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In the context of quantum technologies over continuous variables, Gaussian states and operations are typically
regarded as freely available, as they are relatively easily accessible experimentally. In contrast, the generation
of non-Gaussian states, as well as the implementation of non-Gaussian operations, pose significant challenges.
This divide has motivated the introduction of resource theories of non-Gaussianity. As for any resource theory,
it is of practical relevance to identify free conversion protocols between resources, namely, Gaussian conversion
protocols between non-Gaussian states. Via systematic numerical investigations, we address the approximate
conversion between experimentally relevant single-mode non-Gaussian states via arbitrary deterministic one-
to-one mode Gaussian maps. First we show that cat and binomial states are approximately equivalent for
finite energy, while this equivalence was previously known only in the infinite-energy limit. Then we consider
the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known
schemes by introducing additional squeezing operations. The numerical tools that we develop also allow one to
devise conversions of trisqueezed into cubic-phase states beyond previously reported performances. Finally, we
identify various other conversions which instead are not viable.

DOI: 10.1103/PhysRevA.105.062446

I. INTRODUCTION

In the context of quantum information science, continuous-
variable (CV) quantum systems [1,2] are constituted of
indistinguishable bosons that can be prepared, manipulated,
and measured in order to implement relevant information
processing protocols. They stand at the forefront of quantum
technologies and, more recently, they have gained prominence
in the context of quantum computation [3,4] over a variety of
physical platforms, such as optical [5] and microwave radi-
ation [6–10], trapped ions [11,12], optomechanical systems
[13–17], atomic ensembles [18–21], and hybrid systems [22].

A major feature of CV systems is their resilience to noise.
In particular, their associated infinite-dimensional Hilbert
space can be exploited to host a variety of bosonic codes
[3,4,6,7], namely, sets of quantum states where logical dig-
ital information can be encoded redundantly to enable fault
tolerance against arbitrary errors. In particular, the use of
superconducting cavities in the microwave regime has allowed
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for reaching the break-even point for error correction [23],
meaning an enhancement in the lifetime of quantum infor-
mation encoded in the state of the field using a rotationally
symmetric bosonic code (RSB) [24] compared to an unen-
coded qubit using the same hardware.

Quantum states over CV systems, and operations thereof,
can be classified as Gaussian and non-Gaussian—where the
nomenclature stems from the corresponding Wigner functions
[25]. Such a divide emerges naturally from both practical and
theoretical considerations: on the one hand, Gaussian states
and operations are relatively easy to implement experimen-
tally, in contrast to non-Gaussian ones; on the other hand, the
Gaussian sector of the CV Hilbert space can be efficiently
simulated on classical machines, whereas non-Gaussian com-
ponents can enable universal quantum information processing
[26,27] and even promote it to fault tolerance using non-
Gaussian bosonic codes. This state of affairs has motivated
the introduction and quantification of the concept of non-
Gaussianity [28–30] and, more in general, the development
of a resource theory of quantum non-Gaussianity [31,32]. In
other words, Gaussian states and operations are regarded as
freely available, whereas non-Gaussian states are promoted to
the role of genuine resources.

As for any resource theory, the interconversion of resources
plays a central role. For example, in the context of the re-
source theory of entanglement [33], the interconversion of
entangled states using free operations (local operations and
classical communication) is pivotal for quantum communica-
tion purposes, by means of protocols such as entanglement
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distillation. Since Gaussian operations are easily imple-
mentable and can hence be regarded as free operations, it
is fundamental to understand how different non-Gaussian
states can be converted one to another by means of protocols
that use only Gaussian operations [31]. From a technological
viewpoint, conversion protocols are important for applications
to quantum computation as well as quantum communica-
tion [34]. One context of application lies within the domain
of distributed quantum computing architectures, where, for
example, multiple superconducting quantum processors are
connected by photonic links through the use of microwave op-
tical converters. Different CV platforms suffer from different
kinds of noise which can be, in turn, counteracted by means
of different bosonic codes. It is therefore desirable to be able
to freely (namely, using Gaussian protocols) convert between
(non-Gaussian) bosonic codes.

In general, as much as desirable, a systematic study of
Gaussian conversion protocols between genuinely quantum
non-Gaussian states is elusive, due to the intrinsic difficulties
stemming from the infinite dimension of the CV Hilbert space.
Few attempts for specific cases have been considered in the
literature. For example, in Ref. [35] the Gaussian conversion
of a trisqueezd state towards the cubic-phase state (see later
for the specific definitions) has been analyzed and found that
the fidelity between them could be significatively improved
already by means of a deterministic Gaussian conversion
protocol, described formally by a completely positive trace-
preserving (CPTP) Gaussian map. It is therefore tempting to
study whether other meaningful deterministic Gaussian con-
versions between non-Gaussian states are possible to achieve
with the sole use of Gaussian CPTP maps.

In this work we perform a systematic numerical study
of deterministic Gaussian conversions between single-mode
non-Gaussian states, including bosonic code words useful
in quantum error correction, under the most general CPTP
Gaussian map. To this aim, we implement the CPTP Gaussian
maps in a numerically efficient way, taking full advantage of
parallelism and high-performance computing. This allows us
to study conversions over a large scale of parameters, for vari-
ous possible input and target states of the conversion protocols
under consideration.

Motivated mainly by experimental attainability and ap-
plicative relevance, in the following we will consider a
variety of non-Gaussian states: cat states, rotational sym-
metric bosonic codes, photon-added and -subtracted states,
Gottesman-Kitaev-Preskill (GKP) codes, cubic-phase states,
and trisqueezed states. We will show that for most of these
states it is hard to find conversions reaching high fidelities.
However, we will also identify relevant cases in which ex-
cellent performances indeed can be achieved. In particular,
we show that cat and binomial codes can be considered as
approximately equivalent for a large set of parameters, be-
yond the known high-energy limit. Moreover, we find that
photon-added and photon-subtracted squeezed states, when
acted upon with Gaussian conversion protocols, yield gen-
eration of cat states with significantly larger fidelities than
what was previously shown. The numerical tools that we
develop also allow for the conversion of trisqueezed into
cubic-phase states beyond what was done in Ref. [35]. More in
general, beyond these specific examples, the numerical tools

developed here can be used to test the interconvertibility be-
tween arbitrary single-mode non-Gaussian states under the
action of deterministic CPTP maps.

The paper is structured as follows. In Sec. II we present the
theoretical methods used to calculate bounds on the conver-
sion fidelity and define the states we are investigating, namely,
rotationally symmetric bosonic code words, photon-added
and photon-subtracted squeezed states, cubic-phase states,
trisqueezed states, and GKP states. We also comment on the
parameter ranges we used based on experimental implemen-
tations. In Sec. III we present the results for the different
conversions that we addressed. Conclusive remarks are pre-
sented in Sec. IV. Appendix briefly describes the numerical
approach.

II. THEORETICAL BACKGROUND

In this work we only consider conversions from one mode
to one mode. Therefore we restrict all our definitions to this
case. We are going to indicate the vector of quadrature opera-
tors as �̂r = (q̂, p̂)T . The quadrature operators are related to the
creation and annihilation operators by q̂ = (â + â†)/

√
2 and

p̂ = (â − â†)/(
√

2i), corresponding to setting h̄ = 1.
Notable operations on the bosonic field that we will use

in the following are implemented by the squeezing Ŝ(ξ ), the
displacement D̂(β ), and the phase rotation Ûp(γ ) operators,
which are defined, respectively, as

Ŝ(ξ ) = e
ξ∗
2 â2− ξ

2 â†2
, (1)

D̂(β ) = eβâ†−β∗â, (2)

Ûp(γ ) = e−iγ n̂, (3)

with n̂ = â†â the number operator, γ ∈ R, β ∈ C, ξ ∈ C.
The subsequent application of squeezing and displacement to
the vacuum state yields the squeezed-coherent state expressed
as

|α, r, φ〉 = D̂(α)Ŝ(re−2iφ )|0〉, (4)

with α ∈ C, r ∈ R, φ ∈ [0, 2π ).

A. Characteristic Functions and CPTP Maps

Completely-positive trace-preserving maps are Gaussian if
their action is to map Gaussian states into Gaussian states [2].
Using the formalism of the characteristic function, instead of
the equivalent descriptions using the density operator ρ̂ or
Wigner functions, allows one to write down explicitly and
parametrize the action of such maps. The symmetrically or-
dered characteristic function is given by

χρ̂ (�r) = TrD̂(−�r)ρ̂, (5)

where D̂(−�r) is the displacement operator of Eq. (2), given by

D̂(−�r) = e−i(�rT 
�̂r), (6)

with �r ∈ R2 and


 =
(

0 1
−1 0

)
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being the symplectic form. Note that the formalism of den-
sity operators is completely equivalent to the here presented
formalism using characteristic functions. Beyond unitary de-
terministic processes, these Gaussian maps may also include
nonunitary maps representing noise or processes where an-
cillary modes are measured. In the latter case, however, feed
forward is then assumed to take place, to restore determinism.

The action of a general Gaussian CPTP map � on the
characteristic function can then be written as [36]

χρ (�r) →χ�(ρ)(�r) = e− 1
4 �rT 
T Y 
�r+i�lT 
�rχρ (
T X T 
�r), (7)

with X,Y being 2 × 2 real matrices, �l being a two-
dimensional real vector, and Y being symmetric and fulfilling
the following positive semidefinite matrix constraint:

Y ± i(
 − X
X T ) � 0. (8)

Notice that Eq. (8) implies that Y has to be a positive semidef-
inite matrix. The requirement for positive semidefiniteness
needs to hold for both signs, since transposition does not influ-
ence the positive (semi-) definiteness of a matrix. Symplectic
transformations are special cases of the protocols introduced
in Eq. (7) and correspond to a class of unitary operations for
which the noise matrix Y and the displacement vector �l are set
to zero, whereas X ∈ Sp2,R is a symplectic matrix [2].

A standard measure of closeness or similarity of quantum
states is the fidelity [37]

F (ρ̂1, ρ̂2) = (Tr
√√

ρ̂1ρ̂2

√
ρ̂1)2. (9)

For a pure state, this expression can be simplified to

F (ρ̂, |�target〉〈�target|) = 〈�target|ρ̂|�target〉. (10)

The conversion protocols we are investigating only feature
a single-mode pure state as input and a single-mode pure state
as the target. Note, however, that depending on the Gaussian
CPTP map that the input state is acted on by, the output could
be a mixed state.

In order to find the Gaussian CPTP map that best ap-
proximates the target for a given input state, we numerically
optimize the matrices X,Y and the vector �l with the cost
function being the fidelity, which we aim at maximizing. We
can rewrite the fidelity for the characteristic function for the
input and the target state as

F (ρ̂, ρ̂target ) = 〈�target|ρ̂|�target〉

= 1

4π

∫
d�r χρ̂ (�r) χρ̂target (−�r), (11)

where ρ̂target = |�target〉〈�target|. While the integration is over
an infinite Hilbert space, the characteristic functions tend
rapidly to zero within a relatively small region. We therefore
introduce a finite cutoff to the integral, which enables numeric
integration. We verify that the results are cutof independent
by doubling our chosen cutoff without seeing any significant
change in fidelity.

What constitutes as a good fidelity depends on the usage.
However, for the case of quantum computation with encoded
qubits, fidelities above 95% are usually regarded as above
threshold, namely, correctable via code concatenation [38].
In summary, our conversion protocol works as follows: given

the characteristic function of the input state, we transform the
input characteristic function according to the Gaussian CPTP
map in Eq. (7). We then maximize the fidelity between the
transformed state and the target state by optimizing X , Y , and
�l while still fulfilling Eq. (8).

B. States and codes of interest

In this work we investigate conversion between different
bosonic codes as well as other known resource states. A
bosonic code entails the encoding of information in a subspace
of the infinite dimensional Hilbert space. We restrict ourselves
to codes that encode qubits and we denote the computational
basis states as |μ〉 with μ ∈ {0, 1}. Figure 1 shows a collage
with examples of the codes and states considered.

1. Rotationally symmetric bosonic codes

A way to fault-tolerantly encode quantum information into
bosonic systems consists of using rotation-symmetric codes
[24]. RSB codes are designed to protect against photon loss,
photon gain, and dephasing errors. These codes are charac-
terized by the order N of rotation symmetry and normalized
primitive states |〉. An order N-symmetric rotation code has
the logical Z operator

ẐN = ei(π/N )n̂. (12)

The code words, i.e., the basis states which encode the 0 and
1 logical information, are defined as

∣∣μN
Rot

〉 = 1√
N

2N−1∑
m=0

(−1)μ·mei mπ
N n̂|〉. (13)

The primitive state |〉 has to have nonvanishing support on
some even and odd Fock numbers. To the class of rotationally
symmetric bosonic codes belong both cat codes and binomial
codes.

For the case of cat codes |μN,α
cat 〉, the primitive states

that one considers are coherent states, corresponding to the
squeezed-coherent states introduced in Eq. (4) in the case of
zero phase φ = 0 and no squeezing r = 0:

|cat〉 = |α, r = 0, φ = 0〉 = |α〉. (14)

Note that in this manuscript we will use the term “cat
states” to indicate the code words of a cat code with rota-
tional symmetry of N = 1, see [24]. In particular, the code
words corresponding to μ = 0 yield the even-parity cat state
∝ |α〉 + | − α〉, while μ = 1 yields the even-parity cat state
∝ |α〉 − | − α〉. Cat codes with α 
 √

2 and N = 2 have been
observed in experiments [39–41]. Therefore we will con-
sider here parameters in the range of α ∈ [1, 3.5] and N ∈
{1, . . . , 6}.

Binomial codes are easier to define in the conjugate basis,
where they are expressed as

∣∣ +N,K
bin

〉 =
K∑

k=0

√
1

2K

(
K

k

)
|kN〉,

∣∣ −N,K
bin

〉 =
K∑

k=0

(−1)k

√
1

2K

(
K

k

)
|kN〉. (15)
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FIG. 1. Wigner plots of the types of states and codes used in this paper. The color bar indicates the Wigner positivity (blue) and negativity
(red), of the Wigner function W (q, p) in normalized units, see Eq. (19). (a) Binomial code with rotation symmetry N = 2, truncation K = 3,
and logical encoding μ = 0. (b) Cat code with displacement α = 2, μ = 0, N = 2, and r = φ = 0. (c) Even-parity cat state with displacement
α = 2. (d) Photon-subtracted squeezed state with L = −2 photons and squeezing ξ = 5 dB. (e) Photon-added squeezed state with L = +3
photons and squeezing ξ = 3 dB. (f) Cubic-phase state with cubicity c = 0.551 and squeezing −5 dB. (g) Trisqueezed state (three-photon
squeezed state), with triplicity t = 0.1. (h) GKP code with squeezing � = 14 dB, and μ = 0.

Binomial codes with N = 2 and K = 2 have been demon-
strated experimentally [41,42]. In order to include future
development, we have chosen K ∈ {2, . . . , 6} and N ∈
{1, . . . , 6} as possible parameters for binomial states. Fig-
ures 1(a) and 1(b) show Wigner plots of binomial and cat
codes, respectively, and (c) shows an even-parity cat state.

2. Photon-added and -subtracted squeezed states

A relevant family of non-Gaussian states that has been
experimentally implemented with optical technology are the
photon-added and photon-subtracted squeezed states [43]. In
principle, all bosonic quantum states can be created by com-
bining photon addition [44] or subtractions [45] with linear
operations. An example of an important application of pho-
ton subtraction is the generation of kitten states (cat states
with small amplitude, α � 1) [43] by matching the first two
nonvanishing coefficients in Fock basis. We define the L-
photon-added or -subtracted squeezed (PASS) state as (L ∈ Z)

|PASSL〉 =
{ 1

N â|L||α, ξ, φ〉, if L < 0,

1
N ′ (â†)|L||α, ξ, φ〉, if L > 0,

(16)

where N and N ′ are normalizing constants. Photon-added
and photon-subtracted squeezed states are widely used, espe-
cially for the generation of cat states [43], including recent
proposals for direct generation of cat states that involve two
input modes [46]. We considered up to five additions and
subtractions, with squeezing between ξ ∈ [0.1, 1.5], corre-
sponding to the range 0.86 dB − 13 dB. Figures 1(d) and 1(e)

show Wigner plots of photon-subtracted and photon-added
states, respectively.

3. Cubic-phase state

One of the most prominent non-Gaussian states is the
cubic-phase state [27], shown in Fig. 1(f). This state can be
used to promote purely Gaussian operations to universality
[47,48], as well as implementing the crucial non-Clifford T
gate for GKP codes [27]. The cubic-phase state is defined as

|c〉 = eicq̂3
Ŝ(ξ )|0〉, (17)

where we refer to the parameter c as the cubicity. Due to its
fundamental role in quantum computation over continuous
variables, various theoretical proposals have been put for-
ward to generate such a state [10,17,35,49–58], and recently
a cubic-phase state was implemented experimentally in mi-
crowave cavities [41]. To chose relevant parameters, we use
the Wigner logarithmic negativity [31,32] as a guide, such that
the negativity of our target cubic-phase state is comparable
to the one of the other states investigated in this work. The
logarithmic Wigner negativity is our chosen figure of merit,
since it is invariant under Gaussian CPTP maps and is there-
fore conserved in our conversions. The Wigner logarithmic
negativity is defined as

M(ρ̂ ) = log

(∫
d�r|Wρ̂ (�r)|

)
, (18)

where Wρ̂ (�r) is the Wigner function of the state ρ̂, and the
integral runs over the whole phase space. The Wigner function
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is defined as

Wρ̂ (�r) = 2

π

∫ ∞

−∞
dq′ei2rpx′ 〈rq + q′|ρ̂|rq − q′〉 (19)

= 1

π2

∫ ∞

−∞

∫ ∞

−∞

d �r′

2
ei(rpr′

q−rqr′
p)χρ̂ (�r′), (20)

and is therefore the Fourier transform of the characteristic
function. This analysis allows us to identify the range c ∈
[0.05, 0.3] with–5 to 9-dB squeezing for the cubic-phase state
to match the Wigner logarithmic negativity of the other states
studied in this work.

4. Trisqueezed State

Another non-Gaussian resource state that has been exper-
imentally implemented recently in a microwave architecture
[59] is the trisqueezed state [60,61], shown in Fig. 1(g). The
trisqueezed state is defined as

|t〉 = ei(t∗â3+t â†3 )|0〉, (21)

and we refer to the parameter t as its triplicity. Relevant pa-
rameters for the trisqueezed state are hard to define, since this
state was only implemented as a steady state. We use again the
Wigner logarithmic negativity as above to guide our parameter
choice, and we hence limit the range for the triplicity of the
trisqueezed state to t ∈ [0.1, 0.15]. In Ref. [35], a reliable
Gaussian conversion protocol converting the trisqueezed state
onto the cubic-phase state has been identified.

5. GKP code

An important code in the context of CV quantum com-
putation is the GKP code [27], which displays translational
symmetry. Thanks to this symmetry, this code was originally
designed to protect against small shifts of the quadratures q̂, p̂.
The code words are defined as

∣∣μideal
GKP

〉 ∝
∑
n∈Z

|√π (2nμ)〉q̂, (22)

where the index q̂ denotes the position eigenbasis. If not oth-
erwise stated, the remaining states are written in Fock basis.
The ideal GKP states in Eq. (22) are non-normalizable and
associated to infinite energy, and thus they are not proper
quantum states. To define physical GKP states with finite
energy, we consider finitely squeezed GKP states [27,62]

|μ�
GKP〉 ∝

∑
n∈Z

e− π
2 �2(2n+μ)2

D̂

(√
π

2
(2n + μ)

)
Ŝ(− ln �)|0〉,

(23)

where the real parameter � is associated to the squeez-
ing degree. GKP states with about 7-dB squeezing have
been implemented in experiments [12,63]. To encompass

experimental improvements, we have chosen 5–12-dB
squeezing for the GKP states. Figure 1(h) shows a Wigner
plot of a GKP state.

III. RESULTS

In this section we present various conversions using the
CPTP map defined in Eq. (7). Let us stress here that, using
our numerical tools (see Appendix) we were able to address
systematically and exhaustively a variety of conversions and
that, in the following, we are going to present only the cases
that we deem more relevant. For simplicity, when targeting
bosonic codes we chose the code word corresponding to
μ = 0.

A. Binomial and cat codes

In this section we focus on binomial and cat codes. As
previously mentioned, these are the most studied instances
of rotationally symmetric bosonic codes, and they both have
been introduced in the context of error correction to counteract
the detrimental effect of losses. The implementation of such
codes is currently under intense experimental efforts and has
led to performances beyond the break-even point for quantum
error correction [23]. Similarities between these codes are to
be expected, given their common symmetric and error correc-
tion properties. In fact, for a given rotational symmetry N , it is
clear that they coincide in the limit of high energy, namely, in
the limit of large truncation (K → ∞) and large displacement
(α → ∞) [24]. In particular, as noted in Refs. [62,64], the
Fock-state distributions of the binomial and cat codes are
binomial and Poissonian, respectively, and they become indis-
tinguishable in the high-energy limit. Besides this asymptotic
equivalence, no systematic relation between the two codes is
known for the more practically relevant case of finite energy.

In the following we will identify, for a given binomial
code, whether a cat code exists such that the two can be
considered approximately equivalent [65]. Let us stress here
that this equivalence between a priori different codes does not
require the active implementation of any Gaussian conversion.
In other words, our systematic numerical approach enables
us to identify a direct connection between these two codes,
with no need of further manipulations of the code states.
In addition, as we will see below, such a connection is not
immediately intuitive since it cannot be identified by simply
selecting isoenergetic code states.

Our numerical findings are illustrated in Fig. 2. Each of the
panels corresponds to a different rotational symmetry N , and
each curve corresponds to a truncation K of the binomial code.
For a given binomial code, we have considered its zero-logical
state |0N,K

bin 〉 and systematically calculated its fidelity with a
zero-logical state of a cat code |0N,α

cat 〉 for different values
of α.

Let us focus first on the case with N = 2. It is clear from
Fig. 2 that for any K there exists a value of α such that the
fidelity is large (in particular, greater than 0.97 for the cases
under scrutiny). Interestingly, the largest fidelity is in general
not achieved for the isoenergetic case. This can be appreciated
by considering the fidelity for the case in which the displace-
ment α is set to a value (αiso) such that the states |0cat〉 and
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FIG. 2. Fidelity between cat and binomial codes as function of the amplitude α of the cat code for different truncations K of the binomial
code. N gives the rotation symmetry of the investigated code words and is always the same for both. The dotted vertical lines give the value
of αiso for which both code words have the same energy, whereas the solid vertical lines show the value of α corresponding to the maximum
fidelity.

|0bin〉 have the same energy. The values αiso correspond to the
dashed vertical lines in the figure and they do not coincide
with the values αmax where the maxima of the fidelity curves
are located (solid vertical lines in the figure). However, we
can see that for larger K the isoenergetic states get closer to
the maxima, in accordance with the mentioned equivalence of
the two codes for high energies. Let us stress here that we ex-
haustively checked numerically that no Gaussian conversion
protocol can improve the fidelity plotted in Fig. 2, except in
regions of low fidelity far from the optimal αmax.

A detailed inspection of all the results reported in Fig. 2
reveals that the approximate equivalence between binomial
and cat codes holds more, in general, for larger values of
the rotational symmetry N , even if not for all the values of
the parameters. More specifically, whereas for low and high
values of K large fidelities can still be achieved for any N ,
a region of intermediate values of K emerges for which such
equivalence does not hold. This behavior is clearly illustrated
in Fig. 3 (lower panel), where the maximal fidelity achievable
for any pair (N, K ) is plotted. Notice that we only show the
values of the maximal fidelities for the cases in which it is
clear from Fig. 2 that such maxima are in fact achieved, in
the range of α considered (e.g., for N = K = 5 the maximum
is not attained for α ∈ [1, 3.5] and therefore it is not plotted).
As said, it is important to stress that, in all the cases of N
we considered, the numerical tools developed for our analy-
sis (Appendix) enabled us to show that Gaussian conversion
protocols do not help in achieving larger values of the fidelity.

A natural question that stems from the observations above
is whether it is possible to find a quantitative relation that
determines the approximate correspondence between these
two codes, in other words, whether a relation exists (for
fixed N) between αmax and K . Our findings are illustrated
in Fig. 3 (upper panel), where we plot αmax versus K for
different values of N , showing a nearly monotonic increase.

This dependence can be intuitively understood by analyzing
the features of these codes in the phase space. By consider-
ing the respective Wigner functions of the two codes, as K
increases so does the complexity of the binomial code states
(e.g., the number of positive and negative peaks in the phase
space increases). Similarly, so does the complexity of the cat
code as α increases. Figure 4 shows the Wigner functions for
a few different values of αmax and K , for fixed N = 2 and
μ = 0. More in general, from those figures one can appreciate
from a phase-space viewpoint the origin of the approximate
equivalence of the two codes.

B. Cat states and photon-added and -subtracted squeezed states

In this section we focus on Gaussian conversions between
PASS and cat states. Close similarities between them have
been recognized since the introduction of photon-subtracted
squeezed states [66]. In particular, given that the cat state
can be produced probabilistically in optical laboratories with
relative ease (by combining networks of passive linear op-
tics elements and photon counting), the recognition of such
similarities has lead to pivotal experimental achievements
such as the generation of kitten states, namely, cat states
with small amplitude α � 1 which display negativities in
their Wigner function [67–69]. These experimental efforts
have been accompanied by intense theoretical investigations
in order to systematically map the relation between these two
different classes of states, with the final aim of proposing
implementable protocols to generate cat states by photon sub-
tractions and additions [43,70].

However, this generation technique presents considerable
experimental challenges when cat states of larger ampli-
tudes are targeted, since the fidelity between the latter and
PASS states is high only for large numbers of photon
additions/subtractions which, in turn, imply complex optical
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FIG. 3. Values of the amplitude αmax for the respective cat code at
maximum fidelity (top panel) as well as maximum fidelity (bottom
panel) as a function of the truncation K of the binomial code for
various rotation symmetries N . The values next to the markers in the
first panel are the values of maximal fidelity, while they are the values
of αmax in the second panel.

networks and low generation probabilities. Here we show
that the similarities between PASS and cat states can be
significantly boosted by relatively simple Gaussian conversion
protocols, even for small numbers of photon additions or
subtractions, therefore leading to relevant improvements of
the mentioned cat-state generation protocols.

We consider initial PASS states as defined in Eq. (16) with
variable squeezing ξ and L ∈ {−5, . . . ,+5}. As target we
consider cat states with either even or odd parity and variable
amplitude α ∈ [1.5, 2.5], as defined in Eq. (14). For these
parameters, the cat states are represented in the phase space
by two peaks that are well separated by “interference fringes”
(a pattern with oscillating Wigner negativity and positivity).
This is the regime in which the two components of the cat
state become distinguishable enough to enable various appli-
cations, including fault-tolerant quantum computation [71].
For any given target, we have optimized the conversion pro-
tocol by maximizing the fidelity between the converted state
and the target. The maximization is performed numerically
over an extensive set of parameters, following the techniques
described in Sec. II A.

FIG. 4. Wigner plots of binomial codes and cat codes, both with
rotation symmetry N = 2, and logical encoding μ = 0. The trun-
cation K for the binomial code and the displacement α for the cat
code are indicated by the labels. This phase-space representation
makes the approximate equivalence between binomial and cat codes
become apparent.
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FIG. 5. Fidelities of conversion from PASS to cat states as a function of the squeezing ξ of the PASS state. Please note that the lowest
value of the displacement (α = 1.5) was chosen such that the cat state no longer looks like a continuous rotationally symmetric state—it has
well-separated coherence peaks with fringes in-between. The dashed lines are the fidelity between the target cat state and a PASS state with
the indicated L and ξ . The solid lines are the fidelities after the application of the optimal Gaussian CPTP map that consists of squeezing or
antisqueezing. As can be seen, the fidelity with an additional squeezing operation is higher than without the application of a protocol.

The results are presented in Fig. 5, where the fidelity is
plotted as a function of squeezing of the input PASS state, and
the different panels show various target cat states. Each curve
corresponds to a unique number L of subtractions or additions,
while dashed and solid lines correspond to nonoptimized and
optimized fidelities, respectively. Specifically, the nonopti-
mized fidelities correspond to the case in which no conversion
protocol is applied, and they coincide with the known results
available in the literature [70]. As in the previous sec-
tion, the curves corresponding to the optimized fidelities are
obtained by extensive numerical searches of the optimal con-
version algorithm, along the lines discussed in Sec. II A and
Appendix.

In contrast with what was observed in the previous section,
we can observe that here, for any set of parameters (α, L, ξ ), a
Gaussian conversion protocol enables us to reach significantly
higher values of fidelities with respect to the case when no
protocol is applied, except for one point where they coincide.
A physical intuition for such an improvement can be gained
by considering the Wigner function representing PASS and
cat states (see Fig. 1). As mentioned previously, both states
feature two positive peaks along the q axis, separated by
fringes. A close inspection of the parameters characterizing
the optimized conversion protocols shows that they consist
mainly in either a squeezing or an antisqueezing operation
(along the q axis) of the PASS state at hand. The values of the
corresponding squeezing parameters for the conversions are
plotted in Fig. 6 for α = 2 in the target cat state for an input
PASS state with L = −2 and L = −4. Therefore the action of
the conversion is to either increase or decrease the separation

of the peaks in the PASS state under consideration in order to
match the separation of the target cat state.

At a more refined level, one can furthermore observe that as
the amplitude α of the target increases, so does the separation
between the coherence peaks, as well as the number of fringes.
We note that even (odd) parity cat states have a positive
(negative) central peak. Similarly, looking at the PASS states,
an even (odd) number of photon subtractions or additions also
give a positive (negative) central peak. The number of sub-
tractions or additions generally controls the number of fringes
between these peaks. Hence an increased separation and oscil-
lations in the cat state (caused by a higher displacement) have
to be matched not only by the right amount of squeezing, but
also by the proper amount of photon additions or subtractions,
as illustrated in Fig. 5. Note that for increasing amplitudes of
the target cat state, a higher number of photon additions or
subtractions are required to achieve high fidelities. Moreover,
notice that most curves in Fig. 5 show a monotonic increase
in fidelity with squeezing, up to an asymptotic value. This is
due to the fact that the conversion protocol can compensate
for the squeezing of the PASS state under consideration (by
antisqueezing it, when needed), once the maximal value of fi-
delity, which is fundamentally dictated by the value of photon
additions or subtractions, is achieved.

By way of example of the improvements attainable with
our conversion protocols over known results, let us consider
some specific values of the fidelity for the case in which the
target is an even-parity cat state with amplitude α = 2. This
scenario is shown in Fig. 6. With two photon subtractions
at disposal (L = −2), the best fidelity achievable without
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FIG. 6. Conversion between a PASS state with squeezing ξ and L photon subtractions and an even-parity cat state with α = 2. The first
panel shows the fidelities between the converted PASS state and the cat state, using a Gaussian CPTP, extracted from the central panel in the
bottom row of Fig. 5. The Gaussian map is effectively only squeezing with strength �. In the second panel we plot the optimal squeezing �

of the map as a function of the input squeezing ξ of the PASS state. The vertical lines show the squeezing for which the PASS state and the
cat state have maximal fidelity without application of the map (they correspond to the points where the solid and dashed curves coincide in the
central panel in the bottom row of Fig. 5). As can be seen, this corresponds to when the Gaussian map does not add any squeezing itself.

conversion is F = 0.891, obtained for a PASS state with
L = −2 and ξ = 0.7. On the other hand, using our optimized
conversion protocol (specifically, given by a squeezing op-
eration of amount � = −1.06), the value of F = 0.95 can
be achieved using a PASS state with L = −2 and ξ = 1.3.
Slightly larger fidelities can be obtained for larger ξ . Simi-
larly, with four photon subtraction at disposal, the maximal
fidelity achievable without conversion is given by F = 0.95,
obtained for a PASS state with L = −4 and ξ = 0.5. By using
a conversion protocol this can be improved to F = 0.995,
considering a PASS state with L = −4 and ξ = 1 and enacting
on it with an additional squeezing of amount � = −1.16.
Namely, an almost perfect conversion can be attained in this
case.

Finally, let us notice that our approach shares some simi-
larities with the one taken by Menzies and Filip in Ref. [72].
There, a minimal non-Gaussian “core state” is identified for
any given target state, in particular, for a given cat state. Then
the fidelity with the target is optimized with the help of addi-
tional Gaussian operations. The latter would correspond to a
Gaussian conversion protocol, included in the set of protocols
considered here. However, a notable difference with respect
to the approach in Ref. [72] is that in our case no “core state”
specific to the target under consideration is used. Rather, we
consider a given pair of initial and target states—PASS and cat
states, respectively—and then identify an optimal Gaussian
conversion between the two.

A notion close to the concept of core states and Gaussian
convertibility is the stellar rank [73]. If states have the same
stellar rank, then Gaussian convertibility is achievable and
they share the same core state. Even though cat states have
infinite and PASS states finite stellar rank, the former can be
approximated by the latter. As the authors note in Ref. [73],
one can find states with finite stellar rank to arbitrarily well
approximate states with infinite stellar rank. Our work shows
that further Gaussian optimization can increase the quality of
the approximation instead of just increasing the stellar rank.

C. Trisqueezed and cubic-phase states

This section describes conversions between the trisqueezed
(three-photon squeezed state) and the cubic-phase state, ex-
tending the results presented in Ref. [35]. We vary the cubicity
c ∈ [0.04, 0.06, . . . , 0.16] and squeezing ξ ∈ [0, 0.25,−0.5],
extending the parameters from the three fixed conversions
studied in Ref. [35] to a whole range. Following the approach
in Ref. [35], we choose the triplicities such that the Wigner
logarithmic negativity of the input and target states match
(see Table I). We then run our optimization protocol with
the aim of finding the best protocol to convert the chosen
trisqueezed state to the target cubic-phase state. We find rel-
atively high fidelities for low cubicities, see Fig. 7. As the
cubicity increases, so does the complexity of the cubic-phase
state, until a point where the trisqueezed state simply cannot
match all the rich features. Therefore there is a monotonic
decrease in the fidelity. In the more trivial case ξ = 0, the
initial fidelity and optimized fidelity are quite similar, but in
all other cases, the protocol gives a significant improvement.
As in Ref. [35], the optimal protocol consists of squeezing and
small displacements along the p axis.

D. Gaussian no-goes

As stated in section Sec. II B, we have performed an ex-
haustive and systematic study of state conversions between

TABLE I. Triplicities (t) for Fig. 7. The triplicities are chosen
such the Wigner logarithmic negativity of the input trisqueezed state
matches that of the target cubic-phase state given a certain cubicity
and amount of squeezing.

Cubicity 0.04 0.06 0.08 0.1 0.12 0.14 0.16

t (ξ = 0.25) 0.048 0.063 0.075 0.084 0.0922 0.0988 0.104
t (ξ = 0) 0.027 0.037 0.0464 0.0543 0.061 0.067 0.073
t (ξ = −0.5) 0.078 0.095 0.107 0.116 0.124 0.130 0.136
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FIG. 7. Fidelity for the conversion from trisqueezed to cubic-
phase state as a function of the cubicity of the target state. Different
markers correspond to different squeezing values ξ of the cubic-
phase state, when using an optimal Gaussian CPTP map (solid lines),
and no map (dashed lines). The triplicity is such that the Wigner
negativity is the same for the input and target state (see values in
Table I).

a variety of states and codes, for wide ranges of parameters.
Dealing with such large-scale optimization can lead to pitfalls
in the data analysis. In this section we present conversions that
might erroneously be identified as promising, based primarily
on the fact that they yield from a low-input fidelity to a
high-output fidelity, and a protocol appearing to do something
meaningful. Upon closer inspection, however, these conver-
sions fail to capture the correct qualitative features of the
target state. These findings can be framed along the ones of
Refs. [74–76], where it is shown that the fidelity can have a

FIG. 8. Fidelity for the conversion from a PASS state with L =
2 added photons to a cat code with rotation symmetry N = 2, as a
function of squeezing ξ of the PASS state. The logical encoding of
the cat code is μ = 1, and the displacement α is indicated by the
legend. For low squeezing ξ , the states initially look very similar and
have a high initial fidelity, but closer inspection in Fig. 9 shows that
they have different qualitative features.

limited predictive power of the relevant features for quantum
states.

Table II summarizes a few such conversions. Figures 8
and 9 show the notable example of conversion between PASS
states with L = 2 to cat codes, which has a relatively high fi-
delity, and at first glance very similar Wigner functions. Under
closer inspection, however, the PASS states have continu-
ous rotational symmetry, while the cat codes have a discrete
rotational symmetry. Two other notable examples are PASS

TABLE II. Examples of conversions where the Gaussian conversion appears to be efficient but actually fails to capture the correct features
(or is uninteresting or trivial for some other reason).

Input code/state Target code/state Initial Fidelity Fidelity

PASS (L=−2, 1 dB) GKP(6 dB) 0.8579 0.9189
PASS (L=−2, 3 dB) GKP(5 dB) 0.8762 0.9361
PASS (L=−2, 1 dB) GKP(5 dB) 0.9319 0.9630

PASS (L=−2, 5 dB) Cat(α=1, μ = 0) 0.3891 0.9346
PASS (L=−2, 3 dB) Cat(α=1, μ = 0) 0.6711 0.9791
PASS (L=−2, 1 dB) Cat(α=1, μ = 0) 0.9199 0.9701

PASS (L=+2, 5 dB) Cat(α=1, μ = 1) 0.4279 0.8954
PASS (L=+2, 3 dB) Cat(α=1, μ = 1) 0.7250 0.9518
PASS (L=+2, 1 dB) Cat(α=1, μ = 1) 0.9617 0.9914

PASS (L=+2, 5 dB) Cat(α=√
2, μ = 1) 0.4976 0.8659

PASS (L=+2, 3 dB) Cat(α=√
2, μ = 1) 0.7547 0.9127

PASS (L=+2, 1 dB) Cat(α=√
2, μ = 1) 0.9323 0.9516

Cat(α = 1, μ = 0) Cubic(c=0.05, −5 dB) 0.8241 0.9560
Cat(α = 1, μ = 0) Cubic(c=0.1, −5 dB) 0.7382 0.9222
Cat(α = 1, μ = 0) Cubic(c=0.05, −7 dB) 0.7260 0.9226

Cat(α = 1, μ = 0) GKP(5 dB) 0.8764 0.9243
Cubic (c=0.05, −5 dB) GKP(5 dB) 0.5485 0.9257
Trisqueezed (t = 0.1) GKP(5 dB) 0.7741 0.9171
Trisqueezed (t = 0.1) Cat(α = 1) 0.9082 0.9195
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FIG. 9. Comparison of rotationally symmetric codes. (a) PASS
state with L = +2 photons and zero squeezing, which is the Fock
state |2〉. (b) Cat code with α = 1, logical encoding μ = 1, and
rotation symmetry N = 2. As the squeezing of the PASS increases,
the protocol can still yield a high fidelity by “undoing” the squeezing.
As the magnitude of α increases significantly, the protocol can also
yield a relatively high fidelity, but the cat code breaks the continuous
rotational symmetry, displaying a clear fourfold discrete rotational
symmetry in phase space. This means that the features are not cap-
tured by the protocol, and the conversion is in this sense a no-go.
This is illustrated in panel (c), where the amplitude of the Wigner
function is plotted along a circle of fixed radius, as indicated by the
dashed line in panel (a). The oscillations in the cat code are due to
the discrete rotational symmetry, while the photon state is completely
rotationally symmetric.

states L = −2 to cat codes, and cubic-phase states to GKP
codes, illustrated in Figs. 10 and 11, respectively. Although
the fidelities are relatively high, these figures show significant
discrepancies in the Wigner functions. In particular, the nega-
tivity of the quasiprobability distributions is known to yield
an important characterization of the nonclassicality of the
state [77–80], and indeed, the Wigner negativity is necessary
[81,82], even if not sufficient [83], for quantum computational

FIG. 10. Conversion of a PASS state with L = −2 photons and
squeezing 3 dB to a cat code with displacement α = 1 and μ = 0.
The state (left) obtained after applying the conversion protocol to the
input state has increased fidelity from roughly 0.67 to 0.98 but misses
the Wigner negativity in the top-left and bottom-right corner regions
of the target state (right).

FIG. 11. Conversion of a cubic-phase state with cubicity 0.05
and squeezing −5 dB to a GKP state with squeezing noise 5 dB.
The state (left) obtained after applying the conversion protocol to the
input state has increased fidelity from roughly 0.55 to 0.93, but as
can be seen, the qualitative features of the target (right) are captured
very poorly.

advantage. As it can be seen in Figs. 10 and 11, the negativity
features of the states under consideration are captured very
poorly.

A more refined metric than the fidelity would address the
operational usefulness of a certain state. For example, one
could introduce figures of merit able to quantify how the gate
fidelity is affected in a teleportation setting, or how the error
rate changes when a state is used as a logical qubit in an
error-correction setting. For, e.g., rotational symmetric codes
it is more important to have the correct rotational symmetry
than the similarities captured by the fidelity. In other words,
these results further emphasize that the fidelity is not the best
measure to determine closeness in an operational sense and
motivate the use and discovery of other metrics.

IV. CONCLUSIONS

In this paper we have presented an exhaustive study
of single-mode Gaussian conversions between non-Gaussian
bosonic states, based on numerical simulations. Our numer-
ical framework is in the progress of being released as open
source and enables large-scale throughput of conversions
between different states and codes, with optimization over
wide ranges of parameters. For more information consult
Appendix.

First we identified an approximate equivalence between
cat and binomial code words. For all the cases we tested,
no improvement was possible through the usage of Gaussian
CPTP maps. This correspondence was previously known only
in the asymptotical case, while we showed that these codes
are approximately equivalent for certain sets of parameters
in the finite-energy regime. Second, we demonstrated an im-
provement in the conversion of PASS to cat states by applying
a Gaussian CPTP map. The approximate equivalence from
PASS to cat states has been known since the introduction
of PASS states; however, we showed that the fidelities can
be increased substantially by additional squeezing and an-
tisqueezing. Furthermore, we showed improvements in the
fidelity of the conversion from trisqueezed to cubic-phase
states through the application of Gaussian maps for a wide
range of parameters, extending the results presented in [35].
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Finally, we presented a few deceptively good conversions
that do not reproduce important features, illustrating that the
fidelity alone is not a sufficient measure to estimate successful
conversions.

Based on our results, it appears that the Gaussian CPTP
map is a quite limited protocol. Consequently, successful con-
versions, such as in Ref. [35], stem from our systematic work
as exceptions, rather than the rule. As a potential remedy,
we suggest Gaussian CPTP maps with multimode distillation
and probabilistic protocols. These protocols are being imple-
mented into our numerical framework, and further studies are
underway.
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APPENDIX: FIDELITYOPTIM—A NUMERICAL
FRAMEWORK FOR FIDELITY OPTIMIZATION

The fidelity calculation presented in Sec. II represents a
challenging computational problem. Indeed, using publicly
available tools (such as QUTIP [84,85]), it can take several
hours to evaluate a single fidelity. It can therefore become un-
feasible to solve the optimization problem of finding the best

conversion parameters for the Gaussian CPTP map, as this
requires mapping out large parameter phase spaces and some-
times evaluating over thousands of fidelities. Furthermore,
the complexity scales rapidly with the number of indepen-
dent optimization parameters of the protocol. Motivated by
a need for large-scale optimization, we have developed an
efficient and versatile numerical framework, called FIDELITY-
OPTIM,with a powerful backend written in C + + and CUDA

[86,87], and a user-friendly frontend written in PYTHON. The
front-ins end interface removes the need for the user to write
source code, making it trivial to set up large-scale conver-
sion optimizations, as well as to postprocess and analyze
the results. FIDELITYOPTIM can compute over hundreds of
fidelities per second on a desktop computer, making it pos-
sible to explore relatively large phase spaces, and find the
optimal conversions. This is made possible by (1) an efficient
implementation of the Gaussian CPTP map, (2) exploiting
parallelism and high-performance computing, (3) using state-
of-the-art hardware in the form of graphics processing units,
and (4) using efficient optimization strategies. For comparison
and portability reasons, the code also runs relatively fast on
central processing units. This makes FIDELITYOPTIMuseful on
anything from consumer laptops and desktops, to powerful
nodes in cluster environments.

To ensure that we do not miss optimization parameters
where the Gaussian conversion protocol might provide a bet-
ter fidelity, we use the robust and versatile particle-swarm
optimization strategy [88,89]. With this method we com-
pare thousands of different parameters in parallel, for each
iteration. We typically start by spreading the swarm either
randomly or uniformly in the optimization-parameter phase
space and let the swarm search the phase space until it con-
verges towards an optimal fidelity. For more details on the
optimization strategy, see Appendix B in Ref. [35].
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