
PERF: Performant, Explicit Radiance Fields

Downloaded from: https://research.chalmers.se, 2022-10-11 19:59 UTC

Citation for the original published paper (version of record):
Rasmuson, S., Sintorn, E., Assarsson, U. (2022). PERF: Performant, Explicit Radiance Fields.
Frontiers in Computer Science, 4. http://dx.doi.org/10.3389/fcomp.2022.871808

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

ORIGINAL RESEARCH
published: 11 July 2022

doi: 10.3389/fcomp.2022.871808

Frontiers in Computer Science | www.frontiersin.org 1 July 2022 | Volume 4 | Article 871808

Edited by:

Horst Bischof,

Graz University of Technology, Austria

Reviewed by:

Markus Steinberger,

Graz University of Technology, Austria

Matthew Toews,

École de Technologie Supérieure

(ÉTS), Canada

Andrea Giachetti,

University of Verona, Italy

*Correspondence:

Sverker Rasmuson

sverker.rasmuson@chalmers.se

Specialty section:

This article was submitted to

Computer Vision,

a section of the journal

Frontiers in Computer Science

Received: 08 February 2022

Accepted: 20 June 2022

Published: 11 July 2022

Citation:

Rasmuson S, Sintorn E and

Assarsson U (2022) PERF:

Performant, Explicit Radiance Fields.

Front. Comput. Sci. 4:871808.

doi: 10.3389/fcomp.2022.871808

PERF: Performant, Explicit Radiance
Fields
Sverker Rasmuson*, Erik Sintorn and Ulf Assarsson

Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

We present a novel way of approaching image-based 3D reconstruction based on

radiance fields. The problem of volumetric reconstruction is formulated as a non-linear

least-squares problem and solved explicitly without the use of neural networks. This

enables the use of solvers with a higher rate of convergence than what is typically used

for neural networks, and fewer iterations are required until convergence. The volume

is represented using a grid of voxels, with the scene surrounded by a hierarchy of

environment maps. This makes it possible to get clean reconstructions of 360◦ scenes

where the foreground and background is separated. A number of synthetic and real

scenes from well-known benchmark-suites are successfully reconstructed with quality

on par with state-of-the-art methods, but at significantly reduced reconstruction times.

Keywords: 3D reconstruction, neural rendering, non-linear least-squares, GPU, computer graphics

1. INTRODUCTION

We present Performant Explicit Radiance Fields (PERF), a novel approach to image-based
volumetric reconstruction of 360◦ scenes based on radiance fields. Unlike previous methods, our
approach does not use an MLP solution, but instead solves the problem directly as a non-linear
least-squares system. This system is minimized using a Gauss-Newton solver with higher rate
of convergence than standard Stochastic Gradient Descent used for systems based on Neural
Networks. As a result, the time until convergence for a given scene is significantly shorter than
for comparable methods.

The NERF (Mildenhall et al., 2020) techniques present a simple formulation of the 3D
reconstruction problem using volume rendering and neural networks. We ask the question if it is
possible to solve this problem directly using pure ADAM-optimization (see Figure 1; Kingma and
Ba, 2014). With this confirmed, and identifying the problem as non-linear least-squares, we can see
that it is possible to achieve much higher convergence rates for the same volumetric formulation,
without sacrificing much in terms of quality.

The scene is represented using a grid of voxels containing color and opacity values. Additionally,
surrounding the object of interest, is a hierarchical layer of environment maps (also with color and
opacity), which enable efficient segmentation of foreground from background.

A ray is followed through each pixel of a given image, and color accumulated through the voxel
grid and the surrounding environment maps according to classic volumetric rendering. The square
of the difference between the accumulated ray and the value of the pixel is then computed for
each pixel in each image. The sum of all these differences builds up to a non-linear least-squares
system. In this system, each ray corresponds to three residuals (one for each color channel), and
each voxel in the grid and texel in the environment maps corresponds to four variables each (three
color channels and opacity).

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.871808
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.871808&domain=pdf&date_stamp=2022-07-11
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sverker.rasmuson@chalmers.se
https://doi.org/10.3389/fcomp.2022.871808
https://www.frontiersin.org/articles/10.3389/fcomp.2022.871808/full

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

FIGURE 1 | Hold out views for the lego scene comparing NERF (without view-dependence), pure ADAM-optimization, regular Gauss-Newton optimization and a

hierarchical Gauss-Newton formulation; from top to bottom. To the top-right the corresponding PSNR-curves are shown vs. time; to the bottom-right PSNR is plotted

vs. number of iterations.

This non-linear least squares system can be solved efficiently
using the Gauss-Newton method. The Gauss-Newton method
has several useful properties in being amenable to parallelization,
while only requiring the computation of partial derivatives of the
first degree. We show that these derivatives can be computed
analytically with a simple iterative algorithm. Each Gauss-
Newton step is computed using the iterative Preconditioned
Conjugate Gradient algorithm.

Since rendering the volume only amounts to raymarching
through the voxel grid and environment maps, inspecting and
evaluating the reconstruction is possible in real-time during any
stage of the computation.

To summarize, the contributions in this paper are:

• a solution of volumetric reconstruction based on a non-linear
least squares formulation,

• efficient computation of analytical derivatives using an
iterative algorithm,

• a fast GPU-based Gauss-Newton solver using Preconditioned
Conjugate Gradient,

• the separation of foreground and background for 360◦ scenes
using a hierarchical envelope of environment maps.

Note that we do not consider view-dependent effects in
this work.

2. RELATED WORK

2.1. Multi-View Stereo
Multi-view stereo (MVS) is a classical application of computer
vision where a scene is reconstructed from a set of images
taken from multiple viewpoints, typically using pairwise stereo
matching algorithms. This is a well-researched topic that have
been extensively treated the last few decades. For an overview,
see Hartley and Zisserman (2004) and Seitz et al. (2006). In
recent years, this approach have been successfully paired with
neural networks in deep multi-view stereo (Yao et al., 2018,
2019).

2.2. Structure From Motion
Another classical approach for scene reconstruction is Structure
from Motion (SfM) (Snavely et al., 2006; Özyeşil et al., 2017). In
these systems images are paired by identifying image features,
which works well given that there is enough overlap between
the images. Camera poses (or motion) are estimated and 3D
points corresponding to image features are computed. The
output of such a reconstruction is sparse, but it can be paired
with stereo matching techniques such as PatchMatch Stereo to
create dense output (Bleyer et al., 2011; Schonberger and Frahm,
2016).

Frontiers in Computer Science | www.frontiersin.org 2 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

2.3. View Synthesis
View synthesis is a related research area where focus lies on
synthesizing novel viewpoints given a set of images and their
poses, not necessarily caring about the underlying geometry of
the scene. This includes image-based rendering and lightfields,
which have been explored thoroughly over the years (Shum and
Kang, 2000).

One recent attempt at this problem is to use Multi-Plane
Images (MPIs); a set of semi-transparent images that can be
trained efficiently with neural networks and then rendered from
a novel viewpoint (Zhou et al., 2018; Mildenhall et al., 2019).

Broxton et al. (2020) surround the scene with a hierarchical
set of environment maps in a similar way to ours using MPIs,
with the goal of representing a scene captured by a fixed rig
of 46 synchronized action cameras. They, however, use MPIs
as the primary data structure to represent their scenes, while
in our work we use the surrounding environment maps as a
tool to segment the background from the region of interest
modeled with voxels. Our work does also not use neural networks
to train MPIs, but instead use a layer of environment maps
optimized explicitly in the same manner (and simultaneously) as
the voxel grid.

2.4. Neural Rendering
Recently a popular approach have been to use neural networks
as a key component in encoding the scene representation. In
Neural Volumes (Lombardi et al., 2019), a semi-transparent voxel
grid is coupled with a encoder-decoder network to create high
quality reconstructions from a multi-view setup. While the scene
is not explicitly stored in a network, they are still pivotal to its
overall approach. In NERF (Mildenhall et al., 2020), the outgoing
radiance f (x,ω) at any point, x, and direction, ω, is expressed as
an MLP with a positional encoding for the inputs. The positional
encoding has recently been shown to improve the ability of an
MLP to reconstruct high frequency signals (Tancik et al., 2020b).
Many improvements have been presented to the original NERF
implementation to help with e.g., improved view synthesis and
large scenes (Liu et al., 2020; Martin-Brualla et al., 2021).

Follow-up work has shown that it is possible to transform
a trained NERF MLP into a format more suitable for real-time
rendering (Rebain et al., 2020; Garbin et al., 2021; Hedman et al.,
2021; Neff et al., 2021; Reiser et al., 2021; Yu et al., 2021). Some
of these methods use voxels as part of their visualization but
still use neural networks for their training. Due to the need
of transforming the NERF model for rendering, these methods
typically add even more time to the already time-consuming
training.

For an overview of this growing field, we refer the reader to
the STAR-paper by Tewari et al. (2020).

To our knowledge, only a few papers have tried to address one
of the main caveats of the otherwise compelling approach used in
NERF; namely the long reconstruction times.

Tancik et al. have demonstrated that, when the target function
belongs to a known class, the network can be pre-initialized to
make the final optimization faster (Tancik et al., 2020a). The
authors show that when pretraining on a class of objects in
the ShapeNet (Chang et al., 2015) dataset, the result after a

few iterations is much better than, but the quality converges
to the same value as for, a randomly initialized network after
as many iterations. An important observation in our paper is
that a discrete Radiance Field can be obtained much faster by
optimizing the function, f (x,ω), directly rather than training an
MLP representation.

MVSNerf (Chen et al., 2021) is an alternative approach to
creating a Radiance Field, in which a few input views are
processed through a CNN to create a feature vector that is
projected into a cost volume defined by a reference camera. These
feature vectors are passed, along with position and direction, to
an MLP which is optimized as in previous work. This allows for
much faster training of the network, but unfortunately only for
the geometry directly seen by the reference camera.

In this work, we significantly improve the reconstruction
times by identifying the problem of volumetric reconstruction as
a non-linear least-squares problem, which can be solved directly
with an efficient Gauss-Newton solver.

3. METHODS

We represent the scene using a voxel grid, where each cell
contains three color channels, C = {cr , cg , cb}, and differential
opacity (σ in Equations 1–4). The voxel grid is surrounded by a
hierarchical set of environment maps, centered around the object
of interest. These environment maps also contain a color and
opacity per texel. The main purpose of these environment maps
is not to try to reconstruct the background, but rather to improve
convergence and allow for transparent voxels (see Figure 2).

3.1. Volume Rendering
The render an image, the color of each pixel is computed by
integrating over the ray going through the pixel and into the
volume using the volume rendering equation:

H(r) =

∫ tf

tn

T(t)σ [r(t)]c[r(t)]dt (1)

where

T(t) = e(−
∫ t
tn

σ [r(s)]ds). (2)

Given that the volume is discretized in a grid, the equation
amounts to ray-marching through this grid according to:

Ĥ =

tf
∑

tn

T̂(t)(1− e[−σ (t)δ(t)])c(t) (3)

where

T̂(t) = e[−
∑t

tn
σ (t)δ(t)]. (4)

The contribution from the environment maps are accumulated
much in the same manner, but instead of ray-marching
intersection testing is used, starting from where the ray exists the
volume and going outwards, see Section 4.3 and Figure 3.

Frontiers in Computer Science | www.frontiersin.org 3 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

FIGURE 2 | Environment maps surround the scene, improving convergence

and allowing for separation of foreground and background.

FIGURE 3 | A sketch of how a ray is integrated through the scene

representation. The main region of interest is surrounded by a voxel grid. This

grid is hierarchichally surrounded by environment maps, their distance

increasing with the square of the distance to the voxel grid. First, an

intersection test is made between the ray and the grid to get the entry and exit

points. While in the volume, the ray is raymarched using jittered steps. Upon

exit, the ray is successively intersected with the environment maps in order.

Intersection tests are marked with an x and raymarch steps with a dot.

3.2. Volumetric Reconstruction
Given a set of images of a scene, we wish to reconstruct the
volume enclosed by the corresponding cameras in 3D. Using
the formulation of volume rendering from Equation (3), we can
formulate the reconstruction as an optimization problem that
minimizes the sum of squares of the difference between the
accumulated color for a ray sent through each pixel of every
image, and the actual color sampled from the same pixel. The

objective function that we want to minimize is:

F[c(t), σ (t)] = 0.5

tf
∑

tn

3
∑

i=1

(Ĥi[ci(t), σ (t)]− Ci)
2, (5)

with Ĥi[ci(t), σ (t)] from Equation (3) and each pixel color Ci.

3.3. Non-linear Least-Squares Formulation
The objective function in Equation (5) is a non-linear least-
squares equation, of which the general form is

S(x) = 0.5
m

∑

i=1

ri(x)
2, (6)

where ri are called residuals.
The problem of volumetric reconstruction can thus be

formulated as the minimization of a non-linear least-squares
problem of this form, where the residuals ri correspond to the
the difference between pixel color C and accumulated colors Ĥ
for each ray. For each pixel the three color channels are added
independently to the sum, giving three residuals per ray.

3.4. Gauss-Newton Solver
The Gauss-Newton algorithm can be used to iteratively solve
non-linear least-squares problems of the form in Equation (6)
and Nocedal and Wright (2006).
Starting with a value x0, the update function for the algorithm is:

xi+1 = xi − (Jr
TJr)

−1Jr
Tr(xi) (7)

= xi + 1 (8)

where xi represent all color and opacity values, Jr is the jacobian
and 1 is the update step.

The matrix Jr is very sparse, since only a fraction of all xi’s
(corresponding to a voxel or texel) will actually be hit by a given
ray, and thus be non-zero.

3.5. Computation of Partial Derivatives
For each ray that is marched through the volume, the partial
derivatives need to be computed with respect to each variable in
the voxels or texels that are encountered for Equation (3).We can
rewrite (Equation 3) as:

Ĥ = e0(1− e−σ1δ1)c1

+ e−σ1δ1 (1− e−σ2δ2)c2

+ e−(σ1δ1+σ2δ2)(1− e−σ3δ3)c3

+ . . .

+ e−
∑N−1

1 σiδi (1− e−σNδN)cN

.
The partial derivatives can be efficiently computed with only
two auxiliary variables if this equation is traversed backwards
(Algorithm 1).

Frontiers in Computer Science | www.frontiersin.org 4 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

Algorithm 1 | Iterative algorithm for computation of partial
derivatives of Equation (3).

V = e−
∑N

1 σiδi

G = 0

for i = N to i = 1 do

V = V − σiδi

∂H

∂ci
= e−V(1− e−σiδi)

∂H

∂σi
= e−Vδie

−σiδici − δiG

G = G+ e−V (1− e−σiδi)ci

end for

3.6. Update Step
The update step of Equation (8) requires an expensive
matrix inversion of the large and sparse square matrix Jr

TJr.
Instead of performing this operation explicitly, it is possible
to rewrite the step calculation as a linear system Ax =

b, where A = Jr
⊤Jr, x = 1 and b = −Jr

⊤r.
Note that Jr

⊤r corresponds to the gradient of the residual
∇r.

A is a very large and sparse matrix (nxn where
n is the total number of parameters in the voxel
grid and environment maps). One efficient way
of solving the linear system is to use the iterative
Preconditioned Conjugate Gradient (PCG) algorithm
(Algorithm 2).

The variables r, z, p and x are temporary variables with
the same size and shape as the voxel grid (or environment
maps if they are used). The vector addition (such as xk +

αkpk) and dot products (such as r⊤
k
zk) of Algorithm 2

are cheap and easy to compute in parallel on the GPU.
The computation of Ap, however, requires some additional
exposition. The matrix A itself is much too large to form
explicitly (for a very modest 323 grid it amounts to 4TB
of data). To get around this, the following identity can be
used:

Ap = J⊤r Jrp =
∑

i

∇ri(∇r⊤i p). (9)

This enables each residual to add independently to the
computation of Ap, resulting in efficient parallelization.
For the computation of the gradients ∇ri we use
Algorithm 1. The algorithm is invoked twice; once to
compute the sum of the dot product ∇r⊤i p, and once to
compute the scalar-vector product with this sum and the
gradient ∇ri.

Algorithm 2 | The iterative Preconditioned Conjugate Gradient
algorithm, with precondition matrixM (see Section 3.7).

r0 = b− Ax0
Rprev = r⊤0 r0
z0 = M−1r0
p0 = z0
k = 0
while true do

αk =
r⊤
k
zk

p⊤
k
Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

R = r⊤k+1rk+1

if R < EPSOR R/Rprev > 0.85 then
return xk+1

end if

Rprev = R

zk+1 = M−1rk+1

βk =
r⊤
k+1zk+1

r⊤
k
zk

pk+1 = zk+1 + βkpk

k = k+ 1

end while

3.7. Preconditioner
For the precondition matrix M we use a simple diagonal Jacobi
preconditioner. This can be computed jointly with the gradients
since

diag(Jr
⊤Jr) =

[

∑

(
∂ri

∂x1
)2,

∑

(
∂ri

∂x2
)2, . . . ,

∑

(
∂ri

∂xn
)2

]

.

The size of these diagonal elements amounts to a total of n

variables, the same as for the voxel grid. This also implies that
each precondition withM−1 simplifies to regular vector addition.

Since each iteration of Algorithm 2 is quite expensive,
especially the computation ofAp, we strive to keep the number of
iterations of the PCG algorithm low. If the convergence rate is not
high enough, then we have found it preferable to exit early (the
second condition in Algorithm 2) and continue with the next
Gauss-Newton iteration. Typically, 1 − 3 iterations of the PCG
algorithm is evaluated.

Frontiers in Computer Science | www.frontiersin.org 5 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

FIGURE 4 | (Left) Smoke-like artifacts is a way for the algorithm to

compensate for view-dependent surfaces. (Right) Result with a threshold on

the accumulated opacity during rendering.

3.8. Line Search
In the Gauss-Newton method, there is no guarantee that the
objective function will decrease at every iteration. It can however
be shown that the direction 1 = −(Jr⊤Jr)−1Jr

Tr is a descent
direction. Therefore, taking a a sufficiently small step γ in this
direction should take us closer to a solution. In the update
function of the Gauss-Newton algorithm (Equation 8), there
is no scaling of the step length. We therefore add a simple
backtracking algorithm that starts at the initial step length γ =

1 and scales the step size by geometrical decimation with a
factor of α = 0.7. We then use a simple heuristic to decide if
decimation should continue based on evaluating (Equation 6)
(see Algorithm 3).

3.9. Auxiliary Terms
One way for the algorithm to handle view-dependent surfaces
is to add highlight-colored smoke-like artifacts in the volume
(see Figure 4). To mitigate this problem, one extra residual is
added per ray. This extra term penalizes the total accumulated
opacity along a ray if it deviates from 0 or 1. The reasoning
is that either the ray should see background and thus the path
should be fully transparent, or that it hits the object of interest
in which case it should be fully opaque. The following quadratic
is used:

L = λ[−4(T̂ − 0.5)2 + 1] (10)

with T̂ from Equation (4) and the factor λ = 0.1.

4. IMPLEMENTATION

The Gauss-Newton solver is implemented in CUDA. The
grid data is stored in a 3D surface, while the environment
maps are stored in cube maps. To facilitate the use
of atomics in CUDA, the backing storage is copied to
regular memory for some kernels, since this feature is not
supported for surfaces. CUDA texture objects are bound
to surfaces when sampling, giving access to hardware
trilinear interpolation.

Algorithm 3 | The backtracking algorithm used to find a suitable
step size.

γ = 1.0
α = 0.7
µprev = FLT_MAX
while true do

µ = Error(γ) // Equation (5)
if µ > µprev then

return γ /α

end if

γ = αγ

µprev = µ

end while

4.1. Hierarchical Formulation
To speed up reconstruction further, a simple hierarchical scheme
is used, typically with 4–5 hierarchical levels. The resolution
in each dimension is doubled for the voxel grid and the
environment maps for each increasing level. A fixed number of
iterations (typically N = 30) are performed per level, starting at
a resolution of (32, 32, 32) for the voxel grid and (32, 32) for each
cubemap. The initial values are typically random colors with low
opacity. When a level is completed, the tentative result is stored
temporarily while all buffers are reallocated. The new buffers
are then populated with the old data using linear interpolation,
and computation is resumed at the new hierarchical level. The
optimization is sensitive to the initial state of the colors and
opacity, and by priming each new hierarchical level with the
result from the previous one, a reasonable start guess is acquired
from start. Also, the algorithm only starts from random values for
a very low resolution, where each iteration is cheap to compute
and the extra time spent is negligible.

4.2. Jittering
The position within each pixel which the ray originates from is
chosen randomly according to two uniformly distributed floats.
Jittering is also applied along each ray, randomizing the position
of which samples are taken within half a raymarch step before
and after the uniform steps along the ray.

4.3. Rendering
Real-time rendering of a given scene is done with Equation (3).
This allows for continuous inspection of a scene during
training from any given viewpoint. First, an intersection
test is made with the ray and bounding box of the voxel
grid. The grid is then ray-marched with a step length
equal to the shortest side of a voxel cell. Exiting the
volume, the ray is intersected in order with the surrounding
environment maps.

Upon convergence of a scene, some of flying artifacts are
usually still present (Figure 4). To remove these, we simply add a
minimum threshold (1.0 − T) < 0.7 for the total opacity along
a ray within the target volume when rendering the converged
scene. Failing this test, the occupying volume is considered
fully transparent.

Frontiers in Computer Science | www.frontiersin.org 6 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

FIGURE 5 | Results on scenes from the NERF synthetic data set. Our reconstructions are shown in comparison with full NERF, NERF without view dependence, and

SNeRG. On the right curves of PSNR vs. training time are shown for our method and NERF without view dependence. We can see that our method converges much

faster, while obtaining a comparable level of quality.

Frontiers in Computer Science | www.frontiersin.org 7 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

5. RESULTS

Wehave used ourmethod on a number of different scenes among
the NERF data sets, as well as for the Tanks and Temples data

TABLE 1 | PSNR-scores on holdout views of scenes from the NERF synthetic

data set for original NERF, NERF without view-dependence, our method, and

SNeRG.

NERF full NERF Ours SNeRG

Lego 32.51 30.48 31.08 33.82

Ficus 28.76 26.89 27.54 29.32

Chair 30.77 28.43 29.77 33.24

Mic 32.51 28.85 30.12 32.60

set (Knapitsch et al., 2017). As a reference, we compare our
reconstructions with those from NERF with view-dependence

TABLE 2 | Reconstruction times for the 360◦ scenes.

Ours NERF Grid resolution

Pinecone 24m:54s 23h:21m 5123

Vasedeck 28m:59s 20h:15m 5123

Ignatius 4m:26s 24h:17m 2563

Family 3m:23s 20h:18m 2563

Truck 34m:53s 18h:16m 5123

Tank 12m:32s 27h:35m 2563

Depending on the voxel resolution used, our method is 2-3 orders of magnitude faster
than the reference.

FIGURE 6 | Results on the 360◦ scenes from the NERF data set as well as scenes from the Tanks and Temples data set. The cut-outs show the ground truth, our

reconstruction and NERF without view-dependence. Corresponding average PSNR-scores computed over a set of hold out views are shown beneath each cut-out.

Frontiers in Computer Science | www.frontiersin.org 8 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

disabled tomake for a viable comparison. For the synthetic scenes
we also compare with the voxel-based method SNerG (Hedman
et al., 2021) rendered with the diffuse part only, as well as
standard NERF.

The resolution of the final hierarchical level of the voxel grid is
typically 2563 or 5123 (seeTable 2).We use 10 environmentmaps
surrounding the 360◦ scenes with corresponding resolutions of
2562 or 5122 for each cubemap face. The synthethic scenes
are run with half image resolution, and all 360◦ scenes are
run with quarter image resolution to conserve memory during
NERF training.

For all 360◦ scenes, PSNR-scores are computed on a set of
hold-out views, corresponding to every eighth image in the data
set. These views are not part of the reconstruction step.

All results are computed on a single Nvidia Titan V GPU.

5.1. Reconstruction Quality
In Figure 5, our method is tested on a number of synthetic scenes
from the NERF data set. In all these cases, we achieve similar
or better results compared to the reference (see Table 1). We
have purposefully excluded scenes with too much specularities
from these sets, since that is not handled well by either us or
NERF without view-dependence. The bottom microphone scene
in Figure 5 is on the limit of what the methods without view-
dependence can handle. In this case, our method manages to
average out specularities in a more pleasing way compared to
NERF.

SNeRG achieves overall good quality compared to ground
truth, almost in parity with standard NERF. A direct comparison,
however, is hard to make since we have used their pre-trained
models including view-dependence. The scenes shown with
SNeRG are therefore trained using the full model and then
rendered with only diffuse components. For SNeRG, the scores
shown in Table 1 are with view-dependence included since
rendering with diffuse components only would skew the results
in a negative way.

In Figure 6, we have reconstructed the two 360◦ scenes used
in the NERF paper, as well as a number of scenes from the Tanks
and Temples benchmark suite. To get a comparable metric, we

have first masked out the foreground for each input image using
our method. The PSNR metric have then been computed on the
results of both our and NERF’s reconstructions while applying
these masks. We get similar quality using our method compared
to the reference. By visual inspection, our result has a bit higher
resolution but with more noise compared to NERF.

5.2. Performance
In the right side of Figure 5, corresponding PSNR-curves are
shown for our method vs. the reference for some artificial scenes
from the NERF data set. We can see that the convergence is much
higher for our method while achieving a similar or better final
PSNR-score.

For the 360◦ scenes in Figure 6, the computation times
are shown in Table 2. Since proper comparison requires the
application of a foreground mask from our finished scene, we
only show the final time until convergence for our method vs.
NERF. We can see that our method is 30–400 times faster than
the reference method at comparable quality. The main reason
for the spread in computation time for our method is if it has
required four or five hierarchical levels to achieve the same
level of quality as the reference. This in turn is largely decided
by the relative distance between the cameras and the object of
reconstruction, since we use a fixed discretization using a voxel
grid.

The relative costs of the included CUDA kernels are shown
in Figure 7. The kernels of the PCG algorithm are also shown.
Note that the “gradient” post also includes computation of the
preconditioner in each iteration as discussed in Section 3.7.

5.3. Memory Usage
The memory usage of a dense grid that uses 32-bit floats, three
color channels, and one density value is 2GB for a resolution
of 5123. Using a preconditioner, the maximum number of live
buffers for a given kernel is three (colors+density, gradient and
preconditioner), otherwise two.

The memory usage for the 10 surrounding environment maps
in 5122 is 240MB.

FIGURE 7 | Performance breakdown of used CUDA kernels. The PCG algorithm is comprised of several kernels whose individual times are shown to the right.

Frontiers in Computer Science | www.frontiersin.org 9 July 2022 | Volume 4 | Article 871808

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

Our dense representations makes it unfeasible to go to
higher voxel resolutions, even though this would be necessary
to get full quality out of the data sets used in this paper
where the pixel resolution varies from 800 x 800 up to 4,032
x 3,024. A sparse implementation that would concentrate
voxels around the surface boundary of objects (scaling
quadratically instead of cubically) would be necessary for that
to work.

The rendering and training times are memory bound and
scales with the number of traversed voxels for each ray. Sparse
implementations such as PlenOctrees (Yu et al., 2021) and
SNeRG (Hedman et al., 2021) show that it is possible to get real-
time rendering also for higher resolutions of voxels, which for us
would also translate to faster training times.

5.4. Rendering Times
For a test view, rendering a voxel grid of 5123 in Full HD takes
about 10–25 ms on an NVIDIA Titan V GPU, depending on how
much of the scene that fills the camera view. For comparison,
rendering a 400 x 400 image with NERF takes about 6 s on
the same hardware. SNeRG has a structure very amenable to
fast rendering, and can render scenes in ~64 fps on a Macbook
Pro (Hedman et al., 2021).

6. DISCUSSION

We present a novel method that can be used to reconstruct both
real and artificial 360◦ scenes. We obtain comparable quality
to the reference, both subjectively and with respect to PSNR
(Figures 5, 6). Performance-wise, our reconstruction times are
about two to three order of magnitudes faster then for the
compared method (Figures 5, 6).

In this paper, we chose to limit our reconstruction to view-
independent radiance fields, as we focused on the explicit

reconstruction of the non-linear least-squares formulation, and
the task of solving this with high performance. Even though
the reconstruction show some robustness to view-dependant
effects such as highlights, highly specular scenes from the NERF
data set had to be omitted. This is true both for our method
and for NERF without view-dependence. It would therefore be
interesting to extend the ideas in this paper to incorporate view-
dependence, to enable a true comparison between our method
and NERF.

Another interesting idea to follow up on would be to exploit
the fact our method requires about three order of magnitudes
fewer iterations until convergence (see Figure 1). This makes our
method a strong candidate for distributed computing, since that
requires synchronization of intermediate results between nodes
for each iteration.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SR, ES, and UA contributed to the conception and design
of the project. SR implemented the software and performed
the experiments. All the authors contributed to writing
the manuscript.

FUNDING

This work was supported by the Swedish Research Council under
Grant 2014-4559.

REFERENCES

Bleyer, M., Rhemann, C., and Rother, C. (2011). Patchmatch stereo-stereo
matching with slanted support windows. BMVC 11, 1–11. doi: 10.5244/C.25.14

Broxton, M., Flynn, J., Overbeck, R., Erickson, D., Hedman, P., Duvall, M., et al.
(2020). Immersive light field video with a layered mesh representation. ACM
Trans. Graph. 39, 3392485. doi: 10.1145/3386569.3392485

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., et al.
(2015). Shapenet: an information-rich 3d model repository. arxiv:1512.03012.
doi: 10.48550/arXiv.1512.03012

Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., et al. (2021).
MVSNeRF: fast generalizable radiance field reconstruction from multi-view
stereo. arXiv:2103.15595. doi: 10.1109/ICCV48922.2021.01386

Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J., and Valentin, J.
(2021). Fastnerf: high-fidelity neural rendering at 200fps. arXiv preprint

arXiv:2103.10380. doi: 10.1109/ICCV48922.2021.01408
Hartley, R. I., and Zisserman, A. (2004). Multiple View Geometry in Computer

Vision, Second edition. Cambridge: Cambridge University Press.
Hedman, P., Srinivasan, P. P., Mildenhall, B., Barron, J. T., and Debevec, P. (2021).

“Baking neural radiance fields for real-time view synthesis,” in ICCV (Montreal,
QC).

Kingma, D., and Ba, J. (2014). “Adam: a method for stochastic optimization,” in
International Conference on Learning Representations (San Diego, CA).

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. (2017). Tanks and temples:
benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36,
3073599. doi: 10.1145/3072959.3073599

Liu, L., Gu, J., Lin, K. Z., Chua, T.-S., and Theobalt, C. (2020). “Neural sparse voxel
fields,” in NeurIPS.

Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., and Sheikh, Y.
(2019). Neural volumes: learning dynamic renderable volumes from images.
ACM Trans. Graph. 38, 3323020. doi: 10.1145/3306346.3323020

Martin-Brualla, R., Radwan, N., Sajjadi, M. S. M., Barron, J. T., Dosovitskiy,
A., and Duckworth, D. (2021). “NeRF in the wild: neural radiance fields for
unconstrained photo collections,” in CVPR.

Mildenhall, B., Srinivasan, P. P., Ortiz-Cayon, R., Kalantari, N. K., Ramamoorthi,
R., Ng, R., et al. (2019). Local light field fusion: practical view synthesis
with prescriptive sampling guidelines. ACM Trans. Graph. 38, 3322980.
doi: 10.1145/3306346.3322980

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi,
R., and Ng, R. (2020). NeRF: representing scenes as neural radiance
fields for view synthesis. Lect. Notes Comput. Sci. 12346, 405–421.
doi: 10.1007/978-3-030-58452-8_24

Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J. H., Chaitanya, C. R.
A., et al. (2021). DONeRF: towards real-time rendering of compact neural
radiance fields using depth oracle networks. Comput. Graph. Forum 40, 45–59.
doi: 10.1111/cgf.14340

Frontiers in Computer Science | www.frontiersin.org 10 July 2022 | Volume 4 | Article 871808

https://doi.org/10.5244/C.25.14
https://doi.org/10.1145/3386569.3392485
https://doi.org/10.48550/arXiv.1512.03012
https://doi.org/10.1109/ICCV48922.2021.01386
https://doi.org/10.1109/ICCV48922.2021.01408
https://doi.org/10.1145/3072959.3073599
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1111/cgf.14340
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Rasmuson et al. PERF: Performant, Explicit Radiance Fields

Nocedal, J., andWright, S. J. (2006). Numerical Optimization, 2nd Edn. New York,
NY: Springer.

Özyeşi, O., Voroninski, V., Basri, R., and Singer, A. (2017). A survey of
structure from motion*. Acta Numer. 26, 305–364. doi: 10.1017/S09624929170
0006X

Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K. M., and Tagliasacchi, A. (2020).
“Derf: decomposed radiance fields,” in 2021 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 14148–14156.
Reiser, C., Peng, S., Liao, Y., and Geiger, A. (2021). “Kilonerf: Speeding up neural

radiance fields with thousands of tiny mlps,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 14335–14345.
Schonberger, J. L., and Frahm, J.-M. (2016). “Structure-from-motion revisited,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(Las Vegas, NV: IEEE), 4104–4113.
Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006).

“A comparison and evaluation of multi-view stereo reconstruction
algorithms,” in 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’06), Vol. 1 (New York, NY: IEEE),
519–528.

Shum, H., and Kang, S. B. (2000). Review of image-based rendering
techniques. Vis. Commun. Image Process. 4067, 2–13. doi: 10.1117/12.38
6541

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). “Photo tourism: exploring
photo collections in 3d,” in ACM Siggraph 2006 Papers (Boston, MA),
835–846.

Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P. P., Barron,
J. T., et al. (2020a). Learned initializations for optimizing coordinate-
based neural representations. arXiv:2012.02189. doi: 10.48550/arXiv.2012.
02189

Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N.,
Singhal, U., et al. (2020b). Fourier features let networks learn high frequency
functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 2020,
1–24. doi: 10.48550/arXiv.2006.10739

Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., et
al. (2020). State of the art on neural rendering. Comput. Graph. Forum. 39,
701–727. doi: 10.1111/cgf.14022

Yao, Y., Luo, Z., Li, S., Fang, T., and Quan, L. (2018). “Mvsnet: depth inference for
unstructured multi-view stereo,” in European Conference on Computer Vision

(ECCV) (Munich).
Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., and Quan, L. (2019). “Recurrent mvsnet

for high-resolution multi-view stereo depth inference,” in Computer Vision and

Pattern Recognition (CVPR) (Long Beach, CA).
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and Kanazawa, A. (2021). “PlenOctrees for

real-time rendering of neural radiance fields,” in ICCV.
Zhou, T., Tucker, R., Flynn, J., Fyffe, G., and Snavely, N. (2018). Stereo

magnification: Learning view synthesis using multiplane images. ACM Trans.

Graph. 37, 3201323. doi: 10.1145/3197517.3201323

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Rasmuson, Sintorn and Assarsson. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computer Science | www.frontiersin.org 11 July 2022 | Volume 4 | Article 871808

https://doi.org/10.1017/S096249291700006X
https://doi.org/10.1117/12.386541
https://doi.org/10.48550/arXiv.2012.02189
https://doi.org/10.48550/arXiv.2006.10739
https://doi.org/10.1111/cgf.14022
https://doi.org/10.1145/3197517.3201323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	PERF: Performant, Explicit Radiance Fields
	1. Introduction
	2. Related Work
	2.1. Multi-View Stereo
	2.2. Structure From Motion
	2.3. View Synthesis
	2.4. Neural Rendering

	3. Methods
	3.1. Volume Rendering
	3.2. Volumetric Reconstruction
	3.3. Non-linear Least-Squares Formulation
	3.4. Gauss-Newton Solver
	3.5. Computation of Partial Derivatives
	3.6. Update Step
	3.7. Preconditioner
	3.8. Line Search
	3.9. Auxiliary Terms

	4. Implementation
	4.1. Hierarchical Formulation
	4.2. Jittering
	4.3. Rendering

	5. Results
	5.1. Reconstruction Quality
	5.2. Performance
	5.3. Memory Usage
	5.4. Rendering Times

	6. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

