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Advances in constraint-based models: methods for 
improved predictive power based on resource allocation 
constraints 
Eduard J Kerkhoven1,2   

The concept of metabolic models with resource allocation 
constraints has been around for over a decade and has clear 
advantages even when implementation is relatively 
rudimentary. Nonetheless, the number of organisms for which 
such a model is reconstructed is low. Various approaches exist, 
from coarse-grained consideration of enzyme usage to fine- 
grained description of protein translation. These approaches 
are reviewed here, with a particular focus on user-friendly 
solutions that can introduce resource allocation constraints to 
metabolic models of any organism. The availability of kcat data 
is a major hurdle, where recent advances might help to fill in the 
numerous gaps that exist for this data, especially for nonmodel 
organisms. 
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Introduction 
Investigations into metabolism can be aided by the use of 
genome-scale metabolic models (GEMs), which are or
ganism-specific descriptions of complete metabolic net
works, linking all metabolic reactions to their respective 
enzymes. These GEMs can simulate metabolic flux dis
tributions by optimization of an objective function that 

describes the perceived cellular objective that propels 
metabolism, by flux balance analysis (FBA) [1]. 

Elementary to GEM simulations is that metabolism (as 
well as life in general) operates under myriad of con
straints. These include so-called ‘hard’ constraints that 
remain unchanged as they abide by the laws of physics 
(e.g. conservation of mass and energy, thermodynamics), 
in addition to ‘soft’ constraints that can vary not only by 
organism, environmental condition, and the state of the 
cell (e.g. nutrient uptake rate, biomass composition), but 
can also change through processes like evolution or 
changes in gene expression. 

A major limitation in the predictive power of these con
ventional GEMs is that they ignore that the capacity of a 
cell to support a metabolic flux is constrained by its re
source allocation, chiefly as most metabolic reactions are 
catalyzed by enzymes. The synthesis of enzymes (i.e. 
proteins) is resource- and energy-expensive, their catalytic 
capacities are limited by their often modest kinetics, plus 
the quantity of enzymes is space-constraint, such that 
stringency in resource allocation is vital for optimal cell 
growth. The modeling problem of resource allocation can 
be narrowly defined by only considering protein allocation: 
“given a certain budget, what is the best way to distribute 
it”, where budget refers to the total cellular protein level 
that is distributed over all its constituent proteins. This 
problem can be extended by not only considering protein 
allocation but also the resources it takes to produce pro
teins, where resources refer to the metabolic and energetic 
costs of protein synthesis. Regardless of whether one 
considers only the budget or also the resources, applying 
such constraints in a model of metabolism not only re
duces simulated flux distributions to those that are most 
economic. It also limits the phenotypes that the model can 
simulate, where both contribute to more realistic results. 
Such models have already found numerous applications in 
e.g. unraveling the underlying mechanisms for observed 
metabolic phenotypes and the prediction of strain opti
mization strategies, as reviewed in more detail else
where [2]. 

The simplest approach to consider the economics of 
resource allocation assumes that cells aim to minimize 
the number of active fluxes to yield the most efficient 
flux distribution. Parsimonious FBA [3] is an example of 
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a computational approach that can find such minimal 
flux distributions by removing loops and thereby par
tially alleviates the protein allocation problem, but more 
advanced approaches have since been developed. 
Moreover, various approaches reach further and more 
explicitly consider the resource allocation constraints 
that affect metabolism. While most of these approaches 
are introduced with a proof-of-principle application in a 
model organism (often Escherichia coli or Saccharomyces 
cerevisiae), their valuable characteristics could be of 
benefit for models of many other organisms. Hence, here 
the field of resource allocation models since 2020 is re
viewed with a particular focus on (i) approaches with 
software that allow for relatively straightforward exten
sion of any GEM for any organism; (ii) recent advances in 
kcat value determination that prominently affect model 
reliability, and disproportionally affects nonmodel or
ganisms. 

Acknowledging the workhorses 
Principles of enzyme-constrained models 
The protein allocation that is arguably closest to meta
bolism is the selection and quantity of enzymes to be 
synthesized. Efficient pathways are those involving en
zymes with an optimal combination of low molecular 
weight and high catalytic capacity. As such, metabolic 
fluxes are constrained by: 

v k E[ ]max i cat i i, , (1)  

E MW C
g

g
[ ]i i

enzyme

DCW (2) 

where the maximum rate of reaction i is a product of the 
catalytic capacity and concentration of its corresponding 
enzyme (assuming absence of isoenzymes), while the 
total enzyme content C (in gram enzyme per gram dry 
cell weight) is an overarching constraint and considers 
the molecular weight MW of each enzyme. 

In the earliest approach to implement these 
constraints—FBAwMC (FBA with molecular crowding) 
—Eq. (1) was not explicitly considered [4]. Rather, an 
overall crowding coefficient was assigned, representing an 
amalgamation of kcat values, enzyme molecular weights, 
substrate and product concentrations, and any other 
factors that modify enzyme activities. This approach has 
later been extended with thermodynamic penalties for 
reversible reactions [5], and dynamic assignment of the 
proteome to four sections: ribosome; biosynthetic en
zymes; carbon intake; housekeeping [6]. However, the 
explicit incorporation of both Eqs. (1) and (2) in so- 
called enzyme-constrained models (ec-models) has re
cently been the more dominant approach, after a first 
implementation in 2011 [7]. 

Enzyme-constrained model reconstruction workflows 
As an expansion of conventional GEMs, ec-models 
consider the protein allocation (or budget) problem by 
requiring each enzyme-catalyzed reaction to use an en
zyme-specific pseudometabolite [8]. The stoichiometric 
coefficient of enzyme usage in these reactions is defined 
as 1/kcat, such that fast enzymes with high kcat values 
require less usage. The molecular weight of the protein 
is considered in when drawing the usages of all enzymes 
from either an overall pool of total protein, or alter
natively from enzyme levels measured by absolute pro
teomics. New ec-model reconstruction approaches are 
often presented as a software solution (Table 1). This 
not only allows for replicating the model accompanying 
each publication, but also for relatively easy extension of 
other conventional GEMs to ec-models. Main differ
ences between the various approaches are (i) the exact 
model implementation of Eqs. (1)–(2); (ii) the source of 
kcat values. Notably, single-enzyme reactions (i.e. no 
subunits and no isoenzymes) are simplest to expand with 
enzymatic constraint, as they involve only single mole
cular weights and kcat values. For isoenzymes, AutoP
ACMEN [9] always assumes that the enzyme with the 
lowest cost, 

=c
MW
E

i
i

i (3) 

will be used, while in GECKO [10,11], DLKcat [12] and 
ECMpy [13] isoenzymatic reactions are split and thereby 
explicitly allowing the model to choose which isoenzyme 
should be used. For GECKO and DLKcat this results in 
significantly increased model sizes, while ECMpy has 
only one single added constraint. While all model for
mulations allow for proteome prediction, only DLKcat 
and GECKO can directly constrain the model with 
measured quantitative proteomics. Since 2020, ec- 
models have been constructed for a variety of different 
organisms, including prokaryotes [13–17] and eukaryotes  
[11,18–21], indicating wide applicability of this model 
formalism (Table 2). 

Improving coverage of available kcat values 
Critical for explicitly including Eq. (1) is access to reli
able and well-covered kcat data [22], that can be obtained 
by different approaches, but is often gathered by 
querying the BRENDA [23] and SABIO-RK [24] data
bases. However, for many reactions no kcat value is 
known: in E. coli less than 10% of its ±  2000 enzyme- 
reaction pairs have experimentally measured kcat values  
[25], while for nonmodel organisms the situation is even 
more dire. When data are missing, GECKO and Au
toPACMEN adopt kcat values by fuzzy matching to si
milar reactions (by Enzyme Commission number, or 
substrate) or organisms, but this can cause model pre
dictions to deviate significantly from experimental ob
servations [8]. Using random kcat values drastically 
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increased the prediction error in an ec-model of Bacillus 
subtilis [26]. ECMpy does not have its own kcat sourcing 
capability, and if no kcat is provided for a particular re
action its enzymatic cost will be set to zero. 

With the knowledge that enzyme activities can vary in 
multiple orders of magnitude [27], fuzzy kcat matching is 
not ideal. Beyond sourcing measured catalytic capacities, 
one can estimate kcat values from quantitative pro
teomics and flux data sets [25]. Following Eq. (1), con
dition-specific apparent enzyme activities (kapp) can be 
computed when vi and [E]i are known. When testing 
numerous conditions, maximum apparent activity 
(kapp,max) will in theory approach in vivo kcat if the en
zyme is used at full capacity in (at least) one of the 
conditions. 

By comparing 31 growth conditions in E. coli with FBA 
as source of flux data, computed kapp,max values were 
representative of reported kcat [28], while the use of four 
knockout strains and flux data from 13C-labeled sub
strates yielded similar results [29•]. In S. cerevisiae, only a 
weak correlation was found that could be somewhat 
improved when discarding kcat values that were mea
sured via heterologous expression [30••]. This approach 
yields reasonable estimates of kcat values, with models 
performing better than those populated with kcat from 
fuzzy matching, but remains a tedious process, especially 
for nonmodel organisms. Moreover, this approach should 
be treated with caution as its primary reliance on ex
tensive fitting raises the risk that information on aspects 
such as potential undersaturation of enzymes and pre
paratory expression will be lost. 

Predict kcat values through machine learning 
Even though species-specific kcat coverage is poor, the 
BRENDA and SABIO-RK databases still contain a 
wealth of measured kcat data. Notwithstanding various 
challenges including assay conditions affecting kinetic 
activities [31], this gathered information can be lever
aged to predict kcat values. Indeed, in E. coli machine 
learning predicted kcat from a variety of features, in
cluding GEM network properties, enzyme structural 
properties, biochemical mechanism information, assay 
conditions, and absolute proteomics data [29•]. Particu
larly the latter requirement limits the use of this ap
proach for other organisms. Contrastingly, deep learning 
does not rely on feature selection, and the DLKcat 
neural network was able to predict kcat values from 
protein sequences and reaction substrates alone [12]. 
The DLKcat neural network is trained on 16 000+ in 
vitro measured kcat entries from the BRENDA and 
SABIO-RK databases. Incorporation of DLKcat pre
dicted in vitro kcat values and Bayesian inference to re
concile the predicted in vitro kcat values with in vivo 
measured phenotypes showed superior performance 
over fuzzy kcat matching in various yeast ec-models. With 
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DLKcat only requiring protein sequences and reaction 
substrates renders this approach widely applicable for 
any organism. 

An interesting extension to establishing kcat values is the 
consideration of temperature on enzyme activity and 
denaturation [32•]. For this, enzyme optimal tempera
tures (Topt) were predicted by machine learning [33], 
while Bayesian inference dealt with uncertainty in Topt 
and melting temperatures (Tm). Heterologous expression 
of a thermotolerant squalene epoxidase confirmed that 
the native yeast gene limits growth at superoptimal 
temperatures, as predicted by this modeling ap
proach [32•]. 

Expand with nonmetabolic reactions 
Consider protein translation affecting enzyme levels 
While constraints of enzyme levels and catalytic activ
ities addresses the protein allocation problem, and also 
known as course-grained approaches, the biosynthesis of 
proteins also raises the resource allocation problem that 
can be addressed by fine-grained approaches that ex
plicitly integrate cellular processes into a GEM [34]. 
Provision of metabolic precursors and energy by meta
bolism are required to synthesize the very enzymes that 
constrain metabolism. Moreover, protein translation re
quires ribosomes that are themselves synthesized by 
protein translation. The concentration of Ei in Eq. (1) is 
therefore not constant but determined in the model: 

v k E[ ]isyn, ribo ribo (4)  

µ= + = +v v v k E E[ ] [ ]syn i deg i dil i deg i i i, , , , (5) 

where vsyn, vdeg and vdil are the rates of protein-specific 
translation, degradation and (growth-related) dilution, 
respectively. Protein synthesis (Eq. (4)) is dependent on 
ribosome concentration and maximum translation rate 
(kribo). The constraint-based framework meanwhile dic
tates (Eq. (5)) that the protein-specific synthesis rates 
are equal to the sum of the protein-specific degradation 
constants (kdeg) and growth rate (μ), both multiplied by 
the enzyme concentration. Variations of these equations 
can also be used to describe other cellular processes. 

Accordingly, fine-grained models consider both the 
biosynthesis of macro-molecular constituents and ex
plicitly simulate their catalytic role, and are also known 
as proteome-constrained models, multiscale extensions 
to GEMs or resource allocation models (Figure 1). 

Proteome-constrained model reconstruction 
Various approaches have been developed to consider  
Eqs. (4)–(5), including RBA (resource balance analysis  
[35]), ME (metabolism and expression [36,37]) and 
ETFL (expression and thermodynamics flux). Gen
erally, they are part metabolic network, part description 
of gene expression and protein translation, and coupling 
coefficients are subsequently used to relate Eq. (4) to  
Eq. (1). As pc-models have significant higher complexity 
than ec-models they have often been introduced as 
manual ad-hoc reconstructions for a particular organism, 
instead of providing a software that can be applied for 

Figure 1  

Current Opinion in Microbiology

Comparison of various model types. Where conventional GEMs (left) have a fixed biomass composition, their internal fluxes are not under capacity 
constraints (indicated by the thick arrows), while typically the nutrient uptake is constraint (thin arrow). Their biomass composition (green chart) is 
fixed. In enzyme-constrained GEMs (middle), the internal reactions are each under their own unique capacity constraint (various arrow thickness), 
while also here the biomass composition is fixed. Proteome-constrained GEMs (right) include reactions describing macromolecule synthesis, such as 
transcription and translation. Reaction enzymatic constraints are affected by the amount of enzyme synthesized, and the biomass composition is 
variable. 
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reconstructing models for other organisms. More re
cently this has been addressed, so there are now four 
different software solutions for reconstructing pc-models 
(Table 3). 

RBApy in particular is a very user-friendly software that 
can extend conventional GEMs with translation and 
transcription, and initially only requires the GEM in 
SBML format and the organism Uniprot identifier, al
though RBApy is currently only suitable for prokaryotes  
[38••]. Additional curation is conveniently facilitated 
using dedicated ‘helper files’ formatted to contain re
levant information, while RBApy can be extended to 
consider further processes, such as protein secretion and 
chaperoning. COBRAme [39] and (y)ETFL [40•,41] are 
less automated, although example tutorials are provided. 
COBRAme is an extension of cobrapy [42], rendering it 
more accessible to cobrapy users, but otherwise it is not 
too dissimilar from RBApy. ETFL (and the yeast variant 
yETFL) differ mostly in two important aspects: con
sideration of thermodynamics constraints, and the ap
proach by which growth-related variables (see e.g. Eq. 
(5)) are considered. The other pc-model formulations 
require sequential solving of a series of linear problems 
(LPs), where the growth rate predicted from each 
iteration is used as variable for the next simulation, re
quiring extra computational power. In contrast, the 
ETFL model formalism defines a mixed-integer linear 
(MILP) problem that can directly be solved with a 
MILP solver, although those mathematical problems are 
also still significantly more computationally expansive 
compared to the relatively simple LPs of ec-models. 
While the three pc-models solutions have been pub
lished in recent years, they have not yet been widely 
used to reconstruct models for different organisms  
[40•,41,43,44], while more models were reconstructed ad 
hoc [45–50] (Table 2). 

Additional resource allocation constraints 
Beyond enzymatic, gene expression and protein trans
lation constraints, cellular resources are also allocated to 
other processes. The mammalian protein secretory 
pathway was introduced to GEMs and was able to 

accurately predict the influence on various interventions 
on protein secretion [51•]. Coupling the transport of 
proteins over the yeast mitochondrial membrane allowed 
to quantify this effect on the proton motive force [45]. 

Conclusions 
The principle of resource allocation constraints has been 
around for a while but had not been as widely adopted as 
perhaps one imagines their benefit over conventional 
GEMs. Contributing to this has likely been the lack of 
user-friendly and adaptable software solutions to gen
erate these models. Ec-models are now easier to re
construct with AutoPACMEN and GECKO, reflected 
with ec-model reconstructed for 22 distinct species since 
2020 (Table 2). This will likely accelerate for nonmodel 
organisms with the advance of predicting kcat values 
from deep learning. To date, pc-models have been re
constructed for 7 species (Tables 2–3), but it is antici
pated that this number will also rise in the years to come, 
due to the required software solutions having become 
available. Irrespective of the formalism that is chosen for 
model reconstruction, on the model application side 
progress has already been made to develop computa
tional tools such as MEWpy [52] that can handle a wide 
variety of ec- and pc-model formalisms. 

As reconstruction of the models has been made easier, 
and can be reconstructed with feasible parameters, a 
challenge remains to populate such models with ex
perimentally measured data. Albeit deep-learning de
rived kcat values are significantly better than fuzzy 
matching, fine-tuning their value in DLKcat-derived 
models still relies on the availability of proteomics data. 
Merely generating resource allocation constraint models 
for many more organisms will likely be of limited impact 
if this is not accompanied by increasing availability of 
(multi-)omics data for such nonmodel organisms. 
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Table 3 

Recent software solutions to reconstruct proteome-constrained models.      

Software RBApy COBRAme (y)ETFL  

Thermodynamics No No Yes 
Workflow Automated Manual Manual 
Optimization Iterative LP Iterative LP MILP 
Organisms for which pc-model was reconstructed 
using the software 

Escherichia coli [38••] 
Bacillus subtilis [38••] 
Cupriavidus necator [43] 

Escherichia coli [39] 
Clostridium 
ljungdahlii [56] 

Escherichia coli [40] 
Saccharomyces cerevisiae [41] 

Year 2019 2018 2020, 2021 
Reference [38••] [39] [40,41] 
Platform Python Python (cobrapy) Python 
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