
Systematic literature review of domain-oriented specification techniques

Downloaded from: https://research.chalmers.se, 2022-10-11 19:45 UTC

Citation for the original published paper (version of record):
Deckers, R., Lago, P. (2022). Systematic literature review of domain-oriented specification
techniques. Journal of Systems and Software, 192. http://dx.doi.org/10.1016/j.jss.2022.111415

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



The Journal of Systems & Software 192 (2022) 111415

a

b

c

b
1
k
m

o
o

1

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Systematic literature review of domain-oriented specification
techniques✩

Robert Deckers a,b,∗, Patricia Lago a,c

Vrije Universiteit Amsterdam, The Netherlands
Atom Free IT, Heeswijk-Dinther, The Netherlands
Chalmers University of Technology, Sweden

a r t i c l e i n f o

Article history:
Received 4 May 2021
Received in revised form 16 June 2022
Accepted 18 June 2022
Available online 25 June 2022

Keywords:
Domain-specific language
Domain model
Systematic literature review
Method comparison
Specification method
Modeling language

a b s t r a c t

Context: The popularity of domain-specific languages and model driven development has made the
tacit use of domain knowledge in system development more tangible. Our vision is a development
process where a (software) system specification is based on multiple domain models, and where the
specification method is built from cognitive concepts, presumably derived from natural language.
Goal: To realize this vision, we evaluate and reflect upon the existing literature in domain-oriented
specification techniques.
Method: We designed and conducted a systematic literature review on domain-oriented specification
techniques.
Results: We identified 53 primary studies, populated the classification framework for each study,
and summarized our findings per classification aspect. We found many approaches for creating
domain models or domain-specific languages. Observations include: (i) most methods are defined
incompletely; (ii) none offers methodical support for the use of domain models or domain-specific
languages to create other specifications; (iii) there are specification techniques to integrate models in
general, but no study offers methodical support for multiple domain models.
Conclusion: The results indicate which topics need further research and which can instead be reused
to realize our vision on system development.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
(
G
a
e
o
a

(
(

1. Introduction

Since the 1980s, several approaches for domain modeling have
een developed and published (Shlaer and Mellor, 1989; Simos,
995; Kristen, 1994). Domain modeling is a technique to capture
nowledge from domain experts and domain literature into a
odel. A domain model can be used in various ways, e.g., as a

basis for requirements specification (Firesmith, 2004), as a basis
for software design (Evans, 2004), or as a language for functional
specifications (Kristen, 1994).

The purpose of this systematic literature review (SLR) is to
investigate which specification techniques exist in the context of
domain modeling. These are both techniques to create domain
models, and techniques to use a domain model as a language for
ther specifications, e.g., the specification of a feature, application,
r system aspect. In order to create system specifications, we are

✩ Editor: Matthias Galster.
∗ Correspondence to: Vrije Universiteit, Faculty of Sciences, De Boelelaan
111, 1081 HV, Amsterdam, The Netherlands.

E-mail address: robert.deckers@AtomFreeIT.com (R. Deckers).
 c

ttps://doi.org/10.1016/j.jss.2022.111415
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
also interested in techniques to integrate domain models and to
integrate specifications expressed in terms of domain models. We
call all these techniques together domain-oriented (DO) specifica-
tion techniques. The outcome of this study is used as input for
MuDForM (Multi Domain Formalization Method), which is the
domain-oriented specification method that we are working on.

Domain models are intended to capture knowledge about the
application domains of systems (Kosar et al., 2016; Falbo et al.,
2002). But we are also interested in applying domain modeling
to other domains, and quality domains in particular. Most meth-
ods related to domain modeling focus on the structural (state)
properties of a domain, e.g., Strembeck and Zdun (2009), Frank
2010), Arora et al. (2016), Zhang et al. (2012), Purao et al. (2000),
rant (2012), Grant et al. (2004), Clark et al. (2015, 2003), Ibrahim
nd Ahmad (2010) and France et al. (2007). Though, we are
specially interested in methods that facilitate the specification
f behavioral (dynamic) properties, and in such a way that they
re well integrated with the specification of structural properties.
This SLR is organized around three main research questions

RQs) that investigate what specification techniques exist to
RQ1) make specifications of a domain (called domain specifi-
ations), (RQ2) make other specifications in terms of a domain
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111415
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111415&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:robert.deckers@AtomFreeIT.com
https://doi.org/10.1016/j.jss.2022.111415
http://creativecommons.org/licenses/by/4.0/


R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

s
t
i
T
S
t
t
T
f

w
o
a
a
i
e
i
w
f
e
F
o
t

i
n
f
t
i
d
o
b
t
i
p

a
g
a
m
c
g
f
s
t
a
o
o
a
p
t

i
s
e
L
d
c
w
t
a

2

T

pecification (called domain-based specifications), and (RQ3) in-
egrate several domain specifications and domain-based spec-
fications in one specification (called integration specifications).
hese different types of specification are explained further in
ection 3.1. Per identified technique, we answer several ques-
ions. First, to which domains is it applicable, and is it applicable
o quality domains? Second, how methodical is the technique?
hird, how does it address a number of aspects that are specific
or domain-oriented modeling?

We have identified three contributions of this SLR along
ith the related target audiences. The first contribution is an
verview of the state-of-the-art in specification techniques to cre-
te domain models (DMs) and domain-specific languages (DSLs),
nd their use in the creation of other (domain-based) spec-
fications. This SLR discusses how well those techniques are
ngineered, by analyzing the conciseness and clarity of the spec-
fication language and specification process. We also discuss how
ell the existing techniques cover the aspects that are derived

rom the specific objectives (introduced in Section 2.3) that we
nvision for our own research, i.e., for the definition of MuD-
orM. Potential users, developers, and researchers of domain-
riented specification techniques, can use the overview to select
echniques in order to apply them in their own context.

The second contribution is the identification of shortcomings
n the existing literature on domain-oriented specification tech-
iques. We identified topics that need to be researched in the
uture, such as the support for working with multiple domains,
he integration of modeling concepts for structural and behav-
oral properties, and having fine-grained guidance for modeling
ecisions. Another gap in the literature is the incompleteness
f most method descriptions. This is not a new research topic,
ut rather a lack in method engineering of those specification
echniques. Researchers and developers of domain-oriented spec-
fication techniques may use the identified topics as a starting
oint for their research and method engineering activities.
The third contribution is that we have defined a reusable

pproach for comparing methods, which is an extension to the
uidelines described by Kitchenham (2004). First, we have made
conceptual model of the domain of method engineering. This
odel is reusable for other method comparisons. Second, we have
reated a conceptual model of the application domain of the tar-
eted methods, i.e., domain-oriented specifications. The concepts
rom both models are used to define the research questions, the
earch queries, and the classification framework. The classifica-
ion framework consists of three parts, which can be applied to
ny method comparison. Furthermore, the use of concept models
f the method engineering domain, and of the application domain
f the targeted methods, leads to a more consistent study design
nd execution. Researchers who also want to compare methods,
ossibly via a literature review, can benefit from the approach
hat we followed.

The remainder of this paper is structured as follows. Section 2
ntroduces some background knowledge. Section 3 describes the
tudy design and execution. All the data produced during study
xecution is available via the replication package (Deckers and
ago, 2022). Section 4 presents the study results, i.e., the extracted
ata from the primary studies that we included. Section 5 dis-
usses the results from the perspective of the research questions,
hile Section 6 discusses related works. Section 7 addresses the
hreats to the validity of this study. Section 8 concludes this
rticle, and identifies topics for future research.

. Background: MuDForM and domain modeling

This section provides the background information of this SLR.
his study is carried out as the starting point of our research,
 b

2

in which we work on a integral method for system specification
via multiple domain models, i.e., MuDForM.1 We mention our
MuDForM research program in this SLR, because its objectives are
the main reason for the RQs and the aspects in the classification
framework.

Accordingly, the following explains our perspective on domain
modeling, and the objectives we aim to achieve with MuDForM.
These objectives will be used for the definition of the classifica-
tion framework in Section 3.5, and as a yardstick in the discussion
(Section 5) of the data that is extracted from the selected primary
studies.

2.1. What is a domain model?

We found two different notions of DM in the literature. The
notion that we use is that of a specification space, analogous to
a domain in the mathematical sense. The term ‘‘domain’’ refers
to an area of knowledge or activity and a DM describes what can
happen (behavior) and what can exist (state and structure) in a
domain, or in other words, what can be controlled and managed
in a domain. A DM is the foundation for a shared lexicon in
communication between stakeholders, and can serve directly as a
structured vocabulary for making other specifications, or form the
underlying model of a DSL. For example, a model of the banking
domain expressed in a UML class diagram, can be used directly
in other UML diagrams, or can serve as the abstract syntax of
a DSL. A DM is not intended to express what should happen,
does happen, is likely to happen, or has always happened in the
domain, because we assign those aspects to different types of
specifications, like a system, application, or feature specification.
The knowledge captured in a DM is not limited to a specific way
of working in the domain nor to a specific system that operates
in the domain. Approaches for DSLs like (Abouzahra et al., 2005;
Fowler, 2010; Kelly and Tolvanen, 2008), comply with this notion
of DM.

The other notion in the literature is that a domain is a col-
lection of related systems. Accordingly, a DM defines a set of
(system) features that are common in the domain. This notion is
used for example by FODA (Kang et al., 1990). According to this
notion, a DM can only be made with a set of systems or features
in mind, while in the notion that we adhere to, one can talk
about the concepts in a domain independently from any feature
or system.

2.2. The MuDForM vision

We envision software development as a process in which the
involved people make decisions in their own area of knowledge,
i.e., domain. Those decisions must be integrated, and finally result
in a machine-readable specification. That is why our research
focuses on an integral method for creating DMs, for using DMs
as a language to create other (domain-based) specifications, and
for integrating multiple DMs and domain-based specifications.
It is the ultimate intention for a system to be completely de-
fined in domain-oriented specifications, and that if other kinds of
specifications are used, then they are also explicitly integrated.

We envision that a major difference between MuDForM and
most other methods is that, in addition to modeling the ob-
jects in a domain, MuDForM also considers domain actions to be
first-class domain concepts, and MuDForM integrates objects and
actions. Domain actions describe the atomic changes in their do-
main. They are elements for the creation of composite behavioral
specifications, e.g., processes, scenarios, and system functions.

1 A MuDForM is used to shape tacit and ‘‘muddy’’ data into knowledge
uilding blocks.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

A
s
f
t
l

2

a
s
t
d

nother difference comes from our notion of DM: DMs are de-
criptive and the result of analysis, and system specifications, e.g.,
eature models, are design artefacts and prescriptive. We foresee
hat the third major difference is the extensive use of natural
anguage processing in the modeling process.

.3. MuDForM objectives

Based on our vision and experience with domain modeling,
rchitecture, and model driven development, we have defined a
et of objectives for the development of MuDForM. We introduce
hem shortly to justify the design of the classification framework
escribed in Section 3.5. The objectives are:

O1 In any system development process, there are people that
have concerns about different aspects and that take deci-
sions about different aspects. The distinction of multiple
domains, and their specification in DMs or DSLs, is the
basis for dealing with the multitude of aspects in a devel-
opment process. Moreover, a specification method should
offer multiple mechanisms, e.g., composition, consistency,
transformation, or weaving, to integrate DMs or DSLs, and
domain-based specifications.

O2 There is no limitation to what kind of aspects can be rele-
vant in system development. A specification method should
therefore be independent from any domain or system, and
a method user (modeler) should not need any prior knowl-
edge about the domain or system that is being specified. In
practice, domain modeling is mostly used for the application
domains of targeted systems, or for design aspects of soft-
ware. We think domain modeling should also be applicable
to quality domains, such as reliability, security, and usability.

O3 The knowledge of people about particular aspects can be
seen independently from any specific (software) system,
and is potentially usable in multiple systems. A specifica-
tion method should reflect this and support self-contained
specifications that are independent from their application
in a specific system specification. To use specifications in
different contexts, i.e., to build other specifications, they
should be composable, interpretable, and translatable.

O4 In our notion of domain, a DM captures what can happen
and what can exist in a domain, and a system specification
or feature specification are more about what shall hap-
pen and what shall exist in a system and its context. A
method should support the separation of what can hap-
pen from what shall happen, i.e., distinguish descriptive
domain specifications from prescriptive domain-based
specifications.

O5 Most domains and systems are not only about entities with
a state, but also about change. A method should therefor
support both the the specification of state of a domain
at a certain moment and the specification of change of
state over time. In other words, specifications should ad-
dress things that exist, things that happen, and how these
things are related. This perspective is similar to the notion
of structural (static) properties and behavioral (dynamic)
properties in UML (OMG, 2017).

O6 Almost all people, including domain experts, use natural
language to convey their knowledge and decisions. A specifi-
cation method should support the transformation of knowl-
edge stated in natural language into specifications in an
unambiguous specification language. Preferably, such spec-
ifications should themselves also be translatable into nat-
ural language. The purpose of this support is to minimize
loss of semantics and better mutual understanding in the
communication between modelers and domain experts. The
3

MuDForM vision is to have method concepts that are close
to human cognition. Natural language is a starting point for
the method concepts, because it has evolved over thousands
of years to support communication between people.

O7 A method should be engineered, which means it has a clear
underlying model (often called meta model) with clear se-
mantics, a defined notation (viewpoints and syntax), defined
process steps (method flow), and guidance for the steps and
viewpoints. Furthermore, a modeling process should help in
eliciting input, help in achieving completeness and consis-
tency, and enable the traceability of modeling decisions. We
elaborate on these characteristics in Section 3.5.

O8 The purpose of a specification is mostly to realize a sys-
tem (or part of a system). So, the transition from a set of
(domain-based) specifications to a working system should
be feasible. In other words, the relation between specifica-
tion method and architecture should be clear.

In summary, the main motivation for this SLR is to identify
and characterize what solutions the existing literature provides
for these objectives, in order to use them in the development
of MuDForM. We, the authors of this SLR, have a background
in software architecture, domain modeling and model driven
development. When we started to work on MuDForM, we already
knew of specification techniques from several books on domain
modeling and domain-specific languages (Evans, 2004; Kristen,
1994; Kelly and Tolvanen, 2008; Voelter, 2013; Mannaerts and
Verelst, 2009; Fowler, 2010). We observed that those books did
not address all the MuDForM objectives. Especially, the use of
natural language processing and dealing with multiple models are
topics that are hardly addressed. We did a preliminary informal
literature scan on these topics and found some useful stud-
ies (Clark et al., 2003; Lano and Kolahdouz-Rahimi, 2014; Ibrahim
and Ahmad, 2010; Romero et al., 2009; France et al., 2007; Evans,
1999; van der Vos et al., 1996; Abirami et al., 2015), but they
were mostly not containing relevant content for answering our
research questions. Hence this SLR.

3. Study design and execution

This section describes the design and execution of our SLR.
We follow the guidelines described by Kitchenham (2004). The
purpose of this SLR is to investigate what specification techniques
exist in the context of domain modeling, and compare them on
their applicability, degree of method engineering, and how well
they support the aspects that are derived from the MuDForM
objectives. We are especially interested in techniques for analysis
of natural language, techniques for handling multiple domains,
and guidelines for modeling decisions. Another goal is to identify
research topics, based on shortcomings and gaps that we detected
in the existing literature with respect to our objectives.

Section 3.1 explains the research questions. From those ques-
tions and the inclusion/exclusion criteria (Section 3.3), we derive
the search queries (Section 3.2) and the classification framework
(Section 3.5). Section 3.4 describes the search process, i.e., study
execution. Based on the data extracted from the search results
(described in Section 4), Section 5 discusses the answers to our
research questions.

Of course, the results of this SLR, and the references to the
found specification techniques in particular, can also be used
by researchers and practitioners that investigate and develop
domain-oriented specification methods.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

3

t
s
a
r
s
d

n
d
n
b
c
s
t
s
r

D

Fig. 1. Research questions : positioning and related concepts.
D

.1. Research questions

This section elaborates on the research questions (see Sec-
ion 1) of this SLR. In order to formulate RQ1–RQ3, the derived
earch queries, and the classification framework, in a coherent
nd unambiguous way, we created a conceptual model of the
esearch domain of this SLR, i.e., the domain of domain-oriented
pecification techniques. This model is presented in four class
iagrams throughout this section.
We are interested in three categories of specification tech-

iques2: domain specifications domain-based specifications, and
omain-oriented integration specifications. To be clear, this does
ot mean that the specification techniques themselves have to
e explicitly domain-oriented. We are interested in all specifi-
ation techniques that can be used to create domain-oriented
pecifications. Fig. 1(a) depicts that each category corresponds
o a research question that starts with the phrase ’’What are
pecification techniques to create . . . ?’’. We will now explain each
esearch question.

omain specifications (RQ1): What are techniques to create
specifications of a domain?
We are interested in structured specifications of a do-
main, such as domain models, domain-specific languages,
and domain ontologies. We found several types of domain
specifications (see Fig. 1(b)). But we are not looking for
techniques that result in just an enumeration of the con-
cepts in a domain, like domain glossaries or vocabularies,
because they have no explicit structure. Taxonomies some-
times have a hierarchical structure, but they typically do
not provide insight in how the concepts at one hierarchy
level relate to each other.

2 The italic words in the text refer to elements in the models.
 D

4

The most common use of domain modeling techniques
is for application domains. But we are also interested in
techniques other types of domains, in particular quality do-
mains. There are many quality domains, denoted by quality
attributes such as security, usability, or maintainability. We
are not looking for specifications of these quality domains,
but for techniques to create their specification.

Software design and programming can also be seen as a
domain, i.e., the resource domain. This large domain can be
divided into sub domains (often called design aspects), like
user interaction, logging, persistence, rule checking, error
handling, encryption, component deployment, load balanc-
ing, system decomposition, data communication, resource
usage, and so on. We are not looking for specifications
of these sub domains, but for techniques to create their
specification.

omain-based specifications (RQ2): What are techniques to
create specifications in terms of domain specifications?

We are looking for techniques to create domain-based
specifications, i.e., specifications in terms of a domain speci-
fication.3 Fig. 1(c) shows some examples of types of specifi-
cations that could be domain-based: (quality) requirements,
constraints, design constructs, or behavior specifications like
process models, scenarios, or state transition diagrams. Be-
sides using a DS as terminology, they are also written
in terms of a language that is specific for their type of
specifications, such as a requirements language, constraint
language, or process modeling language. Preferably, such a
language is a DSL by itself, or at least specified via a DM.

3 From hereon we will use DS (domain specification) instead of ’DM and/or
SL’.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415
To clarify how a domain-independent method could sup-
port the creation of a specification in terms of a DS, we
describe three examples of specification techniques that
address this RQ. First, if the domain elements that describe
the behavior in a domain are used to specify processes
steps, i.e., they are the types of process steps, then it is
possible to detect overlap between processes regarding
sequences of steps that occur in multiple processes. In
such case, a method guideline can be given to identify
sub processes in a set of process models, e.g., ‘‘Define a
separate process for those sequences of process steps that
occur in multiple processes’’. Second, if requirements or
constraints are specified in terms of a DS, then method
guidelines can be given to detect inconsistencies between
requirements, e.g., ‘‘Check requirements that use the same
domain class’’. Third, if domain classes are used to specify
the object structures in a system, then guidelines can be
given for how to do this top-down, e.g., ‘‘Start specify-
ing functions for domain classes that are not a part of a
composition or aggregation’’. More examples can be found
in Deckers et al. (2022)–a MuDForM based publication
about specifying features in terms of a domain model.

Specification integrations (RQ3): What are techniques to create
specifications of integrations between domain specifica-
tions, and between domain-based specifications?

We are looking for specification techniques to create DO
integration specifications of two or more DO specifications
(domain specifications or domain-based specifications) via
explicit integration methods, languages, models, or other
mechanisms. We distinguish at least techniques for trans-
formation, extension, and consistency between DO specifi-
cations (see Fig. 1(d)). We see correspondence between
specifications, as for example in the IEEE42010 standard
for architectural descriptions (ISO/IEC, 2007), as a form of
consistency specification. We see merge and composition, as
for example in Emerson and Sztipanovits (2006), weaving,
as for example in Simos and Anthony (1998), and other
ways to combine two or more specifications into a new
specification, as a form of extension specifications.

3.2. Search queries

This section explains the creation of the search queries. The
term specification techniques, which is used in all three research
questions, is not commonly used in the literature as a denomina-
tor. Therefore, using this term will not give adequate results. That
is why we first scanned through the literature we were familiar
with, and made a model of the used terminology. Fig. 2 shows
different types of specification techniques that we found. It is not a
complete lexicon, but a summary of the most common categories.
The most occurring techniques are Specification (or Modeling)
language, and Specification (or Modeling) method. Specification
languages can be based on a Meta model, (which could be defined
in a meta modeling language). A Meta model can also be the
underlying model of a Specification method. Method definitions
may also contain Method steps and Guidelines, and distinguish
different Method viewpoints which use a Specification language
as their notation. As such, Meta model, Method step, Guide-
line, and Method viewpoint can be seen as partial Specification
techniques, and are of interest for this study.

It is not useful to just search for all types of techniques that we
identified in the model, because this yields an unwieldy amount
of results (more than 500,000 hits on Google scholar). The search
string was thus narrowed down in several steps to come to a
manageable set of results:
5

1. We omitted guidelines (principles, patterns, rules), method
steps, viewpoint, and meta model because they should al-
ways be defined in the context of a method. We will still
use these terms as a denominator in the data extraction.

2. We omitted ontology, because ontology languages are in
general less expressive than domain modeling languages.
Namely, they are mostly limited to just capturing terms
from the domain and relations between the terms. Some
ontology languages go a bit further and distinguish classes,
attributes, and different types of relations between classes.
Though, almost all domain modeling languages also have
those concepts. Though, if a study uses ontologies as an
ingredient of a domain modeling approach, then we will
include it if it matches the criteria.

3. Some authors use the term approach, mostly because they
find the term method too specific. We do not want to
ignore those studies. Thus, we include term approach as a
possible generalized and more informal term for method.

4. We use the term language instead of modeling language or
specification language, because we always search for it in
combination with specification or model.

Given RQ1 and the explanations of Fig. 1(b), and after alter-
native terms that express the same semantics, we obtain the
following search string:

((method) OR (approach) OR (methodology) OR (meth-
ods) OR (approaches) OR (methodologies)) AND
((domain-model) OR (domain-specific-language) OR
(domain-models) OR (domain-modeling) OR (domain-
modelling) OR (domain-specific-languages))

This still led to more than 17,000 hits on Google Scholar.
Therefore, we decided to limit the search string to the title of the
publication and compensate this limitation with snowballing.

Further, because RQ2 and RQ3 include specification techniques
as well as domain specifications, we reckon that the defined
search string also covers these questions. So, RQ2 and RQ3 are not
framed in two distinct search strings. Instead, we address them in
the classification framework with their own classification aspect,
as explained in Section 3.5.

3.3. Selection criteria

This section addresses the inclusion/exclusion criteria that are
used to select the primary studies.

Inclusion criteria. We run our search queries on Google Scholar,
because it covers all well-known scientific publication sources,
like ACM, Springer, and IEEE. Our inclusion criteria are:

(I1) Research publications subject to scientific peer review.
Studies that were not submitted to scientific peer review might
have claims that are not objectively verified on credibility. So,
journal papers, PhD theses, and papers in conference or workshop
proceedings, are considered. Also books and technical reports is-
sued by respected institutes or authors are taken into account. But
white papers, or articles in commercial magazines, are discarded.

(I2) Studies written in English.
(I3) Studies available online as full text. Exceptions can be

made for well-known books on the subject.

Exclusion criteria. The exclusion criteria are:
(E1) Studies that do not contribute any specification technique

for DO specifications, which includes DMs, DSLs, domain-based
specifications, and DO integration specifications. For example,
we exclude studies in which specifications, like requirements or
DSL definitions, are only used as an example, while they do not
explain how to make them.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

c
t
d

o
S
n

r
o
i
o

t
S
a
s
t
s
w

t
m
D
p
e

3

b
r

Fig. 2. Examples of different specification techniques and their aspects.
(E2) Studies that focus on techniques for testing, reviewing, or
hecking specifications. We are looking for techniques in the con-
ext of system development, i.e., the creation and maintenance of
omain-oriented specifications.
(E3) Studies that focus on techniques for human behavior

r on how to organize the specification process. For example,
CRUM prescribes the specification of all work items, but it does
ot address how to specify them or how to apply them correctly.
(E4) Secondary and tertiary studies (e.g., systematic literature

eviews, surveys, etc.). It is important to note that, though sec-
ndary studies are excluded, we may use them for precisely scop-
ng the contribution of this SLR and for checking the completeness
f the set of selected primary studies.
(E5) Studies that describe an approach for creating a DS and

hat do not comply with our notion of DM as explained in
ection 2.1. As such we exclude studies that consider a domain as
set of systems or applications. We are interested in studies that
ee a domain specification as a language, and not as a framework
o specify applications and systems. Of course, we will include a
tudy if parts of it offer specification techniques that do comply
ith our notion of DM.
(E6) Studies that mainly focus on implementing DSs in a

arget environment without using an explicit DS of that environ-
ent. Transformation specifications from a source DS to a target
S are in scope. But transformations from a source domain to
rogram code, without an explicit DS of the targeted software
nvironment, are excluded.

.4. Study execution

As depicted in Fig. 3, we followed the guidelines described
y Kitchenham (2004), leading to the following steps and search
esults:

1. The initial search took place on June 15, 2020 and led to
602 unique studies.

2. Then we applied the criteria in three exclusion stages: based
on the title, based on the abstract, and based on the full
text. This resulted in the inclusion of 20 primary studies.
Besides those, we also kept 9 of the excluded studies for
snowballing, because we found relevant citations during
reading them.

3. We applied snowballing (as described by Jalali and Wohlin,
2012) based on the citations in the already included stud-
ies, and in the studies we kept for references. This led to
the selection of 125 extra references.

4. By applying the criteria to those, we selected 19 extra stud-
ies, bringing the total to 39 studies.
6

5. As indicated in Section 2.3, we added several relevant
books and studies in a informal search, namely (Clark et al.,
2003; Lano and Kolahdouz-Rahimi, 2014; Ibrahim and Ah-
mad, 2010; Romero et al., 2009; France et al., 2007; Evans,
1999; van der Vos et al., 1996; Abirami et al., 2015; Evans,
2004; Kristen, 1994; Kelly and Tolvanen, 2008; Voelter,
2013; Fowler, 2010; Mannaerts and Verelst, 2009), and
double-checked them against the selection criteria.

6. Finally, we extracted the data and performed the analysis on
a total of 53 primary studies, of which 7 are books and the
rest are articles in journals, conferences, workshops, and
reports published by well known academic institutes.

We care to note that most papers were excluded because they
did not contribute a specification technique (E1). The majority of
them were about a specific DS and its usage, and did not offer an
explanation of the used specification technique to create or use
that DS.

Many other studies were excluded because they were about
code generation without considering the target environment as
a domain, and thus not treating code generation as a form of
domain integration (E6).

We found a few PhD theses on the topic of domain-oriented
specifications, but we did not find articles that were part of or
derived from those theses, and none of theses actually explained
the specification techniques used to create or to use the DSs. But
we kept theses in the process for snowballing their references,
because they had relevant citations, as mentioned in step 2 above.
The details of the study execution are available in the replication
package (Deckers and Lago, 2022).

3.5. Classification framework

This section discusses the aspects that we use to analyze
and compare the primary studies. We distinguish the aspects in
three classification categories (see Table 1): application scope of
the technique, method engineering level, and contribution to the
MuDForM objectives.

Each aspect is explained below, and an indication of the pos-
sible values is given. All aspects have a default value of ‘‘not
addressed’’ which means that the study does not cover the aspect
at all. Another possible value is ‘‘mentioned’’, which means that
the aspect is recognized and possibly discussed, but that no clear
contribution or solution is given.

Besides explaining all classification aspects, the next sections
also state for each aspect (i) which research questions it helps an-
swering and (ii) which MuDForM objectives it serves. A summary

overview is also given in Table 1.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

t
t

Fig. 3. Study execution.
Table 1
Relation between classification framework, research questions, and MuDForM objectives.
Classification category Classification aspect Helps to answer Serves objective

RQ1 RQ2 RQ3 O1 O2 O3 O4 O5 O6 O7 O8

Application scope
Domain dependence ■ ■ ■ □ ■ ■ □ □ □ □ □
Quality domains ■ ■ ■ □ ■ □ □ □ □ □ □
Architecture ■ ■ ■ ■ □ ■ □ □ □ □ ■

Method engineering

Assuring consistency ■ ■ ■ □ □ □ □ □ □ ■ □
Provide traceability ■ ■ ■ □ □ □ □ □ □ ■ □
Detect incompleteness ■ ■ ■ □ □ □ □ □ □ ■ □
Definition completeness

Underlying model ■ ■ ■ □ □ □ □ □ □ ■ □
Notation ■ ■ ■ □ □ □ □ □ □ ■ □
Method steps ■ ■ ■ □ □ □ □ □ □ ■ □
Guidance ■ ■ ■ □ □ □ □ □ □ ■ □

Formalness ■ ■ ■ □ □ □ □ □ □ ■ □

MuDForM specific

Domain-based □ ■ □ □ □ □ ■ □ □ □ □
Structural and behavioral ■ ■ ■ □ □ □ □ ■ □ □ □
Multiple domains □ □ ■ ■ □ □ □ □ □ □ □
Natural language

As input ■ ■ ■ □ □ □ □ □ ■ □ □
Translatable back into text ■ ■ ■ □ □ □ □ □ ■ □ □
Application scope. This category considers the context in which
he specification technique is applicable, and helps to answer all
hree RQs. We classify the techniques on:

1. Domain dependence: We want to see if there are limita-
tions to the domains to which the technique is applicable.
This classification aspect is added to see how well existing
techniques serve MuDForM objectives O2 and O3.
Possible values: no specific domain, the name of a spe-
cific domain, or characteristics of the targeted domains.
Although a technique might not be specific for a domain,
we will also extract the domains of the examples in the
study.

2. Their suitability for quality domains. We want to see if
literature exists that shows how to apply domain mod-
eling techniques to the domain of quality, and if this re-
quires specific modeling concepts or modeling steps. This
serves objective O2. Keep in mind that we are not look-
ing for concepts that enable dealing with quality as a
topic in the development process. For example, the distinc-
tion between functional requirements and non-functional
requirements enables to deal with them separately, but
7

just the distinction does not help to specify them differ-
ently. The literature might offer solutions for particular
quality attributes or other classifications of non-functional
requirements. These must be considered if they provide a
specification technique.
Possible values: any quality, a specific quality domain
(e.g., as given by ISO/IEC25010 ISO/IEC, 2011), explicitly
mentioned characteristics of dealing with quality (e.g.,
quality attribute scenarios as explained by Bass et al.,
2003).

3. Their usefulness in the definition of the architecture of
a system. How does the technique fit in the context of
architecture activities and architecture artefacts? We are
specifically interested in how DO specifications are used
to create a system in the targeted software environment,
i.e., the software technologies and platforms that the sys-
tem is supposed to operate on and connect to. Of course,
this aspect helps to cover MuDForM objective O8. But it
also serves O1 and O3.
Possible values: an explicit architecture approach, a spe-
cific (possibly partial) match with ISO/IEEE42010, specific
matches with architecture elements.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

M
a
a
a
g
a

M
c
d
c

ethod engineering. We also classify studies on how well their
pproach or method is described and on how systematic it is. The
spects below are not specific for domain-oriented methods, but
re relevant for all specification methods. This classification cate-
ory serves MuDForM objective O7 and is relevant for answering
ll three RQs. We classify techniques on:

1. Support for assuring the consistency of a DO specifica-
tion, or between DO specifications. This means, not just
testing if a set of specifications is consistent, but defining
specifications such that their consistency level is known at
any moment and it is clear what must be done to achieve
consistency. Mechanisms to prevent inconsistency are also
contributing to this goal.
Possible values: a specific mechanism to assure consistency
(e.g., fully based on a DSL or DM, or detection of elements
that are used in several specifications).

2. How well they provide traceability from (intermediate)
specifications back to the input. It must be possible to trace
the decisions that led to a specification.
Possible values: on model/document level, on smallest
specification element level, an indication of somewhere in
between, or a specific mechanism to provide traceability.

3. How well it helps to detect incompleteness in the targeted
specification, and in the used input. A method should offer
guidance in gathering knowledge about the (to be) mod-
eled entity, for example by the use of standard types of
questions for the involved (domain) experts, or questions
that are a entry point for the analysis of input documents.
Possible values: specific guidelines or steps for detecting
and acquiring missing input information.

4. The definition completeness of the specification tech-
nique. According to Kronlöf (1993) a method definition
should provide:

(a) An underlying model, e.g., meta model, core model,
or abstract syntax, of the specification technique,
which forms the foundation for the semantics of a
specification.
Possible values: a specific meta model, set of con-
cepts of the underlying model, a specific (meta)
modeling language.

(b) An explicit notation, possibly used in different view-
points. All the viewpoints of the method should be
defined in terms of the concepts of the underlying
model.
Possible values: specific viewpoints, notation de-
scriptions, a specific language (like UML)

(c) Explicit method steps that go through the view-
points and that have clear entry criteria and exit
criteria.
Possible values: list or model of steps, comments
about the relation to the viewpoints and/or about the
granularity of the steps.

(d) Guidance for taking steps and making specification
decisions.
Possible values: (reference to) a set of guidelines.
These may be specific for each step or viewpoint.

5. Formalness: The degree to which the technique delivers
formal specifications, and how it combines formal and
informal specifications, i.e., semi-formal specifications. A
formal language has formal semantics and can potentially
be processed in an automated way.
Possible values: not formal, explicit formalism, via formal
meta model, indication of hybridity, via model consistency
rules, via unambiguous semantics.
8

uDForM specific. The MuDForM objectives defined in Section 2.3
ould potentially be met by existing specification techniques. We
iscuss how well the identified studies serve the objectives and
lassify them on the following aspects:

1. Domain-based: The degree to which a specification tech-
nique uses a domain specification to define specifications
in terms of that domain specification. DMs and DSLs are
both considered as domain specifications that can be used
to make other specifications. This aspect is added to the
framework to serve objective O4 and to answer RQ2.
Possible values: specification uses DS as terminology, spec-
ification is instance of DS, specific mechanisms to integrate
specifications written in the same DSL or DM.

2. The degree to which the specification technique supports
the specification of structural (static) properties, behavior
(dynamic) properties, and their relation. Most techniques
just cover either structural properties or behavioral proper-
ties. So, this classification aspect is particularly interesting
when a study actually covers the integration of structural
and behavioral properties. This aspect is added to evaluate
objective O5.
Possible values: static, dynamic, dynamics of statics, stat-
ics of dynamics, dynamics structures, possibly with ad-
ditionally mentioned specification concepts for those. For
example:

(a) Static: classes, objects, entities, attributes, class asso-
ciations, specializations.

(b) Dynamic: activities, events, use cases, functions.
(c) Dynamics of statics: operations of classes, activities

per class, functions of a system.
(d) Statics of dynamics: activity parameters, classes per

activity, classes per use case, parameters of func-
tions.

(e) Dynamics structures: flows, process models, activity
diagrams, state transition diagrams, petri nets.

3. Suitability for working with multiple domains. This aspect
is added to the framework to address RQ3 and serves the
evaluation of objective O1.
Possible values: specific mechanisms for dealing with mul-
tiple domains. For example for specifying transformation/
synchronization/consistency between domains, or for
structuring domains into new domains, e.g., via extension,
merge, composition, or decomposition.

4. Support for natural language. This aspect is added to serve
objective O6.

(a) The degree to which they support texts in natural
language as input for the specification process.
Possible values: specific mechanisms to deal with
concepts found in natural language texts. For exam-
ple:

i. Setting context for (domain) terminology, like
books or reports in a series, articles, chapters,
sections, and paragraphs. These are potential
namespaces for the elements in specifications.

ii. The processing of grammatical concepts like
Subject, Noun, Predicate, Possessive case,
Preposition, Phrase, Object, Number (amounts,
singular, plural), Direct object, Gerund, Indi-
rect object, Case, Collective noun, Compara-
tive, Conjunctive, Infinitive, Imperative mood,
Ordering events (in time), Adjectives, Adverbs,

Appositive, Modifier, Classification, etc..



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415
Fig. 4. Publication Trends - Venues of the Years.
(b) The degree to which DO specifications are translat-
able back into text in natural language and how
well that text is still consistent with to the original
input text.
Possible values: specification mechanisms for trans-
lation of specification elements into text, indication
of the degree to which semantics are lost in the
translation.

4. Study results

This section uses the classification framework described in
Section 3.5 to organize and present our major observations.
To this aim, we first extracted the data from each of the 53
primary studies through the perspective of each classification
aspect. Then, we made a summary per aspect, as reported in
Sections 4.2–4.4. We collected all the extracted data in one
spreadsheet, which is part of the replication package (Deckers
and Lago, 2022). For easy reference, at the end of this paper
we have provided the List of Primary Studies with reference
numbers (Abirami et al., 2015) through (Zhang et al., 2012). Hence
in the following, the first 53 references indicate primary studies.
First, we discuss our observation regarding the publication trends.

Table 2, which has the same structure as Table 1, shows which
primary studies address each aspect.

4.1. Publication trends

Fig. 4 shows the total number of included studies per publica-
tion type (in the y-axis) and their distribution over time according
to their year of publication (in the x-axis). We observe an increase
after 2002, with peaks in 2004 and 2009. Studies before 2000
are about DM approaches and not about DSLs. An explanation
is suggested by Czech et al. (2019), because they state that the
term DSL did not exist before 2000. However, Kosar et al. say
that there was a Usenix conference in 1997 on DSLs (Kosar et al.,
2016). Prieto-Díaz states in his 1990 paper (Prieto-Díaz, 1990)
that a domain language, preferably formal, is one of the outputs
of domain analysis. do Nascimento et al. (2012) say that the idea
of DSLs was already published in 1965, but that the term domain
or DSL was not used. After 2000, the studies cover the whole DSL
development process, in which the creation of a DM is positioned
as one of the DSL development phases. Consequently, DM cre-
ation receives less attention than before 2000. Though, Chaudhuri
et al. (2019) state in their 2019 paper that there is still not much
literature about creating the abstract syntax of a DSL. In the last
decade, the included studies’ topics have also shifted towards
issues related to multiple domains, and to multiple models in
general.

Concerning the types of publications, Fig. 4 shows that most
studies are peer-reviewed scientific works (41/53 are conference-
, workshop- or journal papers). A significant number of books (7)
and technical reports (5) were providing useful insights.
9

We also looked (in Fig. 5) at the publication trends with
respect to the coverage of the aspects over the years. The Figure
emphasizes three clusters around 2004, 2009 and 2015. All are
centered around aspects of method completeness and multi-
ple domains; with a growing attention for guidance. We notice
that the topics of notation, guidance, and multiple domains are
addressed throughout the whole time span.

We have also looked at the application domains of the ex-
amples or case studies in the studies. We found that only six
studies Asnina (2006), Abouzahra et al. (2017), Clark et al. (2015),
Degueule et al. (2015), Voelter (2013), Kelly and Tolvanen (2008)
have real case studies or examples. None of the studies men-
tions the business or organization in which the techniques are
used. Several studies Grant et al. (2004), Hoppenbrouwers et al.
(2004), Golra et al. (2016a), van der Vos et al. (1996), Proper
et al. (2004), Spinellis (2001), Simos (1995), Erdweg et al. (2012),
Vallecillo (2010), Ibrahim and Ahmad (2010) have no demonstra-
tive example of how their specification techniques are used. The
rest has either small illustrative examples or a running example
throughout the study.

We found that a banking example is used the most (six times)
in the 53 studies. But the examples are all slightly different.
It might be a good idea having a reference (banking) case de-
scription that can be used by over and over in different studies.
This would save time in case development and in understanding
the application of whatever concept is the topic of research.
Examples about processes for reserving, ordering, paying, and
delivering products or services are also used regularly. Another
category of examples concerns the software domain itself, like
the example about components and deployment in Emerson and
Sztipanovits (2006), or the transformation from Petri Nets to Stat-
echarts in Kühne et al. (2009) and Lano and Kolahdouz-Rahimi
(2014). The examples in Reinhartz-Berger and Sturm (2004b),
Chaudhuri et al. (2019), Shlaer and Mellor (1989) and some
examples in Kelly and Tolvanen (2008) are more about, or closely
related to, embedded software.

We also looked for correlations between the domains and the
other aspects of the classification framework, but we found no
significant ones.

4.2. Application scope

Domain dependence. All approaches and methods of the
selected studies are domain independent. Though, some stud-
ies Simos (1995), Clark et al. (2015), Simos and Anthony (1998),
Sturm and Reinhartz-Berger (2004a), Shlaer and Mellor (1989),
Chaudhuri et al. (2019) explicitly limit themselves to the specifi-
cation of software systems, by seeing a DSL as a system specifi-
cation language, or as a programming language Fowler (2010).
All studies aim at specifying the application domain or at the
functionality that the system should provide for the application
domain.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

d
m
w

s
d

Table 2
Primary studies per classification aspect.
Classification Classification Addressed by
category aspect primary studies

Application scope
Domain dependence –
Quality domains –
Architecture Strembeck and Zdun (2009), Asnina (2006), Zhang et al. (2012), Evans (2004),

Spinellis (2001), Simos (1995), Sturm and Reinhartz-Berger (2004a), Kelly and
Tolvanen (2008), Kristen (1994), Sagar and Abirami (2014), Golra et al. (2016a),
Lochmann and Hessellund (2009), Marvie (2004), Chaudhuri et al. (2019), Lano
and Kolahdouz-Rahimi (2014), Fowler (2010), Voelter (2013), Mannaerts and
Verelst (2009)

Method engineering

Assuring consistency Kristen (1994), Clark et al. (2015), Romero et al. (2009), Evans (1999)
Provide traceability Asnina (2006), Arora et al. (2016), Purao et al. (2000)
Detect incompleteness Reinhartz-Berger et al. (2005), Reinhartz-Berger and Sturm (2004b), Kristen

(1994)
Definition completeness

Underlying model Selic (2007), Abouzahra et al. (2005), Cuadrado and Molina (2009), Frank (2010),
Reinhartz-Berger et al. (2005), Robert et al. (2009), Reinhartz-Berger and Sturm
(2004b), Asnina (2006), Visic et al. (2015), Arora et al. (2016), Zhang et al.
(2012), Purao et al. (2000), Grant (2012), Abouzahra et al. (2017), Frank (2011),
Sturm and Reinhartz-Berger (2004a), Kelly and Tolvanen (2008), Clark et al.
(2015), Degueule et al. (2015), Marvie (2004), Kühne et al. (2009), Clark et al.
(2003), Romero et al. (2009), France et al. (2007), Voelter (2013)

Notation Frank (2010), Reinhartz-Berger et al. (2005), Reinhartz-Berger and Sturm (2004b),
Asnina (2006), Visic et al. (2015), Arora et al. (2016), Golra et al. (2016b), Zhang
et al. (2012), Purao et al. (2000), Abouzahra et al. (2017), Evans (2004), Grant
et al. (2004), Frank (2011), Sturm and Reinhartz-Berger (2004a), Shlaer and
Mellor (1989), Kelly and Tolvanen (2008), Kristen (1994), Clark et al. (2015),
Elbendak et al. (2011), Sagar and Abirami (2014), Golra et al. (2016a), Degueule
et al. (2015), Clark et al. (2003), Lano and Kolahdouz-Rahimi (2014), Ibrahim and
Ahmad (2010), van der Vos et al. (1996), France et al. (2007), Fowler (2010),
Voelter (2013), Evans (1999)

Method steps Selic (2007), Strembeck and Zdun (2009), Frank (2010), Robert et al. (2009),
Asnina (2006), Proper et al. (2004), Visic et al. (2015), Golra et al. (2016b), Zhang
et al. (2012), Purao et al. (2000), Campos et al. (2014), Grant (2012), Grant et al.
(2004), Shlaer and Mellor (1989), Kelly and Tolvanen (2008), Hoppenbrouwers
et al. (2004), Kristen (1994), Clark et al. (2015), Elbendak et al. (2011), Sagar and
Abirami (2014), Golra et al. (2016a), Lochmann and Hessellund (2009), Chaudhuri
et al. (2019), Ibrahim and Ahmad (2010), Romero et al. (2009), Abirami et al.
(2015), France et al. (2007)

Guidance Cuadrado and Molina (2009), Robert et al. (2009), Asnina (2006), Visic et al.
(2015), Arora et al. (2016), Purao et al. (2000), Evans (2004), Spinellis (2001),
Shlaer and Mellor (1989), Kelly and Tolvanen (2008), Kristen (1994), Elbendak
et al. (2011), Sagar and Abirami (2014), Evans et al. (2003), Lano and
Kolahdouz-Rahimi (2014), Ibrahim and Ahmad (2010), van der Vos et al. (1996),
Abirami et al. (2015), Fowler (2010), Voelter (2013), Evans (1999)

Formalness Simos and Anthony (1998), Grant (2012), Frank (2011), Hoppenbrouwers et al.
(2004), Sagar and Abirami (2014), Degueule et al. (2015), Erdweg et al. (2012),
Clark et al. (2003), Mannaerts and Verelst (2009)

MuDForM specific

Domain-based Reinhartz-Berger et al. (2005), Robert et al. (2009), Reinhartz-Berger and Sturm
(2004b), Grant (2012), Sturm and Reinhartz-Berger (2004a), Kristen (1994),
Mannaerts and Verelst (2009)

Structural and behavioral Reinhartz-Berger and Sturm (2004b), Evans (2004), Frank (2011), Shlaer and
Mellor (1989), Kristen (1994), Elbendak et al. (2011), Sagar and Abirami (2014),
van der Vos et al. (1996), Abirami et al. (2015), Mannaerts and Verelst (2009)

Multiple domains Abouzahra et al. (2005), Cuadrado and Molina (2009), Simos and Anthony (1998),
Robert et al. (2009), Purao et al. (2000), Campos et al. (2014), Abouzahra et al.
(2017), Spinellis (2001), Sturm and Reinhartz-Berger (2004a), Hoppenbrouwers
et al. (2004), Clark et al. (2015), Golra et al. (2016a), Lochmann and Hessellund
(2009), Degueule et al. (2015), Emerson and Sztipanovits (2006), Marvie (2004),
Erdweg et al. (2012), Kühne et al. (2009), Vallecillo (2010), Evans et al. (2003),
Clark et al. (2003), Lano and Kolahdouz-Rahimi (2014), Romero et al. (2009),
France et al. (2007), Voelter (2013), Evans (1999)

Natural language
As input Proper et al. (2004), Arora et al. (2016), Kristen (1994), Elbendak et al. (2011),

Sagar and Abirami (2014), Ibrahim and Ahmad (2010), van der Vos et al. (1996),
Abirami et al. (2015)

Translatable back into text Proper et al. (2004), Kristen (1994), van der Vos et al. (1996)
None of the studies addresses resource domains or quality
omains. Though, some have examples covering the resource do-
ain, like the example about component deployment and hard-
are in Emerson and Sztipanovits (2006).
Suitability for quality domains. There is no method that is

pecifically targeted at the specification of quality. All studies
emonstrate their technique via specifications of the application
10
domain, e.g., banking, or the system domain, e.g., components and
interfaces. It seems that the explicit specification of quality is
simply ignored or avoided. Kelly and Tolvanen (2008) mention
that domain-specific modeling is leading to higher quality, but
they do not explain how or provide specification techniques for
quality. We have found some examples of DMs for a specific
quality, like the security DM by Firesmith (2004), which is used



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415
Fig. 5. Publication Trends—Aspects over the Years.
a
s
d
p
w
t
a
c
o
r

d
a
e
p
s
o

to specify security requirements. However, those examples are
excluded, as they do not contribute any specification technique.

Relation to architecture. Most studies do not address the
relation to (software) architecture, and none of them deals with
the architecture of systems that are specified via multiple DSs.
Some studies, e.g., Strembeck and Zdun (2009), distinguish an
explicit step from a DS to its implementation in a targeted soft-
ware environment, but they do not explain how to specify the
transformation, what detailed steps to take, or what guidelines
to follow.

Some studies use explicit mechanisms to transform DO spec-
ifications into a specification that can be executed in the tar-
get (software) environment. We found the following types of
mechanisms:

• Some approaches, e.g., Selic (2007), Robert et al. (2009), are
UML based and, as such, can build upon the use of UML for
modeling a software design. These approaches use classes
as the main modeling concept, and suggest that a system
design is based on the modeled class structure.

• Some approaches, e.g., Evans (2004), model the application
domain and prescribe that the derived software system has
elements that correspond with elements of the created DS.
Sagar and Abirami (2014) describe a specification technique
for functional requirements, and they suggest that those
requirements correspond with functions of the system. This
kind of use of a DS can be seen as an architectural style or
design pattern.

• Some approaches, e.g., Kristen (1994), Kelly and Tolvanen
(2008), give examples of transformations from a DS to a
target environment, such as a relational database or user
interface library. The study of Zhang et al. (2012) follows the
structure of model driven architecture (OMG, 2003), which
has a step for the transformation of a platform independent
(domain) model to a platform specific model.

• Some approaches, e.g., Sturm and Reinhartz-Berger (2004a),
Chaudhuri et al. (2019), focus on DSLs that specify parts of
a system design. A clear example is the DSL for component
and interface specification in Spinellis (2001). In these cases,
the DSL itself can be seen as a design pattern for a software
system, because the system structure follows the structure
of the DSL.

In general, methods with an underlying (meta) model with
clear (formal) semantics, e.g., France et al. (2007), Frank (2010) are
easier to embed in an architecture (pattern), because they enable
a formal transformation of the DS into software.
11
4.3. Method engineering

Support for assuring consistency. Some studies, e.g., Clark
et al. (2015), Kelly and Tolvanen (2008), Lochmann and Hessel-
lund (2009), mention consistency, but do not provide mecha-
nisms to achieve it. Evans (1999) provides different approaches
for consistency across domains, which can serve as techniques to
make DO integration specifications on top of DSs. Romero et al.
(2009) describe an approach for achieving consistency across
viewpoints, which is based on the use of correspondences, similar
to the concept of correspondence in the ISO/IEC 42010 stan-
dard (ISO/IEC, 2007).

The KISS method Kristen (1994) proactively supports con-
sistency via method steps and guidelines that iterate over the
different views on one model. The guidelines prescribe how exist-
ing views are used as a starting point for creating a new view, and
how changes in one view impact other views, without providing
an explicit metamodel.

Traceability (to input). None of the studies addresses trace-
bility explicitly. But studies that provide fine-grained method
teps, an underlying (meta) model, or guidelines for modeling
ecisions, offer support implicitly. Namely, to achieve a traceable
rocess, changes to the specification must be logged, preferably
ith a rationale. First, if the method provides method steps at
he level of specification changes, then these steps can be used
s the type of the changes. Second, if a meta model is given, then
hanges can be defined in terms of create, update, delete actions
f instances of the meta model. Third, guidelines can serve as
ationales for logged specification decisions.

Detect incompleteness. None of the studies explicitly ad-
resses the detection of incompleteness in the used input. The
pproaches that see a DM as an abstraction of a set of systems,
.g., Reinhartz-Berger and Sturm (2004b), help in achieving com-
leteness by explicitly checking if all DM elements are used in a
pecific application model. Some studies prescribe the presence
f multiple viewpoints in one model, e.g., Kristen (1994). This

might result in the detection of missing information in the input
of the modeling process, which may lead to requests for extra
input from the domain experts, and as such contributes to the
completeness of a specification.

Method completeness: underlying model. Most studies use
UML or MOF as their underlying model. Some have their own
meta model like KerMeta France et al. (2007) or MEMO ML Frank
(2010, 2011). The major observation here is that most meta



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

m
t
N
m
p

I
n
e
s

I
v
t
a

s
n
t

p
l
S
(
e
m
p
(
e
b
b
c
h

t
m
s
t

f
m
H
(
e
D
(
E
m
t
s
e
p
t
f
b
a

r
i
o

S
(
e
t
i

odels limit themselves to structural concepts like classes, at-
ributes, and relations between classes. ORM Proper et al. (2004),
ormalized Systems Mannaerts and Verelst (2009), and the KISS
ethod Kristen (1994) offer also behavioral concepts, but do not
rovide a meta model.
Method completeness: notation (syntax and viewpoints).

n the selected studies, UML is used most often as a graphical
otation. Its usage is mostly limited to a class diagram, sometimes
xtended with OCL for specifying rules on top of the classes. Some
tudies, e.g., Clark et al. (2003), Cuadrado and Molina (2009),
Evans (1999), Evans et al. (2003), use packages and package
diagrams to model relations between domains.

Only graphical DSLs sometimes offer more than one viewpoint.
n case of a textual DSL, only one viewpoint is presented. This
iew is the complete textual specification of a model in terms of
he DSL. For example, they do not even distinguish header files
nd implementation files as different viewpoints.
Most studies show a notation in their examples, or prescribe a

tep for explicitly defining a notation. Chaudhuri et al. (2019) do
ot address notation, because they explicitly restrict themselves
o the abstract syntax or meta model.

Method completeness: method steps. Many studies provide
a step for making a DS. The steps of most approaches are course
grained, and reflect phases or stages in the specification process.
The only study that offers fine-grained steps for making a model
is from Ibrahim and Ahmad (2010). We did not find any other
approach that has steps at the fine-grained level of modeling
concepts like class or attribute. The KISS method Kristen (1994)
provides fine-grained steps for grammatical analysis on an input
text to come to an initial model. But after grammatical analysis,
the model engineering phase is defined by steps at the level
of viewpoints. As mentioned before in the observations about
traceability, a meta model offers implicit modeling steps via the
creation, update, deletion of modeling concept instances.

Some DSL approaches, e.g., Selic (2007), Strembeck and Zdun
(2009), Frank (2010), Robert et al. (2009), Visic et al. (2015), Grant
et al. (2004), Shlaer and Mellor (1989), Kelly and Tolvanen (2008),
Chaudhuri et al. (2019), have a step for creating a domain model,
meta model, or abstract syntax. But they do not go into detail on
how to do that, or how to derive a DSL from the created model.

Method completeness: guidance. The studies about patterns
for DSL design Spinellis (2001), for DSL implementation Fowler
(2010), for DM integration Evans (1999), and for model trans-
formations Lano and Kolahdouz-Rahimi (2014) all provide guide-
lines for choosing between patterns. Remarkable is that Frank
(2010) state that the creation of a domain language is a de-
manding task, mostly performed by highly specialized experts,
and good guidance is currently missing. This contradicts slightly
with the elaborate guidelines given in the studies that are about
the processing of natural language to make a (domain) specifica-
tion Abirami et al. (2015), Arora et al. (2016), Ibrahim and Ahmad
(2010), Sagar and Abirami (2014), Kristen (1994), Elbendak et al.
(2011), van der Vos et al. (1996).

None of the studies offers guidelines for all modeling steps or
for all prescribed views. This means that the predictability of a
process that follows such an approach is low because it strongly
depends on the expertise and domain knowledge of the modeler.

Formalness. Most studies do not mention how formal their
specification techniques are. The approaches that use UML as
their underlying model can be seen as partially formal, depending
on the part of UML that is used.

Simos and Anthony (1998) and Frank (2011) present languages
with a formal meta model. Kelly and Tolvanen (2008) state that
all DSLs must be formal, so they can be parsed and used for
generating code. Of course, all DSs that are used to generate

software, must be unambiguously parsable.

12
Golra et al. (2016b) explicitly choose informal modeling in
their approach for developing DSLs. Though, they state that a DSL
itself implicitly has formal semantics via its implementation in
software.

4.4. MuDForM specific

Domain-based specifications. Most studies that discuss the
creation of domain-based specifications, consider an application
model to be an instance of a DS. We are not interested in these
types of approaches because of the same reasons as given in
exclusion criterion E5. None of the studies that see a DS as a lan-
guage to define other specifications, provides steps and guidance
to do so. The KISS method Kristen (1994) and the Normalized
systems approach Mannaerts and Verelst (2009) use the DM to
specify functions, processes, or workflows. They both provide
examples, but no explicit steps and guidelines are given.

Some approaches Arora et al. (2016), Voelter (2013) show
examples of requirements specifications in terms of a DSL, but
they do not provide steps and guidelines for creating them.

Integrated structural and behavioral properties. Most ap-
roaches only cover structural properties (classes, attributes, re-
ations between classes). Some approaches Reinhartz-Berger and
turm (2004b), Evans (2004), Frank (2011), Shlaer and Mellor
1989), Elbendak et al. (2011), Sagar and Abirami (2014), Abirami
t al. (2015) also provide behavioral concepts of structural ele-
ents (operations of classes). Reinhartz-Berger et al. (2005) focus
urely on behavior, via activity diagrams. Some studies Asnina
2006), Zhang et al. (2012), Grant (2012), Evans (2004), Grant
t al. (2004) offer behavioral concepts and structural concepts,
ut they do not explain their coherence. These are mostly UML
ased studies, which use classes for structural properties, and use
ases or activities for behavioral properties, but do not explain
ow to relate them to each other.
Only the KISS method Kristen (1994) and the Normalized sys-

ems approach Mannaerts and Verelst (2009) offer autonomous
odeling concepts, method steps, and guidance for specifying
tructural properties, behavioral properties, and the relation be-
ween them.

Suitability for working with multiple domains. We did not
ind a study that offers methodical support for working with
ultiple domains. Many studies Spinellis (2001), Lochmann and
essellund (2009), Abouzahra et al. (2005), Cuadrado and Molina
2009), Purao et al. (2000), Campos et al. (2014), Abouzahra
t al. (2017), Hoppenbrouwers et al. (2004), Golra et al. (2016a),
egueule et al. (2015), Emerson and Sztipanovits (2006), Marvie
2004), Erdweg et al. (2012), Kühne et al. (2009), Vallecillo (2010),
vans et al. (2003), Clark et al. (2003), France et al. (2007) offer
echanisms for dealing with multiple models and their integra-

ion, but those mechanisms are not explicitly merged with the
pecification technique that was used to create the original mod-
ls. A method to create a DS or domain-based specification could
rovide certain model properties which make the models easier
o integrate, e.g., being in the third normal form, or being context
ree. The found studies mostly offer techniques based on relations
etween packages, like merge, refine, reference, specialization,
ssembly, instantiation, and unification.
We did not find studies that use consistency rules or cor-

espondence rules as a technique to specify domain-oriented
ntegrations. All studies either combine two DSs into a new DS,
r define transformations from a source DS to a target DS.
Natural language as input. Several studies Kristen (1994),

agar and Abirami (2014), Abirami et al. (2015), van der Vos et al.
1996), Ibrahim and Ahmad (2010), Elbendak et al. (2011) offer
xplicit steps and guidelines for transforming natural language
ext into model elements, but most studies do not. Some stud-
es mention the involvement of domain experts and that their



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

‘
‘words’’ become terms in a model, e.g., Proper et al. (2004), Visic
et al. (2015), Evans (2004), Kelly and Tolvanen (2008), but they do
not explain how to do this systematically, i.e.,with clearly defined
method steps and guidelines for eliciting knowledge from domain
experts.

Translatable to natural language. Most studies do not ad-
dress the translation of specification into natural language. The
study by Hoppenbrouwers et al. (2004) offers the paraphrasing of
all model parts in natural language. Of course, any specification
written in a defined language can be spoken in natural language
by simply reading the specification in terms of the specification
language literals. Specification languages that have concepts that
are close to natural language, like in the KISS method Kris-
ten (1994) and the Normalized System approach Mannaerts and
Verelst (2009), are more suitable, because they offer an easier
transition from text to model and back.

5. Discussion

In the following we discuss our observations in relation to the
three research questions (Sections 5.1–5.3) followed by additional
observations that emerged from the results (Sections 5.4–5.6).

5.1. RQ1: No fully engineered method

We did not find any method that was engineered in full, i.e.,
with a good answer to all the method engineering aspects of the
classification framework, or even for just the aspects of method
completeness.

Most of the studies do not address consistency. As such, one
cannot assume anything about the well-formedness and consis-
tency of a made specification. This could be acceptable when
specifications are only used in an informal way. But if specifi-
cations are used to create other specifications, then consistency
rules and how well a specification meets them, are important.
None of the studies provides explicit guidance for detecting in-
completeness of specifications. The effect is that the complete-
ness of a specification depends on either the proactive attitude of
the involved (domain) experts to bring in missing information, or
that the modeler herself has complementary domain knowledge
that allows her to ask the right questions. Method steps could
provide guidance for asking the right questions to the involved
experts or for searching the input documents for a specific type
of information.

None of the found methods has a complete definition (i.e.,
covering underlying model, notation, steps, and guidance). Some
approaches provide a meta model and a notation, and others
provide high level steps, sometimes guidance, and sometimes the
use of an existing language like UML. The lack of an underlying
model makes it hard to have an unambiguous well-defined in-
terpretation of models, and difficult to separate the semantics
from the syntax. If there is a language defined, but no steps
and guidance, then modelers must be very experienced, and
the specification process becomes unpredictable. Moreover, it is
impossible to create a tool that guides the modeler through the
modeling process. And, if such a tool is made, then the tool
builder has (implicitly) decided about the steps and guidance,
which might result in a sub-optimal specification process.

5.2. RQ2: No methodical support for applying a created DSL or DM

The approaches in the included studies that are about DO
specification techniques, are mostly limited to creating a DS. They
typically do not incorporate steps and guidance for applying a
created DS. So, none of the studies proposes an approach that
prescribes how to use a DS that is created with that approach. In
13
the literature there are publications about the usage of a specific
DS, e.g., (Firesmith, 2004) and the many examples from Deursen
et al. (2000); these, however, are specific for the DS at hand, and
as such are excluded as primary studies, because they do not
contribute a specification technique.

We think that an approach for creating a DS should also take
into account that the DS is applied in a proper way. We looked
separately for literature about the application of a created DS
and found some studies on evaluating the usability of a created
DSL from Barišic et al. (2011, 2014), Barišić et al. (2018). They
state that evaluation of DSLs does not happen often. Gabriel et al.
(2011) state that the community in software language engineer-
ing does not systematically report on the experimental validation
of the languages it builds. Barišić et al. also state that DSL usability
testing can be costly, but that poor usability is more costly in the
long run. Rodrigues et al. (2017) conclude in their SLR that there
is a lack of systematic approaches to evaluate DSLs, and notice
that most authors do not report problems with the language they
created. Gray et al. (2008) write that ‘‘poor documentation and
training [of a DSL]’’ is one of the 10 reasons why DSLs are not
used more in industry. Völter (2009) states that it is important
to communicate to users how the DSL works and documentation
should be example-driven or task-based. He even observes that
in non-scientific domains, domain experts are not expected to be
the ones that specify systems with the DSL. Instead, the domain
experts pairs up with the DSL developer to apply the DSL, or the
DSL developer does all the specification based on discussions with
the domain expert.

The lack of methodical guidance for applying a created DS is
risky. The creators of a DS might know precisely its semantics and
also how to use it. But targeted users of the DS probably do not,
and should be instructed. Although not specifically mentioned in
the found literature, we have seen this many times in industry
projects. A DSL is defined, but only the DSL creators understand
how to make models with it, or understand the exact semantics.
The effect is that the DSL is not easy to learn by the targeted
users, and that they have to learn it via examples or personal
guidance from the creators. Even if such support is present, then
the available examples might not exploit all the features of the
DSL and the creators might not be available for guidance, or
assign different semantics to the DS. The effect is that the DS
is not optimally used, and often leads to the perception that
investments in domain-specific modeling do not pay off. We think
this lack of methodological guidance is one of the most impor-
tant shortcomings in the literature on domain-oriented methods,
which is subscribed by Gray et al. (2008) and Barišić et al. (2018).

The potential advantage of having DS creation and DS usage
in the same method is that the method part about usage can
use the method engineering properties of a created DS. For ex-
ample, knowing that a DSL has a context-free grammar makes
the parsing of models in terms of that DSL predictable. Or, if the
behavior in a domain is specified via atomic actions that form the
only way to change objects, then those actions may form building
blocks for specifying the steps in a process model. In the design
of MuDForM, we could benefit from the studies about specifying
requirements in terms of a given DS Arora et al. (2016), Kristen
(1994), Voelter (2013), Mannaerts and Verelst (2009).

5.3. RQ3: No integral support for multiple domains

In our view, a (software) system specification can be seen as an
integration of multiple domain specifications and domain-based
specifications. A method to realize this view, should guide the
creation of those specifications as well as their integration. We
did not find such a method. We found studies that offer a single
technique to integrate two specifications, e.g., France et al. (2007),



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

C
t
m
w
o
a
t
e
i
a
d
s
a

t
t

5

t
v
w
e
c
o
h
e
t
s
i
c
a
T
a
p
r

5

n
B
i
w
A
h

i
e
t
t
f
T
e
l
a
w
s
c

c
o

lark et al. (2003), but there is no study that offers techniques
hat aim at integrating the specifications of more than two do-
ains. Dynamic mechanisms, like transformation and runtime
eaving, can only work in such a context, if they are based
n specifications of consistency between domain specifications
nd domain-based specifications. A number of methods men-
ion aspect weaving as a mechanism to integrate specifications,
.g., Simos and Anthony (1998), Degueule et al. (2015). Weav-
ng could be used to integrate functionality with other quality
ttributes, and thus can be seen as one of the options to integrate
omains. However, none of the studies explains how to do it. The
tudies that offer techniques for integrating models in general,
nd not DMs specifically, e.g., Evans (1999), Marvie (2004) do

not benefit from the properties that a well-defined language and
method can offer, because they cannot assume anything about the
method engineering properties of the models they integrate. For
example, if two DMs are normalized in the 3rd normal form, then
heir integration is easier, and the resulting model is also easier
o normalize.

.4. Behavior is mostly ignored and poorly integrated with structure

Although all studies are domain independent, they do not offer
he modeling concepts for the same aspects of a domain, and
ary in how well and how clear those concepts are integrated
ith each other. Most studies offer concepts for structural prop-
rties (classes, attributes, associations, specializations); some are
entered around behavior via concepts like processes, functions,
r features. This means that the suitability of such methods
ighly depends on the aspects that are relevant in the mod-
led domain. If a domain is mainly data-centric, then a method
hat has mainly concepts for structural properties will probably
uffice. Similarly, if a domain is mainly characterized by behav-
oral aspects, then processes or functions could suffice as the
entral modeling concept. But if a domain has both structural
nd behavioral properties, then most methods will not suffice.
o our knowledge, only the KISS method Kristen (1994) offers
language that enables treating both structural and behavioral
roperties, and offers modeling concepts, steps, and guidelines to
elate those properties in a consistent way.

.5. Minimal interface with natural language

Some methods provide guidelines for the transformation of
atural language text into a model in a specification language.
ecause natural language has evolved over thousands of years,
t contains concepts and grammar that suit the way humans
ant to communicate about the world (domain) around them.
ccording to Chomsky (1998) and elaborated by Pinker (1994),
umans have an innate capability to process natural language.
In general, a modeling language and natural language are not

somorphic, leading to differences in their expressiveness. The
ffect is that the verbalization of model parts does not resemble
he input text that was used to make the model. Therefore, the
ranslation of a specification into natural language text suffers
rom loss of semantics with respect to the original input text.
he most occurring symptom of this shortcoming is the use of
ntities or classes in the model to represent verbs from the text,
ike in Sagar and Abirami (2014), Elbendak et al. (2011). In such
model it is not clear which classes correspond with a noun and
hich classes correspond with a verb. So, you cannot generate a
entence that expresses the original meaning, in the case that a
lass was derived from a verb.
We think that a specification language for creating DO specifi-

ations should have concepts that are close to human reasoning,

bservation, and communication. This might be offered partially

14
by natural language. But, more research is needed to decide which
natural language concepts can be used and which additional
concepts are needed to define the specification language for a
method like MuDForM.

5.6. The terminology around domain models is not unified

During our work for this SLR, we discovered the use of dif-
ferent terminologies related to domain modeling. In the context
of DSLs, a DM is comparable to the abstract syntax of a DSL.
Both can be seen as a graph with domain concepts. In the studies
that discuss the design of a DSL, a DM is often mentioned as the
starting point for defining an abstract syntax. However, we did
not find any study that offers a completely defined method for
the transformation of domain knowledge into an abstract syntax.

We learned that the term domain analysis refers to the activity
that leads to a DM. As such, publications about domain analysis
might contribute more in-depth insights related to RQ1.

As already discussed in Section 3.1, where we defined RQ1, a
DM and a domain ontology are comparable. If one would create
both for a specific domain, then one would end up with two
structures that have a high overlap in the used terms.

To be complete, also the terms underlying model (as we use it
in our classification framework in Section 3.5) and meta model are
sometimes used when a DS is used to create another specification,
e.g., in code generation. We think it is a good idea to create an
overview, possibly via a domain model, of all these related terms
and their meaning, to be able to understand the existing literature
better and to decrease ambiguity. To this aim, we find it valuable
to carry out a follow-up study specifically on the literature in
domain analysis and ontology engineering.

6. Related work

One of the most cited papers on DSLs is ‘‘When and How to
Develop Domain-specific Languages’’ of Mernik et al. (2005). This
paper defines 5 phases of DSL development: decision, analysis,
design, implementation, and deployment. In this SLR, we specif-
ically focus on analysis and design. The implementation phase is
addressed in this SLR via the integration of multiple domains.
Namely, we consider the implementation of a DSL or DM if it
is realized as an DO integration specification between a source
domain and target domain. We also consider the phase of usage,
i.e., to apply a DS in the specification of a system (or parts or
aspects of it). We did not find DSL-related literature about this
phase.

The study from do Nascimento et al. (2012) classifies DSLs into
domains. Their domain classification contains mainly different
types of software systems, e.g., control systems, web applications,
embedded systems, and parallel computing. This is logical if a
DSL is seen as a system specification language, but not if a DSL
is seen as a language for making statements about a domain,
like we do. Kosar et al. (2016) also present a systematic mapping
study on DSLs. They observe that 59% of their included primary
studies mention domain analysis as a step in the creation of a
DSL. Of those studies, only 6% used a formal analysis approach.
They conclude that domain analysis is mostly done in an informal
way and incomplete. They mention that one of the reasons for
this weakness is that domain analysis is too complex and outside
software engineers’ capabilities. This might be because that study
seems to see a DSL as software creation language, instead of
a domain knowledge capturing technique, or as a specification
language in general. We think that domain analysis is not a
software engineer’s task. With MuDForM, we explicitly aim at
making the domain analysis phase a systematic activity, with



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

e
m

m
e
b
s
e
g
t
3
n
t
W
a
c
t
a
f
k

o
m
D
o
r
g
n

c
a
S
c
e
r
f
t
s
c
l
D
b
r

7

f
J
s
v

i
m
i
s
t
t
i
d
t
t
c

i
b

xplicit steps and guidance, and a formal underlying model which
akes it more predictable, less complex, and easier to learn.
Czech et al. (2019) gathered best practices for domain-specific

odeling (DSM). They state explicitly that domain-specific mod-
ling aims at generating code and raising the level of abstraction
eyond programming. They distilled 130 best practices from 19
tudies. They grouped the best practices in different classes that
ach indicate an aspect of a DSM solution: domain model, lan-
uage design and concepts, generators, DSL-tooling, meta-model
ooling, and practices that concern an entire DSM-solution. Only
best practices are about the domain model. These practices are
ot about modeling itself, but about the context of a DM. We went
hrough all best practices that are about the language concepts.
e observe that they did not find and distill best practices for

pplying a DSL, nor for dealing with multiple domains, which
orresponds with our discussion in Sections 5.4 and 5.5. Also,
his study has a programming-oriented perspective on modeling
nd DSLs, whereas our perspective is more focused on expressing,
ormalizing, and applying domain knowledge and inter-domain
nowledge, in several types of DO specifications.
Iung et al. (2020) published a systematic mapping study (SMS)

n DSL development tools. We think that that SMS is comple-
entary to this SLR, because they both investigate literature on
O specifications, but each from a different perspective. There is
nly one overlap in the classification frameworks, namely with
espect to ‘‘Notation’’. Iung et al. consider if there is support for
raphical or textual specification, while we consider the actual
otation of the specification language itself.
Torres et al. (2020) published an SLR on cross-domain model

onsistency checking by model management tools. They use
totally different notion of domain as the one discussed in

ection 2.1. Their notion of domain relates to the engineering dis-
ipline of the modeler, such as electrical, mechanical, or software
ngineering. Their notion of consistency is not about different
elated aspects in one or more models, but about how models
rom different engineering backgrounds actually fit together in
he structure and behavior that they describe. This notion of con-
istency between models resembles interface matching between
omponents. As such, this type of consistency addresses questions
ike: are the parameters the same? Do they have the same types?
oes the behavior match? Differently, we consider consistency
etween models as a property that is specified by consistency
ules that can address any specification aspect.

. Threats to validity

This SLR has similar threats to validity as other SLRs that
ollowed the guidelines of Kitchenham (2004) and Wohlin (2016),
alali and Wohlin (2012). We took a number of actions to make
ure we selected a proper set of primary studies and achieved
alid results.
To assure that we defined the right search strings, we did an

nitial scan of the literature that we knew, we made concepts
odels of the found terminology in that literature, as presented

n Sections 3.1 and 3.2. For feasibility reasons, initially we only
earched in the titles of the studies; therefore we cannot rule out
hat we missed out studies that report contributions to specifica-
ion techniques. To mitigate this threat, we applied snowballing,
n which we did not pose the limit to publications with the terms
omain model or domain-specific language (and derivatives) in
he title. Moreover, through the inclusion of relevant books, and
he inclusion of studies from the initial informal search, we are
onfident that we have covered a significant knowledge base.
The exclusion of relevant studies during the selection process

s another potential threat to validity. We mitigated this threat
y defining clear exclusion criteria and a multistage screening
15
process. When we doubted the inclusion of a study after reading
the abstract, introduction, and conclusion, we first included it and
then read it fully. We excluded it only when it became clear,
during the data extraction, that such a study did not provide rele-
vant information. If not, both authors read the paper, and decided
together. Though, for classification aspects that are mostly not ad-
dressed explicitly in the included studies, like assuring consistency,
providing traceability, or detecting incompleteness, we analyzed if
a study contributed indirectly, and reported that analysis. Finally,
the objectives defined in Section 2.3 were used as a yardstick in
the discussion in Section 5 to come to an analysis that is relevant
for the domain-oriented development method that we envision,
i.e., MuDForM.

8. Conclusions and future work

This paper describes a systematic review of the literature on
domain-oriented specification techniques, through the perspec-
tive of our vision on system specification. It provides an overview
of the state-of-the-art in specification techniques to create do-
main models (DMs) and domain-specific languages (DSLs), and
their use in the creation of other specifications. We were inter-
ested in studying research questions on specification techniques
to: create specifications of domains (RQ1), create specifications in
terms of domain specifications (RQ2), and create specifications of
integrations between domain specifications, and between domain-
based specifications (RQ3). This SLR also identifies shortcomings
in the existing literature on domain-oriented specification tech-
niques. We found that no method covers all the method engineer-
ing aspects framed in our classification framework. Also, most
studies focus on creating DSs, and none provides guidance to
actually use the created DS. Similarly, no method for creating
DSs has a method part that addresses how to deal with multiple
domains. This implies that dealing with the application of the DS,
and the integration of multiple DSs, is left to be addressed in a
specific development context.

These results provide an important foundation for our future
work on MuDForM. As described in the beginning of this paper
and framed in the classification framework used to review the
existing literature, we aim to design a method that is well engi-
neered, covers the creation of DMs, the use of DMs to create other
specifications, the integration of multiple DMs and domain-based
specifications, and that is closely connected to natural language.

In particular, following the results of this SLR we envisage the
following research topics and activities:

• The development of an underlying model (meta model),
method steps, and guidelines:

– We think that the starting point can be the KISS met-
hod for Object Orientation (Kristen, 1994), because it
is the only method that serves objectives O3, O4, O5,
and O6.

– The method part for DO specification integration has
to be designed from scratch, because there is not one
candidate study that offers a good foundation. But we
think that the UML package concept, combined with
integration specification options to serve objectives O1
and O2, is a good starting point. The studies mentioned
under ‘‘Suitability for working with multiple domains’’
in Section 4.4 offer several options for DO integration
specifications.

– We can also use the existing guidelines for processing
natural language, mentioned under ‘‘Natural language
as input’’ in Section 4.4. This serves objective O6.

– We will validate MuDForM in a number of industry
cases.



R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

m
r
a
u
t
a
e
b

C

F
d
S

D

c
t

A

t
w
H
J
i
t

• We think a DO specification method should be aligned with
human perception, thinking, and reasoning, which means
it should be based on primitives that are close to human
cognition. Natural language fulfills this vision to a certain
extent, but not completely. We plan to investigate the litera-
ture from cognitive sciences to analyze what those cognitive
concepts could be, identify which ones do not have a clear
natural language counterpart, and extent MuDForM accord-
ingly. For example, Hofstadter and Sander (2013) explain
and reason that analogies lie at the core of human thinking.
We will investigate how this concept can be supported in a
specification method.

• As mentioned in Section 5.6, we will further investigate the
literature on domain analysis to understand if we can use
method ingredients from existing methods. If needed, we
will start an SLR on this topic, to benefit from existing meth-
ods and to justify MuDForM design decisions. We already
looked at the approaches from Shlaer and Mellor (1989),
FODA (Kang et al., 1990), and ODM (Simos, 1995), which
are mentioned as the most common domain engineering
methods by van Deursen et al. (2000). DSSA (Taylor et al.,
1995) is also often mentioned in literature, but it does not
offer a specific solution for making specifications, and as
such did not qualify as a primary study for this SLR.

• We also mentioned in Section 5.6 that it would help re-
searchers and domain engineers if a clear overview of
domain-related terminology would be created. This involves
at least the terms domain model, ontology, conceptual
model, feature model, DSL, abstract syntax, meta model, and
underlying model.

Finally, we have defined a reusable approach for comparing
ethods in an SLR. First, we clarified our overall (MuDForM)

esearch objectives, and we made models of the method domain
nd the compared methods’ application domain. After that, we
sed the objectives and models to define the research ques-
ions, the search queries, and the classification framework. Our
pproach is an extension to the well-established standard for lit-
rature reviews described by Kitchenham (2004), and can be used
y others who want to perform an SLR or method comparison.

RediT authorship contribution statement

Robert Deckers: Conceptualization, Methodology, Validation,
ormal analysis, Investigation, Data curation, Writing – original
raft, Visualization. Patricia Lago: Writing – review & editing,
upervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We are grateful to the colleagues and peers that reviewed
he various versions of this paper and provided feedback on the
ork (in alphabetical order): Bonne van Dijk, Wan Fokkink, Marc
amilton, Arjan van Krimpen, Ivano Malavolta, Daan Pasmans,
an Schoonderbeek, and Eric Suijs. This research received fund-
ng from the Rijksdienst voor Ondernemend Nederland (RVO)
hrough the ITEA3 BUMBLE project (18006).
16
List of primary studies

Abirami, S., Shankari, G., Akshaya, S., Sithika, M., 2015. Conceptual modeling
of non-functional requirements from natural language text. In: Jain, L.C.,
Behera, H.S., Mandal, J.K., Mohapatra, D.P. (Eds.), Computational Intelligence
in Data Mining. Vol. 3. Springer India, New Delhi, pp. 1–11.

Abouzahra, A., Bézivin, J., Didonet, M., Fabro, D., Jouault, F., 2005. A practical
approach to bridging domain specific languages with UML profiles. In: Work-
shop on Best Practices for Model Driven Software Development, OOPSLA. Vol.
5.

Abouzahra, A., Sabraoui, A., Afdel, K., 2017. A metamodel composition driven
approach to design new domain specific modeling languages. In: 2017
European Conference on Electrical Engineering and Computer Science. EECS,
IEEE, pp. 112–118.

Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F., 2016. Extracting domain models
from natural-language requirements: approach and industrial evaluation. In:
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. Association for Computing Machinery,
pp. 250–260.

Asnina, E., 2006. The formal approach to problem domain modelling within
model driven architecture. In: 9th International Conference on Information
Systems Implementation and Modelling. pp. 97–104.

Campos, E., Kulesza, U., Freire, M., Aranha, E., 2014. A generative develop-
ment method with multiple domain-specific languages. In: Jedlitschka, A.,
Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (Eds.),
Product-Focused Software Process Improvement. Springer International
Publishing, Cham, pp. 178–193.

Chaudhuri, R.S., Natarajan, S., Banerjee, A., Choppella, V., 2019. Methodology
to develop domain specific modeling languages. In: Proceedings of the
17th ACM SIGPLAN International Workshop on Domain-Specific Modeling,
pp. 1–10.

Clark, T., Evans, A., Kent, S., 2003. Aspect-oriented metamodelling. Comput. J. 46,
566–577.

Clark, T., Sammut, P., Willans, J.S., 2015. Applied metamodelling: A foundation
for language driven development (third edition). CoRR, arXiv:1505.00149.

Cuadrado, J.S., Molina, J.G., 2009. A model-based approach to families of
embedded domain-specific languages. IEEE Trans. Softw. Eng. 35, 825–840.

Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.-M., 2015. Melange:
A meta-language for modular and reusable development of DSLs. In: Pro-
ceedings of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering. ACM, pp. 25–36.

Elbendak, M., Vickers, P., Rossiter, N., 2011. Parsed use case descriptions
as a basis for object-oriented class model generation. J. Syst. Softw. 87,
1209–1223.

Emerson, M., Sztipanovits, J., 2006. Techniques for metamodel composition.
In: OOPSLA, 6th Workshop on Domain Specific Modeling. ACM Press,
pp. 122–139.

Erdweg, S., Giarrusso, P.G., Rendel, T., 2012. Language composition untangled.
In: Proceedings of the Twelfth Workshop on Language Descriptions, Tools,
and Applications. pp. 1–8.

Evans, A., Maskeri, G., Sammut, P., Willans, J.S., 2003. Building families of
languages for model-driven system development. In: Workshop in Software
Model Engineering, San Francisco, CA. Citeseer, pp. 1–9.

Evans, E., 1999. Deconstructing the Domain: A Pattern Language for Handling
Large Object Models. Technical Report, Citeseer.

Evans, E., 2004. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley.

Fowler, M., 2010. Domain Specific Languages. Addison-Wesley Professional.
France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S., 2007. Providing support

for model composition in metamodels. In: 11th IEEE International Enterprise
Distributed Object Computing Conference. EDOC 2007, IEEE, p. 253.

Frank, U., 2010. Outline of a Method for Designing Domain-Specific Mod-
elling Languages. Technical Report, Universität Duisburg-Essen, Institut für
Informatik und Wirtschaftsinformatik (ICB).

Frank, U., 2011. The MEMO Meta Modelling Language (MML) and Lan-
guage Architecture. Technical Report, Universität Duisburg-Essen, Institut für
Informatik und Wirtschaftsinformatik (ICB).

Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C., 2016a. Addressing
modularity for heterogeneous multi-model systems using model federa-
tion. In: Companion Proceedings of the 15th International Conference on
Modularity. ACM, pp. 206–211.

Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C., 2016b. Using
free modeling as an agile method for developing domain specific modeling
languages. In: Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems. pp. 24–34.

http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb1
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb2
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb4
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb5
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb5
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb5
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb5
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb5
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb7
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb8
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb8
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb8
http://arxiv.org/abs/1505.00149
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb10
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb10
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb10
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb11
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb13
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb13
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb13
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb13
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb13
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb15
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb15
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb15
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb15
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb15
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb16
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb16
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb16
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb17
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb17
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb17
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb18
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb20
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb20
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb20
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb20
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb20
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb23


R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

G

G

H

I

K
K

K

L

L

M
M

P

P

R

R

R

R

S

S

S

S

S

S

S

S

rant, E., Narayanan, K., Reza, H., 2004. Rigorously defined domain modeling
languages. In: Proc. of the 4th OOPSLA Workshop on Domain-Specific
Modeling. pp. 1–8.

rant, E.S., 2012. A meta-model approach to defining uml-based domain-specific
modeling language. In: Proceedings of the International Multiconference of
Engineers and Computer Scientists 2012. Vol. 1. pp. 780–785.

oppenbrouwers, S., Bleeker, A., Proper, H., 2004. Modeling Linguistically Com-
plex Business Domains. Technical Report, Nijmegen Institute for Information
and Computing Sciences, University of Nijmegen.

brahim, M., Ahmad, R., 2010. Class diagram extraction from textual re-
quirements using natural language processing (NLP) techniques. In: 2nd
International Conference on Computer Research and Development. ICCRD’10,
IEEE, pp. 200–204.

elly, S., Tolvanen, J.-P., 2008. Domain-Specific Modeling. IEEE Computer Society.
risten, G., 1994. Object Orientation, the KISS Method, from Information

Architecture to Information System. Addison Wesley.
ühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M., 2009. Explicit

transformation modeling. In: International Conference on Model Driven
Engineering Languages and Systems. Springer, pp. 240–255.

ano, K., Kolahdouz-Rahimi, S., 2014. Model-transformation design patterns. IEEE
Trans. Softw. Eng. 40, 1224–1259.

ochmann, H., Hessellund, A., 2009. An integrated view on modeling with mul-
tiple domain-specific languages. In: Proceedings of the IASTED International
Conference Software Engineering SE 2009. pp. 1–10.

annaerts, H., Verelst, J., 2009. Normalized Systems. Koppa BvBa.
arvie, R., 2004. A Transformation Composition Framework for Model Driven
Engineering. Technical Report, Laboratoire d’Informatique Fondamentale de
Lille.

roper, H.A., Bleeker, A.I., Hoppenbrouwers, S.J.B.A., 2004. Object–role modelling
as a domain modelling approach. In: Proceedings of the Workshop on
Evaluating Modeling Methods for Systems Analysis and Design. EMMSAD‘04,
pp. 317–328.

urao, S., Storey, V., Sengupta, A., Moore, M., 2000. Reconciling and cleansing:
an approach to inducing domain models. In: International Workshop on
Information Systems and Technologies. WITS, pp. 61–66.

einhartz-Berger, I., Soffer, P., Sturm, A., 2005. A domain engineering approach
to specifying and applying reference models. Enterp. Model. Inf. Syst. Archit..

einhartz-Berger, I., Sturm, A., 2004b. Behavioral domain analysis — The
application-based domain modeling approach. In: 7th International Con-
ference on the Unified Modeling Language. Modeling Languages and
Applications. UML 2004. Lecture Notes in Computer Science. Vol. 3273.
Springer-Verlag, pp. 410–424.

obert, S., Gérard, S., Terrier, F., Lagarde, F., 2009. A lightweight approach
for domain-specific modeling languages design. In: 2009 35th Euromi-
cro Conference on Software Engineering and Advanced Applications. IEEE,
pp. 155–161.

omero, J.R., Jaén, J.I., Vallecillo, A., 2009. Realizing correspondences in multi-
viewpoint specifications. In: IEEE International Enterprise Distributed Object
Computing Conference. pp. 163–172.

agar, V.B.V., Abirami, S., 2014. Conceptual modeling of natural language
functional requirements. J. Syst. Softw. 88.

elic, B., 2007. A systematic approach to domain-specific language de-
sign using UML. In: 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing. ISORC’07, pp. 2–9.

hlaer, S., Mellor, S.J., 1989. An object-oriented approach to domain analysis.
SIGSOFT Softw. Eng. Notes 14 (5), 66–77. http://dx.doi.org/10.1145/71633.
71639.

imos, M., Anthony, J., 1998. Weaving the model web: A multi-modeling
approach to concepts and features in domain engineering. In: Proceedings.
Fifth International Conference on Software Reuse. pp. 94–102.

imos, M.A., 1995. Organization domain modeling (ODM): Formalizing the core
domain modeling life cycle. In: SIGSOFT Software Engineering Notes, Special
Issue on the 1995 Symposium on Software Reusability. pp. 196–205.

pinellis, D., 2001. Notable design patterns for domain-specific languages. J. Syst.
Softw. 56 (1), 91–99.

trembeck, M., Zdun, U., 2009. An approach for the systematic development of
domain-specific languages. Softw. Pract. Exper. 39 (15), 1253–1292.

turm, A., Reinhartz-Berger, I., 2004a. Applying the application-based domain
modeling approach to UML structural views. In: The 23rd International
Conference on Conceptual Modeling (ER’2004), Lecture Notes in Computer

Science 3288. pp. 766–799.

17
Vallecillo, A., 2010. On the combination of domain specific modeling lan-
guages. In: European Conference on Modelling Foundations and Applications,
pp. 305–320.

Visic, N., Fill, H., Buchmann, R.A., Karagiannis, D., 2015. A domain-specific
language for modeling method definition: From requirements to grammar.
In: IEEE 9th International Conference on Research Challenges in Information
Science. RCIS, pp. 286–297.

Voelter, M., 2013. DSL Engineering Designing, Implementing and using Domain-
Specific Languages. Createspace Independent Publishing Platform, URL http:
//dslbook.org.

van der Vos, B., Hoppenbrouwers., J., Hoppenbrouwers, S., 1996. NL struc-
tures and conceptual modelling: the KISS case. In: Applications of Natural
Language to Information Systems: Proceedings of the Second International
Workshop. p. 197.

Zhang, Y., Liu, X., Wang, Z., Chen, L., 2012. A model-driven method for service-
oriented modeling and design based on domain ontology. In: Computer,
Informatics, Cybernetics and Applications. In: Lecture Notes in Electrical
Engineering, vol. 107, Springer, pp. 991–998.

References

Barišić, A., Amaral, V., Goulão, M., 2018. Usability driven DSL development with
USE-ME. Comput. Lang. Syst. Struct. 51, 118–157.

Barišic, A., Amaral, V., Goulao, M., Barroca, B., 2011. Quality in use of dsls:
Current evaluation methods. In: Proceedings of the 3rd Inforum-Simpósio
de Informática. INForum2011.

Barišic, A., Amaral, V., Goulão, M., Barroca, B., 2014. Evaluating the usability of
domain-specific languages. In: Software Design and Development: Concepts,
Methodologies, Tools, and Applications. IGI Global, pp. 2120–2141.

Bass, L., Clements, P., Kazamn, R., 2003. Software Architecture in Practice, second
ed. Addison-Wesley.

Chomsky, N., 1998. On Language: Chomsky’s Classic Works Language and
Responsibility and Reflections on Language. New Press.

Czech, G., Moser, M., Pichler, J., 2019. A systematic mapping study on best
practices for domain-specific modeling. Softw. Qual. J. 1–30.

Deckers, R., Lago, P., 2022. SLR DOST replication package. https://doi.org/10.5281/
zenodo.6645856.

Deckers, R., van den Brand, D., Lago, P., 2022. Modeling Features in Terms of Do-
main Models: MuDForM Method Definition and Case Study. VU Amsterdam,
pp. 1–42, under submission. https://research.vu.nl/en/publications/modeling-
features-in-terms-of-domain-models-mudform-method-defini.

Deursen, A.V., Klint, P., Visser, J., 2000. Domain-specific languages: An annotated
bibliography. ACM Sigplan Not. 35, 26–36.

Falbo, R.d.A., Guizzardi, G., Duarte, K.C., 2002. An ontological approach to
domain engineering. In: Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering. pp. 351–358.

Firesmith, D., 2004. Specifying reusable security requirements. J. Object Technol.
3, 61–75.

Gabriel, P., Goulao, M., Amaral, V., 2011. Do software languages engineers
evaluate their languages? arXiv preprint arXiv:1109.6794.

Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., Tolvanen, J.-P.,
2008. DSLs: The good, the bad, and the ugly. In: Companion to the
23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems
Languages and Applications. In: OOPSLA Companion ’08, Association for
Computing Machinery, New York, NY, USA, pp. 791–794. http://dx.doi.org/
10.1145/1449814.1449863, URL https://doi-org.vu-nl.idm.oclc.org/10.1145/
1449814.1449863.

Hofstadter, D.R., Sander, E., 2013. Surfaces and Essences: Analogy As the Fuel
and Fire of Thinking. Basic Books.

ISO/IEC, 2007. Systems and Software Engineering – Recommended Prac-
tice for Architectural Descriptions of Software Intensive Systems, ISO/IEC
42010:2007. Technical Report, ISO, ISO/IEC/IEEE.

ISO/IEC, 2011. ISO/IEC 25010:2011: Systems and software engineering - systems
and software quality requirements and evaluation (SQuaRE) - system and
software quality models. ISO.

Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E., Bernardino, M., Basso, F.P.,
Medeiros, B., 2020. Systematic mapping study on domain-specific language
development tools. Empir. Softw. Eng. 25 (5), 4205–4249.

Jalali, S., Wohlin, C., 2012. Systematic literature studies: database searches vs.
backward snowballing. In: Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE,
pp. 29–38.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report,
Software Engineering Institute, Carnegie Mellon University.

Kitchenham, B., 2004. Procedures for Performing Systematic Reviews. Vol. 33.

(2004), Keele University, Keele, UK, pp. 1–26.

http://refhub.elsevier.com/S0164-1212(22)00126-1/sb24
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb24
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb24
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb24
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb24
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb25
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb25
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb25
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb25
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb25
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb26
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb26
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb26
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb26
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb26
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb28
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb29
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb29
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb29
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb31
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb31
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb31
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb33
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb35
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb37
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb37
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb37
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb38
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb39
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb40
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb40
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb40
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb40
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb40
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb41
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb41
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb41
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb42
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb42
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb42
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb42
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb42
http://dx.doi.org/10.1145/71633.71639
http://dx.doi.org/10.1145/71633.71639
http://dx.doi.org/10.1145/71633.71639
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb44
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb44
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb44
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb44
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb44
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb45
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb45
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb45
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb45
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb45
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb46
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb46
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb46
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb47
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb47
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb47
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb48
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb49
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb49
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb49
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb49
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb49
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb50
http://dslbook.org
http://dslbook.org
http://dslbook.org
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb52
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb54
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb54
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb54
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb57
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb57
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb57
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb58
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb58
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb58
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb59
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb59
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb59
https://doi.org/10.5281/zenodo.6645856
https://doi.org/10.5281/zenodo.6645856
https://doi.org/10.5281/zenodo.6645856
https://research.vu.nl/en/publications/modeling-features-in-terms-of-domain-models-mudform-method-defini
https://research.vu.nl/en/publications/modeling-features-in-terms-of-domain-models-mudform-method-defini
https://research.vu.nl/en/publications/modeling-features-in-terms-of-domain-models-mudform-method-defini
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb62
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb62
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb62
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb63
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb63
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb63
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb63
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb63
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb64
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb64
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb64
http://arxiv.org/abs/1109.6794
http://dx.doi.org/10.1145/1449814.1449863
http://dx.doi.org/10.1145/1449814.1449863
http://dx.doi.org/10.1145/1449814.1449863
https://doi-org.vu-nl.idm.oclc.org/10.1145/1449814.1449863
https://doi-org.vu-nl.idm.oclc.org/10.1145/1449814.1449863
https://doi-org.vu-nl.idm.oclc.org/10.1145/1449814.1449863
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb67
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb67
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb67
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb68
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb68
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb68
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb68
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb68
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb70
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb70
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb70
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb70
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb70
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb71
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb72
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb72
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb72
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb72
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb72
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb73


R. Deckers and P. Lago The Journal of Systems & Software 192 (2022) 111415

K

K

M

d

O

O

P

P

R

T

T

V

W

osar, T., Bohra, S., Mernik, M., 2016. Domain-specific languages: A systematic
mapping study. Inf. Softw. Technol. 71, 77–91.

ronlöf, K., 1993. Method Integration, Concepts and Case Studies. John Wiley
and Sons.

ernik, M., Heering, J., Sloane, A.M., 2005. When and how to develop
domain-specific languages. ACM Comput. Surv. 37 (4), 316–344.

o Nascimento, L.M., Viana, D.L., Neto, P., Martins, D., Garcia, V.C., Meira, S.,
2012. A systematic mapping study on domain-specific languages. In:
The Seventh International Conference on Software Engineering Advances,
ICSEA 2012, pp. 179–187.

MG, 2003. MDA Guide Version 1.0. Technical Report, OMG, URL http://www.
omg.org/docs/omg/03-06-01.pdf.

MG, 2017. Unified Modeling Language Version 2.5.1. Technical Report, OMG,
URL https://www.omg.org/spec/UML/2.5.1/pdf.

inker, S., 1994. The Language Instinct: How the Mind Creates Language. William
Morrow and Company.

rieto-Díaz, R., 1990. Domain analysis: An introduction. SIGSOFT Softw. Eng.
Notes 15 (2), 47–54. http://dx.doi.org/10.1145/382296.382703, URL https:
//doi-org.vu-nl.idm.oclc.org/10.1145/382296.382703.

odrigues, I.P., de Borba Campos, M., Zorzo, A.F., 2017. Usability evaluation of
domain-specific languages: a systematic literature review. In: International
Conference on Human-Computer Interaction. Springer, pp. 522–534.

aylor, R.N., Tracz, W., Coglianese, L., 1995. Software development using
domain-specific software architectures. ACM SIGSOFT Softw. Eng. Notes 20,
27–37.

orres, W., Van den Brand, M.G., Serebrenik, A., 2020. A systematic literature
review of cross-domain model consistency checking by model management
tools. Softw. Syst. Model. 1–20.

ölter, M., 2009. Best practices for DSLs and model-driven development. J. Object
Technol. 8 (6), 79–102.

ohlin, C., 2016. Second-generation systematic literature studies using snow-
balling. In: Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering. pp. 1–6.
18
Robert Deckers is an external Ph.D. candidate at the
Vrije Universiteit Amsterdam, the Netherlands. He has
been working on code generation, model interpreters
and specification methods since 1991. He has devel-
oped and applied specification languages, modeling
methods and supporting tools. He has been active as
an architect and consultant in architecture, domain
modeling, and requirements at all organizational levels.
Robert is author of the book ‘‘DYA|Software, architec-
ture approach for mission critical applications’’. Robert
teaches software architecture and domain modeling at

universities and companies. In 2013, he has started his own company to devote
himself to MDD, because ‘‘the world must understand that software develop-
ment is about integrating knowledge and not about realizing technology’’. More
info available at www.linkedin.com/in/robertdeckers.

Patricia Lago is Full Professor in software engineering
at the Vrije Universiteit Amsterdam, the Netherlands,
where she leads the Software and Sustainability (S2)
research group in the Computer Science Department.
Her research is in software architecture and software
quality with a special emphasis on sustainability. She
has a Ph.D. in Control and Computer Engineering from
Politecnico di Torino and a Master in Computer Science
from the University of Pisa, both in Italy. She is initiator
and coordinator of the Computer Science Master Track
in Software Engineering and Green IT, and co-founder

of the Green Lab, a place where researchers, students and companies collaborate
to measure the energy footprint of software solutions and the impact on
software quality. She is a member of VERSEN and the Steering Committees
of IEEE ICSA and ECSA conference series. She is also SC Chair of ICT4S. More
information is available at www.patricialago.nl.

http://refhub.elsevier.com/S0164-1212(22)00126-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb76
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb76
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb76
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb77
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
https://www.omg.org/spec/UML/2.5.1/pdf
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb80
http://dx.doi.org/10.1145/382296.382703
https://doi-org.vu-nl.idm.oclc.org/10.1145/382296.382703
https://doi-org.vu-nl.idm.oclc.org/10.1145/382296.382703
https://doi-org.vu-nl.idm.oclc.org/10.1145/382296.382703
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb82
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb82
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb82
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb82
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb82
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb83
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb83
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb83
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb83
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb83
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb84
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb84
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb84
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb84
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb84
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb85
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb85
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb85
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00126-1/sb86
http://www.linkedin.com/in/robertdeckers/
http://www.patricialago.nl

	Systematic literature review of domain-oriented specification techniques
	Introduction
	Background: MuDForM and domain modeling
	What is a domain model?
	The MuDForM vision
	MuDForM objectives

	Study design and execution
	Research questions
	Search queries
	Selection criteria
	Study execution
	Classification framework

	Study results
	Publication trends
	Application scope
	Method engineering
	MuDForM specific

	Discussion
	RQ1: No fully engineered method
	RQ2: No methodical support for applying a created DSL or DM
	RQ3: No integral support for multiple domains
	Behavior is mostly ignored and poorly integrated with structure
	Minimal interface with natural language
	The terminology around domain models is not unified

	Related work
	Threats to validity
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	List of primary studies


