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ABSTRACT
Themajor impediment to scaling concurrent data structures is mem-

ory contention when accessing shared data structure access-points,
leading to thread serialisation, hindering parallelism. Aiming to

address this challenge, significant amount of work in the literature

has proposed multi-access techniques that improve concurrent data

structure parallelism. However, there is little work on analysing

and modelling the execution behaviour of concurrent multi-access

data structures especially in a shared memory setting.

In this paper, we analyse and model the general execution be-

haviour of concurrent multi-access data structures in the shared

memory setting.We study and analyse the behaviour of the two pop-

ular random access patterns: shared (Remote) and exclusive (Local)

access, and the behaviour of the two most commonly used atomic

primitives for designing lock-free data structures: Compare and

Swap, and, Fetch and Add. We model the concurrent multi-accesses

by splitting the thread execution procedure into five logical sessions:

i) side-work, ii) access-point search iii) access-point acquisition, iv)
access-point data acquisition and v) access-point data operation. We

model the acquisition of an access-point, as a system of closed queu-

ing networks with parallel servers, and data acquisition in terms of

where the data is located within the memory system.

We evaluate our model on a set of concurrent data structure de-

signs including a counter, a stack and a FIFO queue. The evaluation

is carried out on two state of the art multi-core processors: Intel

Xeon Phi CPU 7290 with 72 physical cores and Intel Xeon E5-2695

with 14 physical cores. Our model is able to predict the throughput

performance of the given concurrent data structures with 80% to

100% accuracy on both architectures.

CCS CONCEPTS
• Theory of computation→ Concurrency; Parallel comput-
ing models; • Computing methodologies→ Concurrent algo-
rithms; • Information systems→ Data structures.

KEYWORDS
concurrency, data structures, locality, multi-access, semantic re-

laxation, performance modelling, parallel programming, lock-free,

parallelism, cache, multi-core, queuing theorem.
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1 INTRODUCTION
Concurrent data structures are designed to provide highly concur-

rent accesses to shared data. Although concurrent data structures

can benefit from parallelism, scaling concurrent data structures to

parallel hardware, such as multi-core processors, is one of the most

important challenges in computing today. A major impediment to

scaling concurrent data structures is process (thread) synchronisa-
tion at given shared memory locations (access-points). Synchronisa-
tion is generally achieved by guaranteeing some notion of atomicity,

in that, a given sequence of instructions executed by a single thread

appears to take effect instantaneous to the external observer. For a

given data structure, there can be one or more access-points, from
where threads have to compute, consistently, the current state of

the given data structure. Synchronisation is vital to achieving data

structure correctness with respect to given sequential semantics,

and therefore cannot be eliminated [8].

However, there is a trade-off between synchronization and scala-

bility, that manifests as contention between concurrent threads at a

given shared access-point [10, 12, 14–17, 22]. Contention builds up

quickly and limits scalability as the number of concurrent threads

trying to synchronise access at a given shared access-point increases.
As an example, a stack has one access-point (head) where concur-
rent threads have to contend while trying to add or remove an item

to/from the stack. This is an example of an inherently sequential

data structure that requires special techniques to achieve better

parallelism.

Reducing contention arising from limited data structure access-
points, and consequently improving scalability, is and has been a

major challenge for concurrent data structure researchers. Several

design techniques trying to address this challenge have been pro-

posed and applied in the literature, including, elimination [1, 23, 36],

combining [22, 37], dynamic elimination-combining [9] and seman-

tic relaxation [2–4, 6, 18, 19, 24, 31, 32, 35, 38, 39]. Some of these

techniques have gone further to localise thread accesses to given

access-points (locality) [18, 32, 39]. Locality is achieved by giving a

thread exclusive access to a given access-point for a given number

of operations.

The general idea behind most of the proposed techniques is

to increase the number of access-points from which concurrent

threads can access the data structure and complete their operations

in parallel [27]. Increasing the number of access-points of a data
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structure has the potential to improve parallelism, and thus har-

ness the high throughput performance capabilities of the highly

parallel multi-core processors. However, for some data structures,

the only way to do so efficiently is by relaxing their semantics

[24, 31, 32]. Although relaxing semantics has been studied and

shown to significantly improve throughput performance, it has also

been shown, that semantic relaxation, through increasing the num-

ber of access-points, is inversely proportional to the data structure

accuracy (degree of relaxation) [5, 31, 32]. Furthermore, increasing

the number of data structure access-points has a memory consump-

tion trade-off. Memory consumption increases with the increase

in the number of access-points which in turn increases the cost of

data structure access [20].

Scaling throughput performance is as important as data struc-

ture accuracy and memory efficiency. Therefore, understanding

the balance between the trade-offs mentioned above is key to the

designing of scalable concurrent data structures. The goal is to

understand the sweat-spot up to where we do not counteract the

performance benefits from contention reduction through increasing

the number of access-points [32]. This implies that as the number

of access-points increases beyond a certain point, the trade-offs can

out weigh the performance gain. Although this is true, there is little

work in the literature that models and analyses concurrent multiple

access-points execution behaviour in terms of throughput perfor-

mance, especially in a multi-core execution environment. Modelling

and analysing the practical throughput performance of concurrent

data structures with multiple access-points, is an essential missing

resource in the literature. Such a resource can go a long way to

help concurrent data structure designers and researchers choose a

good configuration for their applications. To try and address this

gap, specific system models have to be developed integrating both

access patterns and hardware configurations.

In this paper, we analyse and model the general execution be-

haviour of concurrent access-points (multi-accesses), in a multi-core

and many-core shared memory execution environment. We use a

three step methodology. First we design a simple concurrent multi-

access execution model macro benchmark that we use to study the

two basic random access patterns: remote and localised accesses,

and two atomic primitives: Compare and Swap (CAS1) and Fetch

and Add (FAA2
). We study CAS and FAA as they are the most com-

mon atomic primitives when designing lock-free data structures.

The aim of this work is to provide a generic model that can be

augmented later on with the specifics of particular data structure

designs. For this reason, we design a generic model that excludes

data structure specific operations, at the beginning, and only fo-

cuses on the concurrent access-points relevant operations. As we
describe later on, this model can be extended to incorporate the

specifics of the data structure and hardware on hand.

Next we model the concurrent multi-accesses by splitting the

thread execution procedure into five logical sessions: i) side-work,

ii) access-point search, iii) access-point acquisition, iv) access-point
data acquisition and v) access-point data update. The first and fifth

sessions are independent of the access patterns, and therefore we

1CAS atomically compares the contents of a memory location with a given value and,

only if they are the same, modifies the contents of that memory location to a new

given value

2FAA atomically increments the contents of a memory location by a specified value

focus on the second, third and fourth sessions for our analysis. We

model the acquisition of an access-point, as a system of closed queu-

ing networks with parallel servers, where each server corresponds

to an access-point. Then we model the data acquisition (memory
latency) in terms of where the data is located within the memory

system (cache hit/miss). We use the memory and data operation la-

tency to estimate the service time distribution of the queue network.

Combining the operational costs of the five sessions, we are able

to come up with a predictive model that can predict the through-

put performance of concurrent multi-access data structures in a

multi-core shared memory system. We see our model as a stepping

stone towards modelling and analysing complex concurrent shared

memory data structures that integrate disjoint multi-accesses as

part of their design.

We first validate our model by predicting the throughput perfor-

mance of our macro benchmark. Then we evaluate the accuracy of

our model on a set of common, practical multi-access data struc-

tures, including a counter, a stack and a FIFO queue. Both the

validation and evaluation experiments are run on a state of the

art multi-core and a state of the art many-core system: Intel Xeon

E5-2695 with 14 physical cores and Intel Xeon Phi CPU 7290 with

72 physical cores respectively. Our model is able to predict the

throughput performance of all the experimented benchmarks with

80% to 100% accuracy, for different execution configurations and

algorithmic designs as presented in Section 5.

The rest of the paper is organised as follows. We discuss the

literature in Section 2, present our macro benchmark framework

in Section 3 followed by the throughput analysis in Section 4. We

validate our model in Section 5 and conclude in Section 6.

2 RELATEDWORK
As mention in Section 1, there is a trade-off between synchroniza-

tion and scalability in the form of contention. Towards understand-

ing the impact of contention to concurrent data structure perfor-

mance in shared memory, different studies have been presented

in the literature [10, 15–17, 22]. Results in the literature show that

scalability of synchronisation is a property of hardware [14]. How-

ever, most contention based performance analysis studies abstract

away numerous hardware features, including the memory latency,

the cost of synchronising the threads [34] and the fact that memory

is partitioned into modules that service requests sequentially. In our

study, we consider such hardware features to estimate the service

time at each access-point and estimate how long a thread would

wait in the queue.

Although getting a picture of how synchronisation and their

underlying hardware atomic primitives behave in every single con-

text is difficult; studies have been conducted to try and quantify

the cost of synchronisation and how it affects scalability [12, 14].

Across the different layers experimented in the studies, results show

that limited access-points leads to a higher cost of synchronisation

which inhibits scalability. It was also observed that the underlying

hardware atomic primitives have a high impact on the synchroni-

sation cost. As an example, CAS based synchronisation was more

costly than FAA. Insights from the studies indicate that concurrent

data structures have to be designed to overcome the hardware syn-

chronisation cost limitations. However, a general mechanism on
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how to overcome such factors to improve concurrent data structure

performance is limited. This motivates the need to analyse and

model concurrent multi-access data structures, and quantify the

performance benefits of integrating multi-accesses in designing

concurrent data structure.

The instruction level latency of hardware atomic primitives is

predominately memory latency. This implies that when evaluated

on the same hardware, atomic primitives such as CAS and FAA

can have identical instruction level latency as shown in [34]. The

latency evaluation presented in [34] shades light on cache-to-cache

transfer latency for the given hardware. However, when applied

to concurrent data structures, the overall atomic primitive latency

can be far way from the observed cache-to-cache transfer latency.

Whereas in [34] CAS and FAA are observed to have similar latency,

our results discussed later in Section 5 show that CAS has a higher

latency than FAA. The difference can partly be attributed to the

variability in the number of operands involved and the notion of

wasted work introduced by the CAS semantics (retry loop). It is also

observed in [34], that due to the limitation of atomic’s instruction

level parallelism, bandwidth reduces with the increase of number of

concurrent threads (executing an atomic operation) contending on

the same memory location. This observation clarifies the scalability

limits, that we discussed in the previous section, that arise from

access-point contention. Although the evaluation gives an insight

into the cost of atomics, the results are restricted to the instruction

level cost, independent of other factors such as contention and

operand variability.

A set of sophisticated benchmarks for cache-to-cache transfer

latency and bandwidth measurements to arbitrary locations in the

memory subsystem have been proposed in the literature [20]. The

benchmarks consider the coherency state of cache-lines to analyse

the cache coherency protocols and their performance impact. Re-

sults from different multi-core processors reveal that the location

and coherence state of data within the memory hierarchy have a

tremendous affect on the performance of an application accessing

the given data [21, 29, 30, 33].

Concurrent data structure throughput performance has been

analysed in terms of hardware and logical conflicts [7]. In the analy-

sis, hardware conflicts are viewed as concurrent calls to a hardware

atomic primitive, whereas logical conflicts are viewed as concurrent

operations on the shared data structure. The analysis relies on the

estimation of two impacting factors that lower the throughput: the

serialisation of threads executing the atomic primitives within a

retry loop, and the wasted thread retries that fail on the atomic

primitive. Furthermore, an atomic primitives performance model is

presented in [25], covering performance metrics including energy

consumption, fairness among threads and throughput. The model is

built on a single cache-line bouncing process as a way of modelling

concurrent access to a shared memory resource. However, the two

studies are limited to a single shared access-point and specific to a

single access pattern. This limits the memory latency to a single

cache-line residing in the level one cache of the tested hardware.

Implying that the movement of data within the memory hierarchy

is not fully captured.

Performance studies have been carried out in the literature target-

ing different computing system’s components and configurations

such as hardware primitives, memory hierarchies and cache co-

herence protocols. Some of the studies have been used to analyse

and model performance of specific algorithms and data structures

designs. Although intricate performance analysis and models have

been presented in the literature, work incorporating concurrent

multi-accesses to shared memory in the context of concurrent data

structures is still lacking. There is need to analyse and model the

practical throughput performance of the ever growing number of

multi-access concurrent data structure design techniques.

3 EXECUTION MODEL
In this section, we present our micro benchmarks that we use to

model the execution behaviour of concurrent access-points, locally
and remotely accessed. We base the benchmarks on a simple lock-

free concurrent access to shared memory (implementing a simple

counter), considering the two most commonly used atomic primi-

tives for designing lock-free data structures: FAA and CAS. Using
either FAA or CAS, each thread updates a memory location cor-

responding to a given access-point as shown in Algorithms 1 and

2. We benchmark local access-point (locality) execution behaviour

by allowing a thread to exclusively access a specific access-point,
on which it can perform its update locally without contending or

sharing data with any other thread in the system. To benchmark

shared access-points (remote) execution behaviour, we let a thread

select an access-point uniformly at random, from an array of shared

access-points on which it can perform its update.

Algorithm 1: Fetch and Add (FAA)

1.1 Allocate sharedCounters[𝐾];

1.2 Allocate localCounters[𝑁 ];

1.3 Function ThreadProcedure(𝑃):
1.4 while ElapsedTime < duration do
1.5 operation← randomOp(opRatio);

1.6 SIDEWORK(randomCycles(maxCycles));

1.7 if operation = local then
1.8 FAA(localCounters[𝑃],1);

1.9 else
1.10 index← randomIndex(𝐾 );

1.11 FAA(sharedCounters[index],1);

1.12 success ++;

1.13 return success;

Threads call the ThreadProcedure function and execute their

operations in a loop for a given duration (Line 1.4, 2.4). A thread has

to uniformly at random decide (Line 1.5, 2.5), whether, to operate

on a local access-point (Line 1.8, 2.10) or, a shared access-point (Line
1.11, 2.16) that is also selected uniformly at random (Line 1.10, 2.13).

FAA unlike CAS always succeeds on acquiring access to an access-
point. Typically, a thread that synchronises using CAS, accesses an
access-point twice to complete its operation. The first access is to

read the state of the access-point (Line 2.14) and prepare the new

value to be used for updating accordingly (Line 2.15). The second

access is to try and perform the required access-point operation by

executing the CAS instruction (Line 2.16). CAS can only succeed if
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Algorithm 2: Compare and Swap (CAS)

2.1 Allocate sharedCounters[𝐾];

2.2 Allocate localCounters[𝑁 ];

2.3 Function ThreadProcedure(𝑃):
2.4 while ElapsedTime < duration do
2.5 operation← randomOp(opRatio);

2.6 SIDEWORK(randomCycles(maxCycles));

2.7 if operation = local then
2.8 curr← localCounters[𝑃];

2.9 new← curr + 1;

2.10 CAS(localCounters[𝑃],curr,new);

2.11 else
2.12 while true do
2.13 index← randomIndex(𝐾 );

2.14 curr← sharedCounter[index];

2.15 new← curr + 1;

2.16 if CAS(sharedCounter[index],curr,new) then
2.17 break;

2.18 success ++;

2.19 return success;

the state of the access-point has not changed from the first access

state (Line 2.14).

We split the thread procedure into five logical sessions: i) side-

work, ii) access-point search iii) access-point acquisition, iv) access-
point data acquisition and v) access-point data operation. A descrip-

tion of these five logical sessions is presented in Figure 1. We note

that the order of the sessions is a typical one. The order of some

sessions might be permuted, for example a thread might perform

side-work after performing an access-point search, and in other

cases sessions might overlap.

3.1 Side-work
We define side-work, as the work done by the thread independent

of the number of access-points available. In other words, when per-

forming side-work the thread does not access the data structure.

However, the amount of side-work can depend on the data struc-

ture design. The data structure might require a thread to do some

independent work in preparation to access the data structure. For

example, a thread might run as part of the side-work, a hash func-

tion before accessing a hash table or allocate memory for a new

data structure item before it is added to the data structure. Also, the

data structure can be part of an application that requires threads to

perform data structure independent tasks between accesses to the

data structure. Side-work can further be expanded to include thread

delays caused by external interference such as thread preemption.

To cater for side-work in our execution model, we include a variable

number of random pauses cycles between operations (Line 1.6, 2.6).

We use the randomly selected pause cycles to mimic the variabil-

ity in thread delays due to the side-work and the randomness of

thread access-point acquisition, covering a wide range of different
application scenarios.

3.2 Access-point Search
A thread has to search for an access-point from the given shared

access-points through which it can access the data structure. The

search session is depicted in Figure 1 as access-point search, starting
from the time 𝑡1 when the thread starts the search process, to the

time 𝑡2 when the thread selects an access-point and issues an access

request for the given access-point. In our micro benchmark, we

use a simple search process that is comprised of a single call to a

random function (Line 1.10, 2.13). However, some data structures

designs such as 2D-relaxed [32] and random choice of two [5, 31]

have more complex search processes that involve reading multiple

data points within memory before selecting an access-point. As an
extension of the access-point search session, data structure specific

search models can be added to our model to better suit the given

data structure designs with more complex search patterns.

3.3 Access-point Acquisition
During this session, the thread tries to gain access to the data struc-

ture through a given access-point. The duration of this session is

depicted in Figure 1 asWaiting time, starting from the time 𝑡2 when

the thread requests for access at a given access-point, to the time

𝑡3 when the thread acquires the access through the given access-
point. When accessing a concurrent data structure, threads have to

synchronise their accesses to maintain the data structure correct-

ness with respect to the respective sequential semantics. Thread

synchronisation is achieved through guaranteeing some notion of

atomicity, where, thread operation at a given access-point appears
to occur in a single instant between acquiring access and complet-

ing the data operation. Figure 1 describes the sessions that require

atomicity as Atomic execution, starting from acquiring access at the

time 𝑡2 to when the data operation is completed at time 𝑡4.

We model the access-point acquisition session as a system of

closed queuing networks with parallel servers, where each server

corresponds to an access-point. Due to atomicity, an access-point
can only service one thread at a time. This therefore implies, that

concurrent threads trying to access the same access-point have to
wait for each other to be serviced. In the literature this is commonly

referred to as contention, and significant work towards contention

reduction is available in the literature. As discussed in Section 1,

increasing the number of access-points is one of the most popular de-

sign technique proposed in the literature to alleviate contention. To
study this behaviour, we vary the number of shared access-points us-
ing the parameter K (Lines 1.1, 2.1). For a given number of threads,

as the number of access-points increases, contention reduces by a

factor, discussed and analysed in Section 4. Reduction in contention

leads to an increase in throughput performance. However, the per-

formance increase is subject to the data location within the memory

hierarchy as we show in Section 5.

3.4 Access-point Data Acquisition
A thread has to acquire data that corresponds to the selected access-
point on which to perform its data operation. This session is de-

picted in Figure 1 as Fetching data, starting from the time 𝑡3, when

the thread acquires exclusive access to a given access-point, to the

time 𝑡4, when the thread acquires the given access-point data. The
thread data fetching period relies on how much time it takes for
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Waiting time
(Queuing on contended shared access-point)

Atomic execution (Service time)

Side-work
Access-point

search
Fetching data
(Memory latency)

Data operation

CAS fail retries

𝑡0 𝑡1 𝑡2
Access request

𝑡3
Access acquired

𝑡4
Data acquired

𝑡5
Operation Completes

Figure 1: Thread execution procedure breakout. The Atomic execution section represents the instructions carried out by the
thread while holding the access-point, i.e. other words, while executing the atomic instruction CAS/FAA. When a CAS fails, it
exists the Atomic execution by releasing the access-point.

the hardware to deliver the data to the thread (memory-latency).
Memory-latency varies depending on the hardware design and

memory configuration (memory hierarchies).
We model the data acquisition session in terms of where the

data is located within the memory system. Multi-core systems have

complex memory hierarchies, including several levels of private

and shared cache memories (L1, L2, often L3, and rarely even L4)

[13, 21, 29]. Cache levels have different capacities and latencies,

with L1 having the smallest capacity and lowest latency. The higher

the cache level the higher the capacity and latency. The smallest

transferable unit of data within the cache hierarchy is a cache-
line. Several copies of the same cache-line can exist in different

caches of different cores at the same time, especially in shared data

access executions. Cache coherent protocols such as MESI
3
, are

used to maintain the multiple cache-line copies coherent across the

different cores. For example, an update on one of the cache-line

copies, invalidates all the other copies available in other caches.

Also cache level latencies differ depending on the coherence state

of the data being accessed [20].

We consider two types of data acquisition; local (Line 1.8, 2.10)

and remote (Line 1.11, 2.16). Local data acquisition is when a valid

copy of the required access-point data is fetched from the cache of

the local core (a core on which the requesting thread is running).

While remote data acquisition, is when a valid copy of the required

access-point data has to be fetched from the cache of a remote core.

Typically, data requests are made to the local cache, starting from

the lowest cache level (L1) up until the last level cache. Only if, the

requested data is not found within the local cache levels, then a

remote data request is issued to other remote caches. Data can be

found (cache-hit) or not found (cache-miss) at a given cache level.

Cache-misses can be caused by two factors; the requested data

might have been evicted from cache due to cache limited capacity

(capacity-miss), or, the requested data might have been invalidated

by a remote update on the data (coherence-miss) [21, 29, 30, 33].
The rate of cache-hits versus cache-misses contributes in deter-

mining the overall performance of concurrent multi-access data

structures in shared memory. To benchmark cache hits/misses, we

vary the number of local accesses and remote accesses together

with varying the number of shared access-points. Each thread de-

cides uniformly at random whether to access a local access-point
or a shared access-point (Line 1.5, 2.5). This way, we can vary the

number of coherent-misses and study their execution behaviour.

3
MESI cache coherent protocol, maintains cache-lines in one of the the four states:

Modified, Exclusive, Shared and Invalid.

Furthermore, to benchmark capacity-misses, we vary the number

of access-points (K) to fill up the capacities of different cache levels.

Filling up caches induces data evictions, leading to capacity-misses

when required data is found to have been evicted from the given

cache level.

3.5 Access-point Data Operation
This is the last session of the thread execution procedure, described

as Data operation in Figure 1. At this point, the required data has

been delivered to the thread to carry out the necessary data op-

erations. During this session, a thread performs the required data

operations specific to the given access-point. Core clock frequency

is the only performance determining factor for this session. The

higher the frequency the shorter the time the data operation will

take to complete.

4 THROUGHPUT ANALYSIS
In this section, we analyse the throughput of our execution model

Algorithms 1 and 2. We start by modelling the overall throughput

as a system of closed network of queues where each access-point
corresponds to system servers. Then we model the memory system

and estimate the memory latency for accessing an access-point. We

then use the memory latency and thread data operation execution

time to derive the service time distribution of the access-points
(Atomic execution depicted in Figure 1). Finally, we incorporate side-

work, access-point search, local accesses and CAS failures into the

general model to estimate the overall throughput of each algorithm.

4.1 Closed Network of Queues
We analyse a closed network of queues, as a system of K number

of access-points (servers) and N number of threads. Our approach

is based on Mean Value Analysis. We estimate the expected delay

that a thread is subject to, starting from its arrival instant to the

server, until it completes its operation. This expected delay is then

used to compute the throughput of the queuing network.

We decompose the delay and define it as the sum of its compo-

nents. Then, we obtain the expectation of the total delay, relying on

linearity of expectation, by estimating and summing the expectation

of the components.

First, we estimate the expectation of the queuing delay at the

arrival instant, which can be further split into the residual service

time of the thread in service (denoted by R𝑡 ) and the sum of service

times for threads that are waiting in the queue (denoted by Q𝑡 ).
In addition, we consider the service delay for the thread to get its
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own service (denoted by S𝑡 ). As a remark, we have removed the

subscripts for the expected delay of these components because they

are equal for all access-points due to the symmetry among access-
points. Then, the system throughput (denoted byT ) and access-point
𝑖 throughput (denoted by T𝑖 ) can be computed as follows:

T =
N

E (R𝑡 ) + E (Q𝑡 ) + E (S𝑡 )
(1)

T𝑖 =
T
K (2)

To estimateE (R𝑡 ) andE (Q𝑡 ), we assume that an arriving thread

observes the system in equilibriumwith itself removed (basically we

assume that the arrival theorem [11] still holds for general service

time distribution).

With this assumption, the utilisation of queue 𝑖 ,

𝑢𝑖 (N − 1) = E (S𝑡 )
T N−1N
K

provides the probability of encountering a thread in service at the

arrival instant. Let the expected number of threads waiting for

access-point 𝑖 at a random time be Q𝑖 (N), and expected number

of threads waiting for access-point 𝑖 at the instant of an arrival be

A𝑖 (N). Based on the linearity of expectation, the expected number

of threads waiting in the queue 𝑖 is then:

A𝑖 (N) − 𝑢𝑖 (N − 1) ,where A𝑖 (N) = Q𝑖 (N − 1) .
We compute:

E (Q𝑡 ) = (Q𝑖 (N − 1) − 𝑢𝑖 (N − 1))E (S𝑡 ) (3)

Theorem 1. Given that a thread arrives while a job (thread) is
under service, the residual time for the job is given by E (S𝑡 ) 1+𝑐𝑆

2
,

where 𝑐𝑆 is the coefficient of variation for service time distribution.

Proof. Let 𝑓S𝑡 (𝑥) denote the probability density function for

the random variable S𝑡 (service time). Given that a thread arrives

at a random time during a service period of length 𝑋 , the expected

residual time is given by:

E (R𝑡 |arrival during a job of length X) = 𝑋

2

We can remove the conditioning on E (R𝑡 ) by first considering

the fraction of time that a job of length 𝑋 is under service, which

can be calculated as

𝑋 𝑓S𝑡 (𝑋 )
E(S𝑡 ) and then integrating over all possible

lengths of the service time as follows:

E (R𝑡 ) =
∫ ∞

0

𝑥

2

𝑥 𝑓S𝑡 (𝑥)
E (S𝑡 )

𝑑𝑥

=
1

2E (S𝑡 )

∫ ∞

0

𝑥2 𝑓S𝑡 (𝑥)𝑑𝑥 =
E
(
S2𝑡

)
2E (S𝑡 )

=
𝑉𝑎𝑟 (S𝑡 ) + E (S𝑡 )2

2E (S𝑡 )
= E (S𝑡 )

1 + 𝑐2
𝑆

2

□

Given that there is a thread in service at the arrival instant, and

that arriving thread arrives at a random time during the service

period, the residual time is then given as follows, relying on Theo-

rem 1:

E (R𝑡 ) = 𝑢𝑖 (N − 1) E (S𝑡 )
1 + 𝑐2

𝑆

2

(4)

Finally, we plug Equations 3 and 4 into Equation 1 to obtain

the system throughput, and then the throughput of queue 𝑖 using

Equation 2. We have represented the utilisation of a queue as a

function of system throughput (𝑢𝑖 (N − 1) = E (S𝑡 )
T N−1N
K ) which

leads to a quadratic equation for the system throughput as follows:

T𝑖 =
N
K

1

E (R𝑡 ) + E (Q𝑡 ) + E (S𝑡 )

=
N
K

1

𝑢𝑖 (N − 1) E (S𝑡 )
1+𝑐2

𝑆

2

+ (Q𝑖 (N − 1) − 𝑢𝑖 (N − 1))E (S𝑡 ) + E (S𝑡 )

=
N
K

1

(E (S𝑡 )
T N−1N
K )E (S𝑡 )

1+𝑐2
𝑆

2

+ ( N−1K − (E (S𝑡 )
T N−1N
K ))E (S𝑡 ) + E (S𝑡 )

T =
N

(E (S𝑡 )
T N−1N
K )E (S𝑡 )

1+𝑐2
𝑆

2

+ ( N−1K − (E (S𝑡 )
T N−1N
K ))E (S𝑡 ) + E (S𝑡 )

⇒ T 2
N − 1
NK E (S𝑡 )

2
𝑐2
𝑆
− 1
2

+ TE (S𝑡 ) (
N − 1
K + 1) − N = 0

When 𝑐2
𝑆
= 1, the quadratic term vanishes and the throughput is

given by:

T =
N

E (S𝑡 ) ( N−1K + 1)
(5)

For 𝑐2
𝑆
≠ 1, we rely on Theorem 2.

Theorem 2. The quadratic equation has at most one solution that
obeys 0 ≤ 𝑢𝑖 (N) ≤ 1.

Proof. First, we show that, if 𝑐2
𝑆
≠ 1, the quadratic equation

(𝑎N2 + 𝑏N + 𝑐 = 0) has two distinct solutions since 𝑏2 − 4𝑎𝑐 > 0,

where 𝑎 = N−1NK E (S𝑡 )
2
𝑐2
𝑆
−1
2

, 𝑏 = E (S𝑡 ) ( N−1K + 1) and 𝑐 = −N .

We have N ≥ 1, then we obtain:

𝑏2 − 4𝑎𝑐 = E (S𝑡 )2 (
N − 1
K + 1)2 + 4N − 1NK E (S𝑡 )

2
𝑐2
𝑆
− 1
2

N

= E (S𝑡 )2 (
N − 1
K )2 + 2N − 1K + 1)

+ 2N − 1K E (S𝑡 )2 𝑐2𝑆 − 2
N − 1
K E (S𝑡 )2

= E (S𝑡 )2 (
N − 1
K )2 + 1 + 2N − 1K 𝑐2𝑆 > 0

Now, we require that the utilization of queue 𝑖 satisfies the con-

dition 0 ≤ 𝑢𝑖 (N) ≤ 1, where 𝑢𝑖 (N) = T𝑖E (S𝑡 ) = TE(S𝑡 )
K . We

consider two cases. For 𝑐2
𝑆
> 1, the quadratic equation has a positive

(𝑆 (0) ) and a negative (𝑆 (1) ) solution. We reject the negative solution.

For 𝑐2
𝑆
< 1, the equation has two positive solutions, denoted by

𝑆 (0) = −𝑏−
√
𝑏2−4𝑎𝑐
2𝑎 and 𝑆 (1) = −𝑏+

√
𝑏2−4𝑎𝑐
2𝑎 . We reject the solution
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𝑆 (1) because setting T = 𝑆 (1) leads to 𝑢𝑖 (N) > 1:

𝑢𝑖 (N) = T
E (S𝑡 )
K = 𝑆 (1)

E (S𝑡 )
K

=
−𝑏 +

√
𝑏2 − 4𝑎𝑐
2𝑎

E (S𝑡 )
K

=

−(E (S𝑡 ) ( N−1K + 1))

+
√︃
E (S𝑡 )2 ( N−1K )2 + 1 + 2

N−1
K 𝑐2

𝑆

2( N−1NK E (S𝑡 )
2
𝑐2
𝑆
−1
2
)

E (S𝑡 )
K

=
( N−1K + 1) +

√︃
( N−1K )2 + 1 + 2

N−1
K 𝑐2

𝑆

N−1
N (1 − 𝑐

2

𝑆
)

>
1

N−1
N (1 − 𝑐

2

𝑆
)
> 1

For both cases, we have at most one solution (𝑆 (0) ) that might

obey the utilization condition. □

Based on Theorem 2, we set T = 𝑆 (0) , if it obeys the utilization
condition.

4.2 Memory Latency
In this section, we model the memory latency for accessing an

access-point. As discussed in Section 3.4, latency mainly depends on

the location of the access-point data within the memory hierarchy

and the location of the thread that requests for the data. Amulti-core

memory system is typically composed of several cache levels, some

private to the core and others shared. The cache at the first level

(L1), provides the lowest latency but smallest in size. As one goes to

the higher levels of the hierarchy, the latency grows together with

the size of the cache. Here, we consider each thread to be pinned

to one core (one-to-one mapping).

When a thread (let say 𝑃𝑥 ) accesses an access-point, the access-
point data (let say 𝐷𝑑 ) is delivered to its L1 cache. Data delivery

can lead to two events. Firstly, if the capacity of L1 is full, some

data (let say 𝐷𝑒 ) will be evicted to create space for the delivered 𝐷𝑑 .

Data eviction can lead to a cache capacity-miss, if 𝑃𝑥 subsequently

requests for 𝐷𝑒 . Secondly, if 𝐷𝑑 was fetched from a private cache

of thread (let say 𝑃𝑦 ) and updated by 𝑃𝑥 , the copy of 𝐷𝑑 in the 𝑃𝑦
cache will be invalidated. As a result, 𝑃𝑦 will experience a cache

coherence-miss if it subsequently accesses an access-point associated
with 𝐷𝑑 . 𝑃𝑦 will have to fetch 𝐷𝑑 from 𝑃𝑥 cache or shared memory.

To model cache access patterns and subsequently estimate mem-

ory latency, we split the memory system into cache sub-sets, which

we refer to as access domains. Domains are specific to each thread,

for example, if 𝑃𝑥 ∈ (𝑑𝑜𝑚𝑎𝑖𝑛𝑖 ), then 𝑑𝑜𝑚𝑎𝑖𝑛𝑖 can be a local domain

for 𝑃𝑥 but will be remote for threads ∉ (𝑑𝑜𝑚𝑎𝑖𝑛𝑖 ). A thread incurs a

specific memory latency when accessing data that was last updated

by a thread in a given domain, this can be local or remote due to a

coherence-miss. Within each domain, data can be fetched from a dif-

ferent cache level considering the possibility of capacity-misses. We

denote the cache level 𝑗 in domain 𝑖 as C𝑖 𝑗 , and denote the memory

latency of fetching data in a given cache coherence state 𝑠 from C𝑖 𝑗

as L𝑠
𝑖 𝑗
. Typically 𝑠 ∈ (𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑, 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑆ℎ𝑎𝑟𝑒𝑑, 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑)

for multi-core/many-core systems.

Recall that threads access access-points uniformly at random,

which gives a uniform random distribution of access-points’ data
across caches. Given a system with K number of shared access-
points, J number of cache levels and D number of domains. We

calculate the probability of fetching a given access-point data from
C𝑖 𝑗 as follows, where K𝑖 𝑗 is the number of access-points’ data in
C𝑖 𝑗 :

P
(
C𝑖 𝑗

)
=
K𝑖 𝑗
K

We then compute the expected overall memory latency incurred

by a thread accessing given access-points as follows:

E(M𝑙𝑎𝑡𝑒𝑛𝑐𝑦) =
∑︁

0<𝑖≤D
0< 𝑗≤J

K𝑖 𝑗
K × L

𝑠
𝑖 𝑗

Due to the symmetry of core/thread memory resources, the

memory latency is similar for all threads.

4.3 Throughput Estimate
In this section, we estimate the throughput following our micro

benchmark execution models, Algorithms 1 and 2. Let the time it

takes to complete a data operation be OP𝑡 , the expected memory

latency be E
(
M𝑙

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
and E

(
M𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
for fetching an exclu-

sive local access-point and shared access-point data respectively.

Also, let the probability of a thread accessing its exclusive local

access-point beH . We estimate the local service time as:

E
(
S𝑙𝑡

)
= H ×

(
E
(
M𝑙

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
+ OP𝑡

)
A processor will only access a shared access-point when it is

not accessing its exclusive local access-point (with probability: 1-

H ). Therefore, the expected service time distribution for shared

access-points is given by:

E
(
S𝑠𝑡

)
= (1 −H) ×

(
E
(
M𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
+ OP𝑡

)
Threads accessing their exclusive local access-points, reduce the

number of threads contending (queuing) for the shared access-points,
which in return reduces the expected queue size distribution. From

Equation 5, the general queue size distribution is given by
N−1
K .

To incorporate local accesses, we compute the expected queue size

distribution as:

E (Q𝑠 ) = (1 −H) ×
N − 1
K

Let the side-work execution time beW𝑡 and access-point search
execution time be A𝑡 . In addition to S𝑙𝑡 and S𝑠𝑡 ,W𝑡 and A𝑡 con-

tribute to the overall thread throughput. Replacing
N−1
K withE (Q𝑠 )

in Equation 5, we estimate the throughput of our execution model

Algorithms 1 and 2 in Section 4.3.1 and 4.3.2 respectively bellow,

where N is the number of threads.
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4.3.1 Execution Model Algorithm 1 (FAA). FAA memory updates

always succeed on first attempt, in other words, a thread executing

a FAA instruction will always complete its data operation on ac-

quiring access to a given access-point. This implies that all queuing

threads will complete their operations (will be serviced) before

rejoining the queue.

T 𝑓 𝑎𝑎 =
N(

E
(
S𝑠𝑡

)
(E (Q𝑠 ) + 1)

)
+ E

(
S𝑙𝑡

)
+ A𝑡 +W𝑡

4.3.2 Execution Model Algorithm 2 (CAS). Unlike FAA where a

thread always succeeds on acquiring access to a given access-point.
A thread executing a CAS instruction on an access-point can fail

to perform its data operation. Typically, a thread that fails retries

by searching for another access-point in a retry loop as shown in

Algorithm 2 (Line 2.12). A retrying thread has to exit the Atomic
execution by releasing the access-point and retry on a randomly

selected access-point as illustrated in Figure 1.

Although CAS has fail retries, there will always be one thread
that succeeds in each retry loop. With this guarantee, the queue

size will reduce by one until all the threads initially in the queue

have succeeded. Using Arithmetic progression, we calculate the

expected CAS fail queue distribution as follows:

E
(
Q𝑐𝑎𝑠𝑠

)
=

(
1 + E (Q𝑠 )

2

)
× E (Q𝑠 )

A thread will only fail on a CAS try when accessing a shared

access-point (1-H ). Also, for every CAS try, a thread has to fetch

data for the given access-point from within the memory hierarchy.

Therefore, the expected time distribution wasted on CAS fails is

given by:

E (F𝑡 ) = (1 −H) × E
(
Q𝑐𝑎𝑠𝑠

)
× E

(
M𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
This implies that, a thread has to wait for a duration equivalent

to E (F𝑡 ), plus, a succeeding thread per retry, before it succeeds.

Incorporating the CAS retries, we then estimate the throughput of

Algorithms 2 as follows:

T 𝑐𝑎𝑠 =
N(

E
(
S𝑠𝑡

)
(E (Q𝑠 ) + 1)

)
+ E (F𝑡 ) + E

(
S𝑙𝑡

)
+ A𝑡 +W𝑡

5 EVALUATION
In this section, we discuss how we obtain the system and algorith-

mic arguments that we use to validate and evaluate the accuracy

of our model. Firstly we validate our model and present several

insights into the performance of different access patterns and the ac-

curacy of our predictions. Consequently, we evaluate the accuracy

of our model on three random choice, multi-access, semantically

relaxed data structures, including a counter, a stack and a FIFO

queue [5, 31, 32]. Our discussion also shows how our model can be

used in other applications apart from the data structures that we

used.

The validation and evaluation experiments are conducted on

two machines with different hardware configurations:

(a) FAA execution model (b) CAS execution model

Figure 2: General model validation, Xeon CPU. Solid lines
present the model throughput prediction, dashed lines
present the actual measured throughput, 𝑃 stands for
thread(s).

(1) Intel XeonCPUE5-2695 v4@ 2.3 GHz (Xeon). Has 14 physical
cores with three cache levels; 32KB L1 and 256KB L2 private

to each core and 35MB L3 shared among the 14 cores.

(2) Intel Xeon Phi CPU 7290 v2 @ 1.5 GHz (XeonPhi). Has 36
tiles with two cache levels; 32KB L1 and 1MB L2 private to

each tile. Each tile has two physical cores sharing the tile L2

cache making a total 72 physical cores.

Our benchmarks were compiled using GCC 8.2.0 at O3 optimisation

level and threads are pinned one per physical core/tile. However

for 64 threads on XeonPhi, two threads share a tile with each thread

pinned on an individual tile core. Throughput is measured as an

average of the number of successful access operations performed

per second out of five runs per benchmark.

Figures 2, 4, 3 and 5 present the measured and predicted through-

put for the respective machines. The x-axis provides the number

of access-points while the y-axis provides the throughput in form

of million operations per second (M/s). The solid lines present the

model throughput prediction, whereas the dashed lines present
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(a) FAA execution model (b) CAS execution model

Figure 3: General model validation validation, XeonPhi CPU.
Solid lines present the model prediction, whereas the dashed
lines present the actual measured throughput. 𝑃 stands for
thread(s).

the actual measured throughput. Plot colours and markers repre-

sent different number of concurrent threads 𝑃 as indicated in the

respective legends.

5.1 System Parameters
Both Xeon and XeonPhi use write-back inclusive cache and a MESI

(Modified, Exclusive, Shared, Invalid) cache coherence protocol

[26]. Processor frequencies are fixed to 2.3 GHZ for Xeon and 1.5

GHZ for XeonPhi for all the experiments. The memory system is

divided into three access domains; local, local-shared and remote.

For a given thread, a local domain contains its core private cache

levels and the rest of the caches are remote if not shared with

the given thread. The local-shared domain contains cache levels

shared between cores, in the case of Xeon, L3 belongs to the shared

domain common to all the available 14 cores, whereas for XeonPhi,
L2 belongs to a limited local-shared domain for two cores within

the same tile. This means that for XeonPhi, L2 of a given tile is

remote for threads not belonging to the given tile.

Each access-point is aligned to a full cache-line of 64Bytes to

avoid false sharing and simplify data location and coherence state

estimates. We estimate the data transfer latency between domains

(L𝑠
𝑖 𝑗
) using BenchIT [28], a commonly used tool to measure cache-

to-cache transfer latency [20, 21, 29, 30, 33]. Data is transferred in

form of cache-lines within the memory system, and cache-lines can

be in either of the four MESI coherence states for both Xeon and

XeonPhi. In our case, for localised accesses, access-point cache-lines
will mostly be in a modified state, therefore we use the measured

data transfer latency for a cache-line in modified state. Whereas for

remote accesses, access-point cache-lines will transition between the
four different MESI coherence states, making it hard to predict the

cache-line coherence state at any given point in time. We therefore

measure the cache transfer latency for the four different MESI

coherence states, and calculate the average as the overall remote

access cache-line transfer latency.

We estimate the execution duration of each atomic operation, by

running the algorithms with a single thread executing the atomic

operation locally. Subtracting the measured L1 cache latency, we

obtain the operation time (OP𝑡 ). Recall from Figure 1, OP𝑡 is part
of the atomic execution.

In systems where there might be external interfere such as data

transfer or thread interference (for example thread preemption), the

model provides parameters such as memory latency or side-work

that can be used to add the estimated interference respectively.

We also note that the cache levels are in most cases shared with

other processes running on the computing system. It is almost

impossible to measure the available cache space dedicated to the

algorithm execution. However, by monitoring the system load, we

are able to estimate the average cache space being utilised by the

given algorithm. With this information, we can then calculate the

maximum number of access-points that can reside within a given

cache level, and then be able to estimate the number of access-points
in a given cache level for a given access domain at any point in

time (K𝑖 𝑗 ).

5.2 Algorithmic Parameters
Data structures (FIFO queue and the Stack) are initiated with 2

18

items for each experiment, meaning that part of the cache capac-

ity is consumed by the item’s data. A thread randomly decides

whether to add or remove an item from the data structure with a

50% chance for either operation. This implies that approximately

each data structure maintains the same initial number of items

(2
18
). The algorithms are each composed of multiple instantiations

(sub-structures) of a given data structure, with each instantiation be-

ing assigned an independent access-point. A thread has to select an

access-point either using the random choice of one or random choice

of two access pattern, an execution step we measure as the search

cost. Under random choice of one, a thread selects one access-point
uniformly at random and proceeds to try and acquire the given

access-point. Whereas under random choice of two, a thread selects

two access-points uniformly at random, then selects the most se-

mantically correct access-point from the two given access-points
depending on the data structure semantics. Using a stack as an ex-

ample, a thread performing a pop operation will select from among

the two access-points, an access-point with the most recently pushed
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(a) Random choice of one (b) Random choice of two

Figure 4: Data structure model validation, Xeon CPU. Solid
lines present the model prediction, whereas the dashed
lines present the actual measured throughput. 𝑃 stands for
thread(s).

(added) item. Apart from the counter, a thread has to also fetch

item data when accessing a given access-point, a cost we add to the

memory latency parameter.

We assume a uniform distribution of data among threads since

access-points are accessed uniformly at random. This also means

that access-points are distributed uniformly within the different core

cache levels. Therefore we can estimate the location of both the

access-point (K𝑖 𝑗 ) and the item data within the memory hierarchy

since a fixed number of items are maintained for each data structure.

However, this can be different in real life where the access of the

data structure is not uniformly distributed at random. In this case,

as an extension, a specific location model estimating the location

of access-points (K𝑖 𝑗 ) can be added to our model for specific data

structure designs. To estimate the size of side-work (W𝑡 ), we run

the algorithms without executing the access-point requests.

5.3 Results
Generally, we observe that our model is able to predict throughput

on both hardware platforms for all the benchmarks with accuracy

(a) Random choice of one (b) Random choice of two

Figure 5: Data structures model validation, XeonPhi CPU.
Solid lines present the model prediction, whereas the dashed
lines present the actual measured throughput. 𝑃 stands for
thread(s).

between 80% to 100%, for all experiments. Figures 2 and 3 present

results for our FAA and CAS execution models for the purposes of

validating our model in terms of local vs remote accesses. In our

execution models, captured by Algorithm 1 and 2, we vary the local

operations to give an analytical insight into the execution behaviour

of techniques such as, work stealing [39], local linearisation [18]

and 2D relaxation [32] that allow threads to alternate between op-

erating locally and accessing global variables. To validate our local

operations analysis, we vary the probability of a thread accessing its

local access-point (from 0% to 75% Local Access). As the percentage

of local accesses increases, we observe an increase in throughput.

Our model is able to predict this increase due to the incorporation

of local access probabilities, which is part of the service time that

was split into local (S𝑙𝑡 ) and shared (S𝑠𝑡 ). In our analysis we predict

that when accesses to the local access-point increase, contention on

the shared access-points reduce, subsequently reducing the queue

time (E (Q𝑠 )). Also when operating locally, the processor is fetching
access-point data from the local/local-shared domain, incurring less

memory latency (E
(
M𝑙

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
) than when fetching data from the
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remote domain (E
(
M𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

)
). Locality is especially helpful in the

contention prone executions, where the number of access-points
is less than the number of threads as observed in Figures 2 and

3. Having more threads than access-points (N < K) means that

threads will more often try to access the same access-point at the
same time leading to contention.

Another observable difference is the lower throughput perfor-

mance of the CAS execution model (Figure 2b and 3b) as compared

to the FAA one (Figure 2a and 3a). This is because of the CAS retry
loop that expands the thread waiting queue time. Our model is

able to predict this difference using the estimated number of CAS
fails (Q𝑐𝑎𝑠𝑠 ) that we incorporate in the general model. Another fac-

tor that plays role in this performance gap, is the double access

request incurred by the CAS algorithm. In our model, this effect

is integrated in the CAS fail memory latency parameter since a

thread that succeeds does not pay an extra cost for the read. This

observation shows that instruction level latency [34] in itself is not

enough, when comparing the different atomic primitives for the

purpose of predicting concurrent data structure performance.

We vary the number of threads to evaluate the model prediction

when multiple concurrent threads are accessing data from different

access domains. 1𝑃 , which stands for one thread, shows results for

a single thread. For a single thread execution, we do not expect

coherence-misses but expect capacity-misses as the number of

access-points increases. From the results, we observe a reduction

in throughput as the number of access-points increases, and our

model predicts accurately the behaviour observed. This behaviour

is attributed to capacity-misses that force the thread to fetch data

from slower cache levels as the number of access-points increase
beyond what the capacity of the smaller faster cache levels can hold.

This behaviour is more apparent in data intensive data structures

such as the FIFO queue that has double the access-points (head and

tail) as compared to the counter and the stack (Figure 4 and 5).

Now consider the situation when multiple threads are active

concurrently. As the number of access-points increases, there is an
increase in throughput until a saturation point, where the queu-

ing time (E (Q𝑠 )) is negligible. Based on queue time analysis, our

model is able to predict the increase in throughput and the satura-

tion points accurately. Higher numbers of access-points lead to data
evictions from the small private cache levels to the larger shared

L3 for the case of Xeon CPU. Although L3 is the slowest cache level

when accessed locally, it is faster to fetch data from L3 than from a

remote L1 or L2 as observed in Figure 2 and 4. Our model is able to

predict this behaviour because our memory analysis incorporates

data evictions by considering cache level capacities and domains.

Predicting the saturation point is especially important for seman-

tically relaxed data structures. Beyond the saturation point, data

structure quality keeps dropping without enough throughput gain

to justify the trade-off [31, 32].

Comparing the different data structures, we observe that the

cache capacity is utilised differently. This is due to the difference

in data intensity. The counter has to fetch a single cache-line to

complete a counter operation, whereas a stack has to fetch two

cache-lines, one for the top of the stack access-point and another

for the stack item. The FIFO queue is the most data intensive of

the three data structures, fetching three cache-lines for the deque

operation, that is, the head of the queue access-point, tail of the
queue access-point and the queue item cache-lines. This explains

the difference in cache capacity saturation points. For example we

observe that the FIFO queue saturates the last level cache (L3 for

Xeon at around 2
16 access-points and L2 for XeonPhi at around 2

11

access-points) earlier than both the stack and the counter, dropping

its throughput as it accesses off chip memory for both Xeon and

XeonPhi for high number of access-points (K𝑖3 > 𝐿3, K𝑖2 > 𝐿2

respectively).

Also our model correctly predicts the performance difference

between the two access patterns with choice of one performing

better than choice of two. This is due to the higher search cost (A𝑡 )

for the choice of two access pattern, where a thread has to fetch

two random access-points from which to select an access-point.

6 CONCLUSION
In this paper, we have analysed and modelled the throughput per-

formance of concurrent multi-accesses of lock-free data structures

in multi-core/many-core shared memory systems. Multi-access

techniques have been proposed and introduced in the design of

concurrent data structures in order to improve their throughput

performance and scalability and as expected they play a signifi-

cant role in their overall performance. We considered multi-access

techniques that typically use two types of memory access patterns,

locally and remotely. We considered two classes of atomic opera-

tions: Repeat until Condition (Compare and Swap) and Atomically

Modify (Fetch and Add), that are the typical atomic primitives used

in the design of lock-free data structures. We have modelled the

acquisition of a data structure access-point in memory, as a sys-

tem of queuing networks with parallel servers, where each server

corresponds to an access-point. We also model memory latency in

terms of cache location and data coherence status. For the valida-

tion and evaluation, we have predicted the throughput performance

of a multi-access micro benchmark and a set of multi-access se-

mantically relaxed concurrent data structures (counter, stack and

FIFO queue) using two contemporary hardware platforms. The

results show that our model follows closely the actual execution be-

haviour without significant deviations independently of the number

of access-points or concurrent threads used.
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