
Evaluating the layout quality of UML class diagrams using machine
learning

Downloaded from: https://research.chalmers.se, 2022-10-11 19:56 UTC

Citation for the original published paper (version of record):
Bergström, G., Hujainah, F., Ho-Quang, T. et al (2022). Evaluating the layout quality of UML class
diagrams using machine learning. Journal of Systems and Software, 192.
http://dx.doi.org/10.1016/j.jss.2022.111413

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

The Journal of Systems & Software 192 (2022) 111413

G
S
a

b

c

d

e

f
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Evaluating the layout quality of UML class diagrams usingmachine
learning✩

ustav Bergström a, Fadhl Hujainah a,b, Truong Ho-Quang a,b, Rodi Jolak a,b,
atrio Adi Rukmono c,e,∗, Arif Nurwidyantoro d, Michel R.V. Chaudron a,c

Chalmers | Gothenburg University, Gothenburg, Sweden
Volvo Car Corporation, Sweden
Eindhoven University of Technology, The Netherlands
Monash University, Melbourne, Australia
Institut Teknologi Bandung, Indonesia

a r t i c l e i n f o

Article history:
Received 31 August 2021
Received in revised form 15 June 2022
Accepted 16 June 2022
Available online 22 June 2022

Keywords:
Quality of layout
Machine learning
Quality of UML class diagrams

a b s t r a c t

UML is the de facto standard notation for graphically representing software. UML diagrams are used
in the analysis, construction, and maintenance of software systems. Mostly, UML diagrams capture an
abstract view of a (piece of a) software system. A key purpose of UML diagrams is to share knowledge
about the system among developers. The quality of the layout of UML diagrams plays a crucial role in
their comprehension.

In this paper, we present an automated method for evaluating the layout quality of UML class
diagrams. We use machine learning based on features extracted from the class diagram images using
image processing. Such an automated evaluator has several uses: (1) From an industrial perspective,
this tool could be used for automated quality assurance for class diagrams (e.g., as part of a quality
monitor integrated into a DevOps toolchain). For example, automated feedback can be generated once
a UML diagram is checked in the project repository. (2) In an educational setting, the evaluator can
grade the layout aspect of student assignments in courses on software modeling, analysis, and design.
(3) In the field of algorithm design for graph layouts, our evaluator can assess the layouts generated
by such algorithms. In this way, this evaluator opens up the road for using machine learning to learn
good layouting algorithms.
Approach. We use machine learning techniques to build (linear) regression models based on features
extracted from the class diagram images using image processing. As ground truth, we use a dataset
of 600+ UML Class Diagrams for which experts manually label the quality of the layout.
Contributions. This paper makes the following contributions:
(1) We show the feasibility of the automatic evaluation of the layout quality of UML class diagrams.
(2) We analyze which features of UML class diagrams are most strongly related to the quality of their
layout.
(3) We evaluate the performance of our layout evaluator.
(4) We offer a dataset of labeled UML class diagrams. In this dataset, we supply for every diagram
the following information: (a) a manually established ground truth of the quality of the layout, (b) an
automatically established value for the layout-quality of the diagram (produced by our classifier), and
(c) the values of key features of the layout of the diagram (obtained by image processing). This dataset
can be used for replication of our study and others to build on and improve on this work.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board..

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
✩ Editor: Matthias Galster.
∗ Corresponding author.

E-mail addresses: gustavbergstrom@outlook.com (G. Bergström),
adelhogina@gmail.com (F. Hujainah), truonghoquang@gmail.com
T. Ho-Quang), rodi.jolak@cse.gu.se (R. Jolak), s.a.rukmono@tue.nl
ttps://doi.org/10.1016/j.jss.2022.111413
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
(S.A. Rukmono), arif.nurwidyantoro@monash.edu (A. Nurwidyantoro),
m.r.v.chaudron@tue.nl (M.R.V. Chaudron).
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111413
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111413&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:gustavbergstrom@outlook.com
mailto:fadelhogina@gmail.com
mailto:truonghoquang@gmail.com
mailto:rodi.jolak@cse.gu.se
mailto:s.a.rukmono@tue.nl
mailto:arif.nurwidyantoro@monash.edu
mailto:m.r.v.chaudron@tue.nl
https://doi.org/10.1016/j.jss.2022.111413
http://creativecommons.org/licenses/by/4.0/

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

t
U
p
o
d
d
s
s
c
l
i

(
a
e
u
t
q
p
w
p
g
u
t
i
o
a

a
o
d
t
a
r
a
f
i
w
s
a
s
c
b
f
F
2
t
a
r
c
i
t
w

c
w
T
p
l
a
d

t

R

1. Introduction

The Unified Modeling Language (UML) is an industry-standard
o represent designs of software systems using diagrams. The
ML consists of various types of diagrams that all serve different
urposes and have different areas of use. In this study, we focus
n one of the most commonly used diagram types: the class
iagram (Reggio et al., 2013, 2014; Badreddin et al., 2021). Class
iagrams belong to the diagram types that capture aspects of the
tructure of software/systems: they show the building blocks of a
ystem and how they are related to each other. In class diagrams,
lasses are drawn as rectangles, and relationships are drawn as
ines between the rectangles. Sometimes lines have an arrow
ndicating the direction of the relationship.

One of the primary purposes of UML diagrams is to provide an
abstract) overview of a system’s structure. UML class diagrams
re important aid for understanding software systems (Scanniello
t al., 2018; Fernández-Sáez et al., 2015) and for sharing the
nderstanding of a system across development teams. Moreover,
he human comprehension of systems is greatly affected by the
uality of the diagram’s layout: In the study of the Störrle (2011),
articipants were asked to perform certain tasks using diagrams
hich were rated with either ‘‘good layout’’ or ‘‘bad layout’’. The
articipants performed significantly better using the ‘‘good’’ dia-
rams. Layout quality can be about how aesthetically appealing a
ser finds the diagram and how easily the user can comprehend
he diagram. Several specific layout aesthetics have been shown
n research to affect the layout quality. An example is the number
f crossing lines in a diagram: fewer crossing lines contribute to
higher quality, but there are quite a few more aesthetics.
Class diagrams are often created in one of two ways: (1) either

s a design prior to and in order to guide the programming,
r (2) after a system is developed in order to document the
esign and share/communicate knowledge about a design to a
eam of developers. Diagrams created before the development
re said to be forward-engineered and can serve as a guiding
eference during the development. Forward-engineered diagrams
re usually drawn by humans, who tend to have an intuitive
eeling for layout. In addition, humans are very good at recogniz-
ng high-quality UML diagrams. Nevertheless, at the same time,
e found that human-made diagrams frequently ignore some
traightforward aesthetical layout guidelines. Diagrams created
fter the development are said to be reverse-engineered and can
erve as documentation of the system. The diagrams are usually
reated using an automatic generator that generates a diagram
ased on a (collection of) source code. A wide range of algorithms
or creating reverse-engineered diagrams exist (Ziadi et al., 2011;
auzi et al., 2016; Decker et al., 2016; Sabir et al., 2019; Singh,
020; Alsarraj et al., 2021). It is crucial for such algorithms that
he quality of the diagrams they produce is high. Hence, there is
need to assess the quality of UML diagrams. For manual and

everse-engineered diagrams, automated assessment of diagrams
an indicate if the layout quality is good or whether it needs
mprovements. We foresee that an automated quality assessment
ool could be integrated into a DevOps toolchain and be invoked
hen a UML diagram is added to the project files.
When constructing a diagram layout, there are many aesthetic

riteria to consider. Some of them might even be conflicting:
hen trying to optimize one of the criteria, another might suffer.
herefore, it is essential to know which aesthetics are most im-
ortant for the layout quality to be focused on when constructing
ayouts. By creating an extensive dataset of features representing
esthetics and labels representing the perceived quality, we can
iscover which aesthetics seem most important.
The majority of existing studies related to the assessment of

he layout quality mainly focus on finding the most important
2

rules for layout aesthetics (Purchase et al., 2000; Eichelberger,
2005). These existing studies have focused on finding the (rel-
ative) importance of layout aesthetics and estimating the layout
quality of the diagrams. These studies have not looked into the
automatic evaluation of the layout quality of class diagrams. To
evaluate the layout quality of diagrams, time and user-intensive
studies are often conducted to see if the users find diagrams
with one layout easier to comprehend than diagrams with other
layouts. An automatic evaluator could quickly indicate how good
a layout is. Therefore, the primary purpose of this study is to
create an automatic evaluator of the layout quality of UML class
diagrams using machine learning approaches. The tool could also
suggest which aspects of a diagram are good and which could be
improved.

The main research question of this study is:

Qmain: How can machine learning be used to automatically eval-
uate the layout quality of UML class diagrams?

To answer the main research question, the following sub-
questions are investigated:

RQ1: How well does the automatic evaluator of the layout qual-
ity of class diagrams perform?

RQ2: Which features of class diagram layout are the most impor-
tant for evaluating their layout quality?

Given that we use a machine learning approach, the basis
for creating the evaluator will be a set of ground truth data of
diagrams, with their respective image features and layout quality.

The contributions of this work can be summarized as follows:

(1) We offer a new automatic evaluator of the layout quality
of UML class diagrams. The proposed evaluator is the first
automatic evaluator of the layout quality for UML class
diagrams to the best of our knowledge. The proposed eval-
uator can be a valuable tool for assessing the quality of
class diagrams in industrial and academic settings.

(2) We reveal the most important aesthetics for the layout
quality of class diagrams. Furthermore, the results of such
identification can assist in enhancing the performance of
automated layout algorithms.

(3) We evaluate the proposed automatic evaluator to affirm its
capability to assess the layout quality of previously unseen
class diagrams.

(4) We offer a dataset of class diagrams together with ex-
tracted features and manually labeled quality, which can be
used for further studies in the quality of diagram layouts.

The focus of this paper is on the automatic evaluation of
the layout of class diagrams. We have argued above that the
layout of class diagrams is important for communication and
comprehension of designs. While evaluating layout is useful in
its own right, it can contribute to evaluating designs that are
represented by UML class diagrams. Indeed, there are obvious
uses for evaluating the quality of UML designs, both in industrial
settings (e.g. as part of quality assurance) and also in educational
settings (e.g. for evaluating student’s assignments). However, for
evaluating the quality of a design, an additional complication is
that also the semantics of the design and the domain need to be
taken into account — amongst others: is there a clear allocation
of responsibilities, do relations between classes make sense? A
broader discussion of evaluating the quality of UML designs can
be found in the PhD thesis of Christian Lange (Lange, 2007).

The remainder of this paper is structured as follows: Section 2
presents an overview of related work. Section 3 describes the
proposed automatic evaluator. In Section 4, we evaluate the per-
formance of the proposed layout evaluator. Section 5 discusses
the results. Section 6 elaborates on threats to validity. Finally,

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

a
a
p
d

h
S
g
r
a
d

g

t
t
f
a
c
t
d
d

g
e
s
a
e
e
a
t
1
(
n
I
s
o
p
a
s
a
w

i

Section 7 concludes this study and provides recommendations for
future work. The dataset and instructions for replicating the ex-
periments discussed in this article are available online (Chaudron
et al., 2022).

2. Background on layout aesthetics of diagrams

This section describes background knowledge regarding the
esthetics of the layout of diagrams. In particular, we present
selection of characteristics of diagrams that have been pro-
osed in the literature as being relevant to the layout quality of
iagrams.
Layout aesthetics are properties of a diagram layout that can

ave a relationship to the subjective perception of the diagram.
ince UML class diagrams can be seen as a type of mathematical
raphs, aesthetics from the field of general graph layout are
elevant. Research has been done both into general graph layout
esthetics, as well as aesthetics that are specific to UML class
iagrams.
According to Störrle (2011), four levels of design principles

overn the layout of UML diagrams.

First, general principles apply to all kinds of diagrams. For
example, elements should be aligned and not obscure each
other.
Second, some principles apply to mathematical/abstract
graphs. For example, the number of crossings and bends of
lines should be minimized.
Third, some principles apply mostly to UML diagrams, for
example, that similar elements should be grouped.
The fourth principle level is support for better addressing
the audience, for example, by highlighting items through
color or size.

Most research on UML diagrams focuses on principles from
he second level. This is probably because these principles are,
o a greater extent, quantifiable and measurable than principles
rom other levels. This is important for this study because the
esthetics need to be found through image processing and then
onverted into numerical features for the machine learning part
o work. We scope this study to the graphical properties of
iagrams. Hence metrics that relate to the semantics of class
iagrams will not be considered.
Purchase (2002) presents seven common aesthetic criteria for

raph drawings and defines metrics to assess the presence of
ach one of them. In other research, Purchase et al. (2000, 2001)
tudies graph layout aesthetics with a focus on UML, where some
dditional aesthetics are presented. The aesthetics are evaluated
mpirically to find their relationships to user preferences. Ware
t al. (2002) studies how eight different graph layout aesthetics
ffect the cognitive load of finding the shortest path between
wo nodes in a graph. Eichelberger (2002) describes and orders
4 aesthetic for class diagrams in a priority list. Eichelberger
2005) extends on this in his Ph.D. thesis and presents a large
umber of aesthetics that are grouped into different categories.
n later work, Eichelberger and Schmid (2009) make an extensive
ummary of guidelines for the aesthetic quality of UML diagrams
n different levels based on prior work. Sun and Wong (2005)
resent 14 criteria for UML class diagram layout, where some
re more general and apply to all graph drawings, and some
pecifically target the semantics of the UML diagram. Coleman
nd Parker (1996) present a list of 19 graph layout aesthetics that
ere derived from literature and common sense.
We have compiled the following categories of layout aesthet-

cs mentioned in prior works.
3

A1 — Line crossings. A line crossing is a point in the diagram
where two lines intersect. If more than two lines intersect in the
same point, all pairwise intersections are considered (Purchase,
2002). Minimizing the number of line crossings is one of the most
commonly referenced aesthetics. Crossings make the lines harder
to follow (Sun and Wong, 2005), and it is harder to see which
classes are connected (Eichelberger, 2005). In addition, crossings
at small angles are more likely to cause visual confusion than
crossings with an angle close to 90◦ (Ware et al., 2002).

A2 — Line bends. A line bend is a point on a line that does
not lie on a straight line between the two endpoints of the
line (Purchase, 2002). Minimizing the number of line bends is
also a very commonly referenced aesthetic. Straight lines are
more continuous (Sun and Wong, 2005) and easier to follow for
users (Eichelberger, 2005).

A3 — Orthogonality. Orthogonality applies both to lines and the
orientation of nodes: The orthogonality of a line represents how
far (as an angle) the direction of a line deviates from a horizon-
tal or vertical line (Purchase, 2002). To improve layout quality,
lines should be drawn horizontally or vertically on an orthogo-
nal grid (Eichelberger, 2005; Sun and Wong, 2005). This is be-
cause horizontal and vertical orientations are more likely to be
perceived as figures than other orientations (Eichelberger and
Schmid, 2009).

Orthogonality for nodes means that the nodes should be
placed on an orthogonal grid, i.e., nodes should be – as much
as possible – aligned both horizontally and vertically (Purchase,
2002; Eichelberger, 2005; Sun and Wong, 2005).

A4 — Line lengths. The length of a line is the distance from the
start to the end of the line through all points on the line. Lines
should not be too long or too short because long lines make
grouping and separation hard (Eichelberger, 2002; Sun andWong,
2005). Line lengths should also be kept as uniform as possible in
a diagram (Eichelberger, 2005).

A5 — Diagram drawing size. The actual size of the diagram draw-
ing should be minimized to support a homogeneous node and
line distribution and to reduce the need for scrolling (Eichel-
berger and Schmid, 2009). Naturally, the drawing still has to
fit all the diagram elements, and making it too small would
probably create conflicts with other aesthetics. Some research
only focuses on that it is the width of the drawing that should
be minimized (Coleman and Parker, 1996).

The aspect ratio is the relationship between a drawing’s height
and width. An optimal aspect ratio could be either minimized,
which means that the diagram is quadratic (Eichelberger, 2005)
or fixed to a specific rectangular proportion (Eichelberger, 2002),
e.g., such that it fits on modern display monitors or fits nicely in
an electronically typeset document (often portrait A4 or letter-
format).

A6 — Symmetry. Existing research frequently suggests that in-
creasing the symmetry of a diagram leads to increased under-
standability. Symmetric diagrams are usually seen as a good
figure (Sun and Wong, 2005; Eichelberger and Schmid, 2009).
However, it is an aesthetic that can be hard to define as it is
best considered perceptually rather than computationally (Pur-
chase et al., 2001). Symmetric lines could be drawn arbitrarily in
diagrams (e.g., non-orthogonal), and there could be both local and
global symmetry. According to Eichelberger (2005), all kinds of
symmetry should be maximized.

A7 — Line angular distance. If multiple lines are going from a
node, the minimum angle between two lines should be max-
imized (Purchase, 2002; Coleman and Parker, 1996). The lines
should be far apart so that it is easy to distinguish between
them, which is of extra high importance if the resolution of the
rendering of that the diagram is low (Eichelberger, 2005).

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413
A8 — Class placement. Much research on graph layout brings up
the placement of nodes as an important aesthetic. Given that
classes in UML diagrams can be seen as nodes in a graph, this
research is also relevant for class diagrams.

Nodes should be distributed uniformly within the drawing
area (Eichelberger, 2005; Eichelberger and Schmid, 2009; Cole-
man and Parker, 1996). This helps provide a uniform
appearance of the drawing, which supports similarity and homo-
geneity (Eichelberger and Schmid, 2009). Dishomogeneity leads
to double observation, a discontinuity in the visual perception
process (Eichelberger, 2005).

Nodes should not be too close together or too far apart (Cole-
man and Parker, 1996). Nodes that are connected should be
as close as possible to each other (Eichelberger, 2005). Nodes
should also not be too close to edges that they are not connected
to Eichelberger (2002), Coleman and Parker (1996). Classes with
a high degree should be placed near the center of the dia-
gram (Eichelberger, 2005).

A9 — Overlapping. Nodes should not overlap other nodes (Eichel-
berger, 2002, 2005; Eichelberger and Schmid, 2009; Sun and
Wong, 2005). When nodes overlap, part of one node is not visible
and the entire diagram cannot be read by the user. This is usually
disliked by users (Eichelberger and Schmid, 2009).

Nodes and edges should not overlap each other (Eichelberger,
2002, 2005; Eichelberger and Schmid, 2009; Sun and Wong,
2005). If a node overlaps an edge, it might look like the edge
enters and exits the node instead of going past it. If an edge
overlaps a node, it is not as problematic. This is usually tolerated
by users but should, however, be avoided (Eichelberger and
Schmid, 2009).

Edges that are not intended to be joined should not overlap
each other, which means that every edge should be readable as
an individual (Eichelberger, 2002, 2005; Eichelberger and Schmid,
2009). Edge overlapping can be differentiated from edge crossing
by defining overlapping as two edges having a path segment
in common, rather than just a crossing point (Eichelberger and
Schmid, 2009). Edge overlapping can also be considered as edge
crossing (Sun and Wong, 2005). Edge overlapping is similar to
node overlapping. At least a segment of one edge is not visible
as an individual path, which means the entire diagram is not
readable (Eichelberger and Schmid, 2009).

A10 — Class sizes. The difference among sizes of the rectangles
representing classes should be minimized (Eichelberger, 2005).
The class sizes should also be as small as possible (Eichelberger,
2005, 2002).

3. Related work and limitations of our study

First, in Section 3.1, we discuss related work on evaluating
layout-quality of UML diagrams. This leads us to formulate some
limitations on the scoping of our approach in Section 3.2.

3.1. Related work

In Section 2, we described the concepts relevant to defining
the quality of layout of (UML) diagrams and the aesthetic criteria
that relate to it. Regarding the automatic evaluation of the layout
of (class) diagrams, no prior work is known to us. Indeed, the
extensive collection of UML diagrams used for this study is rela-
tively new and unique. The creation of this dataset has opened up
the opportunity for this study. However, some works are related
to different parts of this study: this includes estimating layout
quality and finding the most important layout aesthetics. The
related work on these topics is described in the remainder of this
subsection.
4

3.1.1. Classifying layout quality
As seen in Section 2, work has been done to analyze individ-

ual layout aesthetics and how they contribute to the perceived
quality of a diagram. However, no work is found where the
goal is to use those aesthetics to estimate the overall quality
somehow. Störrle (2011) classifies diagrams as ‘‘good’’ or ‘‘bad’’
to conduct his study, but mentions that not much emphasis is
put on this classification. He classifies diagrams that conform
to positive aesthetics and do not violate negative aesthetics as
‘‘good’’ diagrams.

3.1.2. Importance of aesthetics
When it comes to finding the importance of different layout

aesthetics for the overall quality, some work has been done,
which was also touched upon in Section 2. However, no solid
empirical evidence was found for many of the aesthetics we
reported earlier.

Purchase et al. (1996) performed a user study to validate the
correlation between some aesthetics and the understandability of
graphs. The participants had to carry out tasks to test how well
they could understand graphs with different conformance levels
to the investigated aesthetics. The tasks had to be completed
within a time limit, and the measured variable was whether the
participants could find the correct answers to the tasks or not. The
study showed that minimizing line crossings (A1) and line bends
(A2) had a significant correlation with the understandability of
graphs, while the hypothesis that increasing local symmetry (A6)
increases understandability is unconfirmed.

Purchase (1997) performed a similar study, with the difference
that some additional aesthetics were investigated and that both
the taken time and the correctness of the answers to the tasks
were measured. The study showed that the effect of minimizing
line crossings (A1) was significant for both time and correctness,
the effect of minimizing line bends (A2) was significant for cor-
rectness but only approaches significance for time, and the effect
of increasing symmetry (A6) was significant for time but not
for correctness. However, the effect of increasing orthogonality
(A3) and maximizing the minimum angle between edges leaving
the same node (A7) was non-significant for both correctness and
time.

Purchase et al. (2000) performed another kind of user study
to test the user preference of diagrams with different values
of different aesthetics. The participants were given pairs of di-
agrams: one with a high value of a certain aesthetic and one
with a low value of the same aesthetic. They then had to choose
which of the diagrams they preferred. The data were analyzed
by calculating a percentage preference for each aesthetics. The
percentage preference was 93% for fewer line crossings (A1), 91%
for fewer line bends (A2), 73% for narrower diagrams (A5), and
61% for increased orthogonality (A3). All results were statistically
significant.

Purchase et al. (2001) also performed a user study where par-
ticipants were given a text specification and an example diagram
modeling the specification. The example diagram had a medium-
high value of all of the investigated aesthetics. The participants
were then presented with diagrams with higher and lower aes-
thetics values than the example diagram, where some diagrams
modeled the same specification as the given one and some did
not. They were to answer if the presented diagrams modeled the
given specification or not, and both the accuracy and time of the
answers were measured. After the study, the authors concluded
that only the aesthetic of minimizing line bends (A2) seemed to
matter, although only a little. None of the other investigated aes-
thetics, including line length variation (A4), orthogonality (A3),
symmetry (A6), node distribution (A8), and having short but not
too short lines (A4), had a significant impact.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

n
t
t
t
c
o
t
a
o

a
o
n
o
b
o
l
A
s
a
G
s
(
l

c
a
e
b
w
f
b
s
p
s

i
p
a

3

U
(
U
a
f

m
U
a
i
c
e
a
F
o
c
s

l
g
c
s

Ware et al. (2002) performed a user study where the time
eeded for participants to perceive the shortest path between
wo specified nodes in a graph was measured. In the graphs,
he values of several aesthetics were varied. The study showed
hat the continuity of the shortest path (related to A2) and line
rossings on the shortest path (A1) were significant. However,
ther aesthetics, including the total number of line crossings in
he graph (A1), line crossing angles on the shortest path (A1),
verage line length on the shortest path (A4), and total line length
n the shortest path (A4), were not significant.
As mentioned in Section 2, Eichelberger (2002) orders 14

esthetics for class diagrams in a priority list. The importance
f aesthetics was validated through discussions in software engi-
eering courses, evaluations of CASE tools, and the author’s work
n a domain-specific layout algorithm. However, no evaluation
y making user studies was done. In the list, general constraints
n nodes, including distances between nodes (A8), avoiding over-
apping (A9), and minimizing class sizes (A10), are in third place.
voiding line crossings (A1) is in fifth place. General edge con-
traints, including line lengths (A4) and line bends (A2), as well
s not placing nodes too close to edges (A8), is in sixth place.
raph drawing constraints, including aspect ratio (A5), drawing
ize (A5), symmetry (A6), line angles (A7), and, again, line bends
A2), are in fourteenth place. Many of the other aesthetics on the
ist relate to semantics in diagrams.

In the field of Business Process Models (BPM), there is a
onsiderable number of studies that research the quality, layout,
nd aesthetics of diagrams that depict business process mod-
ls (Effinger et al., 2010; Dikici et al., 2018). On the one hand,
oth BPM and class diagrams are abstract descriptions of (soft-
are) systems. However, diagrams for BPM are quite different

rom class diagrams because business process models describe
ehavioral aspects of systems, while class diagrams describe the
tructural aspects of systems. Still, some general heuristics ap-
ear applicable to both, such as line-crossings, orthogonality, and
ymmetry.
Most of the approaches in the BPM area are aimed at finding

ndividual ‘flaws’ of diagrams (suggesting opportunities for im-
rovement), rather than being aimed at the grading of diagrams
s a whole.

.1.3. Prior work
On the topic of using image processing to find features of

ML diagrams, earlier work was done by Karasneh and Chaudron
2013a,b). They have developed a system that reads an image of a
ML diagram and extracts its semantic meaning, i.e., the classes
nd relationships. It then creates an XMI file of the UML model
rom this information.

Moreover, Ho-Quang et al. (2014) have developed an auto-
atic classifier that recognizes whether an arbitrary image is a
ML class diagram. That work was done using similar methods
s used in our study: It uses image processing to find features in
mages and then applies machine learning to train a model that
an distinguish if an image is a class diagram or not. The differ-
nce with this study is that we have to recognize more aspects
nd details of the layout of the UML diagrams for our problem.
urthermore, their approach delivers a binary classifier (UML-CD
r not). Instead, in our approach, we aim for an evaluator that
an estimate the layout quality as a numerical value (on a 5-point
cale) for any UML class diagram.
In N, ikiforova et al. (2014), Nikiforova et al. create a list of

ayout principles and then analyze how different layouting al-
orithms that are used by some popular UML modeling tools
omply with these criteria. They look at layouts of both class and
equence diagrams.
5

3.2. Limitations & scoping of our study

This section describes aspects of UML diagrams that we leave
out of scope of our study for assessing layout quality.

1. Uniformity : A generally accepted guideline is to follow
uniformity, i.e., apply the same layout principle in the same
way to all elements in the diagram. This applies to many
of the aesthetics above. For example: to use the orthog-
onal placement for all classes in the diagram – not only
for some, or to use only straight angles in the elbows of
lines – not a mix of straight and curved arrows. In a way,
uniformity is a meta-principle, and we have not considered
any features based on uniformity in the remainder of our
study.

2. UML Conventions : Several layout conventions specific to
UML class diagrams may not hold for arbitrary (struc-
ture) diagrams. For example, for generalization (inheri-
tance) relations, the more general class is conventionally
drawn (vertically) above the specialized class. Another ex-
ample is that dependencies are preferably drawn pointing
downward, possibly horizontal, but preferably not upward.
While we imagine that including such conventions could
be useful, we leave these aspects out of the scope of our
current study.

3. Text : UML diagrams contain all types of text: as names
of classes, attributes, operations, labels describing relations,
or labels near the start/end of arrows to indicate multiplic-
ities. The quality of diagrams is affected by many factors
related to these texts, such as, e.g., the font and the dis-
tance of text to rectangles/lines. However, we leave factors
related to the shape and placement of text in diagrams out
of the scope of this study.

4. Highlighting/Coloring : In practice, UML diagrams frequently
contain visual cues for highlighting, such as the use of color
and sometimes the use of underlining or bold-facing or
using thicker line-widths. While these are relevant for the
cognition of diagrams, we leave out of scope all these as-
pects related to the highlighting/coloring in UML diagrams.

5. Semantical aspects of the layout of diagrams : There are
also many ‘semantical aspects’ that relate to the quality
of a diagram. For example, for inheritance relations, there
is a convention that places the general class above its
specialized class(es). However, this is not required by the
UML-notation, and also some developers deviate from this.
We point out that this property can only be checked by
taking the meaning of lines (i.e. line represents inheritance)
into account. In our study, we have opted to leave such
aspects out of scope.
For future reference, other examples of semantical aspects
relate to: appropriate naming of classes/relations, appro-
priate directions of dependencies, appropriate meaning of
aggregation/composition relations.

6. Design Principles : Design principles apply to the quality
of a design. Some design principles can be detected in a
diagrams of a design, such as for example (high) coupling,
by looking at the number of lines that are connected to
a rectangle. Other principles that are mostly syntactical
are: (avoid) cyclic dependencies, and use of proper layer-
ing (no jumping, no cycles). However, many other design
principles cannot be detected by looking at the layout of
the diagram only (e.g. allocation of single responsibility).
We imagine that other techniques (such as source code
analysis) are better ways to detect quality of the design.
In our study, we chose to leave checking design principles
out of scope.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413
Fig. 1. Overview of research method.
7. Types of Class Diagrams : Sometimes, the UML class diagram
notation is used for depicting (relational) data models and
hence represents ER-diagrams.1 While our approach can,
in principle, also work for ER diagrams, our focus in this
paper is only on diagrams that represent software designs.
Moreover, there are several pragmatic aspects that we
needed to consider when creating the dataset we used for
our study. More details on this are described in Section 4.1.

4. Research method

This section describes the methods used for performing the
research in this study. Fig. 1 shows a high-level overview of our
research. We create a curated set of UML Class diagrams out
of an extensive collection of UML diagrams, establish a ground
truth for the quality of the layout through manual labeling of the
diagrams by a group of UML experts, apply image processing to
extract various features of the layout of the diagram mentioned
in the literature as potentially relevant to the layout quality of
diagrams, and apply supervised machine learning on the set of
images, ground truth, and features. Next, we explain these steps
in more detail.

4.1. Construction of the dataset of images

The starting point for our research is the Lindholmen-dataset
of images created by Hebig et al. (2016). This dataset consists
of almost 100,000 UML diagrams. This dataset was assembled
through mining open source repositories on GitHub for images.
The images found there were then classified as being either
UML diagrams or not, using the work done by Ho-Quang et al.
(2014). The Lindholmen dataset includes a variety of types of UML
diagrams: most diagrams are class diagrams, but there are also
sequence diagrams, component diagrams, and some others in-
cluded. Moreover, due to being constructed through mining many
GitHub projects, the Lindholmen dataset may (and does) con-
tain some diagrams that are duplicates of each other (although
sometimes under different file names).

1 Formally, UML is a superset of ER-diagrams.
6

Because we do manual labeling of the diagrams to obtain the
ground truth, we scaled down to an initial subset of 3000 dia-
grams selected randomly from the Lindholmen dataset. From this
subset, we further selected diagrams that satisfy the following
criteria:

C1 — The image should be of the type class diagram. This is a scop-
ing decision: our focus is on diagrams that represent a system’s
structure. For this effort, we have left out other diagrams that
describe structure (such as component or package diagrams) to
obtain a mostly homogeneous dataset. Extending our study to
these other structural diagram types is an option for future work.

C2 — Classes should be represented as rectangular boxes in the
image. It is part of the UML standard to draw class diagrams as
rectangles. This did not exclude many diagrams. However, one
category of class diagrams excluded were those where classes
were drawn using rectangles with rounded corners. These were
left out to get better performance of the image recognition of
rectangles.

C3 — The image must be drawn by tool, not by hand. This is a
scoping decision: opening up for hand-drawn diagrams would
require different approaches for image recognition.

C4 — The image must not be a screenshot of some UML model-
ing tool where a UML diagram is shown inside some application,
i.e., the diagram also shows toolbars and menus of the drawing tool.
The reason for this requirement is to avoid that menu bars and
toolbars could be recognized as rectangles.

C5 — the image should display the entire diagram. We think this
makes sense for most applications. We did not want to deal with
this as a corner case.

C6 — The image should only contain diagram elements as defined
by the UML notation (i.e. no additional annotations or icons-except
UML-comment-boxes). In creating software documentation, it is
not uncommon that developers include domain-specific icons or
pictures of actors. We scoped out dealing with such aspects. In
practice, we did not exclude many diagrams from the dataset for
this reason.

C7 — The image should not be too simple. The criteria we applied
for this are that a diagram should contain at least four classes and
at least three relations.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

C
w
t

a
p
r

d
b

s
o
f
d
a
l
f
f
f

d
d
o
c
t
S
d
g
D

4

i
e
t
a
f
a
a

5

Fig. 2. Distribution of the number of classes per diagram.
T
m
w
h

8 — No duplicates of diagrams are included. The original dataset
as found to contain some duplicates. This does not contribute
o our study.

The conformance to some criteria (C1, C2, C3) is ensured
utomatically through the use of the existing classifier and image-
rocessing tools (Ho-Quang et al., 2014). For the remaining crite-
ia, we checked the conformance manually.

After applying these above criteria as filters, a total of 654
iagrams (out of around 3.000 in the starting set) remained to
e useful.
An additional practical constraint is that our image processing

hould extract the important features of the diagram. However,
ur image processing could not detect any lines between classes
or some diagrams. This can happen because lines are drawn in a
otted style with too much space between the dots, or if the lines
re drawn in a curved style or with multiple angles along a single
ine. As the last step, we filtered out an additional 45 diagrams
or which the image processing could not detect enough features
rom the image. This left us with a total of 609 diagrams in the
inal dataset for our study.2

We give some descriptive statistics for the final dataset: The
istribution of the number of classes is shown in Fig. 2. This
istribution is similar to the distribution of diagram sizes of the
verall Lindholmen dataset. Given that the Lindholmen dataset is
ollected from ’the real world’ open source projects, we believe
his set is fairly representative for software engineering practice.
ome characteristics of this distribution are: the largest group of
iagrams contains between 8 and 12 classes. The second-largest
roup of diagrams contains fewer than eight classes per diagram.
iagrams with more than 32 classes are pretty rare.

.2. Establishing a ground truth of layout quality

The original dataset contains diagram images without any
nformation about their layout quality. To be able to train and
valuate a supervised machine learning model, the diagrams need
o be labeled with a layout quality. The labeling was done manu-
lly by six experts in the areas of software modeling and HCI:
our of the authors (one master’s student, two Ph.D. students,
nd a professor), and in addition, one more Ph.D. student and an
ssociate professor.

2 The resulting dataset can be accessed at this link: http://zenodo.org/record/
037744#.YO1lUagzaUk.
7

4.2.1. Labeling strategy
This section describes the steps of this labeling process: we

chose a 5-point Likert scale (Likert, 1932) for labeling diagrams.
This scale is symmetric around a neutral value and is intended
to have equal distances between the options: 1: Very Bad, 2:
Bad, 3: OK, 4: Good, and 5: Very Good. A Likert scale is an
ordinal scale, but if the distances between the options are the
same and the scale is symmetric around a middle point, it can
also be treated as an interval scale. This is of interest regarding
machine learning because many regression algorithms assume an
interval scale for the dependent variable. We discuss our machine
learning approaches further in Section 4.5.

To streamline the labeling, a software tool was developed to
support this. The primary function of this tool was to automati-
cally show (in sequence one after each other) the UML diagrams
to be labeled and allow the easy entry of the assessment of the
layout of the diagrams. This tool showed images on a computer
screen and gave the labelers the following instructions: ‘‘Please
assess the diagrams with your perceived layout quality of it between
(1) Very bad and (5) Very good. Consider how aesthetically appealing
you find the diagram layout and how well you think it would help
to understand the system it represents’’ Thus, labeling data was
entered digitally and linked to the images.

Next, we describe the process of establishing ground truth
labels. The labeling was done in several rounds. From the start,
guidelines were given on how to perform the labeling. These took
the form of (i) a list of typical flaws in layouts of class diagrams
and (ii) guidelines that indicate which amount of flaws roughly
corresponds to which label on the Likert scale. In any case, these
guidelines still left some freedom for labelers on how to weigh
the magnitude/impact of layout flaws on the understandability
of the diagram.

The initial round involved four of the experts. Each were given
30 diagrams selected randomly from the dataset to label. From
this initial set, diagrams in which labels differed significantly
were discussed by the labelers. The discussions led to two slight
refinements of the guidelines for labeling:

Guideline 1: ‘‘Assess only the layout of the diagrams without
considering the semantic content of them.’’.

his guideline was added because some labelers took some se-
antics of the classes into account when assessing the quality
hile others did not. For example, diagrams with a badly drawn
ierarchy were assessed with low quality in some cases.

Guideline 2: ‘‘Think about how many different issues you find
with the diagrams that could be improved. A tiny diagram with-
out any issues could, for example, have a good layout albeit very

simplistic’’.

http://zenodo.org/record/5037744#.YO1lUagzaUk
http://zenodo.org/record/5037744#.YO1lUagzaUk

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

p
r
h
a
e

S
a
h
r
C
d
i
a
t

l
l
1
f
t
o
b

n

I
2
s
c
s
l
a
b

4

a
i
e
r
f

w
C
b
p
m

4

i
t
T
p

a

A
T
s
r
p
F

A
o
i
l
t
L
o
n
h
t

A
t
t
f
l

The diagrams with the highest variation in quality labels ap-
eared to be very simple, i.e., diagrams with few classes and
elations. Such diagrams were, in some cases, not considered of
igh quality even if there was no room for improvement. It was
greed that diagrams could have an outstanding layout quality
ven if the complexity of the diagram is low.
For these initial expert-labels, the Intra-Class-Coefficient (ICC

hrout and Fleiss, 1979) was calculated to check the agreement
mongst the raters. ICC gives a value between 0 and 1, where a
igher value indicates a higher agreement. There was an inter-
ater agreement with an ICC of 0.50, which is considered fair by
icchetti (1994), and (just) moderate by Koo and Li (2016). It was
ecided that this level of agreement was acceptable since there
s no absolute truth of what is a right or wrong layout quality
ssessment. Perceived quality is somewhat subjective, and it must
herefore be accepted to differ between different people.

The refined guidelines were then used by all six experts for the
abeling of the remaining diagrams. Because the guidelines now
ed to more agreement (ICC of 0.64, interpreted as good (Cicchetti,
994) or moderate (Koo and Li, 2016)), it was considered enough
or each diagram to be labeled by precisely two raters, and take
he average of those ratings as the final label for the ground truth
f the diagram. Hence, the ground truth is no longer an integer
ut can be a fraction — specifically, halves.
Fig. 4 shows the distribution of the final labels. It has a skew-

ess of −0.4948, i.e., slightly skewed towards higher quality
values. This is reasonable because diagrams are desired to have a
high layout quality. The kurtosis of the quality labels are −0.3360.
t shows that our dataset is neither flat nor peaked (Leguina,
015). Combined with the skewness category of approximately
ymmetric (Bulmer, 1979), the distribution of our dataset is fairly
lose to normal (Leguina, 2015); this normal-like distribution is
uitable for machine learning. The fact that some diagrams are
abeled with extreme values of 1 and 5 allows machine learning
lgorithms to learn from both good and bad diagrams, which is
eneficial.

.3. Feature extraction by image processing

This section describes the extraction of features from the im-
ges that can be used by machine learning. Our feature extraction
ncludes three major parts: Processing the images to find key el-
ments in the diagrams, calculating basic features that represent
elevant layout aesthetics, and finally calculating some complex
eatures based on more basic image features.

The approach we use in image processing is based on the
ork of Ho-Quang et al. (2014). We extend this tool, written in
/C++, with our feature calculation from the elements detected
y the image processing. This section briefly describes the image
rocessing algorithms used. We also validate how well these
ethods work with the class diagram dataset used in this study.

.3.1. Image processing algorithms
Four common image processing algorithms are used for find-

ng elements,3 in the diagram images. Those are Canny edge detec-
ion Hough Transformation, Suzuki 85 and Ramer–Douglas–Peucker.
he basics of these algorithms are described in the following
aragraphs.

3 In our paper, diagram elements are lines and rectangles.
8

Canny edge detection. Canny edge detection (Canny, 1986) is
an algorithm for detecting edges in images. First, the algorithm
removes noise in the image by blurring it using a Gaussian fil-
ter (Burt, 1981). The blurred image is then used to find the edge
gradient and direction for each pixel in the image. Then, the
algorithm removes any pixels not part of an edge. This happens if
the pixel is not a local maximum in the direction of the gradient.
Finally, the edges are thresholded to only keep those with a high-
intensity gradient or connected to such an edge. This removes all
shorter lines that are considered noise.

Hough transformation (HT). Hough Transformation (HT) (Duda
and Hart, 1972) is a procedure for detecting straight lines in im-
ages. It is applied to an image where edges are already detected.
The edges are represented as a direction and distance from the
center of the image. Edges with the same direction and distance
are considered to form a line.

Suzuki 85 (s85). Suzuki 85 (S85) (Suzuki et al., 1985) is a border-
following algorithm that is used to find contours in an image.
First, the pixels in the image are scanned, and when a pixel that
satisfies a condition for being a starting point of a border is found,
that border is followed and all pixels on it are marked.

Ramer–douglas–peucker (RDP). The Ramer–Douglas–Peucker
(RDP) algorithm (Ramer, 1972) is used to approximate a polygon
with few points from a curve with arbitrarily many points. The
algorithm calls itself recursively and removes the points that
are least important for representing the curve. RDP is a suitable
algorithm for finding shapes. For example, a curve approximated
with four points could potentially be a rectangle.

4.3.2. Defining image features for layout aesthetics
Based on the literature (described in Section 3.1.2), we se-

lected a set of candidate diagram features that appeared most
important for layout quality. Mostly, these features depend on
recognizing rectangles and lines in the diagrams. Below, we de-
scribe a set of aspects of quality of layout (labeled A1 to A10) and
propose a set of image features (labeled F1 to F16) as the basis
of which the aspects can be computed/approximated. Table 5
summarizes the image features and their relation to aesthetics.

A1 — line crossings. The number of crossing lines should be mini-
mized, and the angles of the line crossings should be maximized.
The number of lines crossing each other and their angle can be
computed from image features F1 Line crossings and F2 Crossing
ngles.

2 — Line bends. The number of line bends should be minimized.
he lines extracted in the image processing are divided into
traight segments. For example, if a line has one bend, it is
epresented as two straight line segments that connect at the
oint of the line bend. Thanks to this representation, a feature
3 Line bends can easily be computed.

3 — Orthogonality. One aspect of aesthetics is the orthogonal
rientation of classes. For the image processing, this translates
nto rectangles that should be found on an orthogonal grid and
ines drawn horizontally or vertically. The angle of the lines and
heir deviation from orthogonality is extracted by a feature F4
ine angles. This image feature can also be used to classify lines as
rthogonal or not orthogonal and thus the feature Line orthogo-
ality. The positions of the found rectangles can be checked to see
ow well they conform to an orthogonal grid, which gives rise to
he feature Rectangle orthogonality.

4 — Line lengths. Lines should not be too long or too short, and
he line lengths should be as uniform as possible. The length of
he lines can easily be found and can be used to compute the
eatures F7 Average Line length, F8 Line length variation, F9 Longest
ine and F10 Shortest line.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

m
w
c
t
d
r
w
w

A
i
(
a
h
c

A
r
b
f
t
f

A
w
a
t
a
b
t
s
q
c
n
w
a

A
o
c
m
d

A
t
a
s

4

a
i
a
r
a
d

F
c
l
f
w
u
t
n
c
c

F

F
l

F

A5 — Diagram drawing size. The size of a diagram should be
inimized while still fitting all of the diagram elements and
ithout conflicting other aesthetics by squeezing elements too
lose together. The feature F11 Rectangle coverage is proposed
o address this aesthetic. F11 indicates how much of the total
iagram area is covered by rectangles. Furthermore, the aspect
atio of a diagram could also impact its layout quality. Therefore,
e also define the feature F12 Aspect ratio using the height and
idth of the diagram.

6 — Symmetry. Symmetry in diagrams should be maximized to
ncrease understandability. However, according to Purchase et al.
2001), a computational algorithm to evaluate the symmetry of
diagram would be complex and is only a very rough model of
ow humans perceive symmetry. It was therefore chosen not to
ompute any image features regarding symmetry.

7 — Line angular distances. If multiple lines are going from a
ectangle, the minimum angle between two of those lines should
e maximized. Unfortunately, the image processing used only
inds standalone rectangles and lines and no connections between
he elements. Since the lines are not related to rectangles, no
eature was computed for this aesthetic.

8 — Class placement. Rectangles should be distributed uniformly
ithin the diagram, and they should not be too close or too far
part. The positions of the rectangles can be computed using
he features Rectangle distribution and Rectangle proximity. Other
spects of this aesthetic include that connected rectangles should
e close to each other, rectangles should not be too close to lines
hat they are not connected to, and rectangles with a high degree
hould be placed near the center of the diagram. All of these re-
uire connections between diagram elements; establishing such
onnections between different diagrams is a high-level analysis
ot supported by the image processing that we use. Therefore,
e have not defined any image features to represent these latter
esthetics.

9 — Overlapping. Rectangles and lines should not overlap each
ther. The image processing can identify rectangles that represent
lasses, but it gets confused by overlapping elements and cannot
ake sense of what is represented in those cases. Therefore we
o not define any image feature for this aesthetic.

10 — Node sizes. Rectangles should be as small as possible, and
he difference among their sizes should be minimized. For these
esthetics we define the image sizes the features F15 Rectangle
ize and F16 Rectangle size variation.

.4. Definitions of image features

This section provides definitions of the features based on im-
ge processing. These features will be the input to machine learn-
ng. These features assume that the image processing provides
set of rectangles (representing classes) and lines (representing
elations between classes). Other than features related to diagram
esthetics (F1–F16), we include two features that describe the
iagram itself (F17 and F18).

1 — Line crossings. The number of line crossings in a diagram
an be found by counting the intersections between the found
ines. However, simply using the number of line crossings as a
eature would favor diagrams with fewer relationships, as they
ould more likely have fewer line crossings. A relative value was
sed to counter this: the ratio of the number of line crossings to
he maximum possible number of line crossings. The maximum
umber of line crossings occurs when every line in the diagram
rosses every other line. In this case, there would be #lines×(#lines−1)

2
rossings. Eq. (1) shows the calculation of F1.

1 =
#crossings × 2

(1)

#lines × (#lines − 1)

9

F2 — Crossing angles. For each line crossing, the crossing angle
is calculated — this is a value in the range from 0◦ to 90◦. The
average crossing angle is then calculated as the feature F2. Eq. (2)
shows the definition.

F2 =

∑#crossings
i=1 angle(crossingi)

#crossings
(2)

F3 — Line bends. Lines are represented as straight segments, and
the number of bends on a line is one less than its number of
segments. The average number of bends per line is calculated as
feature F3. Eq. (3) shows the definition.

F3 =

∑#lines
i=1 bends(linei)

#lines
(3)

F4 — Line angles. The deviation angle from orthogonality, i.e., how
far from being horizontal or vertical, is calculated for each line. If a
line is more than 45◦ degrees from being horizontal, it is less than
45◦ from being vertical and vice versa, which makes the deviation
from orthogonality a value between 0 and 45. The average line
angle is calculated and used as the feature F4. Eq. (4) shows the
definition.

F4 =

∑#lines
i=1 angle(linei)

#lines
(4)

F5 — Line orthogonality. A line is orthogonal if it is exactly hor-
izontal or vertical. A margin of error of 1◦ is used to allow for
small deviations due to the quality of the image and the image
processing. The number of orthogonal lines is divided by the total
number of lines to get a ratio between 0 and 1 as a feature F5.
Eq. (5) shows the definition.

F5 =

∑#lines
i=1

{
1 if angle(linei) < 1◦,

0 otherwise

#lines
(5)

F6 — Rectangle orthogonality. The orthogonality of rectangles is
calculated by counting the number of distinct rectangle positions
on the x− and y-axis, respectively. For this purpose, the center of
a rectangle is considered its position. A set of occupied positions
is kept for both axes, and all rectangles are looped through and
examined to populate this set. If the currently examined rectangle
has a position that is not in the set, its position is added to the
set. If the rectangle’s position is (within a small error margin) in
the set, then no position is added to the set. The ratio between
the number of distinct rectangle positions and the number of
rectangles is calculated for the horizontal and vertical directions.
The values for these directions are then added together. Eq. (6)
shows the definition.

F6 =

(
1 −

{
0 if #xPositions = 1
#xPositions
#rectangles otherwise

)

+

(
1 −

{
0 if #yPositions = 1
#yPositions
#rectangles otherwise

) (6)

F7 — Average line length. This feature is the average length of all
found lines. Eq. (7) shows the definition.

F7 =

∑#lines
i=1 length(linei)

#lines
(7)

F8 — Line length variation. This feature measures how much the
line lengths vary by calculating the standard deviation of the
lengths. Eq. (8) shows the definition.

F8 = StDev({length(linei)|1 ≤ i ≤ #lines}) (8)

9 — Longest line. This feature is the length of the longest found
ine. Eq. (9) shows the definition.

9 =
#lines
max length(linei) (9)

i=1

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

f

F

F
t
c
r
r

F

F
w
t

F

F

F
c
a
F

F

F
r

F

F
o
d

F
d
o

4

i
i
m
l
t
t

s

F10 — Shortest line. This feature is the length of the shortest
ound line. Eq. (10) shows the definition.

10 =
#lines
min
i=1

length(linei) (10)

11 — Rectangle coverage. This feature represents how much of
he total diagram area is covered by rectangles (which represent
lasses). This is defined as the ratio between (i) the sum of all
ectangle areas and (ii) the total area of the diagram. This gives a
atio between 0 and 1. Eq. (11) shows the definition.

11 =

∑#rectangles
i=1 size(rectanglei)

diagramwidth × diagramheight
(11)

12 — Aspect ratio. This feature is calculated by dividing the
idth of the diagram by the height of the diagram. Eq. (12) shows
he definition.

12 =
diagramwidth

diagramheight
(12)

13 — Rectangle distribution. For this feature, the image is di-
vided into four equal quadrants (obtained by drawing horizontal
and vertical lines through the image’s center point). For each
rectangle, the area of each of the four sections that it covers is
calculated. These rectangle areas are summed up for the four
sections, respectively, which gives each a value for how much of
it is covered by rectangles. The variance of these values indicates
whether all areas of the image are used. Eq. (13) shows the
definition of this feature.

F13 = var({rectangleCoverage(quadranti)|1 ≤ i ≤ 4}) (13)

14 — Rectangle proximity. The distance from its center to the
enter of the other rectangles is calculated for each rectangle. The
verage of this distance over all rectangles is used as the feature
14. Eq. (14) shows the definition.

14 =

∑#rectangles
i=1 shortestDistanceToOtherRectangle(rectanglei)

#rectangles
(14)

15 — Rectangle size. This feature is the average area of all found
ectangles. Eq. (15) shows the definition.

15 =

∑#rectangles
i=1 size(rectanglei)

#rectangles
(15)

F16 — Rectangle size variation. This feature measures how much
the rectangle sizes vary by calculating the standard deviation of
the sizes. Eq. (16) shows the definition.

F16 = StDev({size(rectanglei)|1 ≤ i ≤ #rectangles}) (16)

17 — Number of rectangles. This feature reflects the number
f rectangles detected by image processing. This corresponds
irectly to the number of classes.

18 — Number of lines. This feature reflects the number of lines
etected by image processing. This corresponds with the number
f relationships between classes.

.5. Considerations on selecting machine learning approaches

We mentioned that we treat our layout-quality label as an
nterval scale. The use of interval scale instead of categorical is
mportant in our pursuit for a prediction model because there is a
eaningful notion of distance, e.g., for a data point with an actual

abel of 4, a prediction of 3.5 is better (‘‘closer to the actual label’’)
han a prediction of 2. This distance information is lost if we treat
he label as categorical type.
10
The use of interval scale eliminates certain machine learning
approaches. The problem can now be considered a regression
problem. The fact that there are multiple features to take into
account also limits the types of regression approaches. Further-
more, the limited size of the training set prevents an optimal use
of neural-network techniques.

With the aforementioned considerations, we selected 12 al-
gorithms to experiment with that covers a diversity of machine
learning techniques. This selection includes traditional regression
approaches as well as support vector, rule-based, and tree-based
approaches:4

1. Gaussian Processes (Mackay, 1998)
2. Linear Regression
3. Multi-layer Perceptron
4. Simple Linear Regression
5. Support Vector Regression (SMOreg) (Shevade et al., 1999;

Smola and Schoelkopf, 1998)
6. Decision Table (Kohavi, 1995)
7. M5 Rules (Holmes et al., 1999; Quinlan, 1992; Wang and

Witten, 1997)
8. Decision Stump
9. M5P (Quinlan, 1992; Wang and Witten, 1997)

10. Random Forest (Breiman, 2001)
11. Random Tree
12. REP Tree

5. Machine learning results and evaluation

This section describes the results of the machine learning
algorithms and their evaluation. The software tool Weka5 was
used for the machine learning parts of this research.

5.1. Performance of the machine learning

In our study, we trained different machine learning algo-
rithms. In all cases, we used 10-fold cross-validation: the entire
dataset is split randomly into ten folds (‘parts’). Then, ten runs are
performed: one fold is held out as a validation set in each of these
runs, and the other nine folds are used as a training set. Finally,
when all ten folds have served as a validation set, the average of
the ten validation results is taken as the final result.

In an attempt to increase the performance of our regression
models, we also trained the models using preprocessed dataset.
The preprocessing scales and translates each feature individually
such that it is in the range between zero and one.

The transformation for each feature achieves a normalization
and is given by the following formulation.

x′

i = (xi − min(X))/(max(X) − min(X)) (17)

where xi denotes the value of the feature for data point i and X
contains all values of xi.

Table 1 shows the evaluation results for the different machine
learning algorithms. The table includes three evaluation metrics:
Pearson’s correlation coefficient (column PCC), Mean Absolute
Error (MAE), and Relative Absolute Error (RAE). Pearson’s cor-
relation coefficient is the ratio between the covariance of two
variables and the product of their standard deviations; thus the
result always has a value between −1 and 1. The further away the
coefficient is from zero, the stronger correlation there is between
the two variables. MAE is the ‘‘average difference’’ between actual

4 Consult the Weka documentation at https://weka.sourceforge.io/doc.stable/,
pecifically the subpackages of weka.classifiers, for more information on
the algorithms.
5 https://www.cs.waikato.ac.nz/ml/weka.

https://weka.sourceforge.io/doc.stable/
https://www.cs.waikato.ac.nz/ml/weka

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

d
c
c
o
±

w
e

t
m
s

T
b
m
p
c
a
s
f
.
t
t
e
q
t
t
a
v
t

4
f

Table 1
Machine learning approach evaluation.
Dataset
preprocessing

Algorithm PCC MAE RAE

None

RandomForest 0.699 0.539 69.4%
GaussianProcesses 0.659 0.562 72.4%
LinearRegression 0.655 0.566 73.0%
SMOreg 0.646 0.569 73.4%
REPTree 0.574 0.629 81.0%
DecisionTable 0.535 0.630 81.3%
DecisionStump 0.494 0.660 85.1%
RandomTree 0.477 0.743 95.8%
SimpleLinearRegression 0.470 0.665 85.7%
MultilayerPerceptron 0.367 0.832 107.3%
M5P 0.152 0.640 82.5%
M5Rules −0.091 3.815 491.8%

Feature scaling

RandomForest 0.709 0.533 68.7%
GaussianProcesses 0.659 0.562 72.4%
LinearRegression 0.655 0.566 73.0%
SMOreg 0.646 0.569 73.3%
REPTree 0.572 0.630 81.2%
DecisionTable 0.535 0.630 81.3%
RandomTree 0.531 0.700 90.2%
DecisionStump 0.494 0.660 85.1%
SimpleLinearRegression 0.470 0.665 85.7%
MultilayerPerceptron 0.367 0.832 107.3%
M5P −0.004 0.771 99.3%
M5Rules −0.091 3.823 492.8%

and predicted quality labels, i.e., an arithmetic average of the
absolute errors from each data point. RAE is expressed as a ratio,
comparing a mean error (residual) to errors produced by a trivial
or naive model. A model which produces results that are better
than a trivial model will result in a ratio of less than one. The table
is sorted by MAE and grouped by dataset preprocessing kind.

The best-performing machine-learning approach is the Ran-
omForest algorithm with dataset preprocessing. It achieves a
orrelation of 0.709, which means our regression model can ac-
ount for 70.9% of the quality value of a diagram layout. An MAE
f 0.533 means that on average, the predicted quality label is
0.533 points away from the actual label. It has an RAE of 68.7%,
hich means that our prediction is better than a trivial guess,
.g., stamping a quality label of ‘‘3’’ for all diagrams.
We performed grid search on the random-forest model to

weak the parameters with the hope of producing better perfor-
ance. From this search, we found that the default parameters
upplied by Weka already gave us the best MAE value.
As an alternative view on the performance of the evaluator,

able 2 visualizes the results of our 10-fold validation using the
est performing algorithm in a confusion matrix. A confusion
atrix is usually used to visualize predictions in classification
roblems and shows the distributions of predictions for each
lass. In order to use this visualization for our regression-based
pproach, we defined categories of the size of 0.5 on a 5-point
cale (with the lowest value being 1.0). The evaluations made
or layout quality by our evaluator are rounded to the nearest
5, which gives nine classes between 1.0 and 5.0. The rows in
he table represent the ground-truth values of the images, and
he column shows the predicted value for diagrams. We can, for
xample, see that 52 diagrams labeled with a ground truth-layout
uality of 3.5 were classified to have a layout quality of 3.0. In this
able, darker cell colors indicate a larger number of diagrams in
hat cell of the table. The table shows that the predicted values
re often within an interval of −0.5 to +0.5 of the ground truth
alue. This shows as a linear diagonal pattern from the top-left to
he bottom-right.

Fig. 3 illustrates the prediction errors in a higher level. For
59 out of 609 diagrams (75.4%), the predicted quality labels
all within ±0.5 points from the actual labels. Negative values
11
Table 2
Confusion matrix for the random forest regressor with normalized features.

in the y-axis means that the predicted label is lower than the
actual label, and vice versa. For example, a diagram labeled 4 but
predicted as 3.5 belongs to y = −0.5. There are more diagrams
with negative y-values (226, compared to 207 for positive y-
values), but the distances between actual and predicted labels are
larger in the diagrams with positive y-values.

We can also compare the actual and evaluated values more
abstractly by looking at the overall distribution of values of im-
ages. Fig. 4 shows the distributions of the actual quality labels
(obtained by manual labeling) and the predicted quality labels
(obtained as output from the machine learner). The x-axis denotes
the value of the layout quality assigned to a diagram. For any x-
value, The y-axis denotes the number of images classified into
that ‘bucket’ as a value for layout quality. From this, one could
see that the machine-learning is a little more conservative in
assigning extreme values to layouts. Instead, the classifier tends
to labels diagrams a bit more towards the average of the dis-
tribution. This is a common phenomenon in machine learning,
especially given that the average values occur more frequently
and direct the classifier in this direction.

Our analysis uses ‘buckets’ of ‘size’ 0.5 (ranging from 1.0 to
5.0 in steps of 0.5). The number of falsely classified diagrams
(off-diagonals in the confusion matrix) decreases/increases when
using larger/smaller buckets. While the choice of bucket size
is somewhat arbitrary, we find that a 10-point scale provides
significant differentiation between the quality of good and bad
layouts. For many practical purposes, possibly a scale with five
buckets (1–5) could already offer enough differentiation on layout
quality. Furthermore, when used for grading purposes, a 10-point
scale nicely aligns with exam grading scales used internationally.
At the same time, the scale has not been ‘normalized’/calibrated
to have 5.0 as a pass/fail-threshold.

In order to understand the impact of the number of classes
in a diagram on the performance of our models, we grouped our
dataset into three categories: small, medium, and large diagrams,
each containing 1 to 7, 8 to 12, and more than 12 classes, respec-
tively. The boundary numbers 7 and 12 were selected according
to the percentiles of our labels. In effect, the three categories
contain roughly the same number of diagrams. Table 3 shows the
mean absolute error values for the categories. We can see that our
regression model tends to perform better with smaller diagrams.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

m
l
a
q
t
t
t
p

F
o
a
t
s
C
e
d

Fig. 3. Distribution of prediction errors.
Fig. 4. Distribution of actual (green) and predicted (purple) quality labels. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Table 3
Regression performance by diagram size.
Diagram size category Number of diagrams MAE

Small 186 0.466
Medium 199 0.534
Large 224 0.587

5.2. Analysis of importance of features

In this section, we explore whether some layout features have
ore importance than others in determining the quality of the

ayout. Table 4 shows a ranking of the features based on the
bsolute value of their correlation with the ground truth layout
uality. Features with a correlation score closer to 1 are the ones
hat have a more significant contribution to the layout score of
he diagram. This table includes the value of the correlation and
he absolute correlation. The sign indicates whether this feature
ositively or negatively contributes to the layout quality.
The table shows that features related to line lengths (A4), F9,

7, and F8, are important. Other essential features are rectangle
rthogonality (F6). These features are all related to the ‘regularity’
nd uniformity of the spacing of classes across a diagram. The
hird category of important features is related to the shape, po-
itioning, and orientation of lines between classes (features F2
rossing Lines and F3 Line Bends). It turns out that F10 Short-
st Line and F5 Line Orthogonality are not very significant in

etermining layout quality.

12
Table 4
Feature importance ranking based on absolute correlation coefficient.
Rank Image feature Aesthetic PCC Abs. PCC

1 F9 Longest line A4 −0.494 0.494
2 F18 Number of lines – −0.483 0.483
3 F17 Number of rectangles – −0.425 0.425
4 F7 Average line length A4 −0.363 0.363
5 F6 Rectangle orthogonality A3 0.357 0.357
6 F8 Line length variation A4 −0.307 0.307
7 F2 Crossing angles A1 0.255 0.255
8 F3 Line bends A2 −0.224 0.224
9 F14 Rectangle proximity A8 −0.200 0.200
10 F15 Rectangle size A10 −0.194 0.194
11 F4 Line angles A3 −0.171 0.171
12 F1 Line crossings A1 −0.158 0.158
13 F16 Rectangle size variation A10 −0.121 0.121
14 F13 Rectangle distribution A8 0.092 0.092
15 F11 Rectangle coverage A5 0.078 0.078
16 F12 Aspect ratio A5 0.053 0.053
17 F5 Line orthogonality A3 0.036 0.036
18 F10 Shortest line A4 0.002 0.002

The distributions of the six most important features are shown
in Fig. 5. At a glance, we can see that higher-quality diagrams
have shorter lines (features longest line length and average line
length) and less varied line lengths (feature line length varia-
tion). They also have a smaller number of diagram elements
(features number of lines and number of rectangles), and more
orthogonal rectangles positioning (feature rectangle orthogonal-
ity). Furthermore, in most features, we can also see that the

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

v
i
h
a
d

6

p
p
l

6

h
o
t
a
t
o
o
o
t
c
v
T
1

Fig. 5. Distribution of key diagram features in each quality bin.
ariance for higher quality bins tend to be smaller than those
n lower quality bins. This makes them appropriate to serve as
euristics in guiding the creation of diagram layout, e.g., in an
utomated diagram-layouting algorithm or as a user-feedback in
iagramming software.

. Discussion

This section discusses the results of the experiments’ inter-
retation and comparisons concerning the proposed estimator
erformance. We reveal the essential aesthetics for indicating
ayout quality.

.1. The estimator performance

The best performing machine learning approach (Section 5)
as an MAE of 0.56. This means that the predicted layout quality
f a previously unseen diagram differs by 0.56 on average from
he labeled layout quality of the diagram. This is proportional to
Relative Absolute Error of 68.7% for this dataset, meaning that

he absolute error of a prediction of a diagram is on average 68.7%
f the absolute error between the mean labeled layout quality
f the dataset and the labeled layout quality of the diagram. In
ther words, the estimator’s performance is significantly better
han simply predicting the sample mean for every diagram. The
orrelation coefficient was 0.709, indicating that 70.9% of the
ariance in layout quality can be explained by the trained model.
his is a strong correlation according to Evans’ guidelines (Evans,
996).
13
6.2. Image processing

The image processing has some flaws that can lead to incorrect
calculation of features, which can mislead the machine learn-
ing algorithms. We illustrate these impacts by discussing some
examples from our dataset.

Below, we show the three diagrams with the highest predic-
tion error. The left part of the figures shows the original diagram
image, and the right part shows the representing elements ex-
tracted by the image processing module. Rectangles are drawn in
white, and lines are drawn in green.

Fig. 6 shows the diagram that has the highest prediction error.
It was labeled with a layout quality of 1.0, and the machine
learning model produced a quality of 3.5, which gives a prediction
error of 2.5. From the right-hand side, we can see that many
of the lines from the class diagram on the left-hand side were
not found by the image processing. Many undetected lines are
long, have many bends, and partially overlap with the rectangles
that represent classes. Those as mentioned above are probably
the reasons for the ground truth layout quality being labeled
low. These are features that are negatively correlated with layout
quality. The machine learning algorithm does not get the correct
information for these features from the image processing. Hence,
it is misled to predict a higher layout quality than it should.

Fig. 7 shows the diagram that had the second-highest predic-
tion error. It was labeled with a ground truth layout quality of
1.0, and the machine learning model predicted a quality of 3.4,
which gives a prediction error of 2.4. In this case, the difficulty
for the image processing to find lines is even more clear. Only
one line is found, and that one line is not correctly detected. Many

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

l
a
q
m
d
S
t
t
p

e
a
c
c
u
l
d
i
a
a

Fig. 6. The diagram with the highest prediction error.
Fig. 7. The diagram with the second highest prediction error.
L
c

ines are crossing each other, which would otherwise negatively
ffect layout quality. Another possible reason for the low layout
uality label is that many lines overlap rectangles. This is a com-
on aspect that is recommended against in literature However,
ue to the limitations of our image processing (described in
ection 4.3.1), no feature regarding this was created. This means
hat the machine learning algorithms do not get this informa-
ion and thus cannot take it into account when making their
rediction.
Fig. 8 shows the diagram that has the third-highest prediction

rror. It was labeled with a ground truth layout quality of 1.5,
nd the machine learning model predicted a quality of 3.8, which
orresponds with a prediction error of 2.3. Here the image pro-
essing finds no lines at all, and some of the rectangles are also
ndetected. In the diagram, many long lines, line crossings, and
ine bends are not detected. In this case, the original diagram uses
otted lines and gray-toning of lines which probably affect the
nability to detect the lines in this diagram. The machine-learning
lgorithm predicts too high a layout quality for the same reasons
s the two previously discussed diagrams.
 m

14
Overall, there are opportunities for improving the image recog-
nition used. However, our image processing deals fairly well with
a large portion of the images. Out of the set of 645 images
that we started with (i.e., qualified our criteria for suitable UML
class diagrams), it turned out that our image processing could
not extract enough features from 45 diagrams. This is partially
due to the diagrams using unusual features (such as e.g. curved
and dotted-lines). This reduction should not have a great impact
on the performance of the regressor (because we have good
number of 609 diagrams left). Although the image processing
could possibly improved to deal with more (exotic) diagrams,
there are little returns for our research for this.

A common denominator for the three diagrams with the high-
est prediction errors is that they all are labeled with a low layout
quality but predicted to have a medium quality. As discussed, the
most likely reason for this is the lack of detected lines. Many of
the features regarding lines, including Longest line, Line length,
ine length variation, Line bends and Line crossings are negatively
orrelated with layout quality, which is seen in Table 4. This
akes the machine learning algorithms falsely think that it is

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

b
T
i
e
p

6

q
S
i
l

g
h

t
p
r
c

6
o
L
c
u
l
1
f
b

Fig. 8. The diagram with the third highest prediction error.
eneficial to have no lines at all or a few short lines. In addition,
able 4, shows that some of those features are among the most
mportant ones when it comes to predicting layout quality. This
xplains that the omission of detecting these features affects the
rediction error greatly.

.3. Essential aesthetics

To find the most essential aesthetics for indicating layout
uality, the feature selection results are used. As seen in Table 4 in
ection 5.2, many of the features that were found among the most
mportant ones in this study, including longest line, line length and
ine length variation are related to aesthetic A4, line lengths. This is
a strong indication that line lengths are important when it comes
to layout quality.

Table 5 shows a summary of the presence in literature of eval-
uation of layout aesthetics that are related to the features. Studies
by Purchase et al. (1996), Purchase (1997), Purchase et al. (2001)
andWare et al. (2002) investigate whether certain aesthetics have
a significant effect on the quality of the layout. Significant effects
are denoted with a y in those columns in the table, effects that are
approaching significance are denoted with an a, and nonsignif-
icant effects are denoted with an n. Purchase (1997) measures
both correctness and time for the tasks in their experiment, which
is why this column has two entries. The first one represents
significance for the correctness and the second one represents
significance for time. Purchase et al. (2000) measures people’s
preference of diagrams with a high degree of certain aesthetics
over diagrams with a low degree of the aesthetics. The preference
is represented by a percentage. Eichelberger (2002) ranks 14
groups of aesthetics by their importance. Line bends occurs in the
roups on both sixth and fourteenth place, which is why this row
as two entries.
The rightmost column R in Table 5 shows the rank of a fea-

ure’s importance according to the correlation coefficients com-
uted from our own dataset. Below, we discuss our findings
egarding the importance of aesthetics and image features in
omparison to the findings in literature.

.3.1. High importance: line lengths (A4), descriptive features, and
rthogonality (A3)
ine lengths (A4). Purchase et al. (2000) did not find any signifi-
ance of having short, but not too short, lines with regards to the
nderstandability of graphs. Eichelberger (2002) ranked general
ine constraints (including line lengths) in the sixth place out of
4 aesthetics. Ware et al. (2002) did not find significant effects
or average line length and total line length on the shortest path
etween two nodes in a graph with regards to the time needed
15
to perceive the shortest path. However, we found that features
related to line lengths have a significant impact to the quality
of diagram layout. Specifically, features longest line (F9), average
line length (F7), and line length variation (F8) rank 1st, 4th, and
6th, respectively, in our dataset. In practice, this means that lines
in a diagram should not be long, and their lengths should not vary
too much. One feature in this aesthetic group, shortest line (F10,
ranked 18th) does not reflect a diagram’s layout quality.

Descriptive features. Beyond our expectation, descriptive features
that we used for machine learning have considerable correlations
with the layout quality. Number of lines (F18) and rectangles
(F17) rank 2nd and 3rd, respectively, in our list. Fig. 9 plots the
diagrams based on their quality label compared to the number
of rectangles and lines. Note that in this figure, the quality labels
are treated as discrete categories or bins, i.e., the y-axis positional
variances within a bin do not convey differences in quality, but
rather to illustrate the number of diagrams that belong to the bin.
Both plots in the figure are noticeably sparse in the bottom-right
triangle, showing that it is hard to achieve good layout quality
with many rectangles and lines. However, the opposite is not
true — having less rectangles and/or lines does not necessarily
mean the layout is good. This is indicated by the denser upper-left
triangles of the plots.

Orthogonality (A3). In this aesthetic, we found one important fea-
ture: rectangle orthogonality (F6). The positive correlation coeffi-
cient for this feature (ranked 5th in our list) means that rectangle
placements should be centered against one another in one of the
axes. This is consistent with Eichelberger’s study (Eichelberger,
2002) which puts centered neighboring rectangles in the 2nd
place in their list. Purchase et al. (2000) similarly found a 61%
preference for more orthogonal diagrams. On the other hand, Pur-
chase (1997) and Purchase et al. (2001) did not find a significant
effect of orthogonality on the understandability of graphs. In our
dataset, line angles (F4) only shows a slight correlation and line
orthogonality (F5) do not show significant correlation with layout
quality. The features are ranked 11th and 17th, respectively.

6.3.2. Somewhat important: line crossings (A1), line bends (A2), class
placement (A8), and node sizes (a10)
Line crossings (A1). Ware et al. (2002) did not find a significant
effect for line crossing angles (F2) on the shortest path between
two nodes in a graph with regards to the time needed to perceive
the shortest path. However, in our dataset, this feature shows
a slight importance and ranks 7th among all features we con-
sidered. The positive correlation coefficient means that crossing
angles should approach orthogonality (90◦) for a better layout. In
contrast, while most studied literature show a strong preference

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413
Table 5
Aesthetics and image features, evidence of their importance in literature, and our own computed ranks.
Aesthetic Image feature Purchase

et al.
(1996)

Purchase
(1997)

Purchase
et al.
(2000)

Purchase
et al.
(2001)

Ware et al.
(2002)

Eichel-
berger
(2002)

Ra

sig sig pref sig sig Rank Rank

A1 Line crossings F1 Line crossings y y/y 93% – yb 5 12
F2 Crossing angles – – – – n – 7

A2 Line bends F3 Line bends y y/a 91% y y 6, 14 8

A3 Orthogonality
F4 Line angles – n/n 61% n – – 11
F5 Line orthogonality – n/n 61% n – – 17
F6 Rectangle orthogonality – n/n 61% n – 2 5

A4 Line lengths

F7 Average line length – – – n n 6 4
F8 Line length variation – – – n – – 6
F9 Longest line – – – n – 6 1
F10 Shortest line – – – n – 6 18

A5 Diagramdrawing size F11 Rectangle coverage – – – n – – 15
F12 Aspect ratio – – 73% – – 14 16

A6 Symmetry (none computed)

A7 Linear angulardistances (none computed)

A8 Class placement F13 Rectangle distribution – – – n – – 14
F14 Rectangle proximity – – – – – 3 9

A9 Overlapping (none computed)

A10 Node sizes F15 Rectangle size – – – – – 3 10
F16 Rectangle size variation – – – – – – 13

Descriptive features F17 Number of rectangles 3
F18 Number of lines 2

aFeature importance rank according to our study.
bLine crossings on shortest path, but not total number of line crossings in diagram.
Fig. 9. The number of classes and relationships between classes are important for layout quality. The legend boxes are placed carefully so that no plots are covered
by the boxes.
of minimizing line crossings (F1) to help with the time needed
and the correctness when carrying out graph understandability
tasks (Purchase et al., 1996; Purchase, 1997; Purchase et al., 2000;
Ware et al., 2002; Eichelberger, 2002), this feature is only placed
in the 12th rank in our study.

Line bends (A2). Earlier studies (Purchase et al., 1996, 2001; Pur-
chase, 1997) found a significant effect of minimizing line bends to
the task of understanding graphs. The effect also approaches sig-
nificance with regards to the time needed to solve the task. Pur-
chase et al. (2000) found a 91% preference for fewer line bends,
and Ware et al. (2002) found a significant effect for increasing
the continuity of the shortest path between two nodes in a
graph with regards to the time needed to perceive the shortest
16
path. Eichelberger (2002) ranked general line constraints, includ-
ing line bends, in the sixth place out of 14 aesthetics. He also
ranked graph drawing constraints, including line bends, in the
fourteenth place. In our study, line bends have a small effect on
layout quality, ranking 7th out of 18.

Class placement (A8). Our study puts rectangle proximity (F14)
in the 9th place, while Eichelberger (2002) bestows more impor-
tance to general node constraints, including distances between
nodes, in the third place out of 14 aesthetics. Purchase et al.
(2001) did not find a significant effect for node distribution (F13)
with regards to the understandability of a graph. Similarly, we
found little contribution of this feature to layout quality.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413
Node sizes (a10). Eichelberger (2002) puts rectangle size (F15)
in the same category of general node constraints mentioned in
the previous paragraph, and endorses smaller rectangles in a di-
agram. We have a slight tendency to agree with this observation,
reflected by the small negative correlation in our dataset, putting
this feature in the 10th place. We found no previous work related
to the importance of rectangle size variation. Our study shows a
modest preference of having similarly sized rectangles, ranking
13th out of 18.

6.3.3. Insignificant: diagram drawing size (A5)
Purchase et al. (2000) found a 73% preference for narrower

diagrams. Eichelberger (2002) ranked graph drawing constraints,
including aspect ratio, on the fourteenth place out of 14 aesthet-
ics. We found that neither rectangle coverage (F11) nor diagram
aspect ratio (F12) have any effect to perceived layout quality. No
previous work related to the importance of rectangle coverage
was found.

7. Threats to validity

This section brings up threats to the validity of this research
and what was done to mitigate those threats. Various forms
of validity risks (i.e., internal, external, construct, and conclu-
sion validity) are frequently encountered in experiment-based
research (Wohlin et al., 2012). We tried to mitigate and eradicate
these threats as much as possible during this study; however,
some of these threats are beyond our control.

7.1. Internal validity

Internal threats involve the factors that influence evaluation
without our knowledge or outside of our control. One of the
internal threats arises from the validity of ground truth in terms
of labeling.

Validity of the ground truth of the layout quality of the diagrams
The labeling of the diagrams was done by asking people about

their subjective perception of the layout quality of the diagrams,
which means the labels are no absolute truth for layout quality.
To mitigate this risk, each diagram was labeled by two different
persons, and the average of those was used as the label for the
diagram. The dataset is also considered large enough to balance
out potential differences between labelers.

There is also a risk that the labels do not represent layout
quality regarding how easy it is to understand and work with
the diagrams. This risk had to be taken to label such an extensive
dataset that we used. Extensive user experiments would have to
be carried out on each diagram to get more representative labels
in this aspect.

In the second round of labeling validation, the introduction
of layout flaws options might have biased labelers to correlate
the labeled quality with particular aesthetics. For example, when
a labeler sees crossing lines as a layout flaw, they might look
for crossing lines in the diagram and rate it higher if there are
few crossing lines. This might increase the correlation between
crossing lines and the labels. This was still considered a good
tradeoff as it greatly simplified the discussions about the labeling
strategy.

7.2. Construct validity

Construct threats are linked to the application–theory rela-
tionship. The threat here is that there is no formal agreement on
what denotes the quality of class diagram layouts. There are only
features that indicate low or high quality. In our case, we used

guidelines and assessed inter-rater agreement on labels.

17
Feature extraction
There is a risk that the calculated features do not accurately

represent the aesthetics they are supposed to represent. As seen
in Section 4.3.1, the image processing is not perfect, which affects
how the features are calculated. If, for example, the longest line
in a diagram is not found, the Longest line feature will not be ac-
curate. Moreover, the actual calculation of the features might not
perfectly represent the features. For some features, like Longest
line and Shortest line, the calculation is straightforward. How-
ever, for features with a more complex calculation, like Rectangle
orthogonality, it is possible that the calculations are not perfect
representatives of the features. While these risks are indeed va-
lidity threats, it is more likely that they have a negative impact,
rather than a positive, on our results: Incorrectly calculated fea-
tures create noise that makes it harder for the machine learning
algorithms to find correlations between the features and layout
quality. Therefore, the results gained can be considered valid from
this aspect.

Feature selection
There is also a possibility that there are other features than the

extracted ones that better indicate layout quality. For example, it
could be that some semantic issues need to be considered when
constructing layouts, which is proposed by, for example, Purchase
et al. (2001). A limitation of our research was not to consider
such semantics aspects of the design. Moreover, we did not find
it feasible to extract some of the aesthetic features described in
Section 4.3.2, e.g., Symmetry.

7.3. External validity

Threats to external validity are related to the generalization of
the results to various forms of real-world problems.

Representativeness of the diagram dataset
All diagrams that we used come from an earlier study that

crawled open source projects for the use of UML. There is a
possibility that open source projects might not represent software
projects in general.

In that study, the aim was to select ‘real’ software develop-
ment projects and avoid ‘toy’- and ‘student’-projects. While their
selection may not be perfect, we expect the same focus in our
dataset. Also, reverse engineered diagrams were filtered out of
the original dataset and thus do not appear in our study.

Complementary to the original dataset, it could be interesting
for an evaluator to be trained on student diagrams. However,
we do know that there is no fundamental difference in the size
of diagrams because ‘real’ projects also limit the size of their
diagrams to no more than fit reasonably on one page of A4
paper, which is typically around 10 ± 2 classes (larger designs
are typically broken up across multiple diagrams hierarchically).
Nevertheless, overall, the criteria for a good layout should still be
the same across all types of class diagrams, independent of the
nature of the project.

We manually constructed a dataset by going over all diagrams
one by one. As a result, there could be a risk that the filtering was
biased. The filtering was performed systematically and carefully
by defining and applying clear filtering rules to minimize this
risk. Also, we looked at the distribution of the quality labels of
the resulting collection of diagrams, and this shows a close to a
normal distribution of the labels (see Section 4.2.1) and ranges
from terrible layouts to excellent ones, with most being ‘average’.

7.4. Conclusion validity

Threats to conclusion validity concern the relationship be-
tween the results and the conclusion.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

w
f
v
d

l
m
p
t
l
o
m
p
b
o
H
o

8

t
r
o
a

s
v
n
w
e
o

s
s
f
d

t
t
w
m
e
i
w
p
o
a
e
t
u
m

g
v

v
–
Q
R
y
a
e
S
c

D

c
t

Machine learning
The Likert scale used for labeling diagrams is naturally ordinal,

hile regression algorithms require an interval scale. As argued
or in Section 4.2.1, the used scale can be considered an inter-
al scale since it is symmetric around a middle point, and the
istance between the options is intended to be the same.
Another threat here is related to the implemented machine

earning algorithms. Many different machine learning algorithms
ay be suitable for different use cases. For the scope of this
roject, algorithms provided by the machine learning software
ool WEKA that can perform regression are used. Many machine
earning algorithms have parameters that can be configured to
ptimize the performance of the algorithms. In this project, only
achine learning algorithms provided by WEKA and their default
arameter settings were investigated. However, there is a possi-
ility that other machine learning approaches and optimization
f parameter settings could give better-performing evaluators.
owever, this does not mean that the found results are invalid,
nly that there is a potential for improvements.

. Conclusion and future work

We have developed a fully automated approach for evaluating
he layout of UML class diagrams. This approach was built using
egression-based machine learners, using an extensive collection
f 600+ manually labeled diagrams as ground truth for training
nd testing.
The performance of the automatic evaluator was analyzed: The

cale for quality of diagrams we used ranged from 1 (denoting
ery bad) to 5 (denoting very good). Our evaluator produced a
umber on this scale: in 75.4% of the cases the value produced
as not more than 0.5 away from the ground truth. On the
ntire dataset, the evaluator has a Relative Absolute Error (RAE)
f around 0.6 on a 5-point scale.
We analyzed which features of UML class diagrams are most

trongly related to the quality of their layout. For this, we pre-
ented a ranked list of features. Our study points out the following
eatures as the most important for the quality of UML class
iagrams:

• Features related to the line lengths imply that in a good
layout, related classes should be placed closely together,
and the lines that connect classes should take a short/direct
route between these classes. At the same time, diagrams
should avoid crossing lines.

• Orthogonality of classes placement, i.e., classes should be
placed as much as possible on a (virtual) grid with horizon-
tal and vertical alignment of classes.

The evaluator can be used for various purposes: In an indus-
rial setting, the evaluator can be embedded in Quality-Assurance
ools that automatically check the quality of artifacts produced
ithin a project. This could propel the quality management of
odeling artifacts, which lags behind that of code artifacts. In an
ducational setting, our evaluator can be used as a component
n the automated grading of UML class diagrams. This could fit
ell in online learning environments, which are becoming more
opular. Finally, our evaluator could also be used in the field
f algorithms that try to generate layouts for class diagrams
utomatically. For example, such algorithms are used in reverse
ngineering scenarios where diagrams represent source code ar-
ifacts. In this scenario, we imagine that our evaluator could be
sed as an oracle that would be able to provide feedback to
achine-learning layouting algorithms.
As part of this study, we produced a dataset of images to-

ether with a ground truth consisting of manually produced and
alidated labels describing the layout quality of the respective
18
diagram and a set of features extracted via image processing. As
far as we know, this is the first dataset of this kind. We make
this dataset available such that it can be used for verification of
our results and further studies into layout aesthetics and layout
quality of diagrams.

Future directions
This work focuses specifically on evaluating the layout of

UML class diagrams. It would be interesting to apply the same
approach to other types of diagrams. As different diagram types
have different kinds of elements and are structured differently,
it might be challenging to find a general approach that works
well for all diagram types. At the same time, there are many
commonalities in guidelines for the aesthetics of diagram layouts,
such as minimizing crossing lines, which apply to multiple types
of diagrams. Perhaps some context-dependent tailoring of this
work would make it usable for other diagram types as well.

The results of this work can be used for developing new
automatic layout algorithms. The aesthetics that were found to
be most important could possibly be given more weight in these
algorithms. Also, our evaluator can be used to evaluate the dia-
grams that are produced by the algorithms. This could open up
the possibility for reinforcement learning for layout algorithms.

Another area where our evaluator could be useful is in the
overall assessment of UML models. This topic has recently gained
increasing attention (Stikkolorum et al., 2019; Boubekeur et al.,
2020; Bian et al., 2020), but is not entirely solved. These types of
assessments focus on the quality of the design by looking at the
quality of the decomposition and the conformance or violation
of design principles, such as coupling. Such assessments could be
complemented by assessing the quality of the layout.

From the perspective of learning how to create diagrams with
a good layout, it could be helpful to get specific feedback on
which aspect of a diagram could be improved, rather than only a
grade — which is the feedback produced by the current evaluator.
Possibly, more specific feedback could be automatically created
in addition to the 1-to-5 scale number currently produced by
looking at which layout features of a diagram have a value that
stands out compared to the average value of that feature for a
collection of good diagrams.

In order to improve the quality and robustness of our evalu-
ator, image recognition could be improved. Our image processes
algorithms do not always recognize all lines in diagrams. Even
though this happens most often in complicated cases, such as
dotted lines, curved lines, or partially obscured lines, some im-
provement to this step might improve the robustness of the
approach. We also implore future studies to consider features
regarding text within diagrams that we have not been able to
include in this study, e.g., text size and alignment.

CRediT authorship contribution statement

Gustav Bergström: Writing – original draft, Data curation, In-
estigation, Formal analysis, Validation. Fadhl Hujainah: Writing
review & editing, Data curation, Formal analysis. Truong Ho-
uang: Writing – original draft, Data curation, Formal analysis.
odi Jolak: Writing – original draft, Data curation, Formal anal-
sis. Satrio Adi Rukmono: Writing – review & editing, Formal
nalysis, Visualization. Arif Nurwidyantoro: Writing – review &
diting, Investigation, Formal analysis. Michel R.V. Chaudron:
upervision, Project administration, Writing – original draft, Data
uration, Validation, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

p

R

A

B

B

B

B
B
B

C

C

C

C

D

D

D

E

E

E

E

E

F

F

H

H

H

Acknowledgments

The research of Fadhl Hujainah and Michel Chaudron is sup-
orted by VINNOVA Grant 2018-05010 (TrafCloud).

eferences

lsarraj, R.G., Altaie, A.M., Fadhil, A.A., 2021. Designing and implementing a tool
to transform source code to UML diagrams. Period. Eng. Natural Sci. 9 (2),
430–440.

adreddin, O., Khandoker, R., Forward, A., Lethbridge, T., 2021. The evolution of
software design practices over a decade: A long term study of practitioners..
J. Object Technol. 20 (2), 1.

ian, W., Alam, O., Kienzle, J., 2020. Is automated grading of models effective?:
assessing automated grading of class diagrams. In: Syriani, E., Sahraoui, H.A.,
de Lara, J., Abrahão, S. (Eds.), MODELS ’20: ACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems, Virtual
Event, Canada, 18-23 October, 2020. ACM, pp. 365–376.

oubekeur, Y., Mussbacher, G., McIntosh, S., 2020. Automatic assessment of
students’ software models using a simple heuristic and machine learning.
In: Guerra, E., Iovino, L. (Eds.), MODELS ’20: ACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems, Vir-
tual Event, Canada, 18-23 October, 2020, Companion Proceedings. ACM
pp. 20:1–20:10.

reiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
ulmer, M.G., 1979. Principles of Statistics. Courier Corporation.
urt, P.J., 1981. Fast filter transform for image processing. Comput. Graph. Image

Process. 16 (1), 20–51.
anny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. (6), 679–698.
haudron, M.R.V., Rukmono, S.A., Bergström, G., Hujainah, F., Ho-Quang, T.,

Jolak, R., Nurwidyantoro, A., 2022. Replication package for ‘‘evaluating the
layout quality of UML class diagrams using machine learning’’. http://dx.doi.
org/10.5281/zenodo.6645685.

icchetti, D.V., 1994. Guidelines, criteria, and rules of thumb for evaluating
normed and standardized assessment instruments in psychology. Psychol.
Assess. 6 (4), 284–290.

oleman, M.K., Parker, D.S., 1996. Aesthetics-based graph layout for human
consumption. Softw. - Pract. Exp. 26 (12), 1415–1438.

ecker, M.J., Swartz, K., Collard, M.L., Maletic, J.I., 2016. A tool for efficiently
reverse engineering accurate UML class diagrams. In: 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). pp. 607–609.
http://dx.doi.org/10.1109/ICSME.2016.37.

ikici, A., Turetken, O., Demirors, O., 2018. Factors influencing the understand-
ability of process models: A systematic literature review. Inf. Softw. Technol.
93, 112–129.

uda, R.O., Hart, P.E., 1972. Use of the hough transformation to detect lines and
curves in pictures. Commun. ACM (ISSN: 0001-0782) 15 (1), 11–15.

ffinger, P., Jogsch, N., Seiz, S., 2010. On a study of layout aesthetics for business
process models using BPMN. In: International Workshop on Business Process
Modeling Notation. Springer, pp. 31–45.

ichelberger, H., 2002. Aesthetics of class diagrams. In: Proceedings First Inter-
national Workshop on Visualizing Software for Understanding and Analysis.
pp. 23–31.

ichelberger, H., 2005. Aesthetics and Automatic Layout of UML Class
Diagrams (Doctoral thesis). Universität Würzburg.

ichelberger, H., Schmid, K., 2009. Guidelines on the aesthetic quality of UML
class diagrams. Inf. Softw. Technol. 51 (12), 1686–1698, Quality of UML
Models.

vans, J.D., 1996. Straightforward Statistics for the Behavioral Sciences. Thomson
Brooks/Cole Publishing Co.

auzi, E., Hendradjaya, B., Sunindyo, W.D., 2016. Reverse engineering of source
code to sequence diagram using abstract syntax tree. In: 2016 International
Conference on Data and Software Engineering (ICoDSE). pp. 1–6. http://dx.
doi.org/10.1109/ICODSE.2016.7936137.

ernández-Sáez, A.M., Genero, M., Chaudron, M.R.V., Caivano, D., Ramos, I., 2015.
Are forward designed or reverse-engineered UML diagrams more helpful
for code maintenance?: A family of experiments. Inf. Softw. Technol. 57,
644–663.

ebig, R., Quang, T.H., Chaudron, M.R.V., Robles, G., Fernandez, M.A., 2016. The
quest for open source projects that use UML: Mining GitHub. In: Proceedings
of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems, MODELS ’16. pp. 173–183.

o-Quang, T., Chaudron, M.R.V., Samúelsson, I., Hjaltason, J., Karasneh, B.,
Osman, H., 2014. Automatic classification of UML class diagrams from
images. In: 2014 21st Asia-Pacific Software Engineering Conference, Vol. 1.
pp. 399–406.

olmes, G., Hall, M., Frank, E., 1999. Generating rule sets from model trees.
In: Twelfth Australian Joint Conference on Artificial Intelligence. Springer
pp. 1–12.
19
Karasneh, B., Chaudron, M.R.V., 2013a. Extracting UML models from images. In:
2013 5th International Conference on Computer Science and Information
Technology. pp. 169–178.

Karasneh, B., Chaudron, M.R.V., 2013b. Img2UML: A system for extracting UML
models from images. In: 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications. pp. 134–137.

Kohavi, R., 1995. The power of decision tables. In: 8th European Conference on
Machine Learning. Springer, pp. 174–189.

Koo, T.K., Li, M.Y., 2016. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J. Chiropractic Med. 15 (2),
155–163.

Lange, C.F.J., 2007. Assessing and Improving the Quality of Modeling : A Series of
Empirical Studies About the UML (Ph.D. thesis). Mathematics and Computer
Science, http://dx.doi.org/10.6100/IR629604, Proefschrift.

Leguina, A., 2015. A primer on partial least squares structural equation modeling
(PLS-SEM).

Likert, R., 1932. A technique for the measurement of attitudes. Arch. Psychol. 22
(140), 5–55.

Mackay, D.J., 1998. Introduction to Gaussian processes.
N, ikiforova, O., Ahil,čenoka, D., Ungurs, D., Gusarovs, K., Kozačenko, L., 2014.

Several issues on the layout of the UML sequence and class diagram
pp. 40–47, Publication. EditionName.

Purchase, H., 1997. Which aesthetic has the greatest effect on human under-
standing? In: DiBattista, G. (Ed.), Graph Drawing. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 248–261.

Purchase, H.C., 2002. Metrics for graph drawing aesthetics. J. Vis. Lang. Comput.
13 (5), 501–516.

Purchase, H.C., Allder, J.-A., Carrington, D., 2000. User preference of graph layout
aesthetics: A UML study. In: International Symposium on Graph Drawing.
Springer, pp. 5–18.

Purchase, H.C., Cohen, R.F., James, M., 1996. Validating graph drawing aesthetics.
In: Brandenburg, F.J. (Ed.), Graph Drawing. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 435–446.

Purchase, H.C., McGill, M., Colpoys, L., Carrington, D., 2001. Graph drawing
aesthetics and the comprehension of UML class diagrams: An empirical
study. In: Proceedings of the 2001 Asia-Pacific Symposium on Information
Visualisation. In: APVis ’01, vol. 9, pp. 129–137.

Quinlan, R.J., 1992. Learning with continuous classes. In: 5th
Australian Joint Conference on Artificial Intelligence. World Scientific
Singapore, pp. 343–348.

Ramer, U., 1972. An iterative procedure for the polygonal approximation of plane
curves. Comput. Graph. Image Process. 1 (3), 244–256.

Reggio, G., Leotta, M., Ricca, F., 2014. Who knows/uses what of the UML:
A personal opinion survey. In: International Conference on Model Driven
Engineering Languages and Systems. Springer, pp. 149–165.

Reggio, G., Leotta, M., Ricca, F., Clerissi, D., 2013. What are the used UML
diagrams? A preliminary survey. In: EESSMOD@ MoDELS, Vol. 1078.

Sabir, U., Azam, F., Haq, S.U., Anwar, M.W., Butt, W.H., Amjad, A., 2019. A model
driven reverse engineering framework for generating high level UML models
from java source code. IEEE Access 7, 158931–158950. http://dx.doi.org/10.
1109/ACCESS.2019.2950884.

Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J.A., Tortora, G., Risi, M.,
Dodero, G., 2018. Do software models based on the UML aid in source-code
comprehensibility? Aggregating evidence from 12 controlled experiments.
Empir. Softw. Eng. 23 (5), 2695–2733.

Shevade, S., Keerthi, S., Bhattacharyya, C., Murthy, K., 1999. Improvements to the
SMO algorithm for SVM regression. IEEE Trans. Neural Netw..

Shrout, P.E., Fleiss, J.L., 1979. Intraclass correlations: uses in assessing rater
reliability. Psychol. Bull. 86 (2), 420.

Singh, K., 2020. Transformation of source code into UML diagrams through
visualization tool. Int. J. Adv. Sci. Technol. 29 (7), 4861–4872.

Smola, A., Schoelkopf, B., 1998. A Tutorial on Support Vector Regression.
Technical Report. NeuroCOLT2 Technical Report NC2-TR-1998-030.

Stikkolorum, D.R., van der Putten, P., Sperandio, C., Chaudron, M.R.V., 2019.
Towards automated grading of UML class diagrams with machine learning.
In: Beuls, K., Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot, B.,
Lenaerts, T., Louppe, G., Eecke, P.V. (Eds.), Proceedings of the 31st Benelux
Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian
Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Bel-
gium, November 6-8, 2019. In: CEUR Workshop Proceedings, vol. 2491,
CEUR-WS.org.

Störrle, H., 2011. On the impact of layout quality to understanding UML
diagrams. In: 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). pp. 135–142.

Sun, D., Wong, K., 2005. On evaluating the layout of UML class diagrams
for program comprehension. In: 13th International Workshop on Program
Comprehension (IWPC’05). pp. 317–326.

Suzuki, S., et al., 1985. Topological structural analysis of digitized binary images
by border following. Comput. Vis. Graph. Image Process. 30 (1), 32–46.

http://refhub.elsevier.com/S0164-1212(22)00125-X/sb1
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb1
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb1
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb1
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb1
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb2
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb2
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb2
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb2
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb2
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb3
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb4
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb5
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb6
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb7
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb7
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb7
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb8
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb8
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb8
http://dx.doi.org/10.5281/zenodo.6645685
http://dx.doi.org/10.5281/zenodo.6645685
http://dx.doi.org/10.5281/zenodo.6645685
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb10
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb10
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb10
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb10
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb10
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb11
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb11
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb11
http://dx.doi.org/10.1109/ICSME.2016.37
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb13
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb13
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb13
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb13
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb13
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb14
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb14
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb14
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb15
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb15
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb15
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb15
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb15
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb17
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb17
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb17
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb18
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb18
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb18
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb18
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb18
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb19
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb19
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb19
http://dx.doi.org/10.1109/ICODSE.2016.7936137
http://dx.doi.org/10.1109/ICODSE.2016.7936137
http://dx.doi.org/10.1109/ICODSE.2016.7936137
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb21
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb23
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb24
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb24
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb24
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb24
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb24
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb25
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb25
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb25
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb25
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb25
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb26
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb26
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb26
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb26
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb26
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb27
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb27
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb27
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb28
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb28
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb28
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb28
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb28
http://dx.doi.org/10.6100/IR629604
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb30
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb30
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb30
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb31
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb31
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb31
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb32
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb33
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb33
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb33
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb33
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb33
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb34
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb34
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb34
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb34
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb34
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb35
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb35
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb35
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb36
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb36
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb36
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb36
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb36
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb37
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb37
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb37
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb37
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb37
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb38
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb39
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb39
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb39
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb39
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb39
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb40
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb40
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb40
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb41
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb41
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb41
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb41
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb41
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb42
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb42
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb42
http://dx.doi.org/10.1109/ACCESS.2019.2950884
http://dx.doi.org/10.1109/ACCESS.2019.2950884
http://dx.doi.org/10.1109/ACCESS.2019.2950884
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb44
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb45
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb45
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb45
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb46
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb46
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb46
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb47
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb47
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb47
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb48
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb48
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb48
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb49
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb50
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb50
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb50
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb50
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb50
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb51
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb51
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb51
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb51
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb51
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb52
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb52
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb52

G. Bergström, F. Hujainah, T. Ho-Quang et al. The Journal of Systems & Software 192 (2022) 111413

W

W

Z

U
w
a

Wang, Y., Witten, I.H., 1997. Induction of model trees for predicting continuous
classes. In: Poster Papers of the 9th European Conference on Machine
Learning. Springer.

are, C., Purchase, H., Colpoys, L., McGill, M., 2002. Cognitive measurements of
graph aesthetics. Inf. Vis. 1 (2), 103–110.

ohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in software engineering. Springer Science & Business Media.

iadi, T., Silva, M.A.A.d., Hillah, L.M., Ziane, M., 2011. A fully dynamic approach
to the reverse engineering of UML sequence diagrams. In: 2011 16th IEEE
International Conference on Engineering of Complex Computer Systems
pp. 107–116. http://dx.doi.org/10.1109/ICECCS.2011.18.

Gustav Bergström obtained his M.Sc. and B.Sc. degrees
in Software Engineering from Chalmers in Gothenburg,
Sweden. He works as a software engineer at Spotify,
currently within Android development.

Fadhl Hujainah is a post-doctoral fellow in Software
Engineering at the joint Department of Computer Sci-
ence and Engineering of Chalmers and University of
Gothenburg in Sweden. Prior to that, he worked as
a Senior Lecturer (Assistant Professor) at Faculty of
Computing, Universiti Malaysia Pahang in Malaysia.
Fadhl received the B.Sc. degree (Hons.) in Software
Engineering and the M.Sc. (Hons.) degree in Informa-
tion Technology with first class honor grade from the
Universiti Teknologi Malaysia, Malaysia, in 2012 and
2013, and Ph.D. degree in Software Engineering from

niversiti Malaysia Pahang, Malaysia, in 2019. His research interests include soft-
are engineering with particular interest in requirements engineering, software
rchitecture, stakeholder analysis, and decision making.

Truong Ho-Quang obtained his Ph.D. degree in Soft-
ware Engineering at the Department of Computer
Science & Engineering, Chalmers and Gothenburg
University, Sweden. His main research interests are
Software Architecture/Modeling, Software Quality and
Software Repository Mining. During his Ph.D., under the
guidance of Prof. Chaudron, he built the Lindholmen
dataset of UML models. He is currently working as a
System/Software Architect at Volvo Group Truck Tech-
nology, helping the organization to drive architectural
changes in their software system on trucks.
20
Rodi Jolak is a system architect at Volvo Car Cor-
poration, Sweden. In 2020, Rodi received his Ph.D.
degree in Software Engineering from the joint depart-
ment of Computer Science and Engineering between
Chalmers University of Technology and the University
of Gothenburg, Sweden. Rodi was also a post-doctoral
researcher in Software Engineering at the University
of Gothenburg, Sweden. His research interests include
software engineering, software architecture, software
design and modeling, human–computer interfaces, and
security. See http://www.rodijolak.com for more.

Satrio Adi Rukmono is a Ph.D. student at the Software
Engineering and Technology group, TU Eindhoven, The
Netherlands. He obtained his M.Sc. and B.Sc. from
the Informatics program at Institut Teknologi Bandung
(ITB), Indonesia. His research areas include Software
Engineering and Software Engineering Education. He
taught programming and software engineering courses
at ITB.

Arif Nurwidyantoro is a Ph.D. student at Operational-
izing Human Values in Software (OVIS) lab at Monash
University, Melbourne. He received a B.Sc. degree from
Institut Pertanian Bogor, Indonesia and a M.Sc. degree
from Universitas Gadjah Mada, Indonesia. His research
interests focus on Data Analytics and Software Engi-
neering. His current doctoral research investigates the
presence of human values in software repositories.

Prof. Dr. Michel R.V. Chaudron is chairing the Soft-
ware Engineering and Technology group at the TU
Eindhoven, The Netherlands. He and his group have
extensive experience in empirical studies of software
engineering, ranging from reverse architecting from
source code to sentiment analysis of developer commu-
nications. Chaudron’s main research areas are Software
Architecture, Software Design, Software Modeling and
the use of AI in these. He was a driving force in
the establishment of the Lindholmen dataset of UML
diagrams of software designs.

Chaudron holds an adjoint professorship with Institut Teknologi Bandung
(ITB) in Indonesia. Previously he had appointments at Gothenburg University
(Sweden) and Leiden University (The Netherlands). He is active as a member
of the editorial board of the Software Quality Journal and frequently he is a
Program Committee member of top-tier SE conferences such as ICSE, EMSE,
Euromicro-SEAA, MODELS.

http://refhub.elsevier.com/S0164-1212(22)00125-X/sb53
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb53
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb53
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb53
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb53
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb54
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb54
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb54
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb55
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb55
http://refhub.elsevier.com/S0164-1212(22)00125-X/sb55
http://dx.doi.org/10.1109/ICECCS.2011.18
http://www.rodijolak.com

	Evaluating the layout quality of UML class diagrams using machine learning
	Introduction
	Background on layout aesthetics of diagrams
	Related work RW and limitations of our study
	Related work
	Classifying layout quality
	Importance of aesthetics
	Prior work

	Limitations scoping of our study

	Research method
	Construction of the dataset of images
	Establishing a ground truth of layout quality
	Labeling strategy

	Feature extraction by image processing
	Image processing algorithms
	Defining image features for layout aesthetics

	Definitions of image features
	Considerations on selecting machine learning approaches

	Machine learning results and evaluation
	Performance of the machine learning
	Analysis of importance of features

	Discussion
	The estimator performance
	Image processing
	Essential aesthetics
	High importance: line lengths (A4), descriptive features, and orthogonality (A3)
	Somewhat important: line crossings (A1), line bends (A2), class placement (A8), and node sizes (a10)
	Insignificant: diagram drawing size (A5)

	Threats to validity
	Internal validity
	Validity of the Ground Truth of the layout quality of the diagrams

	Construct validity
	Feature extraction
	Feature selection

	External validity
	Representativeness of the Diagram dataset

	Conclusion validity
	Machine learning

	Conclusion and future work
	Future Directions

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

