d is the depth
of the beam. The total spring force Pmax that was reached
in the simulation was Pmax ¼ 0:11 MN resulting in a max-
imum tension strength of σt ¼ 22:7 MPa. The fractured
specimen as shown in Figure 22 shows that the cracks
are initiated in-between the two loading cylinders at the
top, as expected.

6.4.4 | Direct tension

The direct tension test is setup as a cylindrical object
with a waist that has half the diameter of the wider
ends as shown in Figure 4. The loading plates are moved
in the x-direction away from the center of the specimen
at a rate of 1:8�7 m per load step. The tensile stress will
be higher in the narrow waist of the specimen since it
has a smaller cross-section area, so failure is expected to
happen there. The maximum force Pmax is calculated by
summing the spring force on one side of the specimen.
The tensile strength σt is then calculated from

σt¼ Pmax

πr2
, ð12Þ

where Pmax is the maximum registered load before fail-
ure and r is the radius at the waist of the specimen. The
total spring force that was reached in the simulation is
Pmax ¼ 0:10 MN resulting in a maximum tensile strength
of σt ¼ 22:6 MPa. The fractured specimen as shown in
Figure 23 indicates that the failure happens at the waist
as expected. A cross-section of the fracture specimen at
y¼ 0, is shown in Figure 24 where it can be observed that
the crack on the left side seems to be the one that lead to
failure.

6.5 | Comparison

Figure 25 shows a compilation of how the stress devel-
oped with the incremental load steps for each of the four
concrete test cases. The peak value represents the

FIGURE 19 Young's modulus and Poisson's ratio for concrete

as retrieved on the macro scale, compared with the values given on

the particle scale. The prediction of these quantities is best when the

material is still in the elastic zone and fails as the specimen collapses.
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strength for each test case, and the stress is calculated
from Equation (9) for the cylinder compression test,
Equation (10) for the split cylinder, Equation (11) for the
modulus of rupture and Equation (12) for the direct ten-
sion test. The reference value for the tension strength
which is marked with a dashed line is taken from Refer-
ence 21 where it is postulated to be 10% of the compres-
sion strength (Figure 25).

6.6 | Simulation of steel reinforcement

To wrap up this study a model which is similar to the
concrete testing is setup to simulate the testing of steel
reinforcement according to ASTM 370.34 The parameters
for the model can be found in Tables 1 and 2 and the
dimension for the specimen can be seen in Figure 5. The
specimen is loaded by moving the loading plates in the x-

FIGURE 20 Front elevation to the left and rear elevation to the right of the fractured compression cylinder. The arms are colored by

plastic elongation, where red arms are stretched to failure and blue arms are intact.

FIGURE 21 Showing the front and rear elevation of the split cylinder after the fracture has occurred. The arms are colored by plastic

elongation, where red arms are stretched to failure and blue arms are intact.
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FIGURE 22 Front elevation above, and rear elevation below, of the modulus of rupture beam after fracture has occurred. The arms are

colored by plastic elongation, where red arms are stretched to failure and blue arms are intact.

FIGURE 23 Front elevation of the 3D concrete specimen after fracture has occurred. The arms are colored by plastic elongation where

red arms are broken and blue arms are intact.

FIGURE 24 Showing a section cut through the concrete specimen with an xz-plane at y = 0. Arms colored by plastic elongation where

red arms are broken and blue arms are intact. The left crack shown in Figure 23 can be seen to cut all the way through the object and is

most likely what lead to failure.
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FIGURE 25 Comparing the results

of the compression test and the three

different tension tests. The reference

value for the expected tension strength

is based on the conclusion from [14],

where the tensile strength is found to be

approximately 10% of the compression

strength.

FIGURE 26 Stress-strain curves for steel using regular and irregular particle distribution where the plastic elongation limit δ is varied

and the yield strain is kept constant at οys = 0.0028.
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direction away from the origin at a rate of 7�8 m per load
step. The strain is calculated by measuring the difference
in the average movement of the particles at an yz-plane
at x¼�0:025 and x¼ 0:025 m and dividing the retrieved
extension by the initial distance between the planes
which is 0:05 m, see Figure 5.

Since steel is a rather homogeneous material com-
pared with concrete, the simulations are run for both reg-
ular and irregular particle distribution. The imperfections
caused by the irregular distribution turned out to concen-
trate large parts of the strain around the weakest area of
the specimen and smaller total strain levels were reached
compared with the regular distribution where the strain
was distributed over larger parts of the specimen. This
can be seen in Figure 26 where the continuous lines rep-
resent simulations with regular particle distribution and
dashed lines represent simulations with irregular particle
distribution for the same variation of the plastic elonga-
tion limit δ.

As expected the variation of δ controls the brittleness/
ductility of the steel as can be seen in Figure 26 where a
larger δ results in a more ductile steel but these results
are also affected significantly by the choice of particle
arrangement. The variation of ϵys on the other hand
moves the stress–strain curves vertically in Figure 27 and
thus has a major influence on the peak strength.

7 | DISCUSSION AND
CONCLUSIONS

The present study showed an application of a macro model
based on force flux peridynamics theory to simulate struc-
tural concrete behavior. This was done by recreating the
physical concrete tests—such as the compression cylinder,
the split cylinder, the modulus of rupture test and the direct
tension test—with a numerical setup. The cylinder compres-
sion test was used to verify that the model would recreate
Young's modulus and Poisson's ratio with reasonable accu-
racy. A set of parameters were chosen to recreate a typical
high strength concrete and three different tensile tests were
carried out to evaluate the resulting tensile strength. The fol-
lowing observations were made:

• By varying the plastic elongation limit, the yield
strength and the particle horizon, a variety of charac-
teristic stress–strain curves can be obtained, showing a
promising capability for modeling different concrete
mixes.

• The plastic elongation limit has an impact on both the
softening but also on the peak stress. The yield strain
and the horizon size mainly affect the peak stress,
which is also affected to a smaller degree by the ran-
dom seed number.

FIGURE 27 Stress-strain curves for steel using regular and irregular particle distribution where the yield strain parameter οys is varied
and plastic elongation limit is kept constant at δ = 0.001
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• The results from the tension strength tests show that
the numerical material model is significantly stronger
compared with typical physical test results. That could
perhaps be explained by the lack of imperfections in
the model such as small cracks.

• Comparing the results from the three different tension
tests, the modulus of rupture gives the highest predic-
tion and the split cylinder the lowest. It is generally
accepted that the modulus of rupture strength is the
greatest in physical tests, possibly because the maxi-
mum tensile stress occurs in a small proportion of the
sample.

• The simulation of the steel test shows the potential of
using this model for both concrete and steel. It also
highlights the impact that the particle arrangement
has on both the strength and the strain for a ductile
material.

The present macro implementation of FFPD is lim-
ited by modeling one single smeared constituent which
could be an explanation for the overestimate of tensile
strength. Hence the re-implementation of FFPD as a
mesoscale model could be one way to develop the study
further. Another way could be to weaken the material in
tension for the macro scale implementation by introduc-
ing imperfections. Further studies could also include
modeling of the bond interface between concrete and
steel for the implementation of FFPD to RC structures.
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