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Abstract: In most deep learning-based brain tumor segmentation methods, training the deep network
requires annotated tumor areas. However, accurate tumor annotation puts high demands on medical
personnel. The aim of this study is to train a deep network for segmentation by using ellipse box
areas surrounding the tumors. In the proposed method, the deep network is trained by using a
large number of unannotated tumor images with foreground (FG) and background (BG) ellipse box
areas surrounding the tumor and background, and a small number of patients (<20) with annotated
tumors. The training is conducted by initial training on two ellipse boxes on unannotated MRIs,
followed by refined training on a small number of annotated MRIs. We use a multi-stream U-Net
for conducting our experiments, which is an extension of the conventional U-Net. This enables the
use of complementary information from multi-modality (e.g., T1, T1ce, T2, and FLAIR) MRIs. To
test the feasibility of the proposed approach, experiments and evaluation were conducted on two
datasets for glioma segmentation. Segmentation performance on the test sets is then compared with
those used on the same network but trained entirely by annotated MRIs. Our experiments show that
the proposed method has obtained good tumor segmentation results on the test sets, wherein the
dice score on tumor areas is (0.8407, 0.9104), and segmentation accuracy on tumor areas is (83.88%,
88.47%) for the MICCAI BraTS’17 and US datasets, respectively. Comparing the segmented results by
using the network trained by all annotated tumors, the drop in the segmentation performance from
the proposed approach is (0.0594, 0.0159) in the dice score, and (8.78%, 2.61%) in segmented tumor
accuracy for MICCAI and US test sets, which is relatively small. Our case studies have demonstrated
that training the network for segmentation by using ellipse box areas in place of all annotated tumors
is feasible, and can be considered as an alternative, which is a trade-off between saving medical
experts’ time annotating tumors and a small drop in segmentation performance.

Keywords: 2D ellipse box areas; multi-stream U-Net; brain tumors; glioma segmentation; MR images;
deep learning

1. Introduction

Brain tumor segmentation from MR images (MRIs) is an important step toward
clinical assessment, determining treatment strategies, and performing further tumor tissue
analysis. Many automatic methods have been successfully used for tumor segmentation.
However, most of these methods need tumor data annotations by medical experts, which
is a time-consuming process. Apart from this, these methods are also prone to intra-
and inter-observer variability [1,2]. Recently, deep learning methods have drawn much
attention for tumor segmentation when a large training dataset is available. Among these
methods, the first used U-Net [3], and its variants [4,5] were most frequently reported
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due to their good performance on medical image segmentation. Wang et al. [6] proposed
brain-wise normalization and two patching strategies for training a 3D U-Net. Kim et al. [7]
introduced a two-step setup for the segmentation task, wherein an initial segmentation
map was obtained from 2D U-Nets which together with the MRIs are further used by
3D U-Net for the final segmentation map. Shi et al. [8] used an increased number of
channels in its proposed U-Net, which is capable of extracting rich and diverse features
from multi-modality scans. Other deep learning methods such as CNNs [9–11] were also
shown to be useful. For example, Sun et al. [12] proposed a computationally efficient
custom-designed CNN with a reduced number of parameters. Das et al. [13] used 3D CNN
in a cascaded format to extract whole tumors first in a series followed by the core tumor
and then the enhanced core tumor. Shan et al. [14] proposed a lightweight 3D CNN with
improved depth and used multi-channel convolution kernels of different sizes to aggregate
features. Ramin et al. [15] used a cascade CNN to speed up the learning. However, these
deep learning approaches often require all annotated tumors for training the network, and
manually annotating tumors for training datasets is a time-consuming process.

There exist many successful studies on non-medical images in computer vision where
information has been acquired from unannotated images e.g., bounding boxes [16–18], and
image-level and point-level labeling [19–21], among many others. Rectangular bounding
boxes were used for object detection and tracking based on the Riemannian manifold learn-
ing of dynamic visual objects [22,23]. However, in medical applications, such approaches
are still being exploited. Zhang et al. [24] proposed a semi-supervised method that exploits
information from unlabeled data by estimating segmentation uncertainty in predictions,
and Luo et al. [25] used a dual-task deep network to predict a segmentation map and
geometry-aware level set labels. Ali et al. proposed the use of rectangular shape [26] and
ellipse shape [27] bounding box tumor regions for tumor classification. Pavlov et al. [28]
used ResNet50 for segmentation with both tumor ground truth and image-level annotation.
Zhu et al. [29] developed a segmentation method that was guided by image-level class
labels on 3D cryo-ET images. Xu et al. [30] suggested a method called “3D-BoxSup” by
using 3D bounding box labels for MRI brain tumor segmentation, with relatively low
performance (dice score = 0.62 on MICCAI’17 dataset). This was probably due to the fact
that 3D models required more training data and also the fact that the pure use of bounding
boxes was not sufficient to obtain an irregular tumor shape estimation. It is worth noting
that although the use of bounding box areas for training machine learning/deep learning
networks is widely used for object tracking from visual images in computer vision, it is
rarely used for medical MR image segmentation. Some reasons could be that MR images
are very different from visual images and also the lack of medical experts’ knowledge,
which causes the gap between the medical research and computer vision communities.

Motivated by the above issues, we propose the performance of tumor segmentation,
whereby we train the deep network by using tumor ellipse box areas instead of MRIs
with annotated tumors. The main aims of this study are 1) to investigate whether the
paradigm of brain tumor segmentation, based primarily on using large numbers of ellipse
box areas for tumors in MR images, plus a small number of annotated tumor patients, is
feasible, and 2) to answer the question of what price one needs to pay when replacing the
annotated MRIs for training the network in brain tumor segmentation. Because U-Net
has demonstrated excellent performance for medical image segmentation, a multi-stream
U-Net (an extension of U-Net) is employed in our case studies, wherein combined features
from multiple MRI modalities will be explored. The main contributions of this paper are
as follows.

• We study the feasibility of the use of 2D ellipse box areas for training the deep network
for brain tumor (glioma) segmentation plus a small number of annotated tumors.

• We use a multi-stream U-Net for our experiments, which is an extended version of the
conventional U-Net.

• We conduct studies on two scenarios: (a) if the training dataset is large/moderate,
learning is conducted by pre-training on a large amount of FG and BG ellipse areas
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followed by refined-training on a small number of annotated tumor patients (<20);
and (b) if the training dataset is small, learning is conducted in a fashion similar to the
idea of transfer learning.

• We evaluate the performance of the proposed approach and compare the performance
with the same network trained entirely by using annotated MRIs.

The remainder of the paper is organized as follows. In Section 2, the proposed method
is described in detail, including the framework for case studies, the FG–BG ellipse area
definition, the multi-stream U-Net, training strategies for large/medium and small datasets,
and several other issues. Section 3 gives experimental results, performance evaluation, and
comparison, and is followed by Section 4, with a conclusion.

2. Proposed Method

The proposed approach is based on the hypothesis that it is feasible to train a deep
network for brain tumor (glioma) segmentation by training a large percentage of unanno-
tated brain tumor MRIs Iunannotated by using ellipse box areas surrounding the tumors and
background, and a small number of medical expert-annotated tumor patient MRIs Iannotated
(<20). The motivation is that if one can replace this ellipse box-based learning paradigm
with acceptable tumor segmentation performance on the test set, then one would be able
to save a lot of time from manual tumor annotation. In order to carry out such a study, a
framework is depicted in Figure 1.

Figure 1. Framework for a feasibility study on MR brain tumor segmentation. For the proposed deep
learning approach (blue dash line box), the training process consists of 2 rounds: coarse training on
unannotated MRIs Iunannotated with FG-BG ellipse box areas and refined training on a few annotated
MRIs Iannotated. The trained network is then used for tumor segmentation on the test dataset. For
performance comparison, the deep network with the same structure trained on all annotated MRIs
Iannotated is also implemented (see the block under the blue dash line box) for comparison purposes,
as it provides the best test results (i.e., segmentation results) under the same structured deep network.
The segmentation results are then compared.

2.1. Defining Foreground and Background Ellipse Box Areas Using Ellipses

For unannotated MRIs, the foreground (FG) and background (BG) areas are used as
the inputs for the training. The FG area in a MRI is defined as the interior area of a small
ellipse surrounding the tumor, and the BG area is defined as the exterior area of a large
ellipse containing normal tissues, as shown in Figure 2. Pixels from the interior area of
the small ellipse have a high probability of being the tumor pixels and are used for the
initial training of positive tumor class, whereas the pixels from the exterior area of the
large ellipse have a high probability of being the normal brain tissues and are used for the
initial training of the negative non-tumor class. For the small ellipse, first an initial ellipse
is drawn on the area surrounding the tumor. To minimize the non-tumor pixels, this ellipse
is then shrunk by a scale factor p1 (0.9 was used based empirical tests). The large ellipse is
drawn with the same center as the initial ellipse, the axes of which are multiplied by a scale
factor p2 (1.2 was used based on empirical tests). In this way, the exterior area can avoid
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most tumor pixels. An ellipse is first drawn manually by selecting areas surrounding the
tumor and then a Matlab functio, regionprops is used for estimating two ellipse axes for
drawing 2 ellipses.

Figure 2. Foreground area (FG) and background area (BG) areas are defined by two ellipses, where
FG is extracted from the interior area of a small ellipse surrounding the tumor and BG is extracted
from exterior area of a larger ellipse.

2.2. Multi-Stream U-Net Used for Our Experiments

Because different MRI modalities provide complementary information on tumors and
because U-Net [3] is very successful for MR image segmentation, we decided to employ
an extended U-Net, called multi-stream U-Net, for our case studies. A multi-stream U-
Net contains several number of parallel U-Net (where the number is equal to the MRI
modalities, e.g., a four-stream U-Net is used when T1, T1ce, T2, and FLAIR are available).
This is followed by a simple feature-level fusion that combines the features from different
modalities. Figure 3 shows the block diagram of the multi-stream U-Net. For the MICCAI
dataset, the number of MRI modalities is four (where T1, T1ce, T2, and FLAIR are available)
and for the US dataset the number of modalities used is two (where T1ce and FLAIR are
available). Each single-stream U-Net has a symmetric structure consisting of downstream
paths and upstream paths. Details of the architecture are summarized in Table 1.

Figure 3. Structure of a multi-stream U-Net network.
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Table 1. Detailed architecture of a single stream U-Net used in the multi-stream U-Net.

Block No. No. of Units

Downstream-path Conv2D, stride, BN, Max-pooling

1 [3× 3, 32, ReLU] × 2, 2, BN, 2 × 2
2 [3× 3, 64, ReLU] × 2, 2, BN, 2 × 2
3 [3× 3, 128, ReLU] × 2, 2, BN, 2 × 2
4 [3× 3, 256, ReLU] × 2, 2, BN, 2 × 2
5 [3× 3, 512, ReLU] × 2, 2, BN, -

Upstream-path Conv2DTranspose, concat, BN, Conv2D

6 [2× 2, 128], concat, -, [3× 3, 256, ReLU] × 2
7 [2× 2, 128], concat, BN, [3× 3, 128, ReLU] × 2
8 [2× 2, 128], concat, BN, [3× 3, 64, ReLU] × 2
9 [2× 2, 128], concat, BN, [3× 3, 32, ReLU] × 2

2.3. Training Strategies on Datasets with Different Sizes
2.3.1. Training on Dataset with Large/Moderate Size

When the dataset size is large or is of moderate size, the multi-stream U-Net is initially
pre-trained on the large percentage (90%) of the training set with ellipse-defined foreground
(FG) and background (BG) areas. Then, it is refined-trained on a small percentage (about
10%, or <20 patients) of the annotated training set.

2.3.2. Training on a Small Dataset

Because using a small dataset is not sufficient to give a good training result in deep
networks, we adopted an idea similar to “transfer learning” for training the small dataset.
This is done by using the weights of the network training on a large/moderate size dataset
(e.g., MICCAI dataset) as the initial weights, followed by applying the refined training on
the given specific small dataset (which updates the weights on all network layers). We
note that this is different from the conventional transfer learning approach, where only the
weights on a few top layers would be updated. The reason for this difference is due to a
domain mismatch issue when several datasets are combined. Because most datasets were
captured from somewhat different domains (e.g., from different institutions with different
scanner parameter settings), simply merging them to a enlarge the data in order to obtain
improved test results would not work well. Domain adaptation is usually required before
merging several training datasets [26]. This is reflected in our training method on updating
weights in all layers, as weights in low layers could be more related to large changes due
to different measurement domains, updating all weights would make the network better
tuned to this specific given dataset. When the dataset is very small, we use a small number
of patients (<20) whose tumors are annotated by radiologists for refined training. After
refined training on the small dataset, network weights which are better tuned to the specific
features in the small dataset are then fixed and used for the segmentation.

2.4. Other Issues
2.4.1. Strict Patient-Separated Splitting of Training/Validation/Testing Sets

For a given training dataset, a strict patient-separated approach is applied when
splitting the dataset into training, validation, and testing subsets. If the size of a dataset
is large/moderate, we perform a dataset split to approximately (training, validation, and
testing) = (60%, 20%, and 20%). This is to ensure that each patient’s data only occurs either
in the training or in the testing, but not in both. If the size of dataset is very small, we
simply split the dataset according to patients into training and testing categories equal to
20% and 80%, respectively, where tumor annotations are assigned to the training set and
the remaining to the testing subset.
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2.4.2. Criteria for Performance Evaluation

Criteria used for evaluating the performance of tumor segmentation are given as fol-
lows.

Tumor Accuracy

This is the accuracy of the tumor area, which is the region of interest for tumor
segmentation and is defined as follows:

Tumor Accuracy =
TP

TP + FN
,

where TP and FN denote the true positive (i.e., tumor pixels) and false negative, respectively.

Tumor Dice Score and Jaccard Index

The dice score is applied only on the tumor pixel areas to evaluate the tumor segmen-
tation performance. Let X and Y be an annotated tumor image and the corresponding
tumor segmented image, the dice score on tumor areas is defined as

D =
2|X ⋂

Y|
|X|+ |Y| .

The Jaccard similarity index is computed to find the similarity between X and Y and is
given as

J =
|X ⋂

Y|
|X ∪Y| .

3. Results and Performance Evaluation
3.1. Datasets, Setup, Pre-Processing
3.1.1. Datasets

Experiments were conducted on two datasets: MICCAI BraTS’17 and US. The MIC-
CAI dataset is an open dataset with a moderate number of patients consisting of four
modalities (T1, T1ce, T2, FLAIR) MRIs on low-grade glioma (LGG) and high-grade glioma
(HGG) [31–33]. The US dataset is a clinical, private dataset obtained from a US hospital,
consisting of two modalities (T1ce, FLAIR) on LGG. For the US dataset, tumor boundaries
around the whole tumor areas were marked manually by radiologists. Table 2 describes
the detailed information on these two datasets. For testing the concept on the proposed
approach, we merged the pixels from different sub-regions of a glioma such as the necrotic
and non-enhancing pixels, the peritumoral edema and the enhancing pixels as the tumor
pixels in the MICCAI dataset. This can mitigate the problem of imbalanced sub-classes
in training by limiting the segmentation to just 2 classes (i.e., tumor/non-tumor) in both
the datasets.

Table 2. Summary of two datasets, as well as the number of 2D slices in each 3D scan, and information
on patient-separated split of training/validation/testing subsets.

Dataset T1/T1ce/T2/FLAIR #2D #2D */3D #2D */3D #2D */3D
Slices (Training) (Validation) (Testing)

MICCAI 285/285/285/285 9 1539/171 513/57 513/57
US 0/75/0/75 18 270/15 - 1080/60

* Excluded augmented 2D slice images.

We used 2D slices instead of 3D scans as the input of the network in order to mitigate
the possible overfitting in deep learning (if the dataset size is moderate/small) and to
reduce the computation cost. For each 3D scan in the MICCAI dataset (moderate size),
nine image slices are extracted from three views with a distance of five slices from both
sides when keeping the one with the largest tumor area as the center slice, whereas for the
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US dataset (small size), 18 image slices are extracted from three views because the dataset
is small. For all MRI scans in the MICCAI dataset, 60% (or 171 patients) were used for
training which consists of 154 unannotated and 17 annotated patients. For the US dataset,
15 annotated patients were used for training, and the remaining 60 patients were used
for testing.

3.1.2. Setup

The Keras library on a backend TensorFlow is used on a GPU platform by using
NVIDIA GeForce RTX 2080 Ti from Google Colab. It had a video RAM of 11GB with CPU
6× Xeon E5-2678 v3 and 62 GB memory. The network hyperparameters were empirically
determined and chosen from the best-trained network. For the network parameters, in
the multi-stream U-Net, the learning rate was set to 1.0 × 10−3. Adagrad was used as
the optimizer. The batch size was set to 16. L2-norm regularization was applied with
the value of the parameter selected as 1.0 × 10−3 for convolutional layers in each stream.
The dropout rate was set as 10% at the end of the downstream path as described in [3].
Categorical cross-entropy was used as the loss function in the network. For the training
process, 70 epochs were used for the first round of training, and 150 epochs for the second
round of training. To balance the training samples in tumor/non-tumor areas, weighting
factors were applied to FG and BG pixels. The weights were determined empirically based
on the approximated ratio of the average number of FG and BG pixels. In addition, simple
augmented images were added through horizontal and vertical flipping, shearing with
0.2◦ rotation and scaling by a factor up to 10% during the training through Keras function
ImageDataGenerator.

3.1.3. Pre-Processing

Because MRI scans from the US dataset were not registered, pre-processing was
performed on these 3D scans. This pre-processing included registration of anatomical
images (from FLAIR and T1ce scans) to a 1-mm MNI template. Furthermore, bias field
correction and skull-stripping were performed by using software packages [34,35]. No pre-
processing was performed on the MICCAI dataset because they were already skull-stripped
and co-registered to their T1-modality. Further, all 2D image slices were normalized in size
(176 × 176) pixels, with zero mean and unit variance.

3.2. Results, Comparison and Discussion
3.2.1. Results

The proposed paradigm was evaluated on the MICCAI and US datasets. For the
MICCAI dataset, a four-stream network was trained first on MRIs from 154 patients without
annotations, followed by refined training on annotated tumor MRIs from 17 patients. For
the US dataset, we used a two-stream network trained on the MICCAI dataset (only on
T1ce and FLAIR MRIs) as the initial network, followed by a refined training on annotated
tumor MRIs from the US dataset to learn this dataset’s specific features. The performance
on segmented tumor images on the two test sets (averaged on five runs, each time on a
new patient-wise data subset followed by testing on the completely trained network) have
shown good results. The average accuracy results are further split according to each class
(i.e., tumor and non-tumor) and are described by the confusion matrix in Table 3.

Table 3. Confusion matrices from the test results, by splitting the average tumor accuracy according
to tumor and non-tumor areas. All results were averaged on five runs.

(a) MICCAI dataset

Predicted\True Tumor (±σ) Non-tumor (±σ)

Tumor 83.88 (±0.08) 1.54 (±0.09)
Non-tumor 16.12 (±0.08) 98.46 (±0.09)
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Table 3. Cont.

(b) US dataset

Predicted\True Tumor (±σ) Non-tumor (±σ)

Tumor 88.47 (±0.34) 0.42 (±0.27)
Non-tumor 11.53 (±0.34) 99.58 (±0.27)

A set of evaluation results, tumor accuracy and dice score are further included on the
test sets of two datasets in Table 4.

Table 4. Performance evaluation on the test set from using the proposed approach (averaged over
five runs).

(a)

Dataset Tumor Accuracy (±σ)% Dice Score (±σ) Jaccard Index (±σ)

MICCAI 83.88 (±0.08) 0.8407 (±0.0006) 0.7233 (±0.0028)
US 88.47 (±0.34) 0.9104 (±0.0021) 0.8355 (±0.0029)

(b)

Dataset Sensitivity (±σ)% Specificity (±σ)% False Positive (±σ)%

MICCAI 83.88 (±0.08) 98.46(±0.09) 1.54 (±0.09)
US 88.47 (±0.34) 99.58 (±0.27) 0.42 (±0.27)

Observing Table 4a, one can see that the averaged test accuracy on the positive tumor
pixels (i.e., the region of interest) is 83.88% and 88.47% on the MICCAI and US dataset,
respectively. In addition, one can see that the average dice scores computed on tumor areas
are good (0.8407 and 0.9104), and the Jaccard index values on tumor areas are reasonably
good (0.7233 and 0.8355) on the MICCAI and US test sets. Furthermore, Table 4b shows the
sensitivity, specificity, and false positive rate from the confusion matrix in Table 3. Based
on these evaluation results, the proposed method seems to have resulted in good tumor
segmentation on both datasets.

For visual observation on the segmented tumors, Figure 4 shows an example of
two segmented tumor images (column 3 on left and right) by using the proposed approach.

Figure 4. Example of two segmented brain tumor images from the MICCAI test set. Columns (on
left and right): original T1 MR image; annotated tumor area marked by medical experts; segmented
tumor area from proposed method.

3.2.2. Comparison

We then compare the performance of the proposed paradigm to that of the network
trained on all annotated data, where it has the exact same network architecture as the multi-
stream U-Net used in the case studies for the proposed paradigm. The only difference is
that all training samples were obtained from the annotated tumor images (i.e., 100% of MRIs
in the training dataset were annotated) in the latter case. The point of this comparison is to
examine, by using the same network architecture, how much the performance degrades if
the greater part of the training data is not annotated and to see if it is feasible to use such a
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paradigm. Table 5 shows the comparison of the test results in terms of tumor accuracy and
tumor dice score on the MICCAI and US test datasets.

Table 5. Comparison of the test results averaged over five runs (accuracy and dice score) on the
MICCAI and US dataset by using the proposed method and the conventional method (i.e., same deep
network trained by all tumors with annotations). The degradation shows the performance difference
on each dataset.

Datasets Method Tumor Accuracy % (±σ) Dice Score (±σ)

MICCAI
Proposed 83.88 (±0.08) 0.8407 (±0.0006)

Conventional 92.66 (±0.15) 0.9001 (±0.0018)
Degradation −8.78 (±0.07) −0.0594 (±0.0012)

US
Proposed 88.47 (±0.34) 0.9104 (±0.0021)

Conventional 91.08 (±0.21) 0.9263 (±0.0024)
Degradation −2.61 (±0.31) −0.0159 (±0.0003)

Observing Table 5, one can see that although the proposed approach has achieved
good segmentation results, there is a slight performance degradation as compared with
the results from the conventional method (i.e., network trained on MRIs where all tumors
contain GT annotations). The degradation on average test results obtained are shown
in bold fonts as 8.78 ± 0.07%, 0.0594 ± 0.0012 for the MICCAI test set and 2.61 ± 0.31%,
0.0159 ± 0.0003 for the US test set. It is rather encouraging to see the very small changes in
the dice score, as the dice score is usually considered an important performance measure.
The comparison indicates that the proposed method is rather effective based on these
two datasets.

To further evaluate the proposed scheme, Table 6 shows the comparison of the dice
scores from several state-of-the-art methods, as well as the method using fully annotated GT
tumor areas for training (i.e., the “conventional” method). It is worth noting that the results
from the methods [8,24] in Table 6 can only be used as an indication of performance because
they were trained on a much larger BraTS’19 as comparing to the one using BraTS’17 [30].
Observing the results in bold fonts in Table 6, the “conventional” method resulted with the
best segmented performance as 0.9001 and the proposed method as 0.8407.

Table 6. Comparison with existing state-of-the-art methods on the MICCAI BraTS dataset.

Method Dataset Dice Score

3D-BoxSup [30] BraTS’17 0.6200
Semi-supervised [24] BraTS’19 0.8361

Supervised [8] BraTS’19 0.8645

Conventional (GT supervised training) BraTS’17 0.9001
Proposed BraTS’17 0.8407

3.2.3. Discussion

In our case studies, experiments were conducted on two MRI datasets to check the
feasibility of the proposed deep network learning approach for brain tumor segmentation.
The aim is to see whether the proposed approach is feasible when the greater part of the
training data is without GT tumor annotations. The proposed training method has led
to a small performance drop as compared to that which uses a fully annotated tumor
trained network. Our case studies have demonstrated that the proposed approach is
feasible (though more extensive studies are needed on more datasets), and can be used as a
tradeoff when tumor annotations on a large training dataset becomes a bottleneck. Further,
a comparison with state-of-the-art methods shows its effectiveness.
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4. Conclusions

Many medical datasets often lack annotated tumors because tumor annotation is a
time-consuming process for medical experts. We conducted a feasibility study on two
datasets (with glioma tumor type) by using ellipse box tumor areas for the initial training on
majority training data followed by refined training by using annotated tumor MRIs from a
small number of patients (<20). Experiments have shown good tumor segmentation results
evaluated purely on tumor areas in terms of dice score (0.8407, 0.9104) and average accuracy
(83.88%, 88.47%) for the MICCAI and US datasets, respectively, which demonstrated that
the proposed approach is feasible by using a large amount of unannotated MRI data.
Compared with the same network trained exclusively with annotated data, the proposed
approach shows a small decrease in performance (a decrease in dice score = (0.0594, 0.0159)
and a decrease in accuracy = (8.78%, 2.61%) for the MICCAI and US test sets). The proposed
method provides an alternative approach, which is a tradeoff between a small decrease in
performance, and saving time and manual labor for medical doctors. Future work will be
conducted on more datasets.
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