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ARTICLE

Reconstruction of a catalogue of genome-scale
metabolic models with enzymatic constraints
using GECKO 2.0
Iván Domenzain 1,2, Benjamín Sánchez 3,4,9, Mihail Anton 1,5,9, Eduard J. Kerkhoven 1,2,

Aarón Millán-Oropeza6, Céline Henry 6, Verena Siewers 1,2, John P. Morrissey 7,

Nikolaus Sonnenschein3 & Jens Nielsen 1,2,8✉

Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration

of the relation between genotype and phenotype. Streamlined integration of enzyme con-

straints and proteomics data into such models was first enabled by the GECKO toolbox,

allowing the study of phenotypes constrained by protein limitations. Here, we upgrade the

toolbox in order to enhance models with enzyme and proteomics constraints for any

organism with a compatible GEM reconstruction. With this, enzyme-constrained models for

the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus

are generated to study their long-term adaptation to several stress factors by incorporation of

proteomics data. Predictions reveal that upregulation and high saturation of enzymes in

amino acid metabolism are common across organisms and conditions, suggesting the rele-

vance of metabolic robustness in contrast to optimal protein utilization as a cellular objective

for microbial growth under stress and nutrient-limited conditions. The functionality of GECKO

is expanded with an automated framework for continuous and version-controlled update of

enzyme-constrained GEMs, also producing such models for Escherichia coli and Homo sapiens.

In this work, we facilitate the utilization of enzyme-constrained GEMs in basic science,

metabolic engineering and synthetic biology purposes.
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Genome-scale metabolic models (GEMs) have become an
established tool for systematic analyses of metabolism for
a wide variety of organisms1–6. Their myriads of appli-

cations span from model-driven development of efficient cell
factories3,7–9, to their utilization for understanding mechanisms
underlying complex human diseases10–12. One of the most
common simulation techniques for enabling phenotype predic-
tions with these models is flux balance analysis (FBA), which
assumes that there is balancing of fluxes around each metabolite
in the metabolic network. This means that fluxes are constrained
by stoichiometries of the biochemical reactions in the network,
and that cells have evolved in order to operate their metabolism
according to optimality principles13,14. Quantitative determina-
tion of biologically meaningful flux distribution profiles is a major
challenge for constraint-based methods, as optimal phenotypes
can be attained by alternate flux distribution profiles15, caused by
the presence of network redundancies that provide organisms
with robustness to environmental and genetic perturbations. This
limitation is often addressed by incorporation of experimental
measurements of exchange fluxes (secretion of byproducts and
uptake of substrates) as numerical flux constraints for the FBA
problem. However, such measurements are not readily available
for a wide variety of conditions and organisms.

In order to overcome these limitations, the concept of enzy-
matic limitations on metabolic reactions has been explored and
incorporated by several constraint-based methods. Some of these
have modeled enzyme demands of metabolic reactions by con-
straining metabolic networks with kinetic parameters and phy-
siological limitations of cells, such as a crowded intracellular
volume16–18, a finite membrane surface area for expression of
transporter proteins19 and a bounded total protein mass available
for metabolic enzymes20–25. All of these modeling frameworks
have been successful at expanding the range of predictions of
classical FBA, providing explanations for overflow metabolism
and cellular growth on diverse environments for Escherichia
coli16–19,21,23,25, Saccharomyces cerevisiae22,25,26, Lactococus
lactis27, and even human cells20,24. However, these modeling
approaches were applied to metabolic networks of extensively
studied model organisms, which are usually well represented in
specialized resources for kinetic parameters such as the
BRENDA28 and SABIO RK29 databases. Furthermore, collecting
the necessary parameters for the aforementioned models was
mostly done manually; therefore, no generalized model para-
meterization procedure was provided as an integral part of these
methods.

Enzyme limitations have also been introduced into models of
metabolism by other formalisms, for instance, Metabolic and
gene Expression models (ME-models), implemented on recon-
structions for E. coli30–33, Thermotoga maritima34 and Lactococus
lactis35; and resource balance analysis models (RBA), on recon-
structions for E. coli36 and Bacillus subtilis36,37. These formalisms
succeeded at merging genome-scale metabolic networks together
with comprehensive representations of macromolecular expres-
sion processes, enabling detailed exploration of the constraints
that govern cellular growth on diverse environments. Despite the
great advances for understanding cell physiology provided by
these modeling formalisms, accuracy on phenotype predictions is
compromised by the large number of parameters that are
required (rate constants for transcriptional, translational, protein
folding and degradation processes), with most of these not being
readily available in the literature. Moreover, these models
encompass processes that differ radically in their temporal scales
(e.g., protein synthesis vs. metabolic rates) and their mathematical
representation (presence of non-linear expressions in ME-mod-
els), requiring the implementation of more elaborate techniques
for numerical simulation.

GECKO, a method for enhancement of GEMs with Enzy-
matic Constraints using Kinetic and Omics data, was developed
in 2017 and applied to the consensus GEM for S. cerevisiae,
Yeast738. This method extends the classical FBA approach by
incorporating a detailed description of the enzyme demands for
the metabolic reactions in a network, accounting for all types of
enzyme-reaction relations, including isoenzymes, promiscuous
enzymes and enzymatic complexes. Moreover, GECKO enables
direct integration of proteomics abundance data, if available, as
constraints for individual protein demands, represented as
enzyme usage pseudo-reactions, whilst all the unmeasured
enzymes in the network are constrained by a pool of remaining
protein mass. Additionally, this method incorporates a hier-
archical and automated procedure for retrieval of kinetic
parameters from the BRENDA database, which yielded a high
coverage of kinetic constraints for the S. cerevisiae network. The
resulting enzyme-constrained model, ecYeast7, was used for
successful prediction of the Crabtree effect in wild-type and
mutant strains of S. cerevisiae and cellular growth on diverse
environments and genetic backgrounds, but also provided a
simple framework for prediction of protein allocation profiles
and study of proteomics data in a metabolic context. Further-
more, the model formed the basis for modeling yeast growth at
different temperatures39.

Since the first implementation of the GECKO method38, its
principles of enzyme constraints have been incorporated into
GEMs for B. subtilis40, E. coli41, B. coagulans42, Streptomyces
coelicolor43 and even for diverse human cancer cell-lines2,
showing the applicability of the method even for non-model
organisms. Despite the rapid adoption of the method by the
constraint-based modeling community, there is still a need for
automating the model generation and enabling identification of
kinetic parameters for less studied organisms.

In this work, we updated the GECKO toolbox to its 2.0 version,
expanding its use it for building enzyme-constrained models
(ecModels) for more organisms. Among other improvements, we
generalized its structure to facilitate its applicability to a wide
variety of GEMs, and we improved its parameterization proce-
dure to ensure high coverage of kinetic constraints, even for
poorly studied organisms. Additionally, we incorporated simu-
lation utility functions, and developed an automated pipeline for
updating ecModels, named ecModels container. This container is
directly connected to the original sources of version-controlled
GEMs and the GECKO toolbox, offering a continuously updated
catalog of diverse ecModels.

Results
Community development of GECKO. To ensure wide applica-
tion and enable future development by the research community,
we established the GECKO toolbox as open-source software,
mostly encoded in MATLAB. It integrates modules for
enhancement of GEMs with kinetic and proteomics constraints,
automated retrieval of kinetic parameters from the BRENDA
database (python module), as well as simulation utilities and
export of ecModel files compatible with both the COBRA
toolbox44 and the COBRApy package45. The development of
GECKO has been continuously tracked in a public repository
(https://github.com/SysBioChalmers/GECKO) since 2017, pro-
viding a platform for open and collaborative development. The
generation of output model files in.txt and SBML L3V1 FBC246

formats enabled the use of the ecYeastGEM1 structure as a
standard test to track the effects of any modifications in the
toolbox algorithm through the use of the Git version control
system, contributing to reproducibility of results and backwards
compatibility of code.
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Interaction with users of the GECKO toolbox and the
ecYeastGEM model has also been facilitated through the use of
the GECKO repository, allowing users to raise issues related with
the programming of the toolbox or even about conceptual
assumptions of the method, which has guided cumulative
enhancements. Additionally, technical support for installation
and utilization of the toolbox and ecYeastGEM is now provided
through an open community chat room (available at: https://
gitter.im/SysBioChalmers/GECKO), reinforcing transparent and
continuous communication between users and developers.

New additions to the GECKO toolbox. The previous imple-
mentation of the GECKO method in GECKO 1.0 significantly
improved phenotype predictions for S. cerevisiae’s metabolism
under a wide variety of genetic and environmental
perturbations38. However, its development underscored some
issues, in particular that quantitative prediction of the critical
dilution rate and exchange fluxes at fermentative conditions are
highly sensitive to the distribution of incorporated kinetic para-
meters. Although S. cerevisiae is one of the most studied eukar-
yote organisms, not all reactions included in its model have been
kinetically characterized. Therefore, a large number of kcat
numbers measured for other organisms (48.35%), or even non-
specific to their reaction mechanism (56.03% of kcat values found
by introduction of wildcards into E.C. numbers) were needed to
be incorporated, in order to fill the gaps in the available data for
the reconstruction of the first S. cerevisiae ecModel, ecYeast7.
Moreover, detailed manual curation of kcat numbers was needed
for several key enzymes in order to achieve biologically mean-
ingful predictions.

As the BRENDA database47 is the main source of kinetic
parameters for GECKO, all of the available kcat and specific
activity entries for non-mutant enzymes were retrieved. In total,
38,280 entries for 4130 unique E.C. numbers were obtained and
classified according to biochemical mechanisms, phylogeny of
host organisms and metabolic context (Brenda kinetic data
analysis section in the Supplementary Information File 1), in
order to assess significant differences in distributions of kinetic
parameters. This analysis showed that not all organisms have
been equally studied. While entries for H. sapiens, E. coli, R.
norvegicus, and S. cerevisiae account for 24.02% of the total, very
few kinetic parameters are available for most of the thousands of
organisms present in the database, showing a median of 2 entries
per organism (Fig. 1a). The analysis also showed that kinetic
activity can differ drastically, spanning several orders of
magnitude even for families of enzymes with closely related
biochemical mechanisms (Fig. 1b). Finally, it was also observed
that kcat distributions for enzymes in the central carbon and
energy metabolism differ significantly from those in other
metabolic contexts across phylogenetic groups of host organisms
(life kingdoms, according to the KEGG phylogenetic tree48), even
without filtering the dataset for entries reported exclusively for
natural substrates, as previously done by other studies49 (Fig. 1c).

In the new version of the GECKO toolbox (GECKO 2.0), a
modified set of hierarchical kcat matching criteria was imple-
mented to address how kcat numbers depend on biochemical
mechanisms, metabolic context and phylogeny of host organisms.
The modified parameterization procedure enables the incorpora-
tion of kinetic parameters that have been reported as specific
activities in BRENDA when no kcat is found for a given query (as
the specific activity of an enzyme is defined as its kcat over its
molecular weight), adding 8,118 new entries to the catalog of
kinetic parameters in the toolbox. A phylogenetic distance-based
criterion, based on the phylogenetic tree available in the KEGG
database48, was introduced for cases in which no organism-

specific entries are available for a given query in the kinetic
parameters dataset. Specifically, where GECKO 1.0 chooses kcat
available in BRENDA regardless of organism, GECKO 2.0
chooses the values available in BRENDA for the phylogenetically
closest organism by iteratively introducing a wildcard into the
E.C. number, as exemplified in the Brenda kinetic data analysis
section in the Supplementary Information File 1 “EC3.x.x.x”, and
estimating the phylogenetic distance. The new kcat matching
algorithm, including the estimation of the phylogenetic distance,
and its comparison with the predecessor are shown in the
supplementary methods section in Supplementary File 1.

In order to assess the impact of the modified kcat assignment
algorithm on an ecModel, ecYeast7 was reconstructed using both
the first and GECKO 2.0. A classification of the matched kcat
values according to the new matching algorithm is provided in
Fig. 1d, showing the amount of values chosen from the
phylogenetically closest organisms. The incorporation of specific
activity values in the parameter catalog increased the number of
kinetic parameters matched to complete E.C. numbers (no added
wildcards) from 1432 to 2696 (Fig. 1e). Moreover, the
implementation of the phylogenetic distance-based criterion
yielded a distribution of kinetic parameters that showed no
significant differences when compared to the values reported in
BRENDA for all fungi species, in contrast to the kinetic profile
matched by the previous algorithm (P-values 2.1 × 10−11 and
3.9 × 10−8, when compared to the BRENDA fungi and S.
cerevisiae distributions, respectively, under a two-tailed
Kolmogorov–Smirnov test) (Fig. 1f). The quality of phenotype
predictions for the ecYeast7 model enhanced by GECKO 2.0 was
evaluated by simulation of batch growth in 19 different
environments, with an average relative error of 23.97% when
compared to experimental data (Fig. 1g); in contrast, its GECKO
1.0 counterpart yielded an average relative error of 32.07%.

The introduction of manually curated kcat numbers in a
metabolic network has been proven to increase the quality of
phenotype predictions for S. cerevisiae22,25,38; nevertheless, this is
an intensive and time-consuming procedure that is hard to
ensure for a large number of models subject to continuous
modifications. In order to ensure applicability of the GECKO
method to any standard GEM, a unified procedure for curation of
kinetic parameters was developed based on parameter sensitivity
analysis. For automatically generated ecModels that are not able
to reach the provided experimental value for maximum batch
growth rate, an automatic module performs a series of steps in
which the top enzymatic limitation on growth rate is identified
through the quantification of enzyme control coefficients. For
such enzymes, the E.C. number is obtained and then its
correspondent kcat value is substituted by the highest one
available in BRENDA for the given enzyme class. This procedure
iterates until the specific growth rate predicted by the model
reaches the provided experimental value.

Finally, as the first version of the toolbox relied on the structure
and nomenclature of the model Yeast7, its applicability to other
reconstructions was not possible in a straightforward way. In
order to provide compatibility with any other GEM, based on
COBRA44 or RAVEN50 formats, all of the organism-specific
parameters required by the method (experimental growth rate,
total protein content, organism name, names and identifiers for
some key reactions, etc.) can be provided in a single MATLAB
initialization script, minimizing the modifications needed for the
generation of a new ecModel.

ecModels container is an automatically updated repository.
Several GEMs that have been published are still subject to con-
tinuous development and maintenance1–3,5,6, this renders GEMs
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to be dynamic structures that can change rapidly. In order to
integrate such continuous updates into the enzyme-constrained
version of a model in an organized way, an automated pipeline
named ecModels container was developed.

The ecModels container is a continuous integration imple-
mentation whose main functionality is to provide a catalog of
ecModels for several relevant organisms that are automatically
updated every time a modification is detected either in the
original GEM source repository or in the GECKO toolbox, i.e.,
new releases in their respective repositories. The pipeline
generates ecModels in different formats, including the standard
SBML and MATLAB files, and stores them in a container
repository (https://github.com/SysBioChalmers/ecModels) in a
version-controlled way, requiring minimal human interaction
and maintenance. The GECKO toolbox ensures the creation of
functional and calibrated ecModels that are compatible with the
provided experimental data (maximum batch growth rate, total
protein content of cells, and exchange fluxes at different dilution
rates as an optional input). This whole computational pipeline is
illustrated in Fig. 2. Further description of the ecModels container
pipeline functioning is included in the “Methods” section.

A catalog of new ecModels. Following the aforementioned
additions to the GECKO toolbox, that have allowed its

generalization, we used the toolbox for the reconstruction of four
new ecModels from previously existing high-quality metabolic
network reconstructions: iYali4, for the oleaginous yeast Yarrowia
lipolytica5; iSM996, for the thermotolerant yeast Kluyveromyces
marxianus6; iML1515, for the widely studied bacterium E. coli4;
and Human1, being the latest and largest network reconstruction
available for studying H. sapiens metabolism2. For the microbial
models, all model parameters were calibrated according to the
provided experimental data, generated by independent
studies4,51–53, yielding functional ecModels ready for simulations.
Size metrics for these models can be seen in Table 1.

These ecModels, together with ecYeastGEM, are hosted in the
ecModels container repository for their continuous and auto-
mated update every time that a version change is detected either
in the original model source or in the GECKO repository. In the
case of microbial species, two different model structures are
provided: ecModel, which has unbounded individual enzyme
usage reactions ready for incorporation of proteomics data; and
ecModel_batch in which all enzyme usage reactions are connected
to a shared protein pool. This pool is then constrained by
experimental values of total protein content, and calibrated for
batch simulations using experimental measurements of max-
imum batch growth rates on minimal glucose media, thus
providing a functional ecModel structure ready for simulations.

Fig. 1 kcat distributions in BRENDA and ecYeast7. a Number of kcat entries in BRENDA per organism. b kcat distributions for closely related enzyme
families. Sample size and median values (in s−1) are shown after each family identifier. c kcat distributions for enzymes in BRENDA by metabolic context
and life kingdoms. Median values are indicated by red dots in each distribution, statistical significance (under a one-sided Kolmogorov–Smirnov test) is
indicated by red stars for each pair of distributions for a given kingdom. CEM—central carbon and energy metabolism; ALM—Amino acid and lipid
metabolism; ISM—intermediate and secondary metabolism. Computed P-values are 2.8 × 10–27 for animals; 3.85 × 10–5 for archaea; 1.62 × 10–92 for
bacteria; 1.024 × 10–30 for fungi; 2.36 × 10–16 for plants and 4.75 × 10–21 for protists. d Number of kcat matches in ecYeast7 per assignment category
(GECKO 2.0). e Comparison of the number of kcat matches for E.C. numbers with 0, 1, 2, and 3 introduced wildcards by GECKO 2.0 and GECKO kcat
matching algorithms. f Cumulative kcat distributions for: all S. cerevisiae entries in BRENDA, all entries for fungi in BRENDA, ecYeast7 enhanced by GECKO
and ecYeast7 enhanced by GECKO 2.0. Colored points and vertical dashed lines indicate the median value for each distribution. Statistical significance
under a two-sided Kolmogorov–Smirnov test of the matched kcat distributions when compared to all entries for S. cerevisiae and fungi, is shown with red
circles and stars, respectively. P-values below 1 × 10−2 are indicated with red. Computed P-values are 0.538 for the comparison between GECKO2 vs. all
fungi, 2.7 × 10−3 for GECKO2 vs. S. cerevisiae, 3.9 × 10−8 for GECKO vs. all fungi and, 2.1 × 10−11 for GECKO vs. the S. cerevisiae entries. g Prediction of batch
maximum growth rates on diverse media with ecYeast7 enhanced by GECKO 2.0. Glu—glucose, Fru—fructose, Suc—sucrose, Raf— raffinose, Mal—
maltose, Gal—galactose, Tre—trehalose, Gly—glycerol, Ace—acetate, Eth —ethanol. Source data are provided in Source Data: Data Source file 1.
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For ecHumanGEM just the unbounded ecModel files are
provided, as this is a general network of human metabolism,
containing all reactions from any kind of human tissue or cell
type for which evidence is available, and therefore not suitable for
numerical simulation. As H. sapiens is the most represented
organism in the BRENDA database, accounting for 11% of the
total number of available kcat values (Brenda kinetic data analysis
section in the Supplementary Information File 1), kinetic
parameters from other organisms were not taken into account
for its enhancement with enzyme constraints. ecHuman1

provides the research community with an extensive knowledge
base that represents a complete and direct link between genes,
proteins, kinetic parameters, reactions and metabolites for human
cells in a single model structure, subject to automated continuous
update by the ecModels container pipeline.

Visualization of GECKO simulations in the Caffeine platform.
We implemented simulations with ecModels in Caffeine, an
open-source software platform for cell factory design. Caffeine,
publicly available at http://caffeine.dd-decaf.eu, allows user-

Fig. 2 Extending utilization of ecModels. a ecModels container: Integrated pipeline for continuous and automated update of ecModels. b Implementation
of GECKO simulations in the Caffeine platform (https://caffeine.dd-decaf.eu/) for visualization of enzyme usage. The color of the arrows corresponds to
the value of the corresponding fluxes. Genes or reactions connected to enzymes with a usage above 90% are highlighted with a glow around the
corresponding text or arrow, respectively. The chosen usage threshold to highlight can be tuned with the slider on the right.
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friendly simulation and visualization of flux predictions made by
genome-scale metabolic models. Several standard modeling
methods are already included in the platform, such as 13C
fluxomics data integration, and simulation of gene deletion and/
or overexpression, to interactively explore strain engineering
strategies. In order to allow for GECKO simulations, we added a
new feature to the platform for uploading enzyme-constrained
models and absolute proteomics data. Additionally, we added a
simulation algorithm that recognizes said models, and overlays
the selected proteomics data on them, leaving out data that makes
the model unable to grow at a pre-specified growth rate. After
these inclusions to the platform, enzyme usage can now be
computed on the fly and visualized on metabolic maps (Fig. 2b),
to identify potential metabolic bottlenecks in a given condition.
The original proteomics data can be visualized as well, to identify
if the specific bottleneck is due to a lack of enzyme availability, or
instead due to an inefficient kinetic property. This will suggest
different metabolic engineering strategies to the user: if the pro-
blem lies in the intracellular enzyme levels, the user can interpret
this as a recommendation for overexpressing the corresponding
gene, whereas if the problem lies in the enzyme efficiency, the
user could assess introducing a heterologous enzyme as an
alternative.

GECKO simulation utilities. As ecModels are defined in an
irreversible format and incorporate additional elements such as
enzymes (as new pseudo-metabolites) and their usages (repre-
sented as pseudo-reactions), they might sometimes not be directly
compatible with all of the functionalities offered by currently
available constraint-based simulation software44,45,50,54,55. We
therefore added several new features to the GECKO toolbox that
allow the exploration and exploitation of ecModels. These include
utilities for: (1) basic simulation and analysis purposes, (2)
accessible retrieval of kinetic parameters, (3) automated genera-
tion of condition-dependent ecModels with proteomic abundance
constraints, (4) comparative flux variability analysis between a
GEM and its ecModel counterpart, and (5) prediction of metabolic
engineering targets for enhanced production with an imple-
mentation of the FSEOF method56 for ecModels. Detailed infor-
mation about the inputs and outputs for each utility can be found
on their respective documentation, available at: https://github.
com/SysBioChalmers/GECKO/tree/master/geckomat/utilities. All
of these utilities were developed in MATLAB due to their
dependency on some RAVEN toolbox functions50.

Predicting microbial proteome allocation in multiple envir-
onments. In order to test the quality of the phenotype predictions
of an ecModel automatically generated by the ecModels container
pipeline, batch growth under 11 different carbon sources was
simulated with eciML1515 for E. coli. Figure 3a shows that, for all
carbon sources, growth rates were predicted at the same order of
magnitude as their corresponding experimental measurements,
with the most accurate predictions obtained for growth on D-
glucose, mannose and D-glucosamine. Furthermore, batch
growth rate and protein allocation predictions, using no exchange
flux constraints, were compared between eciML1515 and the
iJL1678 ME-model32, the latter accounting for both metabolism
and macromolecular expression processes. The sum squared error
(SSE) for batch growth rate predictions across the 11 carbon
sources using eciML1515 was 0.27, a drastic improvement when
compared to the 1.21 SSE of iJL1678 ME-model predictions32.
Figure 3b shows the predicted total proteome needed by cells to
sustain the provided experimental growth rates for the same 11
environments. Notably eciML1515 predicts values that lie within
the range of predictions of the iJL1678 ME-model (from the
optimal to the generalist case) for 10 out of the 11 carbon sources
(see “Methods” for simulation details). This shows that the new
version of the GECKO toolbox ensures the generation of func-
tional ecModels that can be readily used for simulation of
metabolism, due to its systematic parameter flexibilization step,
which reduces the need of extensive manual curation for new
ecModels. Furthermore, iML1515 is a model available as a static
file at the BiGG models repository57; therefore, its integration to
the ecModels container for continuous update demonstrates the
flexibility of our pipeline, regarding compatibility with original
GEM sources, which can be provided as a link to their git-based
repositories or even as static URLs.

Proteomics constraints refine phenotype predictions for mul-
tiple organisms and conditions. The previously mentioned
module for integration of proteomics data generates a condition-
dependent ecModel with proteomics constraints for each condi-
tion/replicate in a provided dataset of absolute protein abun-
dances [mmol/gDw]. Even though absolute quantification of
proteins is becoming more accessible and integrated into systems
biology studies58–62, a major caveat of using proteomics data as
constraints for quantitative models is their intrinsic high biolo-
gical and technical variability63, therefore some of the incorpo-
rated data constraints need to be loosened in order to obtain
functional ecModels. When needed, additional condition-

Table 1 Size metrics summary for the ecModels catalog.

Original GEMs

Organism S. cerevisiae Y. lipolytica K. marxianus E. coli H. sapiens
Model ID yeastGEM_8.3.3 iYali4 iSM996 iML1515 Human1
Reactions 3963 1924 1913 2711 13101
Metabolites 2691 1671 1531 1877 8400
Genes 1139 847 996 1516 3628

Enzyme-constrained GEMs
Model ID ecYeastGEM eciYali eciSM996 eciML1515 ecHumanGEM
Reactions 8028 3881 5334 6084 46259
Metabolites 4153 1880 2064 2334 12191
Enzymes 965 647 716 1259 3224
Enzyme coverage 84.72% 76.39% 71.89% 83.05% 88.86%
Reactions w/kcat 3771 1586 2891 2562 27014
Reactions w/
Isoenzymes

504 205 532 456 3791

Promiscuous Enzymes 572 324 469 673 2184
Enzyme complexes 252 75 27 383 756
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dependent exchange fluxes of byproducts can also be used as
constraints in order to limit the feasible solution space. A detailed
description of the proteomics integration algorithm implemented
in GECKO is given in the supplementary methods section in the
Supplementary Information File 1.

The new proteomics integration module was tested on the
three ecModels for budding yeasts available in ecModels
container (ecYeastGEM, eciYali, eciSM996). We measured
absolute protein abundances for S. cerevisiae, Y. lipolytica and
K. marxianus, grown in chemostats at 0.1 h−1 dilution rate and
subject to several experimental conditions (high temperature, low
pH and osmotic stress with KCl)64, and incorporated these data
into the ecModels as upper bounds for individual enzyme usage
pseudo-reactions. Then, exchange fluxes for CO2 and oxygen
corresponding to the same chemostat experiments were used as a
comparison basis to evaluate quality of phenotype predictions.
For each organism- condition pair, 3 models were generated and
compared in terms of predictions: a pure stoichiometric
metabolic model, an enzyme-constrained model with a limited
shared protein pool, and an enzyme-constrained model with
proteomics constraints. It was found that the addition of the
enzyme pool constraint enables major reduction of the relative
error in prediction of gaseous exchange fluxes in some of the
studied conditions. Additionally, the incorporation of individual
protein abundance constraints improves even further the
predictive accuracy of gaseous exchanges, for 5 out of the 11
evaluated cases (Fig. 4a–c). Although only a trend and not a
significant improvement, it would be of interest, in the future, to
run further analyses that include more proteomics datasets.

The impact of incorporating enzyme and proteomics constraints
on intracellular flux predictions was further assessed by mapping
all condition-dependent flux distributions from the tested
ecModels to their corresponding reactions in the original GEMs.
In general, metabolic flux distributions showed high similarity
when comparing ecModel to GEM predictions (Supplementary
Fig. 1), as 70–90% of the active reaction fluxes were predicted

within the interval of 0.5 < fold-change < 2 FC ¼ vecModel
i

vGEMi

� �
across

all conditions (Supplementary Fig. 2A–C, Source Data: Data
Source File 2). In addition, principal component analysis on

absolute enzyme usage profiles predicted by ecModels revealed
that, at low dilution rates, predictions of enzyme demands are
mostly defined by the selected set of imposed constraints (shared
protein pool vs. proteomics constraints) rather than by environ-
mental condition, i.e., exchange fluxes (Supplementary Fig. 2D–F).
However, more straightfroward comparison of the models’
predictions, by pairwise comparison of predicted absolute enzyme
usage profiles, showed that 60–80% of the predicted enzyme usages
lie within a range of 0.5 < fold-change < 2, when comparing
ecModels predictions with and without proteomics constraints,
across organisms and conditions (Fig. 4d, Supplementary Fig. 2G–I,
and Data Source File 2). It was observed that the incorporation of
proteomics constraints induces a drastic differential use for a
considerable amount of enzymes, as 12–21% of enzyme usages
were predicted as either enabled or disabled by these constraints
across all the simulated conditions, showing slight enrichment for
enabled alternative isoenzymes for already active reactions (Data
Source File 2). This suggests that upper bounds on enzyme usages
induce differentiated utilization of isoenzymes, reflecting well why
isoenzymes have been maintained throughout evolution.

The explicit inclusion of enzymes into GEMs by the GECKO
method enables prediction of enzyme demands at the protein,
reaction and pathway levels. Total protein burden values
predicted by ecModels for several relevant metabolic superpath-
ways (central carbon and energy metabolism, amino acid
metabolism, lipid and fatty acid metabolism, cofactor and vitamin
metabolism and nucleotide metabolism, according to the
KEGG metabolic subsystems48), showed that central carbon
and energy metabolism is the most affected sector in the
ecYeastGEM network by integration of proteomics constraints,
as protein burden predictions were higher, at least by 20%, for 3
out of the 4 simulated conditions when compared with
predictions of the ecYeastGEM without proteomics data (Fig. 4e).

Relative enzyme usages, estimated as predicted absolute
enzyme usage over enzyme abundance for all of the measured

enzymes in an ecModel ei
Ei½ �

� �
, can be understood as the

saturation level of enzymes in a given condition. In order to
analyze the metabolic mechanisms underlying long-term adapta-
tion to stress in budding yeasts, relative enzyme usage profiles

Fig. 3 Comparison of predictive capabilities between eciML1515 and ME-iJL1678 for E. coli. a Maximum batch growth rate predictions on minimal media
with diverse carbon sources, with an average relative error for eciML1515 of 34,43%, and an R2 of 0.196. The sum of squared errors when compared to
experimental values are 0.2785 for eciML1515 and 1.21 for ME-iJL1678. b Prediction of total protein content in the cell by eciML1515 and ME-iJL1678 using
the optimal and generalist approaches. Source data are provided in Source Data: Data Source file 1.
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were computed from all the previous simulations of ecModels
with proteomics constraints. Enzymes that display fold-changes
higher than 1 for both absolute abundance and their saturation
level, when comparing predicted usage profiles between stress and
reference conditions, suggest regulatory mechanisms on indivi-
dual proteins that contribute to cell growth on the anlyzed stress
condition. Figure 4f shows all of the enzymes that were identified
as responsive to environmental stress in this study, displaying
enrichment for enzymes involved in biosynthesis of diverse
amino acids and folate metabolism.

A further mapping of all enzymes in these ecModels to a list of
2,959 single copy protein-coding gene orthologs across the three
yeast species64 found 310 core proteins across these ecModels.
Principal component analysis revealed that variance on absolute
enzyme usages and abundance profiles for these core proteins is
mostly explained by differences in the metabolic networks of the
different species rather than by environmental conditions
(Supplementary Fig. 3B, C), reinforcing previous results

suggesting that, despite being phylogenetically related, their
long-term stress responses at the molecular level have evolved
independently after their divergence in evolutionary history64.

Exploring the solution space reduction. A major limitation in
the use of GEMs is the high variability of flux distributions for a
given cellular objective when implementing flux balance analysis,
as this requires solving largely underdetermined linear systems
through optimization algorithms15,65. This limitation has usually
been overcome with incorporation of measured exchange fluxes
as constraints. However, these data are typically sparse in the
literature. Previous studies explored the drastic reduction in flux
variability ranges of ecModels for S. cerevisiae and 11 human cell-
lines when compared to their original GEMs due to the addition
of enzyme constraints1,2,38. However, the irreversible format of
ecModels (forward and backwards reactions are split in order to
account for enzyme demands of both directions) hinders their
compatibility with the flux variability analysis (FVA) functions

Fig. 4 Evaluation of proteomics-constrained ecModels. Comparison of median relative error in prediction of exchange fluxes for O2 and CO2 by GEMs,
ecModels and proteomics-constrained ecModels across diverse conditions (chemostat cultures at 0.1 h−1 dilution rate) for a S. cerevisiae, b K. marxianus,
c Y. lipolytica. d Comparison of absolute enzyme usage profiles [mmol/gDw] predicted by ecYeastGEM (ecM) and ecYeastGEM with proteomics
constraints (ecP) for several experimental conditions. The region between the two dashed gray lines indicates enzyme usages predicted in the interval 0.5
� EecPi =EecMi � 2, the region between the two dashed black lines indicates enzyme usages predicted in the interval 0.1 � EecPi =EecMi � 10, when comparing
the two ecModels. e Protein burden for different superpathways predicted by ecYeastGEM (ecM) and ecYeastGEM with proteomics constraints (ecP).
f Highly saturated enzymes at different stress conditions for S. cerevisiae, K. marxianus, and Y. lipolytica predicted by their corresponding ecModels
constrained with proteomics data. Yellow cells indicate condition-responsive enzymes (relative usage ≥ 0.95). Red asterisks indicate enzymes conserved
as single copy orthologs across the three yeast species. Std—Reference condition, HiT—high-temperature condition, LpH—Low pH condition, Osm—

Osmotic stress condition, AA—amino acid metabolism, NUC—nucleotide metabolism, CEM—central carbon and energy metabolism, CofVit—cofactor and
vitamin metabolism, Lip—lipid and fatty acid metabolism. Source data are provided in Source Data: Data Source File 2.
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already available in COBRA44 and RAVEN50 toolboxes. As a
solution to this, an FVA module was integrated to the utilities
repertoire in GECKO, whose applicability has been previously
tested on studies with ecModels for S. cerevisiae1 and human cell
lines2. This module contains the necessary functions to perform
FVA on any set of reactions of an ecModel, enabling also a direct
comparison of flux variability ranges between an ecModel and its
GEM counterpart in a consistent way (supplementary methods
section in the Supplementary Information File 1).

The FVA utility was applied on three different ecModels of
microbial metabolism and their correspondent GEMs (iML1515,
iYali4, and iSM996). In all cases the FVA comparisons were
carried out for both chemostat and batch growth conditions in
order to span different degrees of constraining of the metabolic
networks (0.1 h−1 dilution rate and minimal glucose uptake rate
fixed for chemostat conditions; biomass production fixed to
experimental measurements of μmax and unconstrained uptake of
minimal media components, for batch conditions). Cumulative
distributions for flux variability ranges for all explored ecModels
and GEMs are shown in Fig. 5, in which it can be seen that
median flux variability ranges are much reduced for all ecModels
and conditions, especially at high growth rates where enzyme
constraints reduce the variability range 5–6 orders of magnitude
when compared to pure GEMs. The cumulative distributions also
show a major reduction in the amount of totally variable fluxes
(reactions that can carry any flux between −1000 to 1000mmol/
gDwh), which are an indicator of undesirable futile cycles present
in the network due to lack of thermodynamic and enzyme cost
information66–68. For high growth rates, the amount of totally
variable fluxes accounts for 3–12% of the active reactions in the
analyzed GEMs, in contrast to their corresponding ecModels in
which such extreme variability ranges are completely absent.

Further analysis of the FVA results revealed that a reduction of
at least 95% of the variability range was achieved for more than
90% of all fluxes of active reactions at high growth rates in all

ecModel. Interestingly, the aforementioned flux variability
metrics were overall improved even for the chemostat conditions,
despite a higher degree of constraining (fixed low growth rate and
optimal uptake rate), which restrains these models to an energy
efficient respiratory mode (Data Source File 3).

Discussion
Here, we demonstrated how enzyme-constrained models for
diverse species significantly improve simulation performance
compared to traditional GEMs. Furthermore, to enable the
community to easily adapt this modeling approach, we upgraded
the GECKO toolbox for enhancement of genome-scale models
with enzyme and omics constraints to its version 2.0. Major
improvements on the kcat matching algorithm were incorporated
into the toolbox, based on phylogenetic distance between the
modeled organism and the host organisms for data queries, and
an automated curation of kcat numbers for over-constrained
models were incorporated into the toolbox. Major refactoring of
the GECKO toolbox enabled a generalization of the method,
allowing the creation of high-quality ecModels for any provided
functional GEM with minimal need for case-specific introduction
of new code. Additionally, several utility functions were inte-
grated into the toolbox in order to enable basic simulation pur-
poses, accessible retrieval of enzyme parameters, integration of
proteomics data as constraints, flux variability analysis and pre-
diction of gene targets for enhanced production of metabolites.
Overall, it was shown that these enhancements to the GECKO
toolbox improve the incorporation of kinetic parameters into a
metabolic model, yielding ecModels with biologically meaningful
kinetic profiles without compromising accuracy on phenotype
predictions.

Two major limitations of the first version of the GECKO
toolbox were its specific customization to the S. cerevisiae model,
Yeast7, and the need of extensive manual curation for generating
an ecModel suited for FBA simulations; thus, its applicability to

Fig. 5 Cumulative distributions of flux variability ranges for iSM996, iYali4 and iML1515 compared to their respective enzyme-constrained versions at
low and high growth rates. Source data are provided in the Source Data: Data Source File 3.
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other GEMs was not a straightforward procedure. To overcome
these limitations, we generalized the code with the aim of making
GECKO a model-agnostic tool. The development of a procedure
for automatic curation of kinetic parameters enabled the gen-
eration of functional ecModels with minimal requirements for
experimental data. Recently, ecModels for 11 human cancer cell-
lines were generated with this automated procedure, using
Human1 as a model input and RNAseq datasets together with the
tINIT algorithm10 to generate cell-line specific networks2. These
ecModels were used for the prediction of cellular growth and
metabolite exchange rates at different levels of added constraints,
resulting in remarkable improvements in accuracy when com-
pared with predictions of their original GEMs. This highlights
one of the main advantages of ecModels: their capability of
yielding biologically meaningful phenotype predictions without
an excessive dependency on exchange fluxes as constraints.

In order to further showcase the functionality of the GECKO
toolbox 2.0, a family of new high-quality ecModels were gener-
ated for E. coli, Y. lipolytica, K. marxianus and H. sapiens, based
on the original GEMs iML1515, iYali4, iSM996 and Human1,
respectively. Furthermore, we generated a self-hosted pipeline for
continuous and automated generation and update of ecModels,
ecModels container, so that each of the currently available
ecModels (ecYeastGEM, eciML1515, eciYali, eciSM996, and
ecHuman1) are integrated to it, providing a version-controlled
and continuously updated repository for high-quality ecModels.
Moreover, the implemented automation facilitates the application
of the GECKO method to other organisms for which sufficient
data is available.

Absolute proteomics measurements for the budding yeasts S.
cerevisiae, K. marxianus and Y. lipolytica grown under multiple
environmental conditions, were incorporated as constraints into
their ecModels by using the proteomics integration module added
to the GECKO toolbox. Analysis of metabolic flux distributions
revealed that net reaction fluxes predicted by GEMs are not sig-
nificantly affected by the incorporation of kinetic and proteomics
constraints, however, the explicit integration of enzymes into
ecModels extends the range of predictions of classical FBA and
enables computation of enzyme demands at the reaction and
pathway levels. It was found that incorporation of proteomics
constraints does not affect enzyme demand predictions sig-
nificantly for most of the active enzymes at low dilution rates
across the simulated conditions. However, we observed that a
diversified utilization of isoenzymes, enforced by proteomics
constraints, increases the predicted total protein mass allocated to
central carbon and energy metabolism, in comparison to optimal
enzyme allocation profiles. This result suggests the relevance of
metabolic robustness in contrast to optimal protein utilization for
microbial growth under environmental stress and nutrient-
limited conditions.

Incorporation of proteomics data allows the use of ecModels as
scaffolds for systems-level studies of metabolism, providing a tool
for uncovering metabolic readjustments induced by genetic and
environmental perturbations, which might be difficult to eluci-
date by purely data-driven approaches, specially at conditions of
relatively low changes at the transcript69 and protein levels64. For
all studied stress conditions in this study, we identified upregu-
lated proteins (increased abundance) that are needed to operate at
high saturation levels in stress conditions, while showing low
usage at reference conditions, creating lists of potential gene
amplification targets for enhancing stress tolerance in three
industrially relevant yeast species (Source Data: Data Source
File 2). Upregulation and high saturation of enzymes in amino
acid and folate metabolism were found to be common across the
studied organisms and stress conditions (Supplementary Fig. 3D
and Source Data: Data Source File 2). These results suggest that

yeast cells display enzyme expression profiles that provide them
with metabolic robustness for microbial growth under stress and
nutrient-limited conditions, in contrast to an optimal protein
allocation strategy that prioritizes expression of the most efficient
and non-redundant enzymes.

Our results on drastic reduction of median flux variability
ranges and the number of totally unbounded fluxes for eciYali,
eciSM996, and eciML1515, together with previous studies1,2,38,
suggest that a major reduction of the solution space of metabolic
models to a more biologically meaningful subspace is a general
property of ecModels. However, flux variability is an intrinsic
characteristic of metabolism; therefore, metabolic models with
highly constrained solution spaces may exclude some biological
capabilities of organisms, which are not compatible with the set of
constraints used for the analysis (exchange fluxes, growth rates
and even profiles of kinetic parameters, considered as condition-
independent in ecModels).

Here, the predictive capabilities of eciML1515 and iJL1678
ME-model (both for E. coli) for cellular growth and global protein
demands on diverse environments were compared. The major
improvement in predicted maximum growth rates, together with
a comparable performance on quantification of protein demands,
shown by eciML1515 suggest that, despite its mathematical and
conceptual simplicity, the GECKO formalism is a suitable fra-
mework for quantitative probing of metabolic capabilities, com-
patible with the widely used FBA method and without the need of
excessive complexity or computational power. Nevertheless, ME-
models provide a much wider range of predictions that explore
additional processes in cell physiology with great detail. Direct
comparison between the predictions of these modeling formal-
isms, suggest that ME-models performance can be improved by
incorporation of either curated or systematically retrieved kinetic
parameters that are suitable for the modeled organisms.

Simpler modeling frameworks that account for protein or
enzyme constraints in metabolism, such as flux balance analysis
with molecular crowding (FBAwMC)16,17, metabolic modeling
with enzyme kinetics (MOMENT)23, and constrained allocation
flux balance analysis (CAFBA)21, have also been developed and
used to explore microbial cellular growth16,17,21 and overflow
metabolism16,23. These methods have overcome the lack of
reported parameters for some specific reactions either by incor-
poration of proteomics measurements and prior flux
distributions23, manual curation and sampling procedures16,17 or
even by lumping protein demands by functionally related pro-
teome groups. In contrast, the new version of the GECKO tool-
box provides a systematic and robust parameterization procedure,
leveraging the vastly accumulated knowledge of biochemistry
research stored in public databases, ensuring the incorporation of
biologically meaningful kinetic parameters even for poorly stu-
died reactions and organisms.

The applicability of these other simple modeling formalisms to
models for diverse species is limited as none of these methods has
been provided as part of a generalized model-agnostic software
implementation. Recently, a simplified variant of the MOMENT
method (sMOMENT) was developed and embedded into an
automated pipeline for generation and calibration of enzyme-
constrained models of metabolism (AutoPACMEN)70. The pipeline
was tested on the generation of an enzyme-constrained version of
the iJO1366 metabolic reconstruction for E. coli, which also showed
consistency with experimental data. This work represented a step
forward in the field of constrain-based metabolic modeling, as it
contributed to standardization of model generation and facilitating
their utilization and applicability to other cases. However, due to the
intrinsic trade-off between model simplicity and descriptive repre-
sentation, a limitation of the sMOMENT method is its simplifica-
tion of redundancies in metabolism, which just accounts for the
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optimal way of catalyzing a given biochemical reaction, discarding
the representation of alternative isoforms that might be relevant
under certain conditions. In GECKO ecModels, all enzymes for
which a gene-E.C. number relationship exists are included in the
model structure. As traditional FBA simulations rely on optimality
principles one could, in principle, expect the same predicted flux
distributions by sMOMENT and GECKO ecModels. Nonetheless,
the explicit incorporation of all enzymes in a metabolic network
enables explanation of protein expression profiles that deviate from
optimality in order to gain robustness to changes in the environ-
ment, as it has been recently shown by the integration of a reg-
ulatory nutrient-signaling Boolean network together with an
ecModel for S. cerevisiae’s central carbon metabolism71.

In conclusion, GECKO 2.0 together with the development of the
automated pipeline ecModels container facilitates the generation,
standardization, utilization, exchange and community development
of ecModels through a transparent version-controlled environment.
This tool provides a dynamic, and potentially increasing, catalog of
updated ecModels trying to close the gap between model developers
and final users and reduce the time-consuming tasks of model
maintenance. We are confident that this will enable wide use of
ecModels in basic science for obtaining novel insight into the
function of metabolism, as well as in synthetic biology and meta-
bolic engineering for design of strains with improved functionalities,
e.g., for high-level production of valuable chemicals.

Methods
Automation pipeline and version-controlled hosting of the ecModels con-
tainer. The ecModels repository is used to version-control the pipeline code and
the resulting models. The pipeline is restricted to 2 short Python files, whose role is
to decide when models need to be updated based on a configuration file config.ini,
and to consequently invoke the use of GECKO for each model. Updates are
deemed necessary when either the underlying dependencies (i.e., GECKO, RAVEN
and COBRA toolboxes, the Gurobi solver, and libSMBL) or the source GEMs are
independently updated to a new version (release) in their respective repositories.

The pipeline is designed be automatic and to not require supervision. It was
developed to work with both version-controlled GEMs and GEMs downloadable
from a URL, updating the version in the configuration after a new ecModel is
obtained. For easy review, the pipeline log is publicly available under the Actions
tab of the GitHub repository. The computation is performed through a self-hosted
GitHub runner, further leveraging the transparent nature of the GitHub platform
and the git version- control system. The resulting ecModel and updated
configuration are committed to the repository, with the changes being made
available for review through a pull request. Additionally, the GECKO output is also
replicated in the pull request body. The ecModels container thus continues the
transparency and reproducibility of the source models.

Quantification of absolute protein concentrations for S. cerevisiae, Y. lipolytica
and K. marxianus. Total protein extraction for the strains Saccharomyces cerevisiae
CEN.PK113-7D (standard, low pH, high temperature, osmotic stress), Kluyveromyces
marxianus CBS6556 (standard, low pH, high temperature, osmotic stress) and Yar-
rowia lipolytica W29 (standard, low pH, high temperature) was conducted as
described in the supplementary methods section in the Supplementary Information
File 1. Three reference samples (hereafter, ‘bulk’ samples), one per strain, were con-
structed by pooling 5 µg of each experimental sample. Aliquots of 15 µg of total
protein extract from each sample (3 strains x 4 conditions x 3 replicates) and the three
bulks were separated on one- dimensional sodium dodecyl-sulfate–polyacrylamide gel
electrophoresis short-migration gels (1 × 1 cm lanes, Invitrogen, NP321BOX). Yeast
proteins digestion was performed on excised bands from gel gradient and digested
peptides of UPS2 (Sigma) were used as external standards for absolute protein
quantification (more details in the supplementary methods section in the Supple-
mentary Information File 1). Four microliters of the different peptide mixtures
(800 ng for yeast peptides and 949 ng for bulks) were analyzed using an Orbitrap
Fusion™ Lumos™ Tribrid™ mass spectrometer (Thermo Fisher Scientific).

Protein identification was performed using the open-source search engine X!
Tandem pipeline 3.4.472. Data filtering was set to peptide E-value < 0.01 and
protein log(E-value) < –3. Relative quantification of protein abundances was
carried out using the Normalized Spectral Abundance Factor (NSAF)73 and the
NSAF values obtained from UPS2 proteins in bulk samples were used to determine
the suitable regression curves that allowed the conversion from relative protein
abundance into absolute terms. The regression curves parameters for protein
abundance quantification are shown in the supplementary methods section in the
Supplementary Information File 1.

Simulation of condition-dependent flux distributions. Simulation of cellular
phenotypes for conditions of environmental stress at low dilution rates with GEMs
were performed by first setting bounds on measured glucose uptake and byproduct
secretion rates according to experimental data from previous studies on
chemostats64. Then the biomass production rate was constrained (both upper and
lower bounds) with the experimental dilution rate (0.1 h−1). Maximization of the
non-growth associated maintenance pseudo-reaction was set as an objective
function for the parsimonious FBA problem as a representation of the additional
energy demands for regulation of cellular growth at non-optimal conditions. The
same procedure was followed for simulations with ecModels constrained by a total
protein pool. For the case of ecModels with proteomics constraints, the same set of
constraints was used but the objective function was set as minimization of the total
usage of unmeasured proteins, assuming that the regulatory machinery for stress
tolerance is represented by the condition-specific protein expression profile.

Prediction of microbial batch growth rates. Batch cellular growth was simulated
by allowing unconstrained uptake of all nutrients present in minimal mineral
media, enabling a specific carbon source uptake reaction for each case while
blocking the rest of the uptake reactions and allowing unconstrained secretion rates
for all exchangeable metabolites. Maximization of the biomass production rate was
used as an objective function for the resulting FBA problem. For prediction of total
protein demands on unlimited nutrient conditions, media constraints were set as
expressed above and experimental batch growth rate values were fixed as both
lower and upper bounds for the biomass production pseudo-reaction. The total
protein pool exchange pseudo-reaction was then unconstrained and set as an
objective function to minimize, assuming that when exposed to unlimited avail-
ability of nutrients the total mass of protein available for catalyzing metabolic
reactions becomes the limiting resource for cells. The solveLP function, available in
the RAVEN toolbox (v2.4.3), was used for solving all FBA problems in this study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass spectrometry raw data that support the findings of this study have been deposited
in PRIDE database74 with the dataset identifier PXD012836. The processed proteomics
datasets are available in our GitHub repository at: https://github.com/SysBioChalmers/
GECKO2_simulations/tree/v1.0.1/data/proteomics. All collected kinetic data for the
study presented in Supplementary Information File are available at: https://github.com/
SysBioChalmers/Enzyme-parameters-analysis/tree/master/data. The generated
computational models used for this study are available at: https://github.com/
SysBioChalmers/ecModels/tree/v1.0.0. Data for reproduction of all main and
supplementary figures are provided in the Sournce Data: Data Source file 1, Data Source
File 2, and Data Source File 3. Source data are provided with this paper.

Code availability
The source code of the updated GECKO toolbox is available at: https://github.com/
SysBioChalmers/GECKO/releases/tag/v2.0.275. The source code for ecModels container
can be accessed at: https://github.com/SysBioChalmers/ecModels/tree/v1.0.076. All
custom scripts for simulations included in this study can be found at: https://github.com/
SysBioChalmers/GECKO2_simulations/releases/tag/v1.0.177. All the necessary scripts for
reproducing the kcat parameters analysis in the Supplementary Information File 1 are
available at: https://github.com/SysBioChalmers/Enzyme-parameters-analysis/releases/
tag/v1.0.078. All of these repositories are public and open to collaborative continuous
development.
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