
Homogeneous vector bundles and G-equivariant convolutional neural
networks

Downloaded from: https://research.chalmers.se, 2022-10-11 19:43 UTC

Citation for the original published paper (version of record):
Aronsson, J. (2022). Homogeneous vector bundles and G-equivariant convolutional neural networks.
Sampling Theory, Signal Processing, and Data Analysis, 20(2).
http://dx.doi.org/10.1007/s43670-022-00029-3

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Sampling Theory, Signal Processing, and Data Analysis           (2022) 20:10 
https://doi.org/10.1007/s43670-022-00029-3

ORIG INAL ART ICLE

Homogeneous vector bundles and G-equivariant
convolutional neural networks

Jimmy Aronsson1

Received: 11 October 2021 / Accepted: 23 June 2022
© The Author(s) 2022

Abstract
G-equivariant convolutional neural networks (GCNNs) is a geometric deep learning
model for data defined on a homogeneousG-spaceM. GCNNs are designed to respect
the global symmetry in M, thereby facilitating learning. In this paper, we analyze
GCNNs on homogeneous spacesM = G/K in the case of unimodular Lie groups G
and compact subgroups K ≤ G.We demonstrate that homogeneous vector bundles are
the natural setting for GCNNs.We also use reproducing kernel Hilbert spaces (RKHS)
to obtain a sufficient criterion for expressing G-equivariant layers as convolutional
layers. Finally, stronger results are obtained for some groups via a connection between
RKHS and bandwidth.

Keywords Convolutional neural networks · Deep learning · Equivariance · Fiber
bundles · Geometry · Symmetry

Mathematics Subject Classification 68T07 · 43A85

1 Introduction

Developments in deep learning have increased dramatically in recent years. Even
though multilayer perceptrons [2] and other general-architecture models work well
for some tasks, achieving higher levels of performance often requires models that are
more tailored to each application, and which incorporate some level of understanding
of the data. Geometric deep learning [5–7, 13, 34] is the approach of using inherent
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geometric structure in data, and symmetry derived from geometry, to improve deep
learning models.

Convolutional neural networks (CNNs) are among the simplest and most broadly
applicable general-architecture models. They have been successfully applied to image
classification and segmentation [37, 47, 48], text summarization [38], pose estimation
[33], sign language recognition [24], and many other tasks. One of the reasons why
CNNs are so successful is that convolutional layers are translation equivariant, which
means that convolutional layers commute with the translation operator

Ly : Z
2 → Z

2, Ly(x) = x + y, y ∈ Z
2. (1.1)

In image classification tasks, for instance, Z
2 represents the pixel lattice and CNNs

utilize translation equivariance to identify objects in images regardless of their pixel
coordinates. CNNs are examples of geometric deep learning models, as convolutional
layers respect the global translation symmetry in Z

2.
G-equivariant convolutional neural networks (GCNNs) [10, 12] are generalizations

of CNNs. These use G-equivariant layers that commute with the translation operator

Lg : M → M, Lg(x) = g · x, g ∈ G, (1.2)

on a homogeneous space M with global symmetry group G. G-equivariance means
that GCNNs do not need to learn the global symmetry of M, it is already built into
the network design. GCNNs may therefore focus on learning other relevant features
in data and thereby achieve high performance. Consider for example the detection of
tumors in digital pathology. Images of tumors can have any orientation, depending on
where the tumor is located and its relative position to the camera, and GCNNs with
translation equivariant as well as rotation equivariant layers achieve higher accuracy
than CNNs [41]. Rotation equivariance is also beneficial in 3D inference problems
[44], point cloud recognition [31], and other tasks.

Gauge equivariant neural networks [9, 13, 17, 32] are instead designed to respect
local symmetries. For example, computations involving vector fields - in meteorology
or other areas - require vectors to be expressed in components. This requires choosing
a frame (of reference)which assigns a basis to each tangent space. Many manifolds do
not admit a global frame, however. Computations must instead be performed locally
using different local frames for different regions on the manifold. It is then important
that numerical results obtained in one frame are compatible with those obtained in
others frames, especially on overlapping regions. Computations involving vector fields
should thus be equivariant with respect to the choice of local frame. This choice is
an internal (gauge) degree of freedom; a local symmetry. Gauge equivariant neural
networks have also been introduced for problems exhibiting other local symmetries,
primarily in lattice gauge theory.

In short, GCNNs preserve global symmetries (such as the translation symmetry in
Euclidean space or the rotation symmetry of spheres) while gauge equivariant neural
networks preserve local symmetries (internal degrees of freedom). These two types
of networks have typically been studied independently of each other, despite sharing
many similarities. It would be useful to have a framework that includes both types
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of networks, since this would make it possible to analyze gauge equivariant neural
networks and GCNNs simultaneously. It would emphasize their similarities as well
as their differences, and could serve as a foundation for the study of equivariance in
geometric deep learning.

Implementations of GCNNs are based on convolutional layers, but one can define
more general G-equivariant layers which could be equally useful in a G-equivariant
neural network. It may even be the case that convolutional layers form a small subset
of all G-equivariant linear transformations, limiting their expressivity. It is therefore
important to investigate the relationship between general G-equivariant layers and
the more specific convolutional layers. This relationship is studied in our main result,
Theorem 3.22, which we summarize below.

In the following theorem, the inputs to a G-equivariant layer φ are called feature
maps. These are certain functions f : G → V into a finite-dimensional vector space
V . Examples of feature maps for an ordinary, translation equivariant CNN (G = Z

2)
include digital images f : Z

2 → R
3, which map each pixel to an array of RGB values

for that pixel. Moreover, vector fields on any homogeneousG-spaceM can be viewed
as feature maps f : G → R

dimM. See Sect. 3 for details.

Theorem Let φ be a G-equivariant layer and suppose that ‖φ f (g)‖ ≤ ‖φ f ‖ for any
feature map f and each g ∈ G. Then φ is a convolutional layer,

(φ f )(g) =
∫
G

κ(g−1g′) f (g′) dg′, g ∈ G, (1.3)

with an operator-valued kernel κ .

Our proof of Theorem 3.22 makes use of the fact that feature maps form a Hilbert
space with an integral inner product. The required relation ‖φ f (g)‖ ≤ ‖φ f ‖ ensures
that the evaluation operator f �→ φ f (g) is continuous for each g ∈ G, and the Riesz
representation theorem can then be used to construct a convolution kernel κ for the
G-equivariant layer φ.

Our contributions in this paper are threefold:

• We motivate GCNNs from the point of view of homogeneous vector bundles,
and we then demonstrate where GCNNs fit within a general framework that also
includes gauge equivariant neural networks.

• Our main result, Theorem 3.22, gives a sufficient criterion for writing a G-
equivariant layer as a convolutional layer. It holds for all homogeneous spaces
M = G/K where G is a unimodular Lie group and K is a compact subgroup. We
further prove the following corollaries:

(1) When G is either discrete abelian or finite, all G-equivariant layers are convo-
lutional layers (Corollary 3.23).

(2) Convolutional layers can be computed as integrals over the homogeneous space
G/K , despite being defined by integrals over G (Corollary 3.24).

• Our main theorem makes use of reproducing kernel Hilbert spaces (RKHS), i.e.,
function spaces for which evaluation f �→ f (g) is a continuous functional.
The relevance of RKHS to the study of GCNNs has not been noted before. In
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Appendix A we discuss the deep connection between RKHS and bandlimited
functions, which we believe may aid future research on GCNNs.

This work was inspired by a number of papers [9–13, 43]. The papers [9, 12]
have been of particular importance, as our work grew from a desire to understand the
mathematics of equivariant neural networks in even greater detail.

In the case of compact groups G, the Peter–Weyl theorem and other powerful tools
have allowed researchers to study GCNNs using harmonic analysis. Among the most
well-known results in this direction is [25,Theorem 1], which uses Fourier analysis to
establish that for compact groups G, the layers in a G-equivariant feed-forward neural
network must be convolutional layers. The close similarity between [25,Theorem 1]
and our main theorem 3.22 is discussed in Sect. 3.4. Finally, others have used the well-
known representation theory of G = SO(3) to study rotation equivariant GCNNs for
spherical data [15, 16].

The paper is structured as follows. We summarize the relevant machine learning
background in Sect. 2.1, give a brief introduction to fiber bundles in Sect. 2.2 and dis-
cuss a framework for equivariant neural networks in Sect. 2.3. In Sect. 3.1 we restrict
attention to homogeneous spaces and G-equivariance. Sections 3.2–3.3 discuss the
relationship between GCNNs, homogeneous vector bundles, and induced represen-
tations. This relation is then used to motivate the definition of G-equivariant layers
in Sect. 3.4, in which we also discuss convolutional layers and prove our main the-
orem 3.22. We summarize our work in Sect. 4. Finally, Appendix A discusses the
connection between reproducing kernel Hilbert spaces and bandlimited functions.

2 Foundations of equivariant neural networks

In this section, we give an introduction to convolutional neural networks (CNNs) and
discuss a simple framework for equivariant neural networks. Readers who already
know about CNNs and translation equivariance may skip most of this section, except
for the last few paragraphs on GCNNs.

2.1 Convolutional neural networks

CNNs were first introduced in 1979 under the name of Neocognitrons, and were used
to study visual pattern recognition [20]. In the 1990s, CNNs were successfully applied
to problems such as automatic recognition of handwritten digits [29] and face recog-
nition [28]. However, it was arguably not until 2012, when the GPU-based AlexNet
CNN outperformed all competition on the ImageNet Large Scale Visual Recognition
Challenge [26], that CNNs and other neural networks truly caught the public eye.
Industrial work and academic research on deep learning has since soared, and current
state-of-the-art deep learning architectures are significantly more powerful and more
complex than AlexNet. Yet, convolutional layers remain important components.

In this introduction we focus on feature maps that can be represented by functions

f : Z
2 → R

m . (2.1)
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Digital images, for example, are of this form since each pixel x ∈ Z
2 is associated to

a color array f (x) ∈ R
m , with m = 1 corresponding to grayscale images and m = 3

to RGB images. Any 2D (m = 1) or 3D (m > 1) array with real-valued entries is a
feature map of the form (2.1). Convolutional layers act on such feature maps by

[κ� f ](x) =
∑
y∈Z2

κ(y − x) f (y), (2.2)

given a matrix-valued kernel κ : Z
2 → Hom(Rm, R

n) for some n ∈ N. Observe that
the resultingmaps κ� f : Z

2 → R
n are themselves feature maps (2.1) with n channels.

Broadly speaking, CNNs consist of convolutional layers (2.2) combined with other
transformations, including non-linear activation functions and batch normalization
layers. We are primarily interested in convolutional layers and will not go into detail
about activation functions or other types of layers. For more extensive descriptions of
CNNs, see [1, 21, 45].

Remark 2.1 The name convolutional layer is commonly used in the machine learning
literature even though (2.2)more closely resembles a cross-correlation. It can be turned
into a convolution by replacing the kernel with its involution κ∗(y) = κ(−y).

CNNs performverywell on image classification and similarmachine learning tasks,
and are important parts of many state-of-the-art network architectures on such tasks
[4, 22, 40, 46]. One reason for their success is translation equivariance: Convolutional
layers (2.2) commute with the translation operator in the image plane,

Lx : Z
2 → Z

2, Lx (y) = y + x, x ∈ Z
2. (2.3)

Translation equivariance makes CNNs agnostic to the specific locations of individual
pixels, while still taking into account the relative positions of different pixels; images
are more easily classified based on relevant features of their subjects, and not based on
technical artifacts such as specific pixel coordinates. This observation motivates the
introduction of more general convolutional layers that act equivariantly on data points
f : M → V , where the domainM is homogeneous with respect to a locally compact
group G [10, 12]. Given finite-dimensional vector spaces V ,W , convolutional layers
are defined as certain vector-valued integrals.

κ� f : M → W , (κ� f )(g) =
∫
G

κ(g−1g′) f (g′) dg′, (2.4)

with operator-valued kernels κ : G → Hom(V ,W ) and integration with respect to a
Haar measure on G. For a summary on vector-valued integration on locally compact
groups, see [18,Appendix 4]. G-equivariant convolutional neural networks (GCNNs)
in their simplest form are sequences

σL ◦ φL ◦ · · · ◦ σ1 ◦ φ1, (2.5)
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of G-equivariant linear transformations (G-equivariant layers) φ� and scalar-valued,
non-linear activation functions σ�. We do not require φ1, . . . , φL to be convolutional
layers (2.4), although only using convolutional layers is certainly an option. One of
our main goals in this paper is to better understand the expressivity of convolutional
layers, and we do this by comparing them to more general G-equivariant layers. See
Definitions 3.14, 3.15 for formal definitions.

2.2 Background on fiber bundles

This paper assumes familiarity with fiber bundles, especially with principal bundles
and associated vector bundles. Still, given how central fiber bundles are to this paper,
we will present relevant definitions and give a few examples. See [23, 30, 36] for more
detailed introductions. This section may be skipped by those who already know about
principal bundles and associated vector bundles.

The geometric intuition behind fiber bundles can be summarized as follows: Some
manifolds can be formed by taking another, in some sense simpler base spaceM and
attaching a fiber F to the base space at each point x ∈ M. The cylinder S1 × [0, 1],
for example, can be viewed as the circleM = S1 together with a thin strip F = [0, 1]
that has been glued perpendicularly to the circle at each point x ∈ S1. The Möbius
strip can be visualized in precisely the same way but, in this case, the relative angle
between the thin strips and the circle changes from 0 to π as we move around the
circle. Locally, in some neighbourhoodU ⊂ S1 around any point x ∈ S1, the cylinder
and the Möbius strip both resemble a rectangle U × [0, 1], but the two manifolds are
not globally equivalent since the Möbius strip is not diffeomorphic to S1 × [0, 1].

The point is that both the cylinder and the Möbius strip are examples of smooth
fiber bundles over the base space M = S1 with model fiber F = [0, 1]. The former
is a trivial fiber bundle M × F , the latter is a non-trivial fiber bundle.

Definition 2.2 [30,p. 268] LetM and F be smooth manifolds. A (smooth) fiber bun-
dle over Mwith model fiber F is a smooth manifold E together with a surjective
smooth map π : E → M with the following property: For each x ∈ M, there is a
neighbourhood U ⊆ M containing x , and a diffeomorphism

ξ : π−1(U ) → U × F, (2.6)

called a local trivialization of Eover U , such that the following diagram commutes:

π−1(U ) U × F

U
π

ξ

π1

That is, π = π1◦ξ where π1 : U ×F → U is the projection onto the first component.

Remark 2.3 Smooth manifolds are assumed to be Hausdorff and second-countable.
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The smooth manifoldsM and E are respectively known as the base space and the
total space of the fiber bundle, and the surjective smooth map π : E → M is called
the projection. For each x ∈ M, the set Ex = π−1({x}) is diffeomorphic to {x} × F
via a local trivialization, and is known as the fiber at x . Fiber bundles are typically
denoted by their projection π : E → M, or simply by the total space E if the other
components are understood. We will switch freely between these two notations.

One way to use fiber bundles is to deconstruct manifolds into simpler components,
as exemplified by the cylinder and the Möbius strip. But fiber bundles are also useful
for adding structure to the base space via an appropriate model fiber. Vector bundles
and principal bundles are two prominent examples in which the model fiber is a vector
space and a Lie group, respectively.

Definition 2.4 A (real/complex) vector bundle is a smooth fiber bundle π : E → M
for which the model fiber F = V is a (real/complex) vector space and which satisfies
the following for each x ∈ M:

(i) The fiber Ex = π−1({x}) is a (real/complex) vector space.
(ii) If ξ : π−1(U ) → U × V is a local trivialization on some neighbourhood U of x ,

then the restriction π : Ex → {x} × V is a linear isomorphism.

The prototypical example of a vector bundle is the tangent bundle TM associated
to any smooth manifold M. This bundle is discussed in the next example, following
a reminder about tangent vectors and tangent spaces.

Example 2.5 Let M be a smooth manifold of dimension d = dimM and recall that
for each x ∈ M, there is an associated tangent space TxM, which is a d-dimensional
real vector space. Elements of each tangent space are called tangent vectors and can
be defined as follows. First, consider a coordinate chart u = (u1, . . . , ud) : U → R

d

for which x ∈ U . The coordinate basis vectors

∂

∂ui

∣∣∣
x

∈ TxM, i = 1, . . . , d, (2.7)

act on any smooth function f : M → R by evaluating the i’th partial derivative of
the smooth function f ◦ u−1 : R

d → R at the point u(x) ∈ R
d :

∂

∂ui

∣∣∣
x
f := ∂( f ◦ u−1)

∂ui

∣∣∣
u(x)

. (2.8)

The tangent space TxM is defined as the linear span of the coordinate basis vectors,
meaning that arbitrary tangent vectors Xx ∈ TxM are linear combinations

Xx =
d∑

i=1

Xi
x

∂

∂ui

∣∣∣
x
, X1

x , . . . , X
d
x ∈ R. (2.9)

Choosing a different coordinate chart would result in new coordinate basis vectors,
but their span would remain the same. The tangent space TxM is thus well-defined.
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The tangent bundle ofM is defined as the disjoint union

TM =
⊔
x∈M

TxM :=
⋃
x∈M

{(x, Xx ) | Xx ∈ TxM} , (2.10)

of all tangent spaces onM, togetherwith a natural topology and a smooth structure that
turns TM into a smooth manifold of dimension 2d. The projection π : TM → M
maps each pair (x, Xx ) ∈ TM to the point x ∈ M, implying that the fiber at x can
be identified with the tangent space at x :

π−1({x}) = {x} × TxM � TxM. (2.11)

Moreover, any coordinate chart u = (u1, . . . , ud) : U → R
d yields a local trivializa-

tion

ξ : π−1(U ) → U × R
d , (x, Xx ) �→ (

x,
(
X1
x , . . . , X

d
x

))
, (2.12)

by expanding Xx ∈ TxM in the coordinate basis for each x ∈ U . The restriction of
(2.12) to any x ∈ U defines a vector space isomorphism between TxM and R

d , and
the tangent bundle TM is thereby a real vector bundle with model fiber R

d . �
This example illustrates one benefit of fiber bundles: By attaching a tangent space

TxM to each point x in the base spaceM, thereby forming the tangent bundle TM,
we are able to compute directional derivatives of smooth functions on M. But why
bother constructing the bundle TM instead of just working with the tangent spaces
TxM individually? Well, thanks to the tangent bundle being a smooth manifold, we
can move smoothly between different tangent spaces. This makes it possible to define
(local) vector fields as smooth functions X : U → TM such that π ◦ X = IdU ,
for any open set U ⊆ M. That is, a vector field smoothly attaches a tangent vector
X(x) ∈ TxM to the base space at each point x ∈ U . Vector fields are heavily used
in pure mathematics as well as in applications, such as electric and magnetic fields in
electrodynamics, and wind fields in meteorology. Furthermore, the idea of smoothly
assigning an element of the fiber Ex to the base space at each point x ∈ U , extends to
arbitrary fiber bundles.

Definition 2.6 Let π : E → M be a fiber bundle and let U ⊂ M be an open set. A
(local) section is a smooth map s : U → E satisfying π ◦ s = IdU .

Vector fields are thus sections of the tangent bundle. In Sect. 2.3, we will define
gauges as sections of principal bundles, and data points as certain sections of vector
bundles associated to a principal bundle. While this may sound abstract, the idea is
that data contains information in the form of a vector at each point of a manifold, just
like a digital image s : Z

2 → R
3 contains information in the form of an RGB array

s(x) at each point x of the pixel lattice. Modeling data points as sections of vector
bundles over M lets us take the geometry of M into account, and principal bundles
help us utilize relevant symmetries. The symmetries in question are encoded in group
actions:
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Definition 2.7 Let X be a smooth manifold and H a Lie group. A smooth function

� : X × H → X , (x, h) �→ x � h, (2.13)

is called a smooth right H-action on X if it is compatible with the group structure:

x � (hh′) = (x � h) � h′, x ∈ X , h, h′ ∈ H . (2.14)

Note that the identity e ∈ H stabilizes all points x ∈ X , in the sense that x � e = x . A
smooth right H -action is called free if the identity is the only stabilizer. Furthermore,
a smooth right H -action is transitive if it can be used to move between any two points.
In other words, if for all pairs x, x ′ ∈ X , there exists h ∈ H such that g′ = g � h.

Smooth left H -actions H × X → X , (h, x) �→ h � x , are defined analogously.

The Lie group H represents a set of symmetry transformations that can be applied
to X . We are concerned with two different types of symmetries:

(i) Global symmetries, whereby a Lie group G acts on a smooth manifold M via a
transitive left action G×M → M that is typically written as (g, x) �→ g · x . The
symmetry is global because the transitive action can transform any point x to any
other point x ′ by applying a suitable symmetry transformation g. For example,
any point on the sphere can reach any other point on the sphere by performing a
suitable rotation (G = SO(3),M = S2).

(ii) Local symmetries, whereby a Lie group K acts almost independently on each point
x of a smooth manifoldM. The action does not move different points x, x ′ ∈ M
to each other, but rather represents an internal degree of freedom at each individual
point. Local symmetries are modeled by attaching a copy of K to each point x on
the base spaceM, thereby forming a larger space P for which the local symmetry
is more explicit. This is the motivation behind principal bundles.

Definition 2.8 Let K be a Lie group. A smooth fiber bundle π : P → M is called a
principal K -bundle with structure group K if there is a free, smooth right K -action

P × K → P, (p, k) �→ p � k, (2.15)

with the following properties for each x ∈ M.

(i) Let Px = π−1({x}) be the fiber at x . Then

p ∈ Px , k ∈ K ⇒ p � k ∈ Px . (2.16)

That is, the K -action preserves fibers.
(ii) For each p ∈ Px , the mapping k �→ p � k is a diffeomorphism K → Px .

Principal bundles are thus natural tools for understanding local symmetries; gauge
degrees of freedom. In theoretical physics, gauge degrees of freedom are redundancies
in the mathematical theory. These redundancies have no physical relevance, they are
not observable, but they also cannot be ignored as they are present in the model. For
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example, the Yang-Mills equations of motion are underdetermined when modeled as
an initial value problem, and cannot be solved without choosing a gauge that fixes the
gauge degree of freedom [35].

One important example of a local symmetry, of a gauge degree of freedom, is the
freedom to choose bases in tangent spaces.

Example 2.9 Elements of the frame bundle FM over a smooth manifold M are (in
a precise sense) bases in the tangent spaces TxM. Given a local coordinate chart
u = (

u1, . . . , ud
) : U → R

d , for example, the coordinate basis

p =
(

∂

∂u1

∣∣∣
x
, . . . ,

∂

∂ud

∣∣∣
x

)
, (2.17)

is an element of the frame bundle FM for each x ∈ U . The projectionπ : FM → M
sends each basis p = (p1, . . . , pd) in TxM to the point π(p) = x , which in particular
means that the fiber FMx = π−1({x}) is the set of all bases in TxM

We may define a smooth right GL(d, R)-action

� : FM × GL(d, R) → FM, (p, k) �→ p � k, (2.18)

by essentially applying a change-of-basis matrix k ∈ GL(d, R) to the elements of any
basis p ∈ FMx . A more precise definition of this action would require us to utilize
the linear isomorphism between TxM andR

d and the induced Lie group isomorphism
between GL(TxM) and GL(d, R), but let us simplify the notation by avoiding that
step. The action then satisfies

(p � k)i = k−1 pi , i = 1, . . . , d, (2.19)

which defines the basis vectors (p�k)i ∈ TxM in terms of the basis vectors pi ∈ TxM.
Note that the action 2.18 preserves the fibers FMx because it maps between different
bases in the tangent space TxM for each x ∈ M. Moreover, any basis p ∈ FMx can
be mapped to any other basis p̃ ∈ FMx by a unique change-of-basis matrix, so the
mapping

K → FMx , k �→ p � k, (2.20)

is a bijection for each p ∈ FMx and each x ∈ M. In fact, the smooth structure on FM
is such that (2.20) is a diffeomorphism. The frame bundle FM is therefore a principal
bundle over M with structure group GL(d, R). Local sections ω : U → FM are
called local frames (of reference) and are useful e.g. in theoretical physics. �

The tangent bundle TM is associated to the frame bundle FM, in the sense that
tangent vectors X ∈ TM can be expanded in a basis p ∈ FM. This is an example of
a more general phenomenon whereby a vector bundle can be associated to a principal
bundle. Let us take a closer look at this example before formally defining associated
vector bundles.
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Example 2.10 Fix a tangent vector X ∈ TxM and a basis p = (p1, . . . , pd) ∈ FMx ,
for some x ∈ M. If we collect the components of X = ∑

i X
i pi in an array

X(p) = [
X1 · · · Xd

]T ∈ R
d , (2.21)

then the following tuple is a basis-dependent decomposition of X :

(p, X(p)) = (p1, . . . , pd , X
1, . . . , Xd) ∈ FM × R

d . (2.22)

Performing a change of basis p �→ p�k by (2.19), for some k ∈ GL(d, R), transforms
this decomposition by

(
p, X(p)

) �→ (
p � k, X(p � k)

) = (
p � k, kX(p)

)
. (2.23)

This transformation does not change the tangent vector X itself, it only changes the
decomposition of X in terms of basis vectors and components. For this reason, if we
define an equivalence relation on FM × R

d by

(
p, X(p)

) ∼ (
p � k, X(p � k)

)
, k ∈ K , (2.24)

and condense all decompositions (p, X(p)), for all bases p, into their equivalence class
[p, X(p)], then the result is a basis-independent description of the tangent vector X . In
fact, the quotient space (FM× R

d)/ ∼ is a smooth vector bundle that is isomorphic
to the tangent bundle TM. �

This example hints towards the following construction of vector bundles associated
to an arbitrary principal bundle P . Associated vector bundles are useful because they
make local symmetries in vector bundles more explicit. Just compare the two objects
X ∈ TM and [p, X(p)] ∈ (FM×R

d)/ ∼, both of which represent a tangent vector.
The local symmetry, that tangent vectors do not depend on the choice of basis p, is
much more visible in the object [p, X(p)] than in X .

Definition 2.11 Let π : P → M be a principal bundle with structure group K and let
ρ : K → GL(Vρ) be a representation on a finite-dimensional vector space Vρ . Define
an equivalence relation on P × Vρ by

(p, v) ∼ (p � k, ρ(k)−1v), p ∈ P, v ∈ Vρ, k ∈ K . (2.25)

The quotient space P ×ρ Vρ = (P × Vρ)/ ∼, together with the mapping

πρ : P ×ρ Vρ → M, πρ([p, v]) = π(p), (2.26)

is called an associated vector bundle over M.

Lemma 2.12 [23,Sect. 10.7] The associated bundle πρ : P ×ρ Vρ → M is a smooth
vector bundle.
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2.3 Gauge theory and the equivariant framework

In this section we describe a mathematical framework for equivariant neural networks.
This framework is based on gauge theoretic concepts, which makes it suitable for
describing gauge equivariant neural networks, but it is equally suitable for GCNNs.
In fact, the framework unifies existing works on both types of networks [9, 12].

Gauge theory originated in physics as a way to model local symmetry. In quantum
electrodynamics, for example, the electron wave function can be locally phase shifted,
ψ �→ eiαψ , with no physically observable consequence, so quantum electrodynamics
is said to possess a U (1) gauge symmetry. Mathematicians have later adopted gauge
theory in order to study other types of local symmetries. The introduction of gauge
equivariant deep learning models has been suggested by deep learning practitioners
and physicists alike. For example, [9] investigates the structure of gauge equivariant
layers used for vector fields, tensor fields, and more general fields. Physicists have
introduced gauge equivariant neural networks for applications in, e.g., lattice gauge
theory [3, 17, 32].

Definition 2.13 Let π : P → M be a principal K -bundle and let U ⊆ M be open.

(i) A (local) gauge is a section ω : U → P .
(ii) A gauge transformation is an automorphism χ : P → P that preserves fibers

(π ◦ χ = π ) and that is gauge equivariant, in the sense that

χ(p � k) = χ(p) � k, p ∈ P, k ∈ K . (2.27)

Example 2.14 Local frames are local gauges ω : U → FM of the frame bundle
P = FM. Since each element p ∈ FM is a basis in the tangent space Tπ(p)M, and
the structure group of the frame bundle is K = GL(d, R), gauge transformations are
maps χ : FM → FM that are equivariant to changes of basis p �→ p � k. �

Equivariant neural networks use the language of principal and associated bundles.
In the remainder of this subsection, let Eρ = P×ρVρ and Eσ = P×σ Vσ be associated
bundles, given a principal bundle π : P → M over a smooth manifoldM. Further let
�c(Eρ) and �c(Eσ ) be the vector spaces of compactly supported continuous sections
of Eρ and Eσ , respectively.

Definition 2.15 A data point is a section s ∈ �c(Eρ).

Remark 2.16 We restrict attention to complex representations (ρ, Vρ) to simplify the
mathematical theory. Our decision to focus on compactly supported sections was also
made for mathematical reasons: G-equivariant layers are defined in Sect. 3.4 in terms
of an induced representation, which lives on the completion of �c(Eρ) with respect
to an inner product.

Definition 2.17 A feature map f : P → Vρ is a compactly supported continuous
function that satisfies the transformation property

f (p � k) = ρ(k)−1 f (p), (2.28)

for all p ∈ P , k ∈ K . The vector space of such feature maps is denoted Cc(P; ρ)
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Data points and feature maps are, in a sense, dual to each other: Each data point in
�c(Eρ) is of the form

s f (x) = [p, f (p)], (2.29)

for a featuremap f ∈ Cc(P; ρ), where p ∈ Px is any element of the fiber at x ∈ M. In
order to see that (2.29) does not depend on the choice of p, recall from Definition 2.8
that the mapping K → Px given by k �→ p � k is a diffeomorphism, for each p ∈ P .
For this reason, given another element p′ ∈ Px , there exists a unique k ∈ K such that
p′ = p � k and

[p′, f (p′)] = [p � k, f (p � k)] = [p � k, ρ(k−1) f (p)] = [p, f (p)]. (2.30)

That is, the equivalence class [p, f (p)] only depends on the basepoint x .

Lemma 2.18 [23,Sect. 10.12] The linear map Cc(P; ρ) → �c(Eρ), f �→ s f is a
vector space isomorphism.

We are almost ready to define general and gauge equivariant layers. Before doing
so, however, we must say how gauge transformations χ : P → P act on data points.
Let θχ : P → K be the uniquely defined map satisfying χ(p) = p � θχ (p) for all
p ∈ P , and define the following action on the associated bundle Eρ :

χ · [p, v] = [χ(p), v] = [p, ρ(θχ (p))v], [p, v] ∈ Eρ. (2.31)

The corresponding action on data points is given by

(χ · s f )(x) = [p, ρ(θχ (p)) f (p)] = sρ(θχ ) f (x), s f ∈ �c(Eρ). (2.32)

We distinguish between general layers and more specific gauge equivariant layers, as
G-equivariant layers in GCNNs will only be a special case of the former.

Definition 2.19 Let Eρ = P ×ρ Vρ and Eσ = P ×σ Vσ be associated bundles.

(i) A (linear) layer is a linear map � : �c(Eρ) → �c(Eσ ).
(ii) A layer � is gauge equivariant if, for all gauge transformations χ : P → P ,

� ◦ χ = χ ◦ �. (2.33)

In equivariant neural networks, data points are sent through a sequence of layers,
which are mixed with non-linear activation functions. Again, we focus on individual
layers in this paper, and leave the analysis of equivariant activation functions and
multi-layer networks to future work. The fiber bundle-theoretic concepts discussed in
this part describe two kinds of equivariant neural networks:

(i) Gauge equivariant neural networks, which respect local gauge symmetry and
whose layers are gauge equivariant.
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(ii) GCNNs, which respect global translation symmetry in homogeneous G-spaces
M, and whose layers are G-equivariant (Definition 3.14).

Remark 2.20 Note that the definition of a layer in [9] deviates from ours by considering
sections supported on a single coordinate chart. That work further investigates the
structure of layers under additional assumptions.

It follows fromLemma2.18 that a (gauge equivariant) layer� : �c(Eρ) → �c(Eσ )

induces a unique linear map φ : Cc(P; ρ) → Cc(P; σ) such that�s f = sφ f . Writing
data points as s f = [·, f ] allows us to also express this relation as �[·, f ] = [·, φ f ].
We think of� andφ as two sides of the same coin, and use the name (gauge equivariant)
layer for both maps.

�c(Eρ) �c(Eσ )

Cc(P; ρ) Cc(P; σ)

�

φ

Example 2.21 Let T : Vρ → Vσ be a linear transformation and consider the layer

φ : Cc(P; ρ) → Cc(P; σ), (φ f )(p) = T
(
f (p)

)
, (2.34)

for p ∈ P , f ∈ Cc(P; ρ). Since f and φ f are feature maps and thereby satisfy (2.28),
the linear transformation T must satisfy

σ(k)T
(
f (p)

) = T
(
f (p � k−1)

) = T
(
ρ(k) f (p)

)
, (2.35)

for all k ∈ K , p ∈ P, f ∈ Cc(P; ρ). This can be seen to imply that σ ◦ T = T ◦ ρ,
so T intertwines the representations ρ and σ . Another way to arrive at this conclusion
is to analyze when the corresponding layer

� : �c(Eρ) → �c(Eσ ), �s f = [·, φ f ], (2.36)

is well-defined.
Now consider a gauge transformation χ : P → P and its induced map θχ : P →

K . Because T is an intertwiner,

(� ◦ χ)s f = sφρ(θχ ) f = sσ(θχ )φ f = (χ ◦ �)s f , (2.37)

hence the layer � is automatically gauge equivariant. �
As this example illustrates, gauge equivariance is tightly connected to intertwining
properties of φ. Rearranging (2.37) gives the following result.
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Lemma 2.22 A general layer � : �c(Eρ) → �c(Eσ ) is gauge equivariant iff

φ ◦ ρ(θχ ) f = σ(θχ ) ◦ φ f , (2.38)

for all gauge transformations χ : P → P and all feature maps f ∈ Cc(P; ρ).

This concludes our discussion of gauge theory and of equivariant neural networks.
The framework for the latter is evidently very general, consisting of layers and non-
linear activation functions between data points. There are advantages of working at
this level of generality: Ordinary (non-equivariant) neural networks have a multitude
of different types of layers, many of them linear. Equivariant analogues of such layers
are likely to satisfy either Definition 2.19(ii) (gauge equivariance) or Definition 3.14
(G-equivariance; compatibility with the global symmetry when M is homogeneous
space), depending on the relevant type of equivariance. Results that can be proven in
this general framework will thus hold for many different equivariant neural networks.
One example is Theorem 3.22 below, which characterizes the structure of abstract
G-equivariant layers in any GCNN.

3 G-equivariant convolutional neural networks

Recall that GCNNs generalize ordinary CNNs to use G-equivariant layers and data
points defined on homogeneous G-spaces M. Let us give a recap on homogeneous
spaces and global symmetry, before discussing homogeneous vector bundles, sections,
and induced representations. We will demonstrate that GCNNs and G-equivariant
layers (originally defined in [12]) are most naturally understood from the perspective
of homogeneous vector bundles.Wewill then apply reproducing kernel Hilbert spaces
to understand which G-equivariant layers are expressible as convolutional layers.

3.1 Homogeneous spaces

Definition 3.1 Let G be a Lie group. A smooth manifoldM is called a homogeneous
G-space if there exists a smooth, transitive left G-action

G × M → M, (g, x) �→ g · x . (3.1)

Since the action (3.1) is transitive, we can arbitrarily fix an element o ∈ M that we
call the origin, and express any other point x ∈ M as x = g · o for some g ∈ G. This
group element is typically not unique, but observe that

g · o = g′ · o ⇐⇒ g−1g′ ∈ Ho, (3.2)

where Ho = {g ∈ G | g · o = o} is the isotropy group of the origin o. In other words,
there is a one-to-one correspondence between points x ∈ M and cosets gHo ∈ G/Ho.
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Proposition 3.2 [30,Theorem 21.18] Let M be a homogeneous G-space and fix an
origin o ∈ M. The isotropy group Ho is a closed subgroup of G, and the map

Fo : G/Ho → M, gHo �→ g · o, (3.3)

is a diffeomorphism.

Homogeneous spaces are globally symmetric in the sense that any element o ∈ M
may be chosen as origin. Given another choice of origin o′ ∈ M, the quotient spaces
G/Ho′ � G/Ho are diffeomorphically related by a translation in G - more precisely,
by the composition F−1

o ◦Fo′ . For example, Euclidean spaceM = R
d is homogeneous

with respect to translations, allowing any point to be considered as origin. Similarly,
the rotationally symmetric sphere M = S2 does not have a unique north pole.

Recall from Sect. 2.1 that convolutional neural networks utilize the homogeneity
of the pixel lattice. We argued that translation equivariance, that is, the property that
convolutional layers commute with the translation operator in Z

2, help CNNs learn
relevant features in images. We want to extend this property to other types of data
defined on more general homogeneous spaces. The first step in this direction is the
following definition of G-equivariant functions on M.

Definition 3.3 Let G be a Lie group and letM andN be homogeneous G-spaces. We
say that a function f : M → N is G-equivariant if

f (g · x) = g · f (x), (3.4)

for all g ∈ G and all x ∈ M.

The diffeomorphism Fo in (3.3) is G-equivariant since, for all g ∈ G,

Fo(gHo) = g · o = g · Fo(Ho). (3.5)

We end this part with the following proposition, which is instrumental in relating
homogeneous vector bundles to the equivariance framework in Sect. 2.3.

Proposition 3.4 [39,Sect. 7.5] Let G be a Lie group and let H ≤ G be a closed
subgroup. Then the quotient map

q : G → G/H , g �→ gH , (3.6)

defines a smooth principal H-bundle over the homogeneous G-space M = G/H.

3.2 Homogeneous vector bundles

Vector bundles may inherit global symmetry from a homogeneous base space; the
transitive action (g, x) �→ g · x may induce linear maps Ex �→ Egx between fibers.
Such bundles are naturally called homogeneous and, because this symmetry is also
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encoded in its sections (data points), we will show that homogeneous vector bundles
is the natural setting for studying GCNNs.

From this point on, we restrict attention to homogeneous spacesM = G/K where
G is a unimodular Lie group and K ≤ G is a compact subgroup. Elements of the
homogeneous space are interchangably denoted as x ∈ M or gK ∈ G/K . The origin
o = q(e) = eK ∈ G/K is the coset containing the identity element e ∈ G.

Examples of unimodular Lie groups include all compact or abelian Lie groups, all
finite groups and discrete groups, the Euclidean groups, and many others [18, 19].

Definition 3.5 [42,5.2.1] Let M be a homogeneous G-space and let π : E → M be
a smooth vector bundle with fibers Ex . We say that E is homogeneous if there is a
smooth left G-action G × E → E satisfying

g · Ex = Eg·x , (3.7)

and such that the induced map Lg,x : Ex → Eg·x is linear, for all g ∈ G, x ∈ M.

Example 3.6 The frame bundle FM is a homogeneous vector bundle wheneverM is
a homogeneous space, and the same is true of any associated bundle FM ×ρ Vρ . In
particular, the tangent bundle TM is a homogeneous vector bundle. �
Example 3.7 For any finite-dimensional K -representation (ρ, Vρ), the associated bun-
dle Eρ = G ×ρ Vρ is a homogeneous vector bundle with respect to the left action

g · [g′, v] = [gg′, v]. (3.8)

�
All homogeneous vector bundles E are of the form G ×ρ Vρ , up to isomorphism.

To understand why, consider the fiber Eo at the origin o = q(e) ∈ G/K and observe
that the restriction of (3.7) to Eo and elements k ∈ K yields invertible linear maps

Lk : Eo → Ek·o = Eo. (3.9)

The defining properties of group actions ensure that ρ(k) = Lk is a finite-dimensional
K -representation on Eo. Moreover, because the linear maps Lg,x are isomorphisms,
any element v′ of any fiber Ex can be obtained as the image v′ = Lg,o(v) =: Lg(v)

for some choices of g ∈ q−1({x}) and v ∈ Eo. The mapping

ξ : G × Eo → E, (g, v) �→ Lg(v), (3.10)

is thus surjective. It is not injective, though, since the relation

Lg = Lg ◦ Lk ◦ Lk−1 = Lgk ◦ ρ(k−1), (3.11)

implies that ξ(g, v) = Lg(v) = Lgk(ρ(k−1)v) = ξ(gk, ρ(k−1)v) for k ∈ K . How-
ever, the same argument shows that ξ is made injective by passing to the quotient
G ×ρ Eo.
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Lemma 3.8 [42,5.2.3] The map

G ×ρ Eo → E, [g, v] �→ Lg(v), (3.12)

is an isomorphism of homogeneous vector bundles.

We now have two perspectives on bundles G ×ρ Vρ : As bundles associated to the
principal bundle P = G, and as homogeneous vector bundles (up to isomorphism).
The former perspective offers a connection to the framework in Sect. 2.3, whereas the
latter motivates Definition 3.14 of G-equivariant layers in Sect. 3.4.

3.3 Induced representations

Let us show the relationship between homogeneous vector bundles and induced rep-
resentations, which will be an essential ingredient in the definition of G-equivariant
layers. To this end, let (ρ, Vρ) be a finite-dimensional unitary K -representation and
consider the homogeneous vector bundle Eρ = G ×ρ Vρ .

Lemma 3.9 [42,5.2.7] The unitary structure

〈[g, v], [g, w]〉x := 〈v,w〉ρ, (x = q(g)), (3.13)

defines a complete inner product on each fiber Ex , making Eρ into a Hilbert bundle
with Lg,x unitary. This unitary structure is unique in that, if we identify Vρ with Eo in
the canonical manner, then the inner product on Vρ so induced agrees with 〈 , 〉ρ .

We also need the following measure on G/K :

Theorem 3.10 Quotient Integral Formula [14,Sect. 1.5] There is a unique G-invariant,
nonzero Radon measure dx on G/K such that the following quotient integral formula
holds for every f ∈ Cc(G):

∫
G

f (g) dg =
∫
G/K

∫
K

f (xk) dk dx . (3.14)

Using these two ingredients, we make �c(Eρ) into a pre-Hilbert space with respect
to the inner product

〈s, s′〉L2(Eρ) :=
∫
G/K

〈s(x), s′(x)〉x dx, s, s′ ∈ �c(Eρ), (3.15)

and we denote its completion L2(Eρ). Similarly, Cc(G; ρ) is a pre-Hilbert space with
respect to the inner product

〈 f , f ′〉L2(G;ρ) =
∫
G
〈 f (g), f ′(g)〉ρ dg, f , f ′ ∈ Cc(G; ρ), (3.16)

the completion of which is denoted L2(G; ρ).
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Definition 3.11 The G-representations

indGKρ(g) : L2(Eρ) → L2(Eρ), (indGKρ(g)s)(x) = g · s(g−1x), (3.17)

IndGKρ(g) : L2(G; ρ) → L2(G; ρ), (IndGKρ(g) f )(g′) = f (g−1g′). (3.18)

are called induced representations, or representations induced by ρ.

Both indGKρ and IndGKρ are unitary [42,5.3.2] and may be identified:

Lemma 3.12 [42,5.3.4] The induced representations indGKρ and IndGKρ are unitarily
equivalent.

Proof First observe that the isomorphism Cc(G; ρ) → �c(Eρ), f �→ s f is unitary,
which follows by combining the quotient integral formula (3.14), the unitarity of ρ,
and the compactness of K : For all f , f ′ ∈ Cc(G; ρ), the map g �→ 〈 f (g), f ′(g)〉ρ
lies in Cc(G) and so

〈 f , f ′〉L2(G;ρ) =
∫
G/K

∫
K
〈 f (xk), f ′(xk)〉ρ dk dx

=
∫
G/K

〈 f (x), f ′(x)〉ρ dx

=
∫
G/K

〈[x, f (x)], [x, f ′(x)]〉x dx = 〈s f , s f ′ 〉L2(Eρ).

(3.19)

The same map f �→ s f satisfies

(
indGK (ρ)s f

)
(x) = g · s f (g−1x) = [x, f (g−1x)] = sIndGK (ρ) f (x), (3.20)

so it extends to a unitary isomorphism L2(G; ρ) → L2(Eρ) intertwining the induced
representations. �

To gain a better understanding of the induced representations, consider the Bochner
space L2(G, V ), the space of square-integrable functions f : G → V that take values
in a finite-dimensional Hilbert space V . It is itself a Hilbert space with inner product

〈 f , f ′〉L2(G,V ) =
∫
G
〈 f (g), f ′(g)〉V dg′. (3.21)

The induced representation (IndGKρ, L2(G; ρ)) is nothing but the restriction of the left
regular representation � on L2(G, Vρ) to a closed, invariant subspace. Furthermore,
� is intimately related to the left regular representation λ on L2(G), as the following
lemma shows. The proof of this lemma is a short calculation.
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Lemma 3.13 Let V be a finite-dimensional Hilbert space and equip L2(G) ⊗ V with
the tensor product inner product. Then the natural unitary isomorphism

A : L2(G) ⊗ V → L2(G, V )

f ⊗ v �→ f v
(3.22)

intertwines λ ⊗ IdV with �.

This lemma also shows that, if we choose an orthonormal basis e1, . . . , edim V ∈ V ,
elements of L2(G, V ) are simply linear combinations f = ∑

i f i ei with component
functions f i ∈ L2(G).We use this fact in some calculations of vector-valued integrals,
and the component functions will also be important in Section A.

3.4 G-equivariant and convolutional layers

Given a homogeneous G-space M, we observed that vector bundles π : E → M
may inherit the global symmetry of M. We took a closer look at such homogeneous
vector bundles and found that they are isomorphic to associated bundles G ×ρ Vρ ,
and therefore fit within the equivariance framework of Section 2.3 . We also saw how
the global symmetry of M is encoded in data points and feature maps via induced
representations, and we want G-equivariant layers to preserve this global symmetry.

Consider homogeneous vector bundles Eρ = G ×ρ Vρ and Eσ = G ×σ Vσ ,
and recall Definition 2.19 of layers as general linear maps � : �c(Eρ) → �c(Eσ ).
We are mainly interested in bounded layers from an application point of view, and
we can make this restriction now that the domain and codomain are normed spaces.
Furthermore, any bounded linear map �c(Eρ) → �c(Eσ ) can be uniquely extended
to a bounded linear map

� : L2(Eρ) → L2(Eσ ), (3.23)

and we assume this extension has already been made.

Definition 3.14 A bounded linear map � : L2(Eρ) → L2(Eσ ) is a G-equivariant
layer if it intertwines the induced representations:

� ◦ indGKρ = indGKσ ◦ �. (3.24)

That is, G-equivariant layers are elements � ∈ HomG(L2(Eρ), L2(Eσ )).

Lemma 3.12 states that the induced representations indGKρ and IndGKρ are unitarily
equivalent. It follows that any G-equivariant layer � : L2(Eρ) → L2(Eσ ) induces a
bounded linear map φ : L2(G; ρ) → L2(G; σ) satisfying

φ ◦ IndGKρ = IndGKσ ◦ φ, (3.25)

and vice versa. Even though � acts on data points and thereby has a more geometric
interpretation than φ, convolutional layers will be special cases of φ. This is because
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integrals of vector-valued featuremaps f ∈ L2(G; ρ) are easier to define than integrals
of bundle-valued data points s ∈ L2(Eρ). For this reason, let us extend the notion of
G-equivariant layers to include both � and φ, just like we did for (gauge equivariant)
layers in Sect. 2.3. Again, we view layers � and φ as two sides of the same coin.

Aside from minor technical differences, Definition 3.14 coincides with the defini-
tion of equivariant maps in [12]. We have thus motivated and defined G-equivariant
layers, as used in GCNNs, almost directly from the definition of homogeneous vector
bundles and a desire for layers to respect the homogeneity. For this reason, we argue
that homogeneous vector bundles form the natural setting for GCNNs.

Let us now define convolutional layers.

Definition 3.15 A convolutional layer L2(G; ρ) → L2(G; σ) is a bounded operator
of the form

[κ� f ](g) =
∫
G

κ(g−1g′) f (g′) dg′, f ∈ L2(G; ρ), (3.26)

for each g ∈ G. Here, κ : G → Hom(Vρ, Vσ ) is an operator-valued kernel.

Of course, not any function κ : G → Hom(Vρ, Vσ ) can be chosen as the kernel
of a convolutional layer. The kernel must ensure both that (3.26) is bounded and
that κ� f ∈ L2(G; σ) for each f ∈ L2(G; ρ). We give a sufficient condition for
boundedness in Lemma 3.17 and the other requirement has been studied in detail in
[12, 27].

The next result is an almost immediate consequence of the Fubini-Tonelli theorem.

Proposition 3.16 The adjoint of (3.26) is the integral operator

[ f ∗ κ∗](g) =
∫
G

κ∗(g′−1g) f (g′) dg′, f ∈ L2(G; σ), (3.27)

where κ∗ is the pointwise adjoint of κ . That is, (κ�·)∗ = · ∗ κ∗.

The next lemma investigates the boundedness of (3.26) and (3.27) in terms of the
kernel matrix elements κi j : G → C, for any pair of orthonormal bases in Vρ and Vσ .

Lemma 3.17 The operators (3.26)–(3.27) are bounded if κi j ∈ L1(G) for all i, j .

Proof We need only prove that (3.27) is bounded, its adjoint (3.26) will be bounded as
well. Choose orthonormal bases e1, . . . , edim Vρ ∈ Vρ and ẽ1, . . . , ẽdim Vσ ∈ Vσ and
observe that, because L2(G; σ) ⊂ L2(G, Vσ ), Lemma3.13 enables the decomposition
of f ∈ L2(G; σ) into component functions f i ∈ L2(G):

f =
dim Vσ∑
i=1

f i ẽi . (3.28)
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The kernel κ is similarly decomposed into matrix elements κi j = 〈ẽ j , κei 〉σ , which
satisfy κ∗

j i = κi j . The integral (3.27) now takes the form

[ f ∗ κ∗](g) =
dim Vρ∑
j=1

(∫
G

dim Vσ∑
i=1

κ∗
j i (g

′−1g) f i (g′) dg′
)
e j , (3.29)

hence

‖ f ∗ κ∗‖2L2(G;ρ)
≤

∑
i, j

∫
G

∣∣∣∣
∫
G

κ∗
j i (g

′−1g) f i (g′) dg′
∣∣∣∣
2

dg =
∑
i, j

‖ f i ∗ κ∗
j i‖22.

(3.30)

Applying Young’s convolution inequality to each term yields the desired bound

‖ f ∗ κ∗‖L2(G;ρ) ≤
∑
i, j

‖κi j‖21‖ f i‖22 ≤ M
∑
i

‖ f i‖22 = M‖ f ‖2L2(G;σ)
, (3.31)

where M = ∑
i, j ‖κi j‖21 < ∞ if κi j ∈ L1(G) for all i, j . �

We are interested in convolutional layers partly because they are concrete examples
of G-equivariant layers, which we show next.

Proposition 3.18 Convolutional layers are G-equivariant layers.

Proof Convolutional layers κ�· : L2(G; ρ) → L2(G; σ) are bounded linear operators
by definition, so the only thing we need to prove is that κ�· intertwines the induced
representations. This follows immediately from left-invariance of the Haar measure:
For each f ∈ L2(G; ρ) and all g, h ∈ G,

[
κ�

(
IndGKρ(g) f

)]
(h) =

∫
G

κ(h−1g′) f (g−1g′) dg′ (g′ �→ gg′)

=
∫
G

κ
(
(g−1h)−1g′) f (g′) dg′ = [κ� f ](g−1h),

(3.32)

hence
[
κ�IndGKρ(g) f

] = IndGKσ(g)[κ� f ]. �
Example 3.19 Let us show where ordinary CNNs fit in the present context. CNNs
represent the case G = Z

2 when K = {0} is the trivial subgroup. The homogeneous
space isG/K = Z

2/{0} = Z
2 and the quotient map q : G → G/K is thus the identity

map on Z
2. Its inverse, the identity map ω : G/K → G, is a globally defined gauge

that eliminates the need for gauge equivariance, as wemay choose to work exclusively
in this one gauge. This is just a reflection of the fact that

G = Z
2 = Z

2/{0} × {0} = G/K × K , (3.33)
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is (obviously) trivial as a principal bundle. Its associated bundles Eρ = Z
2 ×ρ Vρ are

also trivial: partly because the finite-dimensional K -representation σ must be trivial,
and partly because each equivalence class [g, v] only contains a single representative.
These reasons are, of course, due to the triviality of K .

This is not to say that the equivariant framework of Sect. 2.3 is uninteresting when
dealing with CNNs, or with GCNNs for other homogeneous spaces M = G/K
with K trivial. We saw in Sects. 3.2–3.3 how the homogeneity gives rise to induced
representations, which encode the global symmetry in both data points and feature
maps. This is a useful perspective to have, and G-equivariant layers are interesting
even when the bundles are trivial.

Triviality of the associated bundles, Eρ � Z
2 × C

m where m = dim Vσ ,1 implies
that data points and feature maps are general square-integrable functions,

L2(Eρ) � L2(Z2; ρ) � L2(Z2, C
m), (3.34)

and are thereby extensions of compactly supported functions f : Z
2 → C

m . This ties
well into the discussion in Sect. 2.1. Convolutional layers (3.26) reduce to bounded
linear operators L2(Z2, C

m) → L2(Z2, C
n) and take the form

(κ� f )(x) =
∑
y∈Z2

κ(y − x) f (y), (3.35)

as the Haar measure on Z
2 is the counting measure. The kernel κ : Z

2 →
Hom(Cm, C

n) is finitely supported in practice, so boundeness of (3.35) is ensured
by Lemma 3.17.

Interestingly, all Z
2-equivariant layers are convolutional layers; there are no other

types of Z
2-equivariant layers than (3.35). This follows from Theorem 3.22 and is

proven in Corollary 3.23 below. �
For more general groups G, it is no longer true that all G-equivariant layers are

convolutional layers;wegive an example of this fact inExample 3.21. Implementations
of GCNNs, however, are usually based on convolutional layers, or on analogous layers
in the Fourier domain. What consequences does the restriction to convolutional layers
have for the expressivity of GCNNs? Can we tell whether a given G-equivariant layer
is expressible as a convolutional layer? The answer to this last question, it turns out,
requires the following notion of reproducing kernel Hilbert spaces.

Definition 3.20 Let G be a group, let V be a finite-dimensional normed vector space,
and let H be a Hilbert space of functions G → V . Then H is a reproducing kernel
Hilbert space (RKHS) if the evaluation operator

Eg : H → V , f �→ f (g), (3.36)

is bounded for all g ∈ G. Moreover, by left-invariant RKH subspace H ⊆ L2(G, V )

we mean a closed subspace that is both a RKHS and an invariant subspace for the left
regular representation � on L2(G, V ).

1 Recall that we focus on complex vector bundles, hence the use of C
m instead of R

m .
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The name RKHS is due to the existence of a kernel-type function that reproduces
all elements of H. To see how, choose an orthonormal basis e1, . . . , edim V ∈ V and
write elements v ∈ V as linear combinations v = ∑

i v
i ei . The projection Pi (v) = vi

onto the i’th component is always continuous, so the composition Eg,i := Pi ◦ Eg is
a continuous linear functional

Eg,i : H → C, f �→ f i (g), (3.37)

for all g ∈ G and i = 1, . . . , dim V . By the Riesz representation theorem, there are
elements ϕg,i ∈ H such that f i (g) = Eg,i ( f ) = 〈 f , ϕg,i 〉, hence

f (g) =
dim V∑
i=1

〈 f , ϕg,i 〉ei . (3.38)

Now, if H ⊆ L2(G, V ) is a left-invariant RKH subspace, expanding both f =∑
j f j e j and ϕg,i = ∑

j ϕ
j
g,i e j in the orthonormal basis in V yields the formula

f (g) =
∑
i

〈∑
j

f j e j ,
∑
k

ϕk
g,i ek

〉
ei (3.39)

=
∑
i

⎛
⎝∑

j

∫
G

ϕ
j
g,i (g

′) f j (g′) dg′
⎞
⎠ ei (3.40)

=
∫
G

⎛
⎝∑

i, j

ϕ
j
g,i (g

′) f j (g′)ei

⎞
⎠ dg′ =

∫
G

ϕ∗
g(g

′) f (g′) dg′, (3.41)

where ϕ∗
g is the conjugate transpose of the matrix (ϕg)

j
i = ϕ

j
g,i . By left-invariance,

f (g) = (
�(g−1) f

)
(e) =

∫
G

ϕ∗
e (g

−1g′) f (g′) dg′, (3.42)

and so f ∈ H is reproduced by the operator-valued kernel ϕ∗
e : G → Hom(V ). We

rename ϕ∗
e as κ to emphasize the similarity between (3.42) and convolutional layers.

The reproducing kernel κ is unique and thus independent of the choice of basis in V ,
which follows from uniqueness in the Riesz representation theorem.

It is now clear why left-invariant RKH subspaces of L2(G, V ) are relevant when
discussing convolutional layers, as the latter are given by integral operators similar to
(3.42). In order to show that an abstractG-equivariant layerφ : L2(G; ρ) → L2(G; σ)

can be written as a convolutional layer, it is almost necessary for it to act in a RKHS:

Example 3.21 The identity map φ : L2(G; σ) → L2(G; σ) is clearly a G-equivariant
layer regardless ofG, K , σ , but it is only a convolutional layer if L2(G; σ) is a RKHS.
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This is because when φ is the identity, (3.26) becomes the reproducing property

f (g) =
∫
G

κ(g−1g′) f (g′) dg′, f ∈ L2(G; σ). (3.43)

It follows that not every G-equivariant layer is a convolutional layer, because
L2(G; σ) is not always a RKHS. When σ is the trivial representation, for
instance, L2(G; σ) reduces to L2(G) which is not a RKHS when G is nondiscrete
[19,Theorem 2.42]. �

At this point, we know that global symmetry manifests itself in feature maps and
data points through the induced representation, and we used this knowledge to define
G-equivariant layers. We also defined convolutional layers and showed that these are
special cases of G-equivariant layers, but the converse problem is much more subtle:
When can a G-equivariant layer be expressed as a convolutional layer? The answer,
as we have just seen, is directly related to the concept of RKHS.

The next result is our main theorem. It extends [12,Theorem 6.1] to layers which
are not a priori given by integral operators, and it generalizes [25,Theorem 1] beyond
compact groups as discussed below.

Theorem 3.22 Let G be a unimodular Lie group, let K ≤ G be a compact subgroup,
and consider homogeneous vector bundles Eρ, Eσ over M = G/K. Suppose that

φ : L2(G; ρ) → L2(G; σ), (3.44)

is a G-equivariant layer. If φ maps into a left-invariant RKH subspaceH ⊆ L2(G; σ),
then φ is a convolutional layer.

Proof Fix orthonormal bases inVρ ,Vσ . For i = 1, . . . , dim σ , consider the functionals

E i : L2(G; ρ) → C, E i ( f ) = (φ f )i (e), (3.45)

composing φ with evaluation at the identity element e ∈ G and projection onto the i’th
component. As φ maps into a left-invariant RKH subspaceH ⊆ L2(G; σ), (3.45) is a
bounded linear functional: |E i ( f )| ≤ ‖(φ f )(e)‖σ ≤ ‖φ f ‖L2(G;σ) ≤ ‖φ‖‖ f ‖L2(G;ρ).
By the Riesz representation theorem, there is a unique ϕi ∈ L2(G; ρ) such that

E i ( f ) =
∫
G
〈 f (g), ϕi (g)〉ρ dg =

∫
G

dim ρ∑
j=1

f i (g)ϕ j
i (g) dg, (3.46)

and proceeding as in (3.39)–(3.42) with κ := ϕ∗
e yields the desired relation

(φ f )(g) =
∫
G

κ(g−1g′) f (g′) dg′. (3.47)

�
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The implications of Theorem 3.22 are not immediately obvious. It is not yet clear
whether the left-invariant RKH subspace criterion is satisfied for most G-equivariant
layers and how it depends on the groupG. Such questions are discussed inAppendixA,
where we discuss the concept of bandwidth and its close connection to the theory of
RKHS. This discussion will give a Fourier analytic perspective on Theorem 3.22 and
helps us draw stronger conclusions about G-equivariant layers for certain groups. The
following corollary of Theorem 3.22 is proven at the end of Appendix A.

Corollary 3.23 If G is a discrete abelian or finite group, then any G-equivariant layer
is a convolutional layer.

In particular, setting G = Z
2 shows that convolutional layers are the only possible

translation equivariant layers in the ordinary CNN setting.
The next corollary could be compared to the generalized convolutions described

in [25,Sect. 4.1] and may simplify numerical computations of convolutional layers.
Integrals over the homogeneous space G/K are often faster to compute than inte-
grals over the (larger) group G. For example, rotationally equivariant networks on
spherical data (G = SO(3),M = S2) compute convolutions over SO(3), which are
computationally more expensive than convolutions over the sphere S2. The expensive
computations of convolutional layers is one of the main drawbacks of GCNNs.

Corollary 3.24 Let G, K , and φ : L2(G; ρ) → L2(G; σ) be as in Theorem 3.22 and
let κ be the kernel of the resulting convolutional layer (3.47). Then

(φ f )(g) =
∫
G/K

κ(g−1x) f (x) dx . (3.48)

Proof In the proof of Theorem 3.22, we constructed the kernel from the components
of ϕi ∈ L2(G; ρ), and unitarity of ρ clearly implies that the expression 〈 f (x), ϕi (x)〉ρ
is well-defined. We may therefore use the unitary structure (3.13) to get the following
relation for all component functions (φ f )i and all g ∈ G:

(φ f )i (g) = 〈 f , IndGKρ(g)ϕi 〉L2(G;ρ) = 〈s f , sIndGK ρ(g)ϕi
〉L2(Eρ) (3.49)

=
∫
G/K

〈s f (x), sIndGK ρ(g)ϕi
(x)〉x dx (3.50)

=
∫
G/K

〈 f (x), IndGKρ(g)ϕi (x)〉ρ dx (3.51)

=
∫
G/K

dim ρ∑
j=1

ϕ
j
i (g−1x) f j (x) dx . (3.52)

We now obtain (3.48) by reconstructing κ from its components κi j = ϕ
j
i . �

3.4.1 Relation to previous work

Theorem3.22 is similar to [25,Theorem1], even though there are also clear differences.
For instance, we study individual G-equivariant layers φ whereas [25] is concerned
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with G-equivariant multi-layer neural networks

σL ◦ φL ◦ σL−1 ◦ φL−1 ◦ · · · ◦ σ1 ◦ φ1, (3.53)

where φ� are linear transformations and where σ� are non-linear activation functions
for � = 1, . . . , L . That being said, most results on G-equivariance in [25] are actually
proven for the linear transformations φ�. The pointwise non-linearities σ� are applied
in a G-equivariant way [10,Sect. 6.2], so any result concerning G-equivariance of
the linear transformations can be extended to multi-layer networks (3.53) by simple
induction on the number of layers.

Another difference is that we consider unimodular Lie groupsG while [25] restricts
attention to compact groups G. In fact, in the case of a single-layer neural network
with index set X0 = X1 = G/K , [25,Theorem 1] states that all G-equivariant layers
are convolutional layers. This unconditional result is stronger than Theorem 3.22 for
compact groups. However, the proof of [25,Theorem 1] contains a minor flaw. Their
proof uses the inverse Fourier transform to construct a convolution kernel κ for each
G-equivariant linear layer φ, so that φ becomes a convolutional layer φ f = κ� f (in
our notation). To be more precise, their proof makes use of a linear relation

φ̂ f (γi ) = �i f̂ (γi ), i = 1, 2, 3, . . . (3.54)

between the Fourier coefficients of φ f and f , for each feature map f and each unitary
irreducible representation γi of G. Matrices Bi corresponding to the linear maps �i

are interpreted as the Fourier coefficients κ̂(γi ) of a function κ that is then constructed
using the inverse Fourier transform,

κ(g) =
∑
i

dim(γi )tr
[
Biγi (g)

]
. (3.55)

Finally, the convolution theorem κ̂� f = κ̂ f̂ = φ̂ f ensures that κ� f = φ f .
When φ is the identity map on L2(G), however, the matrices Bi ∈ C

dim(γi )×dim(γi )

become identity matrices and the Parseval equation [18,p. 145] implies that

‖κ‖22 =
∑
i

dim(γi )tr
[
B∗
i Bi

] =
∑
i

dim(γi )
2. (3.56)

Thus, the matrices Bi are only the Fourier coefficients of an element κ ∈ L2(G) when
the compact group G is finite. Otherwise, the right-hand side in (3.56) diverges and
the inverse Fourier transform (3.55) cannot be used to construct κ . This is consistent
with Example 3.21, which shows that the identity map on L2(G) is a G-equivariant
layer but not a convolutional layer when the compact group G is not finite.
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4 Discussion

In this paper, we have investigated the mathematical foundations of G-equivariant
convolutional neural networks (GCNNs), which are designed for deep learning tasks
exhibiting global symmetry. We presented a basic framework for equivariant neural
networks that include both gauge equivariant neural networks and GCNNs as special
cases. We also demonstrated how GCNNs can be obtained from homogeneous vector
bundles, when G is a unimodular Lie group and K ≤ G is a compact subgroup.

In Theorem 3.22, we gave a precise criterion for when a given G-equivariant layer
is, in fact, a convolutional layer. This criterion uses reproducing kernel Hilbert spaces
(RKHS) and cannot be circumvented, as demonstrated in Example 3.21. When the
group G is either discrete abelian or finite, we showed that the criterion in our main
theorem is automatically satisfied. In other words, there are no G-equivariant layers
other than convolutional layers for these groups. This implies that implementations of
GCNNs using convolutional layers are maximally expressive - at least with regards
to the linear transformations, since we did not discuss non-linear activation functions.
Finally, we proved that convolutional layers can be computed by integrating over the
homogeneous space G/K rather than integrating over the group G. Convolutional
layers are expensive to compute, especially for large groups G. This result has the
potential of speeding up numerical computations of convolutional layers and making
GCNNs even more viable in practical applications.

One limitation of the current paper, compared to [12, 25], is that the homogeneous
space G/K does not change between layers. This restriction was made in order to
limit the scope of our analysis and may be relaxed in future work.

Appendix A. RKHS and bandlimited functions

The significance of our main theorem 3.22 depends on how common left-invariant
RKH subspaces of L2(G; σ) are. It turns out that there is a deep connection between
RKHS and the concept of bandwidth in Fourier analysis which we will make use of.
To our knowledge, this connection has not been noted in previous works on GCNNs,
so we hope that this appendix may aid future research.

Left-invariant RKHsubspacesH ⊆ L2(G) have been fully characterized for groups
of type I [8, 19], which essentially means groups that have manageable representation
theory. Most unimodular Lie groups are already of type I, so adding this property to
our list of assumptions about G barely reduces the generality of our results. Using
known results about the scalar-valued caseH ⊆ L2(G) will also provide information
about the vector-valued case. This is due to the unitary equivalence in Lemma 3.13,

A : L2(G) ⊗ V → L2(G, V )

f ⊗ v �→ f v
, (A.1)

which shows that A(H ⊗ Vσ ) and its closed subspace

A(H ⊗ Vσ ) ∩ L2(G; σ), (A.2)
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are left-invariant RKH subspaces of L2(G, Vσ ) and L2(G; σ), respectively, whenever
H is a left-invariant RKH subspace of L2(G).

Recall the construction of the reproducing kernel κ : G → Hom(V ) for arbitrary
left-invariant RKH subspaces H ⊆ L2(G, V ), below Definition 3.20. After choosing
an orthogonal basis in V and fixing g ∈ G, we used the Riesz representation theorem
to find functions ϕg,i ∈ H such that

f (g) =
dim V∑
i=1

〈 f , ϕg,i 〉ei , f ∈ H. (A.3)

We then applied left-invariance to see that f (g) = (
�(g−1) f

)
(e), which enabled us

to construct κ as a matrix-valued function, in the given basis, from the components of
ϕe,i ∈ H. Left-invariant RKH subspaces H ⊆ L2(G) correspond to the case V = C,
so the same construction yields a single function ϕe ∈ H used to construct the kernel:

f (g) = 〈λ(g−1) f , ϕe〉 =
∫
G

ϕe(g−1g′) f (g′) dg′ = ( f ∗ ϕ∗
e )(g), (A.4)

with ϕ∗
e (g) = ϕe(g−1) denoting involution. So the reproducing kernel κ = ϕe is not

only a complex-valued function in this case, it is even an element of H.

Proposition A.1 [19,Proposition 2.40] Let H ⊆ L2(G) be a left-invariant RKH sub-
space. The kernel κ ∈ H is then a self-adjoint convolution idempotent,2 and

H = L2(G) ∗ κ =
{
f ∗ κ

∣∣∣ f ∈ L2(G)
}

⊂ C(G). (A.5)

Conversely, if κ ∈ L2(G) is a self-adjoint convolution idempotent, thenH = L2(G)∗κ

is a left-invariant RKH subspace of L2(G).

Example A.2 Consider the real line G = R and let H ⊆ L2(R) be a left-invariant
RKH subspace with kernel κ ∈ H. Then (A.4) becomes

f (x) =
∫ ∞

−∞
κ(y − x) f (y) dy = 〈 f , λ(x)κ〉 = ( f ∗ κ∗)(x), (A.6)

which implies that f is continuous, since the regular representation λ is continuous,
hence H ⊂ C(R). Furthermore, setting f = κ shows that the kernel is a self-adjoint
convolution idempotent:

κ = κ ∗ κ∗ = (κ ∗ κ∗)∗ = κ∗. (A.7)

Combining the Plancherel transform on L2(R) (see TheoremA.4 and equation (A.23))
with the convolution theorem in Fourier analysis, we observe that, for all f ∈ H,

f̂ = f̂ ∗ κ = f̂ κ̂ . (A.8)

2 That is, κ = κ ∗ κ∗ = κ∗.
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In particular, κ̂ = κ̂2, and so κ̂ is the characteristic function 1E on a subset E ⊂ R.
The set E has finite Lebesgue measure according to the Plancherel theorem,

vol(E) = ‖1E‖22 = ‖κ‖22 < ∞, (A.9)

and inserting κ̂ = 1E in (A.8) implies that supp( f̂ ) ⊂ E . It follows that H is a space
of bandlimited functions. �
This example illustrates that anymeasurable subset E ⊂ Rwith finitemeasure induces
a left-invariant closed RKH subspace

HE =
{
f ∈ L2(R)

∣∣∣ supp( f̂ ) ⊂ E
}

= L2(R) ∗ κE , (A.10)

κE being the inverse Plancherel transform of 1E [19,2.63–2.65]. This relation between
left-invariant RKH subspaces H ⊆ L2(G) and bandlimited functions generalizes to
unimodular Lie groups G of type I. Going into detail on this rather technical subject
would distract from the topic at hand, however, so we summarize the general theory
and refer curious readers to the relevant literature [19]. We will then restrict attention
to two important cases where we can be more explicit: Abelian and compact groups.

First recall that two representations (γ, Vγ ) and (η, Vη) of G are equivalent if there
exists a linear isomorphism ψ : Vγ → Vη such that ψ ◦ γ = η ◦ ψ . Equivalence
of representations is an equivalence relation, and the equivalence classes of unitary
irreducible representations (γ, Vγ ) form the unitary dual Ĝ of G:

Ĝ = {
equivalence classes [γ ] of irreducible unitary representations (γ, Vγ )

}
.

(A.11)

The unitary dual Ĝ is a topological space whose topology is, in a sense, well-behaved
precisely when G is of type I [18,Theorem 7.6]. This is what we referred to earlier
when saying that type I groups have manageable representation theory. Our interest
in the unitary dual is due to the following extension of the Fourier transform:

Definition A.3 [19,Sect. 3.5] Let G be a unimodular Lie group of type I. Then the
operator-valued Fourier transform on G maps each f ∈ L1(G) to the family

F( f ) = ( f̂ (γ ))γ∈Ĝ, (A.12)

where each f̂ (γ ) ∈ B(Vγ ) is a bounded operator on Vγ given by the Bochner integral

f̂ (γ ) =
∫
G

f (g)γ (g) dg. (A.13)

This operator-valued Fourier transform can be extended to a Plancherel transform on
L2(G) that decomposes both the left regular representation λ and its commutant

λ(G)′ =
{
T ∈ B(L2(G))

∣∣∣ T ◦ λ(g) = λ(g) ◦ T for all g ∈ G
}

, (A.14)
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into direct integrals
∫ ⊕
I of Hilbert spaces. Direct integrals generalize direct sums

⊕
I

of Hilbert spaces to allow nondiscrete index sets I . See [19,§3.3] for an introduction,
though detailed knowledge of direct integrals is not necessary for reading this paper.
For example, the Plancherel transform (A.15) below decomposes a function f ∈
L2(G) into Fourier coefficients f̂ (γ ) for [γ ] ∈ Ĝ, and one may simply view the
direct integral notation as a reminder that Ĝ need not be discrete.

Theorem A.4 [19,Theorem 3.48] There is a canonical Plancherel measure ν for the
unitary dual Ĝ with the following properties:

(i) F extends to a unitary operator

P : L2(G) →
∫ ⊕

Ĝ
Vγ ⊗ Vγ dν([γ ]), (A.15)

called the Plancherel transform of G.
(ii) P implements the following unitary equivalences:

λ �
∫ ⊕

Ĝ
γ ⊗ Id dν([γ ]), (A.16)

λ(G)′ �
∫ ⊕

Ĝ
Id⊗B(Vγ ) dν([γ ]). (A.17)

Observe that ifH ⊆ L2(G) is a left-invariant closed subspace, then the projection
P : L2(G) → H commutes with the left regular representation and is thus an element
of the commutant λ(G)′. It therefore has a direct integral decomposition

P =
∫ ⊕

Ĝ
Id⊗P̂γ dν([γ ]), (A.18)

where P̂γ ∈ B(Vγ ) for each [γ ] ∈ Ĝ.

Theorem A.5 [19,Theorem 4.22, Proposition 2.40] Suppose thatH ⊆ L2(G) is a left-
invariant closed subspace with equation (A.18) denoting the projection ontoH. Then
H is a RKHS iff

∫
Ĝ
rank(P̂γ ) dν(γ ) < ∞. (A.19)

We interpret this theorem as a bandwidth restriction, similar to Example A.2. The
integrand in (A.19) is an integer-valued function on Ĝ, so the integral is finite only if
the projection (A.18) is supported on a set E ⊆ Ĝ of finite Plancherel measure,

ν
( {

γ ∈ Ĝ : P̂γ �= 0
}

︸ ︷︷ ︸
E

)
=

∫
Ĝ
1E (γ ) dν(γ ) ≤

∫
Ĝ
rank(P̂γ ) dν(γ ). (A.20)
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That is, the left-invariant RKH subspacesH ⊆ L2(G) are precisely those subspaces
whose elements are bandlimited on a set E ⊆ Ĝ in the sense that, for all f ∈ H and
each equivalence class γ /∈ E ,

f̂ (γ ) = P̂ f (γ ) = f̂ (γ ) ◦ P̂γ = 0, (A.21)

the second equality being [19,Corollary 4.17]. Bandlimited functions are thus central
to the theory of RKHS and, by extension, to the mathematical theory of GCNNs.
Abelian groups The irreducible representations [γ ] ∈ Ĝ of any abelian group G are
1-dimensional and may be identified with their character χγ = trγ . There are several
useful consequences of this fact.

First, the unitary dual Ĝ is now the set of continuous homomorphisms χ : G → T,
where T is the circle group. This is a locally compact group with respect to pointwise
multiplication and, as [γ ] ∈ Ĝ is unitary, wemay write χγ = eiξγ where ξγ : G → R.
The Fourier transform then takes the more familiar form

f̂ (γ ) =
∫
G

f (g)e−iξγ (g) dg, (A.22)

for f ∈ L1(G) ∩ L2(G). Moreover, the Haar measure on Ĝ can be made to coincide
with the Plancherel measure such that (A.15) becomes a unitary equivalence

P : L2(G) → L2(Ĝ). (A.23)

Another consequence of the fact that irreducible representations are 1-dimensional,
is that the integrand in (A.19) takes values in {0, 1} and (A.20) becomes an equality.
Using the same arguments as in Example A.2, we see that the left-invariant RKH
subspaces H ⊆ L2(G) are precisely the spaces of bandlimited functions, supp( f̂ ) ⊂
E , for subsets E ⊂ Ĝ of finite Haar/Plancherel measure. Also, the kernel κE ∈ H is
the inverse Plancherel transform of the characteristic function 1E .
Compact groups The unitary dual Ĝ of any compact group G is a discrete space, and
its Plancherel measure reduces to the counting measure. Furthermore, all irreducible
representations of G are finite-dimensional. The integral (A.19) is thus a discrete sum
with finite summands, and converges iff P̂γ = 0 for all but finitely many [γ ] ∈ Ĝ.

We are now ready to prove Corollary 3.23, with which we conclude this appendix.

Proof Let us first consider finite groups G. The unitary dual Ĝ is then finite as well
[18,Proposition 5.27], which means that the integral (A.19) reduces to a finite sum for
all closed, left-invariant subspaces H ⊆ L2(G). In particular, H = L2(G) is itself a
RKHS. The same is thus true of L2(G) ⊗ V � L2(G, V ) and of any closed subspace
L2(G; σ). Consequently, setting H = L2(G; σ) in Theorem 3.22 implies that any
G-equivariant layer

φ : L2(G; ρ) → L2(G; σ), (A.24)

is a convolutional layer.
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When G is discrete abelian, the unitary dual Ĝ is compact [14,Proposition 3.1.5].
Since the integrand in (A.19) is at most 1, the integral is bounded by the finite volume
of Ĝ and therefore converges for all closed, left-invariant subspacesH ⊆ L2(G). This
proves that H = L2(G) is a RKHS when G is discrete abelian, and proceeding as in
the finite case shows that any G-equivariant layer is a convolutional layer. �
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