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The concept of metabolic models with resource allocation
constraints has been around for over a decade and has clear
advantages even when implementation is relatively
rudimentary. Nonetheless, the number of organisms for which
such a model is reconstructed is low. Various approaches exist,
from coarse-grained consideration of enzyme usage to fine-
grained description of protein translation. These approaches
are reviewed here, with a particular focus on user-friendly
solutions that can introduce resource allocation constraints to
metabolic models of any organism. The availability of k., data
is a major hurdle, where recent advances might help to fill in the
numerous gaps that exist for this data, especially for nonmodel
organisms.
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Introduction

Investigations into metabolism can be aided by the use of
genome-scale metabolic models (GEMs), which are or-
ganism-specific descriptions of complete metabolic net-
works, linking all metabolic reactions to their respective
enzymes. These GEMs can simulate metabolic flux dis-
tributions by optimization of an objective function that

Check for
Updates

describes the perceived cellular objective that propels
metabolism, by flux balance analysis (FBA) [1].

Elementary to GEM simulations is that metabolism (as
well as life in general) operates under myriad of con-
straints. These include so-called ‘hard’ constraints that
remain unchanged as they abide by the laws of physics
(e.g. conservation of mass and energy, thermodynamics),
in addition to ‘soft’ constraints that can vary not only by
organism, environmental condition, and the state of the
cell (e.g. nutrient uptake rate, biomass composition), but
can also change through processes like evolution or
changes in gene expression.

A major limitation in the predictive power of these con-
ventional GEMs is that they ignore that the capacity of a
cell to support a metabolic flux is constrained by its re-
source allocation, chiefly as most metabolic reactions are
catalyzed by enzymes. The synthesis of enzymes (i.e.
proteins) is resource- and energy-expensive, their catalytic
capacities are limited by their often modest kinetics, plus
the quantity of enzymes is space-constraint, such that
stringency in resource allocation is vital for optimal cell
growth. The modeling problem of resource allocation can
be narrowly defined by only considering protein allocation:
“given a certain budget, what is the best way to distribute
it”, where budget refers to the total cellular protein level
that is distributed over all its constituent proteins. This
problem can be extended by not only considering protein
allocation but also the resources it takes to produce pro-
teins, where resources refer to the metabolic and energetic
costs of protein synthesis. Regardless of whether one
considers only the budger or also the resources, applying
such constraints in a model of metabolism not only re-
duces simulated flux distributions to those that are most
economic. It also limits the phenotypes that the model can
simulate, where both contribute to more realistic results.
Such models have already found numerous applications in
e.g. unraveling the underlying mechanisms for observed
metabolic phenotypes and the prediction of strain opti-
mization strategies, as reviewed in more detail else-
where [2].

The simplest approach to consider the economics of
resource allocation assumes that cells aim to minimize
the number of active fluxes to yield the most efficient
flux distribution. Parsimonious FBA [3] is an example of
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a computational approach that can find such minimal
flux distributions by removing loops and thereby par-
tially alleviates the protein allocation problem, but more
advanced approaches have since been developed.
Moreover, various approaches reach further and more
explicitly consider the resource allocation constraints
that affect metabolism. While most of these approaches
are introduced with a proof-of-principle application in a
model organism (often FEscherichia coli or Saccharomyces
cerevisiae), their valuable characteristics could be of
benefit for models of many other organisms. Hence, here
the field of resource allocation models since 2020 is re-
viewed with a particular focus on (i) approaches with
software that allow for relatively straightforward exten-
sion of any GEM for any organism; (ii) recent advances in
#cae value determination that prominently affect model
reliability, and disproportionally affects nonmodel or-
ganisms.

Acknowledging the workhorses

Principles of enzyme-constrained models

The protein allocation that is arguably closest to meta-
bolism is the selection and quantity of enzymes to be
synthesized. Efficient pathways are those involving en-
zymes with an optimal combination of low molecular
weight and high catalytic capacity. As such, metabolic
fluxes are constrained by:

Omax,i < 'ém/‘,i ‘ [E]z ( 1 )

genz yme
Y. [E]-MW; < C[—‘]
Ebcw

(2)

where the maximum rate of reaction 7 is a product of the
catalytic capacity and concentration of its corresponding
enzyme (assuming absence of isoenzymes), while the
total enzyme content ¢ (in gram enzyme per gram dry
cell weight) is an overarching constraint and considers
the molecular weight MW of each enzyme.

In the earliest approach to implement these
constraints—FBAwMC (FBA with molecular crowding)
—FEq. (1) was not explicitly considered [4]. Rather, an
overall crowding coefficient was assigned, representing an
amalgamation of 4., values, enzyme molecular weights,
substrate and product concentrations, and any other
factors that modify enzyme activities. This approach has
later been extended with thermodynamic penalties for
reversible reactions [5], and dynamic assignment of the
proteome to four sections: ribosome; biosynthetic en-
zymes; carbon intake; housekeeping [6]. However, the
explicit incorporation of both Eqs. (1) and (2) in so-
called enzyme-constrained models (ec-models) has re-
cently been the more dominant approach, after a first
implementation in 2011 [7].

Enzyme-constrained model reconstruction workflows
As an expansion of conventional GEMs, ec-models
consider the protein allocation (or budger) problem by
requiring each enzyme-catalyzed reaction to use an en-
zyme-specific pseudometabolite [8]. The stoichiometric
coefficient of enzyme usage in these reactions is defined
as 1/.,. such that fast enzymes with high £, values
require less usage. The molecular weight of the protein
is considered in when drawing the usages of all enzymes
from either an overall pool of total protein, or alter-
natively from enzyme levels measured by absolute pro-
teomics. New ec-model reconstruction approaches are
often presented as a software solution (‘I'able 1). This
not only allows for replicating the model accompanying
each publication, but also for relatively easy extension of
other conventional GEMs to ec-models. Main differ-
ences between the various approaches are (i) the exact
model implementation of Eqs. (1)—(2); (i1) the source of
keae values. Notably, single-enzyme reactions (i.e. no
subunits and no isoenzymes) are simplest to expand with
enzymatic constraint, as they involve only single mole-
cular weights and £, values. For isoenzymes, AutoP-
ACMEN [9] always assumes that the enzyme with the
lowest cost,

_ MW
CE (3)

G

will be used, while in GECKO [10,11], DLKcat [12] and
ECMpy [13] isoenzymatic reactions are split and thereby
explicitly allowing the model to ¢hoose which isoenzyme
should be used. For GECKO and DLKcat this results in
significantly increased model sizes, while ECMpy has
only one single added constraint. While all model for-
mulations allow for proteome prediction, only DLKcat
and GECKO can directly constrain the model with
measured quantitative proteomics. Since 2020, ec-
models have been constructed for a variety of different
organisms, including prokaryotes [13—17] and eukaryotes
[11,18-21], indicating wide applicability of this model
formalism (''able 2).

Improving coverage of available k.,; values

Ciritical for explicitly including Eq. (1) is access to reli-
able and well-covered 4., data [22], that can be obtained
by different approaches, but is often gathered by
querying the BRENDA [23] and SABIO-RK [24] data-
bases. However, for many reactions no /4, value is
known: in E. co/i less than 10% of its + 2000 enzyme-
reaction pairs have experimentally measured /£, values
[25], while for nonmodel organisms the situation is even
more dire. When data are missing, GECKO and Au-
toPACMEN adopt 4., values by fuzzy matching to si-
milar reactions (by Enzyme Commission number, or
substrate) or organisms, but this can cause model pre-
dictions to deviate significantly from experimental ob-
servations [8]. Using random 4, values drastically
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increased the prediction error in an ec-model of Bacillus
subtilis [26]. ECMpy does not have its own £, sourcing
capability, and if no 4., is provided for a particular re-
action its enzymatic cost will be set to zero.

With the knowledge that enzyme activities can vary in
multiple orders of magnitude [27], fuzzy £, matching is
not ideal. Beyond sourcing measured catalytic capacities,
one can estimate 4., values from quantitative pro-
teomics and flux data sets [25]. Following Eq. (1), con-
dition-specific apparent enzyme activities (£,5p) can be
computed when v; and [E]; are known. When testing
numerous conditions, maximum apparent activity
(£4pp,max) Will in theory approach in vivo /£, if the en-
zyme is used at full capacity in (at least) one of the
conditions.

By comparing 31 growth conditions in E. co/i with FBA
as source of flux data, computed £,ppmax Values were
representative of reported 4., [28], while the use of four
knockout strains and flux data from *C-labeled sub-
strates yielded similar results [29¢]. In §. cerevisiae, only a
weak correlation was found that could be somewhat
improved when discarding 4., values that were mea-
sured via heterologous expression [30®e]. This approach
vields reasonable estimates of 4., values, with models
performing better than those populated with 4., from
fuzzy matching, but remains a tedious process, especially
for nonmodel organisms. Moreover, this approach should
be treated with caution as its primary reliance on ex-
tensive fitting raises the risk that information on aspects
such as potential undersaturation of enzymes and pre-
paratory expression will be lost.

Predict k.,: values through machine learning

Even though species-specific 4., coverage is poor, the
BRENDA and SABIO-RK databases still contain a
wealth of measured 4., data. Notwithstanding various
challenges including assay conditions affecting kinetic
activities [31], this gathered information can be lever-
aged to predict 4., values. Indeed, in K. ¢o/i machine
learning predicted £, from a variety of features, in-
cluding GEM network properties, enzyme structural
properties, biochemical mechanism information, assay
conditions, and absolute proteomics data [29¢]. Particu-
larly the latter requirement limits the use of this ap-
proach for other organisms. Contrastingly, deep learning
does not rely on feature selection, and the DLKcat
neural network was able to predict 4. values from
protein sequences and reaction substrates alone [12].
The DLKcat neural network is trained on 16 000+ in
vitro measured 4., entries from the BRENDA and
SABIO-RK databases. Incorporation of DLKcat pre-
dicted in vitro £, values and Bayesian inference to re-
concile the predicted in vitro 4., values with in vivo
measured phenotypes showed superior performance
over fuzzy £, matching in various yeast ec-models. With
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DL Kcat only requiring protein sequences and reaction
substrates renders this approach widely applicable for
any organism.

An interesting extension to establishing 4., values is the
consideration of temperature on enzyme activity and
denaturation [32¢]. For this, enzyme optimal tempera-
tures (75,,) were predicted by machine learning [33],
while Bayesian inference dealt with uncertainty in Ty
and melting temperatures (7},,). Heterologous expression
of a thermotolerant squalene epoxidase confirmed that
the native yeast gene limits growth at superoptimal
temperatures, as predicted by this modeling ap-
proach [32e].

Expand with nonmetabolic reactions

Consider protein translation affecting enzyme levels
While constraints of enzyme levels and catalytic activ-
ities addresses the protein allocation problem, and also
known as course-grained approaches, the biosynthesis of
proteins also raises the resource allocation problem that
can be addressed by fine-grained approaches that ex-
plicitly integrate cellular processes into a GEM [34].
Provision of metabolic precursors and energy by meta-
bolism are required to synthesize the very enzymes that
constrain metabolism. Moreover, protein translation re-
quires ribosomes that are themselves synthesized by
protein translation. The concentration of £; in Eq. (1) is
therefore not constant but determined in the model:

Usyn,i s /éribo' [E]ribo (4)

Figure 1
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Y Ui = Udeg,i + Vditi = kang,i [E)i + u[E]; (5)

where vy, V4eg and vg; are the rates of protein-specific
translation, degradation and (growth-related) dilution,
respectively. Protein synthesis (Eq. (4)) is dependent on
ribosome concentration and maximum translation rate
(#1ibo)- The constraint-based framework meanwhile dic-
tates (Eq. (5)) that the protein-specific synthesis rates
are equal to the sum of the protein-specific degradation
constants (44ce) and growth rate (#), both multiplied by
the enzyme concentration. Variations of these equations
can also be used to describe other cellular processes.

Accordingly, fine-grained models consider both the
biosynthesis of macro-molecular constituents and ex-
plicitly simulate their catalytic role, and are also known
as proteome-constrained models, multiscale extensions
to GEMs or resource allocation models (Figure 1).

Proteome-constrained model reconstruction

Various approaches have been developed to consider
Egs. (4)—(5), including RBA (resource balance analysis
[35]), ME (metabolism and expression [36,37]) and
ETFL (expression and thermodynamics flux). Gen-
erally, they are part metabolic network, part description
of gene expression and protein translation, and coupling
coefficients are subsequently used to relate Eq. (4) to
Eq. (1). As pc-models have significant higher complexity
than ec-models they have often been introduced as
manual ad-hoc reconstructions for a particular organism,
instead of providing a software that can be applied for

/
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Comparison of various model types. Where conventional GEMs (left) have a fixed biomass composition, their internal fluxes are not under capacity
constraints (indicated by the thick arrows), while typically the nutrient uptake is constraint (thin arrow). Their biomass composition (green chart) is
fixed. In enzyme-constrained GEMs (middle), the internal reactions are each under their own unique capacity constraint (various arrow thickness),
while also here the biomass composition is fixed. Proteome-constrained GEMs (right) include reactions describing macromolecule synthesis, such as
transcription and translation. Reaction enzymatic constraints are affected by the amount of enzyme synthesized, and the biomass composition is

variable.
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Table 3

Recent software solutions to reconstruct proteome-constrained models.

Software RBApy COBRAmMe (Y)ETFL

Thermodynamics No No Yes

Workflow Automated Manual Manual

Optimization Iterative LP Iterative LP MILP

Organisms for which pc-model was reconstructed Escherichia coli [38¢¢] Escherichia coli [39] Escherichia coli [40]

using the software Bacillus subtilis [38e¢] Clostridium Saccharomyces cerevisiae [41]
Cupriavidus necator [43] ljungdahlii [56]

Year 2019 2018 2020, 2021

Reference [38ee] [39] [40,41]

Platform Python Python (cobrapy) Python

reconstructing models for other organisms. More re-
cently this has been addressed, so there are now four
different software solutions for reconstructing pc-models
(‘T'able 3).

RBApy in particular is a very user-friendly software that
can extend conventional GEMs with translation and
transcription, and initially only requires the GEM in
SBML format and the organism Uniprot identifier, al-
though RBApy is currently only suitable for prokaryotes
[38ee]. Additional curation is conveniently facilitated
using dedicated ‘helper files’ formatted to contain re-
levant information, while RBApy can be extended to
consider further processes, such as protein secretion and
chaperoning. COBRAme [39] and (y)ETFL [40e,41] are
less automated, although example tutorials are provided.
COBRAme is an extension of cobrapy [42], rendering it
more accessible to cobrapy users, but otherwise it is not
too dissimilar from RBApy. ETFL (and the yeast variant
yETFL) differ mostly in two important aspects: con-
sideration of thermodynamics constraints, and the ap-
proach by which growth-related variables (see e.g. Eq.
(5)) are considered. The other pc-model formulations
require sequential solving of a series of linear problems
(LLPs), where the growth rate predicted from each
iteration is used as variable for the next simulation, re-
quiring extra computational power. In contrast, the
ETFL model formalism defines a mixed-integer linear
(MILP) problem that can directly be solved with a
MILP solver, although those mathematical problems are
also still significantly more computationally expansive
compared to the relatively simple LPs of ec-models.
While the three pc-models solutions have been pub-
lished in recent years, they have not yet been widely
used to reconstruct models for different organisms
[40e,41,43,44], while more models were reconstructed ad
hoc [45-50] (T'able 2).

Additional resource allocation constraints

Beyond enzymatic, gene expression and protein trans-
lation constraints, cellular resources are also allocated to
other processes. The mammalian protein secretory
pathway was introduced to GEMs and was able to

accurately predict the influence on various interventions
on protein secretion [51e]. Coupling the transport of
proteins over the yeast mitochondrial membrane allowed
to quantify this effect on the proton motive force [45].

Conclusions

The principle of resource allocation constraints has been
around for a while but had not been as widely adopted as
perhaps one imagines their benefit over conventional
GEMs. Contributing to this has likely been the lack of
user-friendly and adaptable software solutions to gen-
erate these models. Ec-models are now easier to re-
construct with AutoPACMEN and GECKO, reflected
with ec-model reconstructed for 22 distinct species since
2020 (T'able 2). This will likely accelerate for nonmodel
organisms with the advance of predicting 4., values
from deep learning. To date, pc-models have been re-
constructed for 7 species (I'ables 2-3), but it is antici-
pated that this number will also rise in the years to come,
due to the required software solutions having become
available. Irrespective of the formalism that is chosen for
model reconstruction, on the model application side
progress has already been made to develop computa-
tional tools such as MEWpy [52] that can handle a wide
variety of ec- and pc-model formalisms.

As reconstruction of the models has been made easier,
and can be reconstructed with feasible parameters, a
challenge remains to populate such models with ex-
perimentally measured data. Albeit deep-learning de-
rived /4., values are significantly better than fuzzy
matching, fine-tuning their value in DLKcat-derived
models still relies on the availability of proteomics data.
Merely generating resource allocation constraint models
for many more organisms will likely be of limited impact
if this is not accompanied by increasing availability of
(multi-)omics data for such nonmodel organisms.
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