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Abstract
We present PEdestal Neural Network (PENN) as a machine learning model for tokamak
pedestal predictions. Here, the model is trained using the EUROfusion JET pedestal database
to predict the electron pedestal temperature and density from a set of global engineering and
plasma parameters. Results show that PENN makes accurate predictions on the test set of the
database, with R2 = 0.93 for the temperature, and R2 = 0.91 for the density. To demonstrate
the applicability of the model, PENN is employed in the European transport simulator (ETS)
to provide boundary conditions for the core of the plasma. In a case example in the ETS with
varied neutral beam injection (NBI) power, results show that the model is consistent with
previous studies regarding NBI power dependency on the pedestal. Additionally, we show how
an uncertainty estimation method can be used to interpret the reliability of the predictions.
Future work includes further analysis of how pedestal models, such as PENN, or other
advanced deep learning models, can be more efficiently implemented in integrating modeling
frameworks, and also how similar models may be generalized with respect to other tokamaks
and future device scenarios.

Keywords: fusion, pedestal, AI, machine learning, neural networks, integrated modeling

(Some figures may appear in colour only in the online journal)

1. Introduction

The edge region of tokamak plasmas imposes great challenges
for designing and predicting the performance of future devices,
such as ITER and DEMO, but also for modeling existing
devices, such as JET, ASDEX Upgrade, and TCV. It has been
observed that sharp temperature and density gradients can
∗ Author to whom any correspondence should be addressed.
a See Joffrin et al 2019 (https://doi.org/10.1088/1741-4326/ab2276) for the
JET Contributors.
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distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

form near the plasma edge at sufficient heating, which sup-
presses transport at the edge and gives a pedestal structure in
the radial profiles. The characteristics of the pedestal are of
high importance to the fusion community since it is associated
with a high confinement state referred to as H-mode, which
was first discovered in the ASDEX tokamak in 1982 [1].

Accurately predicting the pedestal is generally not a trivial
task, and integrated modeling efforts can be inhibited by insuf-
ficient predictive capability for scenarios where the edge of a
plasma cannot simply be assumed. EPED [2, 3] is a model for
predicting the pedestal, which combines a description of the
transport in the pedestal through the kinetic ballooning mode
(KBM) constraint and an ideal linear magnetohydrodynamics
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(MHD) stability code (ELITE) [4, 5]. Specifically, EPED is
accurate in regimes where type I edge localized modes (ELMs)
are triggered by ideal peeling ballooning instabilities [6, 7].
However for other ELM types, or for cases where the trans-
port of the pedestal is not understood, where the KBM con-
straint does not describe the observations well, other methods
are required [8, 9]. Additionally, first-principle based mod-
els for the pedestal have historically been too time-consuming
to employ in some of the relevant integrated modeling envi-
ronments, such as the European Transport Simulator (ETS)
[10, 11]. This issue is currently being tackled by develop-
ment of machine learning surrogate models that are showing
promising results by drastically reducing the computational
time while still capturing the dynamics of a first-principle
based model [12, 13]. However, to our knowledge, there is still
no first-principle based model that covers other ELM types or
that does not require assumptions about the pedestal density.

Pedestal predictions based on empirical data are a different
approach that similarly has been pursued before. For instance,
the IPB98(y, 2) thermal confinement scaling [14] has been
around for more than two decades, and the Cordey scaling [15]
is a power law for the pedestal stored energy that is still in use
today for setting boundary conditions in core transport models.
Additionally, recently produced power laws [7] for the pedestal
density and temperature serve similar purposes as those we
intend to assess.

In this paper we present an alternative empirical pedestal
model based on neural networks called PEdestal Neural Net-
work (PENN). Our aim is to investigate how well the pedestal
temperature and density can be predicted from global engi-
neering parameters and main plasma parameters using this
classical machine learning approach. Our other aim is to enable
fast pedestal predictions in integrated modeling frameworks
using PENN. As opposed to the other mentioned empirical
models, we here choose to include main plasma parameters as
input parameters since this imposes core-edge coupling, which
provides self-consistent solutions in the integrated modeling
framework. Core-edge coupling has recently been explored,
for instance, in the EPED implementation for the OMFIT
framework [16]. This work is in the same spirit, the main dif-
ference being that our model is empirical, and that the pedestal
density is an output of our model instead of being an input
as in EPED. In the scope of this paper, we utilize empirical
data from the EUROfusion JET pedestal database [7], and we
employ the model in the ETS.

The structure of the paper is as follows. In sections 2 and
3, we discuss the JET pedestal database and how we curate
the data for our purposes. In section 4, we outline the train-
ing procedure and describe how we choose the input param-
eters for the model. In this section, we also show how the
model performs on unseen data entries and how uncertainty of
the predictions are calculated. We proceed by describing the
implementation of PENN in ETS in section 5, which includes
our procedures for handling ions as the database currently
only consists of data for the electrons. This is followed up,
in section 6, with results of a case example in ETS. We con-
tinue with exploratory work in section 7, and the paper ends,
in section 8, with a discussion and conclusions.

2. Data set

The data utilized here comes from the EUROfusion JET
pedestal database, including pulses both from JET-C (carbon
wall) and JET-ILW (ITER-like wall). A thorough description
of the database and its contents can be found in [7]. Here, we
provide a general overview of the most important parts for our
purpose.

The pedestal parameters in the database are derived from
experimental electron temperature and density profiles for H-
mode plasmas, where the key diagnostics used to obtain the
profiles is the high resolution Thompson scattering (HRTS)
[17]. Specifically, the pedestal parameters are determined in
the pre-ELM phase (selected as the time interval 70%–99%
of the ELM cycle) during a stationary phase that is at least
0.5 s long. To ensure that the phase is stationary, a check is
performed for the power, βN, gas rate, radiated power, and line
integrated density. As part of the validation, all experimental
profiles and fits have been visually checked and a more quan-
titative criterion based on the reduced chi-square χ2

r has been
systematically implemented, which is also further described in
[7]. For instance, the HRTS data points of a profile could be too
scattered to ensure a good fit. Moreover, each data point in the
database comes with an estimated error based on the uncer-
tainty of the diagnostics used as well as the spread of the data
in the pre-ELM phase.

To extract pedestal properties, such as the pedestal height,
a modified hyperbolic tangent (mtanh) function is fitted to the
data points of the temperature and density profiles

mtanh =
h1 − h0

2

(
(1 − sx)ex − e−x

ex + e−x
+ 1

)

with

x =
p − ψN

w/2
(1)

where h1 is the pedestal height, h0 is the pedestal offset in the
scrape-off layer (SOL), s is proportional to the slope inside
the pedestal top (also referred to as core slope), w is the
pedestal width, and p is the pedestal position, defined as the
radial point between the top and bottom of the pedestal. ψN is
the radial coordinate in terms of normalized average poloidal
flux coordinates, where ψN = 1 represents the last closed flux
surface (LCFS). The width and position are also given in
poloidal normalized flux coordinates, and only data between
0.8 < ψN < 1.05 have been used in the fitting.

3. Statistics and filtering of data

Since neural networks are best suited for interpolation, it is
expected that the model will be applicable for regimes and
conditions that dominate the database. Hence, statistics and
filtering of the data are important to highlight.

A total of 1835 validated entries from the JET pedestal
database are included in the training of the neural networks.
Out of these, 352 correspond to JET-C, and 1483 correspond
to JET-ILW. For the main ion species, 1721 entries corre-
spond to deuterium plasmas, and only 44 and 70 correspond to
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hydrogen plasmas and mixed H/D plasmas respectively. Here,
all of the hydrogen entries are associated with JET-ILW. There
are 150 entries that are associated with impurity seeding, such
as nitrogen and neon seeding. In addition to this, there is a sub-
set of approximately 350 entries associated with a low impurity
level done for technical reasons, such as for charge exchange
recombination spectroscopy measurements, although this low
rate does not affect the pedestal significantly. For the divertor,
we have the following number of entries for each configura-
tion: V/V: 190, V/C: 267, V/H: 658, C/V: 16, C/C: 700, C/H:
4. Here, the acronym ‘V/C’ stands for a divertor configura-
tion with the vertical (V) target as the inner strike point, and
the corner (C) target as the outer strike point (‘H’ stands for
the horizontal target). As mentioned, the statistics presented
here aims to guide for which scenarios PENN is best suited
for. For instance, PENN is expected to be more reliable for
simulations with deuterium plasmas compared to simulations
with hydrogen plasmas due to the large difference in data size,
since this induces bias. This does not mean that it is impossi-
ble to get accurate results with hydrogen plasmas, however the
difference in data size should be considered.

We choose to exclude a small subset of entries where it is
suspected that other ELM types are present, such as type III
ELMs. For future work, a combined model for different ELM
types will be of interest, however, for the first main version
of this model, we choose to focus on type I ELMs to demon-
strate the concept. Additionally, we exclude entries that either
include kicks, pellets or RMPs. These features can affect the
pedestal and could also be included in the future, however for
now we do not desire to involve such effects in the PENN
implementation in the ETS.

4. Neural networks for pedestal predictions

This section aims to provide an overview of the neural
networks of PENN. First, we discuss the choice of which
plasma/engineering parameters that the model uses. We pro-
ceed by describing how the neural network architecture is
determined and how the model is trained. We then show how
well the model performs on unseen data entries of the different
categories described by the statistics in section 3. Finally, we
describe a method to estimate how reliable a prediction is.

4.1. Input parameters

In the scope of this paper, we only choose from scalars that
are included in the JET pedestal database. We also consider
which parameters that are available in the framework where we
intend to employ the model, which in this case is the ETS. Out
of these, our tests with feature extraction and tests regarding
how the prediction error varies shows that the global param-
eters in table 1 contribute to improving the model. Addition-
ally, several of these parameters are independent with respect
to each other and have shown to be useful for other models
[3, 7, 15, 18]. Each parameter in this database addition-
ally comes with an estimated error based on the measure-
ment uncertainty for the different diagnostics systems. For the
training of neural networks, minor error in the parameters are

usually not of concern. However, if the model is applied for a
simulation case where there might be high measurement uncer-
tainty for an input parameter for that particular pulse, it might
be useful to perform a sensitivity scan for that input parameter.

As mentioned in the introduction, some pedestal models
solely rely on engineering parameters as input parameters
[7, 15]. For instance, the total power input is usually included,
but the global plasma parameter βN is not always included
since it is calculated from the profiles, and the pedestal plays a
part in determining the profiles through boundary conditions.
In other words, for some applications, it does not make sense
to use plasma parameters as inputs as they can be considered
to be a part of the solution. However, to capture effects that
comes from the interplay between the core and the pedestal
in the ETS, it is necessary to incorporate at least one plasma
parameter, such as βN. That said, it is of course possible to
train an alternative PENN model with only engineering param-
eters, which would represent a static pedestal for particular
engineering parameter setups. This is beneficial in the sense
of not requiring information about βN, Zeff , and q95, although
we have seen that this comes with a significant cost regarding
how well the model performs.

Parameters that are excluded are, for instance, related
to peeling–ballooning stability analysis, and dimensionless
parameters that are non-global, such as the collisionality at the
pedestal top. Parameters that are more or less constant through-
out the database are also excluded. For instance, the major
tokamak radius is excluded since we only look at JET data for
this first version of the model.

It could be argued that we are neglecting some parame-
ters that could improve the model if they were included. For
instance, we exclude effective mass (M), tokamak wall type,
divertor configuration, fuel rate of main species, and a param-
eter related to impurity seeding. For the effective mass param-
eter, the distribution is imbalanced with a large spike at M ≈ 2
corresponding to the deuterium plasmas, and a small spike
at M ≈ 1 corresponding to the hydrogen plasmas. Generally,
the parameters that are included in table 1 cover more even
distributions which is more suitable for neural networks, espe-
cially when no advanced procedures to counter imbalance are
used [19]. However, we have seen that by simply including
the hydrogen entries during the training, we are able to make
accurate predictions on unseen hydrogen entries as well, even
if we exclude M as an explicit input parameter. The same rea-
soning applies for the other four mentioned parameters. For
the fueling and impurity seeding, we have seen that the pre-
dictions are not improved by including these as parameters,
as long as we train on all data. For instance, the model per-
forms poorly on entries with impurity seeding if we exclude
entries with impurity seeding during the training, but drasti-
cally improves when impurity seeding entries are included in
the training even if there is no parameter related to impurity
seeding. We have also seen that the model does not improve
if we explicitly specify the wall type or the divertor config-
uration as input parameters. Generally, these results could be
interpreted as if the information from these parameters are rep-
resented by the combination of the other input parameters in
table 1. For instance, two plasmas with identical engineering
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Table 1. The output and input parameters of PENN with their ranges. The values correspond to
the subset of the JET pedestal database that is described in sections 2 and 3. Each value in the
database comes with a corresponding absolute error estimation based on the measurement
uncertainty of the different diagnostics. Here, the mean error of each parameter is shown as well
as the standard deviation of the error and the maximum error of the parameters.

Min value Max value Mean error Std error Max error

Output parameters

Pedestal temperature Te (keV) 0.15 1.89 0.030 0.024 0.185

Pedestal density Ne (1019 m−3) 1.73 11.33 0.070 0.033 0.317

Input parameters

Global βN (MHD) 0.58 3.62 0.051 0.028 0.218

IP (MA) 0.82 4.48 0.009 0.006 0.041

BT (T) 0.97 3.68 0.001 0.006 0.023

Minor radius a (m) 0.88 0.97 0.003 0.001 0.013

Elongation κ 1.60 1.81 0.006 0.003 0.028

NBI power (MW) 3.5 32.13 0.711 0.523 3.112

Total power (MW) 3.99 38.22 0.299 0.177 2.650

Upper triangularity δup 0.06 0.58 0.005 0.004 0.032

Lower triangularity δlow 0.24 0.49 0.005 0.005 0.029

Plasma volume (m3) 69.86 82.18 0.317 0.144 2.026

q95 2.43 6.09 0.026 0.020 0.166

Zeff 1.01 3.74 0.051 0.096 0.352

parameters but different wall will have different βN and Zeff

[20]. If a parameter is assumed to be important for pedestal
predictions, but no improvement can be detected by includ-
ing it as an input parameter, it is reasonable to believe that the
other parameters can represent it through a combined proxy.
This is clearly an advantage of neural networks, since they
allow for such correlations to be learned within their structure.
For instance, we have seen that we can predict the wall type
with 99% accuracy from the input parameters in table 1 using
neural networks, which suggests that such correlations can
form.

Some parameters in table 1 could probably be excluded
without reducing the performance of the model significantly.
The reason for specifically excluding the parameters men-
tioned above has to do with less availability of these parameters
in the ETS, or their unsuitable distributions in the database.

4.2. Training

We employ a feedforward neural network architecture with
layers of artificial nodes as the basis for PENN, where we use
the principles of backpropagation to optimize the model. Here,
the first layer consists of the input parameters shown in table 1,
and the final (output) layer consists of two nodes, which repre-
sent the electron pedestal density and temperature respectively.
The remaining layers in between are referred to as hidden

layers. During the early stages of this work, it was found that
simple neural networks performed better than other classical
fitting models, such as log-linear regression, but also slightly
better than other non-linear machine learning models, such as
random forests and support-vector machines.

To find the optimal hyper-parameters of the neural net-
work, we employ the neural network intelligence (NNI) frame-
work developed by Microsoft, which is an open source toolkit
designed to automatically search for the optimal network
architecture and hyper-parameters for our problem (https://
github.com/microsoft/nni). Specifically, the NNI framework
simplifies exhaustive grid searches and provides visualization
tools to analyze the results. For our problem, results show
that the following hyper-parameter combination represents the
optimal configuration: optimizer: Adam, loss function: MSE,
learning rate: lr = 0.001, epochs = 150, batch size = 30, acti-
vation function: ReLu, and four hidden layers with 60, 50,
30, and 20 nodes each. We also employ standard scaling to
all our input and output parameters, where each distribution
is converted to obtain a mean value of 0 and a standard devi-
ation of 1. For the actual training of the neural networks, we
employ functionalities from the TensorFlow [21] and Scikit
Learn [22] libraries. Additionally, we employ the concept of
ensemble learning [23], which here means that we train a com-
bined model that consists of 15 individual neural networks that
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perform the same task. The purpose of this is to enhance the
generalization of the model by giving each network a unique
set of weight and bias parameters before the training, and by
excluding a unique subset of 10% of the data for each network
during the training. Consequently, each network will end up
with unique set of weight and bias parameters when trained
(although the same hyperparameters still applies for all net-
works). In practice, this means that when the input parameters
of a pulse are forwarded to the model, it will produce 15 pre-
dictions of the pedestal top values with slight variations since
the individual models are slightly different. This means that the
input parameters are the same for all individual networks while
the output is not. Here, we use the mean output value from all
individual neural network predictions as the final prediction of
PENN.

4.3. Accuracy on training set and test set

We here define accuracy as how well the model is predicting
the pedestal top values with respect to the actual pedestal top
values in the database. This is quantified with the coefficient of
determination R2 where R2 = 1 represents a model that make
perfect predictions on all data points, and where R2 = 0 repre-
sents a model with equal predictive capabilities as a model that
randomly guesses the pedestal top values. To investigate the
accuracy of the model, we make predictions on 80% of the data
which is included during the training, but also on the remain-
ing 20% of the data which is excluded during the training,
which are referred to as the training set and test set respectively.
The purpose of this being that we want to show and compare
biased and unbiased results. A side note here is that we only
use the training set in the hyper-parameter search described in
the previous section (divided into a temporary training set and
a validation set). In figure 1, the results of the different cate-
gories of the database are shown, both for the training set and
the test set.

4.4. Uncertainty estimation of predictions

It is straightforward to estimate the error of a prediction when
the true values are available, which is the case for the results
in figure 1. However, when PENN is employed in the ETS,
another approach is required since we do not desire to rely
on database values for predictive simulations. The first step
is to make sure that each input parameters in a prediction is
within its training range highlighted in table 1. Neural net-
works are notorious for extrapolating poorly [24], thus we can
assume that the error increases as we go beyond the mini-
mum and maximum values of these parameters. Technical and
physics constraints from theory, such as MHD, may also guide
for which scenarios that represent extrapolation in the mul-
tidimensional input parameter domain, even if the individual
parameters are within their training range. For instance, typi-
cally high power requires high gas rate to mitigate heat loads
and minimize the impurity flux into the plasma. In general,
this leads to a much smaller input parameter space compared to
using the input parameters independently.Additionally, we can
expect a similar error of the predictions as the mean absolute
error in the test set as seen in figure 1, which is 0.0585 keV for

the electron temperature and 0.412 m−3 (1019) for the electron
density.

For a more thorough data driven approach to determine if
a prediction is reliable, we utilize features from the ensemble
learning method described in section 4.2. Specifically, when
a prediction is made, the distribution of the individual predic-
tions in the ensemble can be viewed as a proxy for how well
the networks agree, the idea here being that a wide distribu-
tion of the predictions indicates low confidence in the model
as a whole. Thus, in this paper we define uncertainty as the
standard deviation of the ensemble of predictions. Moreover,
we define normalized uncertainty as the standard deviation of
the predictions before they are rescaled to the units of keV
and m−3 (referring to the standard scaling method described
in section 4.2). In figure 2, the normalized uncertainty of the
entries in the database is shown, both for the training set and
the test set from the accuracy test described in section 4.3.
By analyzing the normalized uncertainty instead of the uncer-
tainty, a direct comparison can be made between the temper-
ature (blue) and density (orange) since both parameters are
viewed in the normalized space. It can be seen that normalized
uncertainty below 0.25 and 0.4 represents a level of confidence
comparable to the predictions on the training set and test set
respectively, both for the temperature and density.

In practice, this means that when the model is given the
input parameters from a pulse, it will produce 15 outputs
for the temperature and density each, where the mean value
of each output parameter represents the final prediction as
explained in section 4.2. Additionally, the model will produce
a value for the normalized uncertainty for each output param-
eter by looking at the standard deviation of the 15 predictions.
This value should thus be analyzed when using the model in
an application. If the normalized uncertainty associated with
a prediction is higher than 0.4, which is approximately the
highest value in the test set (see figure 2(b)), the prediction
cannot be considered reliable. Even predictions with a normal-
ized uncertainty between 0.25–0.4 should be considered less
reliable compared to predictions with a normalized uncertainty
below 0.25. High normalized uncertainty could, for instance,
be an indication of a collective extrapolation even though the
individual input parameters are within the training range. In
that sense, this method indicates if the model recognises the
pattern of the input parameters.

5. Implementation in the European transport
simulator

This section describes an overview of the most relevant fea-
tures that are involved in the implementation of PENN in the
ETS. First, we describe how we calculate the edge in terms
of 1D profiles from the pedestal predictions, and secondly,
we describe how we estimate ion pedestals from the electron
pedestal predictions.

5.1. Constructing the edge from pedestal predictions

In the ETS (version 6), we have access to Interface Data
Structures (IDS) from the IMAS framework [25] for different
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Figure 1. The prediction results of PENN for the training set (a) and (b) and the test set (c) and (d). The prediction corresponds to the x-value
of each entry, and the true database value corresponds to the y-value of each entry. The straight lines y = x acts as reference lines for ‘perfect
predictions’. The data is categorised by main ion species, wall type, and if the entry contains impurity seeding. The measurement uncertainty
for each entry in the database is excluded in the figures to increase the readability. It should however be mentioned that the database
uncertainty is negligible for the density, and mostly relevant for higher temperatures, where the maximum temperature error estimation in
the database is approximately 0.19 keV. As can be seen, the prediction accuracy is similar for all categories with the exception of the
electron temperature for JET-C, which could be because the measurement error is highest in that regime. In general, larger uncertainties in
the input and output parameters lead to a lower accuracy of the model when it is evaluated. As expected, the accuracy on the training set is a
bit better compared to the test set, but not significantly better which is important for ensuring that we are not overfitting the model.

pulses, which contains the sought input parameters to make
neural network predictions. Once the predictions of the scalars
representing the pedestal top values are made, additional infor-
mation is required to construct profiles that represents the
entire edge. In this paper we define the edge as the region
between the boundary condition for the core equations and the
LCFS. Here, we employ the same mtanh function described
in section 2 that is used to extract the pedestal parameters
from the experimental profiles. On the contrary, we now form
the edge profiles from the pedestal parameters. Thus, we need
to estimate the pedestal position, width, core slope, and off-
set. Throughout the database, the width and position of the
pedestal corresponds to narrow distributions, and for simplic-
ity we apply the mean value for each parameter: ψN = 0.98 for
the pedestal position and ψN = 0.045 for the pedestal width,

both for the electron temperature and density. For the off-
set, 100 eV is set for the electron temperature as the profiles
are systematically shifted to have a separatrix temperature of
100 eV in the HRTS diagnostics [7], and 1012 m−3 is set for the
electron density too avoid numerical issues that can occur with
too low densities. In practice, the offset values are not reached
at the LCFS due to the fixed position and width, however, they
serve the purpose of maintaining the H-mode pedestal struc-
ture even if the profiles plateau further out in the SOL. For
applications where SOL physics are of greater importance, a
more detailed approached could be considered.

The last parameter, which is the core slope, is an important
parameter since the profiles are extrapolated inwards from the
pedestal top to the boundary conditions based on this slope.
Here, we calculate the linear tangent of the core close to the
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Figure 2. Normalized uncertainty histograms from the ensemble of neural networks for the training set (a) and test set (b) respectively.
Here, the blue stacks represent the temperature and the orange stacks represent the density. It becomes clear why it is useful to compare the
uncertainty histograms of the different properties in normalized space, as the stacks almost fully overlap (the temperature shows a slightly
lower normalized uncertainty).

internal boundary from the initial profiles. In other words, we
assume the core slope to be the same as the slope in the initial
experimental profiles when we make a new edge prediction. If
the slope of the core close to the boundary condition changes
during a simulation, for instance due to transport equations, the
slope between the boundary condition and the pedestal adapts
to match the inner slope.

5.2. Estimating ion pedestals from electron predictions

As previously mentioned, the database currently only consist
of pedestal data for the electron temperature and density. For
the application in the ETS, additional strategies are required to
enable adaptive ion pedestals. For the temperature, we allow
the user to set a ratio between the electron pedestal top predic-
tion and the estimated ion pedestal top. The pedestal position,
width, and offset are set to be the same for the ion temperature
as for the electron temperature. The core slope is obtained in
the same way as for the electrons.

The ion density is treated differently since quasi-neutrality
needs to be taken into account. If only one ion species is con-
sidered, the approach is straightforward since there is only
one way quasi-neutrality can be fulfilled at each grid point
if impurities are neglected. However, if multiple ion species
are involved, several approaches are possible, for instance, by
either keeping one or several of the ions species fixed, or keep-
ing the ratio between the ion species constant. In this paper, we
choose to look at an example with only one ion species to sim-
plify the features that are not directly related to the machine
learning aspects of the model.

6. Application results

6.1. European transport simulator (ETS)

In this section we demonstrate some of the benefits that PENN
provides to integrated modeling. We study pulse 84792 from

JET, which is included in a neutral beam injection (NBI) power
scan analysis performed by Challis et al [26]. The power scan
includes pulses with similar values of the engineering param-
eters except for the NBI power and thus total power. Pulse
84792 is a deuterium pulse that was performed with 13 MW
of NBI power, and another pulse in the power scan, 84793,
was performed with 4.5 MW of NBI power. These two pulses
were performed at the same plasma current and magnetic field
(1.4 MA/1.7 T). For this application, we have excluded pulse
84792 and 84793 in the training of the neural networks to avoid
bias.

Here, we simulate pulse 84792, both with its original NBI
power of 13 MW, but also with 4.5 MW to allow for compari-
son with the pedestal of pulse 84793. In these simulations, the
pedestal and the core are coupled through a boundary condi-
tion at ρ = 0.85, where PENN is responsible for the pedestal.
For the core, we use EDWM [27] for the turbulent transport,
NCLASS [28] for the neoclassical transport, and BBNBI [29]
for the NBI source terms. EDWM transport has been slightly
enhanced in the electron heat channel to better match the orig-
inal power and pedestal. These settings are the kept for all
simulations. We start with profiles from the experiment, and
we consider a time window of 1.5 s with a time step of 0.001 s.
We evolve the deuterium and electron temperatures, as well as
the deuterium density, where we obtain the deuterium density
pedestal through predictions of the electron density pedestal
together with quasi-neutrality. The core electron density is
similarly calculated from quasi-neutrality.

This process is repeated for three scenarios. First, we apply
the original NBI power of 13 MW, both for PENN and the core
models. Secondly, we apply 13 MW for PENN, but 4.5 MW
for the core models, which represents the case not being able
to adjust the edge due to the lack of a pedestal model for a
new scenario of 4.5 MW. This approach has been common, for
instance, in the subject of density peaking in tokamaks, where
the effect of changed NBI power is investigated [30–34]. The
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Figure 3. Results of the simulations in the ETS. The electron temperature is shown in (a) and the electron density is shown in (b). The
steady-state solutions where PENN has adjusted the pedestal (dashed red) show a similar change in the pedestal as in [26] as well as in the
experiment (solid red).

third and final simulation represents a more comprehensive
approach where we additionally adjust the edge with PENN
according to the new NBI power of 4.5 MW. Hence, to see the
full effect of the change in NBI power.

The results in figure 3 shows the steady-state solutions of
the three scenarios in the ETS (dashed red, dashed blue, and
dashed green), as well as the experimental profiles (solid green
and solid red). The black vertical dotted line at ρ = 0.85 rep-
resents the position of the boundary condition, where PENN
provides the pedestal to the right of this line. We see that PENN
produces a decrease in pedestal temperature and an increase
in pedestal density as the NBI power is decreased (dashed
red). This is consistent with the results from the NBI power
scan by Challis et al [26]. Specifically, by changing the NBI
power from 13 MW to 4.5 MW for pulse 84792, we obtain a
pedestal that is close to the experimental values of the pedestal
for pulse 84793 (solid red). For all simulations, the pedestal
predictions show a normalized uncertainty below 0.25 which
indicates prediction confidence, as described in section 4.4.

The result for the core, in figure 3, show a good match
between the 13 MW experimental profiles (solid green) and
the simulation (dashed green). The dashed blue profiles (lower
NBI power in the core) indicate a lower temperature and den-
sity. Lastly, the simulation where the pedestal and core power
were changed are displayed by the dashed red profiles. Note-
worthy is the slightly hollow density profile (dashed red) close
to the boundary condition which is not seen in the experiment
(solid red). This might suggest that the pinch term for the par-
ticle transport is too low in the turbulence transport model
EDWM. This simulation has the highest collisionality, and as
high collisionality suppress the particle pinch we get a flat den-
sity profile. The bumps in the temperature profiles are also
artifacts from the turbulent transport model EDWM. If the
transport model does not give enough flux (particle or heat)
compared to the internal sources (NBI or radio-frequency-
heating) close to the boundary the gradient will increase.
As EDWM, and other turbulent transport models, is gradient

driven this will increase the fluxes until the fluxes from EDWM
are as large as the internal sources.

6.2. Standalone NBI dependency

In this section we further investigate NBI power dependency
of PENN, and demonstrate how the uncertainty estimation can
be used in the analysis. We select four JET pulses from the NBI
power scan discussed by Challis et al [26]. Here, we gradually
increase the NBI power from 0 MW to 30 MW, and make pre-
dictions with PENN while keeping the other parameters con-
stant. This is a standalone test, which means that PENN is not
coupled to ETS or any other code. Hence, we choose to tem-
porarily drop the plasma parameters βN, Zeff , and q95 as input
parameters since we want to avoid arbitrary estimations of
these parameters throughout the hypothetical NBI power scan.
The four pulses included in this test are: 75738: C-wall low
triangularity, 76854: C-wall high triangularity, 84545: ILW
high triangularity, and 84792: ILW low triangularity. All of
these pulses were performed at the same plasma current and
magnetic field (1.4 MA/1.7 T), with the exception of 75738
(1.7 MA/2.0 T). To avoid bias, the pulses are excluded in the
training of the neural networks for this particular test.

The results in figures 4(a) and (c) shows the predicted
pedestal temperature and density as functions of NBI power
for the four different scenarios. The NBI power range dis-
cussed in [26] is highlighted in the figure with bold lines. In this
regime, the temperature increases and the density decreases
with increasing NBI power. Thus, our results show the same
dependency as the NBI power scans in Challis et al [26].
As seen in figure 4(a), another distinguished feature is that
the high triangularity pulses show a higher temperature and
density.

As we go to higher values of the NBI power, the temper-
ature plateaux and the density starts to increase past 15 MW.
The naive approach would be to trust these results since the
JET pedestal database includes entries with NBI power up
to 32 MW, meaning that we are within the training range.
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Figure 4. Results from the standalone NBI power scan. These are not real temperatures from JET but predictions from PENN. In (a), the
pedestal temperature prediction is seen to increase for the NBI power region discussed in [26] (bold lines). In (b), the associated normalized
uncertainty is estimated for the predictions as a function of NBI power. The corresponding result for the density and the normalized
uncertainty for the density is seen in (c) and (d). In section 4.4, we saw that a normalized uncertainty above 0.25 represent low confidence.
Thus, the model is only reliable in the region between approximately 4–15 MW for pulses with similar engineering parameters
(1.4 MA/1.7 T). The results in (b) does not generally discourage PENN predictions with NBI power greater than 15 MW, since higher
magnetic field and plasma current is associated with higher NBI power in the JET pedestal database. However, for these pulses with a
particular set of engineering parameters, predictions with NBI power greater than 15 MW are discouraged as long as the other parameters
are fixed.

However, by employing the uncertainty estimation method
described in section 4.4, we see that this assumption cannot
be made with confidence. Figures 4(b) and (d) shows the asso-
ciated normalized uncertainty of the ensemble of neural net-
works as a function of NBI power for the four pulses. As
described in section 4.4, the standard deviation between the
predictions of the individual networks in an ensemble net-
work can be associated with uncertainty. Here, it is clear that
PENN is more confident in the NBI range that is covered in
the NBI power scan for these particular engineering scenar-
ios. This is because pulses in the JET pedestal database with
similar engineering parameters have been performed with NBI
power in this range. In section 4.4, we stated that a normalized
uncertainty above 0.25 indicates low confidence for a predic-
tion. Additionally, even if the normalized uncertainty is below
0.25 for the density for some data points above 15 MW, the
rapid increase of normalized uncertainty and the normalized

uncertainty for the temperature should be seen as a warning
in this NBI range. Thus, we cannot claim that the temperature
will plateau, and that the density will increase for higher NBI
power. We can also observe that approximately 4–5 MW rep-
resent a lower boundary of confidence for these pulses. This
is a typical example of where the model is extrapolating even
though the individual parameters are within the training range
of the full database.

That said, this analysis only accounts for pulses with similar
engineering parameters as in 75738, 76854, 84545 and 84792.
The NBI range of validity is shifted based on the other engi-
neering parameters. For instance, most of the entries in the JET
pedestal database with NBI power above 20 MW are associ-
ated with a magnetic field of 2.0 T–3.5 T, and a plasma cur-
rent of 1.5 MA–4.5 MA. Thus, in a general sense, predictions
with NBI power greater than 15 MW are not discouraged. This
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Figure 5. Results of the standalone fueling scan test with PENN. The markers represent the data points and the lines represent linear
regressions of the data points to highlight the trends. Here, fueling is not included as an input parameter, however PENN is able to
distinguish between the low and high fueling cases anyway due to small differences in the other input parameters. The predictions are
compared with experimental data which overall show good agreement. The pedestal temperature (b) shows a stronger dependency with
respect to the fueling compared to the pedestal density (c), which leads to an overall decreased pedestal pressure (a) with increased fueling.

uncertainty estimation method rather describes a tool to deter-
mine, for instance, which range of NBI power that is appropri-
ate for a particular set of engineering parameters when making
predictions with PENN. In a broader sense, this method is not
limited to the NBI parameter. The same test can be done for
each input parameter of PENN, such as the magnetic field and
the elongation.

Of course, there are also physics based reasons for why
PENN does not handle high NBI power in this case. The
high end of the NBI range for a given magnetic field
strength is likely limited by βN, which triggers MHD insta-
bilities. For obvious reasons, the database does not con-
tain scenarios that are prohibited by physics constraints
and engineering limitations. However, the database does not
necessarily cover the full multidimensional regime that is
allowed from the physics and engineering standpoint. Thus,
the machine learning approach serves a purpose of guid-
ing for which scenarios PENN is specifically suited for,
which is directly correlated to the scenarios that exist in the

database. In conclusion, both the physics/engineering and the
machine learning approach may be used in a complementary
way.

6.3. Standalone fueling dependency

As mentioned in section 4.1, we have seen that the accuracy
of PENN is not significantly improved by, for instance, pro-
viding an explicit input parameter for fueling. However, a
reduced pedestal pressure due to increased fueling is regularly
observed at JET-ILW [4]. In this section, we show how PENN
can capture this effect without providing fueling as an input
parameter.

To investigate this topic, we perform predictions on pulses
from the 1.4 MA/1.7 T fueling and power scan described in [4].
Specifically, we look at pulses from two power scans between
4.5 MW–16 MW that has been performed at two different
fueling rates: Γ = 2.8 × 1021 e/s, Γ = 18 × 1021 e/s. Since
PENN is designed to predict the pedestal temperature and den-
sity, we first predict these quantities, and then we estimate the
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Figure 6. The prediction of the multiple output model is compared with the true values of the database for JET pulse 79757 in the test set. It
is an accurate prediction, both for the temperature and density. The error, which is defined as the absolute difference between the prediction
and the experiment, is seen to peak at the gradient of the pedestal and then increase slightly toward Ψ = 0.85 for the density. The x-axis
represents the normalized poloidal flux surface coordinate.

pedestal pressure with Pe = 1.6 × NeTe, where 1.6 approxi-
mately represents from the Boltzmann constant with Te in keV,
ne in 1019 m−3 to have the pressure in kPa.

In [4], it can be seen that βN shows the same trend as the
pedestal pressure for different fueling rates. Thus, we here
temporarily drop βN as an input parameter since there is no
challenge in predicting the pedestal pressure with knowledge
about βN for this particular case.

In figure 5, the results of PENN predictions and experi-
mental data are shown for the fueling scan. In this section,
we are not necessarily interested in the power dependency
which is represented on the x-axis, however, this axis needs
to be present to distinguish between the high and low fuel-
ing cases since the power varies throughout the scan. It can be
seen that PENN is able to capture the effect of higher fueling
which leads to a lower pedestal pressure (a) without knowing
explicitly about the fueling or βN. Here, the experimental data
is from the actual pedestal pressure in the pedestal database,
and the predicted pressure is calculated from the prediction
of the pedestal temperature and density. In figures 5(b) and
(c), the predictions of the pedestal temperature and density
are shown. By comparing the temperature and the density, it
is clear that they show opposite trends although the tempera-
ture is mostly affected by the variation of fueling rate, while
the density shows a weak dependency, which is coherent with
the results in [4]. This leads to an overall decrease in pedestal
pressure with increased fueling, since the pedestal temperature
decreases with increased fueling.

PENN is able to capture this effect due to small changes
in the other parameters, such as Zeff , elongation, triangularity,
plasma volume and q95. Exactly how these parameter interact
as a substitute for the fueling to achieve this result lays hidden
in the neural network structure, which requires a significant
analysis effort which is out of the scope of this paper. To our
knowledge, there is no general downside of using the fueling
parameter as an input parameter for pedestal models. In this

paper, we simply exclude it as a parameter since we do not
want to rely on explicit fueling information in the ETS where
we employ PENN.

7. Further exploration with multiple outputs

In this section, we present an alternative version of PENN.
Here, we construct the neural networks with multiple out-
puts that represent all of the pedestal parameters. By using the
mtanh function (1), the output can be converted to 1D edge
profiles without additional strategies for parameters, such as
the pedestal position and core slope. By forcing the model
to predict all of the pedestal parameters simultaneously, there
is a slight decrease in the accuracy of the pedestal top val-
ues compared to the model that only predicts the pedestal
top values. The accuracy of the test set is reduced from R2 =
0.93 to R2 = 0.87 for the temperature and from R2 = 0.91 to
R2 = 0.89 for the density. The accuracy of the other param-
eters are: width (temperature): R2 = 0.42, width (density):
R2 = 0.51, position (temperature): R2 = 0.62, position (den-
sity): R2 = 0.61, slope (temperature): R2 = 0.44, slope (den-
sity): R2 = 0.42. It is interesting that the model is able map the
input parameters to all of these pedestal parameters to some
extent, even if the accuracy is by far best for the pedestal top
values.

An example with JET pulse 79757 is shown in figure 6
where the neural network employs the same input parameters
as in the original model, but predicts the pedestal top value,
width, position, and core slope simultaneously. This entry is
taken from the test set and shows good agreement with the
database. The error, which is defined as the absolute difference
between the prediction and the experiment is also shown. It can
be seen that the error peaks at the steep gradient of the pedestal
for both the temperature and density, which is expected since a
small difference in pedestal width and position can give large
differences in this region. From the pedestal top toward the
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core (here the core is defined as the regionΨ < 0.85), the error
may look different depending on the accuracy of the prediction
of the slope and the pedestal top value. If the slope is accurately
predicted, but the pedestal top value is not, this will give a con-
stant offset error as the profile expands toward the core. On the
other hand, if the pedestal top value is accurately predicted,
but the slope is not, the error will gradually increase from the
pedestal top position toward the core. The density prediction
in figure 6(b) illustrates this to a small extent. Since the accu-
racy of the pedestal top values are higher than the accuracy of
the slopes, it might be useful to move the boundary condition
closer toward the pedestal top if this multiple output model is
used in a simulation framework that employs boundary con-
ditions, such as the ETS (if this does not affect the simulation
negatively in other ways). This is because a predicted slope
that is less accurate will have less influence if the distance is
shorter as the profile propagates from the pedestal top toward
the core.

8. Summary and conclusions

In this paper we have presented PENN, an empirical model
for pedestal predictions using neural networks. We have shown
the performance of the model on unseen data entries, and how
the model can be implemented in simulation frameworks, such
as the ETS. The presented method of neural network training
and implementation is currently our best approach, however
this might be changed in the future as development is made.
Moreover, some methodologies are purposely chosen to be
less complicated, such as the uncertainty estimation and the
procedure to handle ions, since the purpose of this paper is to
showcase the principle and its flexibility.

In section 6, we demonstrated how the model can be used in
integrated modeling frameworks to enable adaptive boundary
conditions for the core of the plasma. Here, results are shown
to be consistent with previous studies of how the pedestal
is affected by varied NBI power. Additionally, we saw that
the method of uncertainty estimation can be useful for inter-
preting the reliability of the model for different engineering
scenarios.

An interesting aspect of PENN is its ability to maintain the
same accuracy when removing some of the seemingly impor-
tant input parameters for pedestal predictions, such as fueling,
JET wall type, and a parameter related to impurity seeding.
We have also shown that the wall type can be almost perfectly
predicted from the other parameters, and that a difference in
fueling can be captured through small differences in the other
input parameters. In other words, nuances in the other parame-
ters seem to act like a proxy for some of the parameters that are
not included explicitly as input parameters. However, analysis
of how the small differences in these parameters are coupled
to, for instance, the fueling is beyond the scope of this work,
but nonetheless opens up a interesting research question for
future studies.

The integrated modeling implementation may be improved
further in several ways. For instance, since we lack data of
the ions in the current JET pedestal database, approaches that

are more physics based may be considered for the estima-
tion of the ion pedestal in relation to the prediction of the
electron pedestal. Additionally, we currently assume a con-
stant pedestal position and width. As there are small differ-
ences, these effects can be captured with a more sophisticated
method. These points are not necessarily related to the machine
learning aspect of the model, but nonetheless play an important
role for the integrated modeling aspect.

From a perspective of machine learning, future work
include investigations related to generalization, transfer learn-
ing, and deep learning approaches. For work related to the
temporal evolution of the pedestal, recurrent neural networks
will be useful. For work related to higher dimensional input
parameters for the pedestal, deep neural networks may be
employed to truly exploit the strengths that the field of arti-
ficial intelligence potentially can provide to fusion energy
research.

An appealing aspect of the empirical approach is the lack
of required assumptions about the pedestal. Even though the
pedestal database from JET contains mostly type I ELM
entries, similar models would be able to train on, for instance,
type III ELM data, or data from other exotic ELM types.
This will be particularly useful for ELM types that do not
yet have a theoretical model. Additionally, similar frameworks
may be employed to predict other related quantities, such
as ELM frequency and energy drop in an ELM sequence,
which may be relevant for SOL research and wall load
research.

The inter-machine transferability of data driven models like
PENN is another important aspect considering, for instance,
predictive simulations of future machines like ITER. In this
paper, we have only looked at JET data, and generally we can
only be confident with predictions for the data domain which
we have trained the model on. That said, the results of a trans-
ferability investigation will likely depend on if the pedestal
physics regime remains similar when employing PENN for a
different machine, which is related to different ELM regimes
(with an appropriate scaling with respect to the major radius
if the size of the machine is different). As mentioned above,
when we train the model on one machine, we basically do not
require assumptions about the physics regime of the pedestal,
however if we apply the model to a different machine, this
becomes important. Of course, any form of transferability test
would also require assessment of how the different parameters
vary between different machines since it would be difficult to
go outside the training range of the parameters. In a broader
sense, it would be more beneficial to train a model on data from
several machines if the aim is to enable transferability. Here,
machines with varied size would allow a data driven model to
learn the major radius dependency as any other input parame-
ter as well. Theoretically, a neural network model could house
several physics regimes within its structure and learn when to
apply which regime based on the input. However, even if a data
driven pedestal model trained on several existing machines,
that can distinguish between different physics regimes is pro-
duced, it will still be a challenge to make predictions for ITER
and DEMO since there currently are no machines of similar
size to train on. Potentially, synthetic ITER/DEMO data from
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models, such as EPED, might be used to expand the database
for larger machines that are not operational yet.

In conclusion, PENN shows promising results. For future
work, it will be useful to explore data sets from other tokamaks,
but also for tritium plasmas, and as mentioned before, data
sets with a broader range of ELM types for the pedestal. Gen-
erally, when more data is available, the model may improve
further, both in accuracy and broadness of applications. Nev-
ertheless, the current state of the JET pedestal database has
been shown to provide a useful application in PENN for the
topics described in this paper.

Acknowledgments

This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the
Euratom Research and Training Programme 2014–2018 and
2019–2020 under Grant Agreement No. 633053. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission. This work has also received
funding from the Swedish Research Council with the Diary
Number 2020-05465, and has been carried out as a part of
the Enabling Research project ‘Model for reactor relevant
pedestals’ led by Christopher Ham (U4BW Work-order Num-
ber: 10189-1008).

ORCID iDs

A. Gillgren https://orcid.org/0000-0002-3810-2913
E. Fransson https://orcid.org/0000-0002-8747-3470
L. Frassinetti https://orcid.org/0000-0002-9546-4494
P. Strand https://orcid.org/0000-0002-8899-2598

References

[1] Wagner F. et al 1982 Regime of improved confinement and
high beta in neutral-beam-heated divertor discharges of the
ASDEX tokamak Phys. Rev. Lett. 49 1408–12

[2] Snyder P.b., Groebner R.J., Leonard A.W., Osborne T.H. and
Wilson H.R. 2009 Development and validation of a pre-
dictive model for the pedestal height Phys. Plasmas 16
056118

[3] Snyder P.b., Groebner R.J., Hughes J.W., Osborne T.H.,
Beurskens M., Leonard A.W., Wilson H.R. and Xu X.Q. 2011
A first-principles predictive model of the pedestal height and
width: development, testing and ITER optimization with the
EPED model Nucl. Fusion 51 103016

[4] Maggi C.F. et al 2015 Pedestal confinement and stability in JET-
ILW ELMy H-modes Nucl. Fusion 55 113031

[5] Frassinetti L. et al 2017 Global and pedestal confinement and
pedestal structure in dimensionless collisionality scans of
low-triangularity H-mode plasmas in JET-ILW Nucl. Fusion
57 016012

[6] Saarelma S., Frassinetti L., Bilkova P., Challis C.D., Chankin
A., Fridström R., Garzotti L., Horvath L. and Maggi
C.F. 2019 Self-consistent pedestal prediction for JET-ILW
in preparation of the DT campaign Phys. Plasmas 26
072501

[7] Frassinetti L. et al 2020 Pedestal structure, stability and scalings
in JET-ILW: the EUROfusion JET-ILW pedestal database
Nucl. Fusion 61 016001

[8] Kamada Y. et al 2000 Disappearance of giant ELMs and appear-
ance of minute grassy ELMs in JT-60U high-triangularity
discharges Plasma Phys. Control. Fusion 42 A247

[9] Ozeki T., Chu M.S., Lao L.L., Taylor T.S., Chance M.S.,
Kinoshita S., Burrell K.H. and Stambaugh R.D. 1990 Plasma
shaping, edge ballooning stability and ELM behaviour in
DIII-D Nucl. Fusion 30 1425

[10] Coster D.P., Basiuk V., Pereverzev G., Kalupin D., Zagorksi R.,
Stankiewicz R., Huynh P. and Imbeaux F. 2010 The European
transport solver IEEE Trans. Plasma Sci. 38 2085

[11] Kalupin D. et al 2013 Numerical analysis of JET discharges
with the European transport simulator Nucl. Fusion 53
123007

[12] Kasim M.F. et al 2020 Up to two billion times acceleration of
scientific simulations with deep neural architecture search
(arXiv:2001.08055)

[13] Meneghini O. et al 2017 Self-consistent core-pedestal transport
simulations with neural network accelerated models Nucl.
Fusion 57 086034

[14] ITER Physics Expert Group on Confinement and Transport et
al 1999 Chapter 2: plasma confinement and transport Nucl.
Fusion 39 2175

[15] Cordey J.G. (the ITPA H-Mode Database Working Group and
the ITPA Pedestal Database Working Group) 2003 A two-
term model of the confinement in Elmy H-modes using the
global confinement and pedestal databases Nucl. Fusion 43
670

[16] Meneghini O. et al 2021 Neural-network accelerated coupled
core-pedestal simulations with self-consistent transport of
impurities and compatible with ITER IMAS Nucl. Fusion 61
026006

[17] Pasqualotto R., Nielsen P., Gowers C., Beurskens M.,
Kempenaars M., Carlstrom T. and Johnson D. 2004
High resolution Thomson scattering for Joint European
Torus (JET) Rev. Sci. Instrum. 75 3891

[18] Kit A. et al 2022 Deep or Not Deep: Supervised Learn-
ing Approaches to Modeling the Pedestal Density Plasma
Physics and Controlled Fusion (to be submitted)

[19] Guillaume L. et al 2017 Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning
J. Mach. Learn. Res. 18 559–63

[20] Beurskens M.N.A. et al 2014 Global and pedestal confine-
ment in JET with a Be/W metallic wall Nucl. Fusion 54
043001

[21] Abadi M. et al 2015 TensorFlow: a system for large-scale
machine learning software available from (tensorflow.org)

[22] Pedregosa F. et al 2011 Scikit-learn: machine learning in Python
J. Mach. Learn. Res. 12 2825–30

[23] Goodfellow I. et al 2016 Baggin and other ensemble meth-
ods Deep Learning (Cambridge, MA: MIT Press) (http://
deeplearningbook.org)

[24] Trask A. et al 2018 Neural arithmetic logic units 32nd Confer-
ence on Neural Information Processing Systems (Montréal,
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