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A B S T R A C T

Shared electric scooters (e-scooter) are booming across the world and widely regarded as a sustainable mobility
service. An increasing number of studies have investigated the e-scooter trip patterns, safety risks, and envi-
ronmental impacts, but few considered the energy efficiency of e-scooters. In this research, we collected the
operational data of e-scooters from a major provider in Gothenburg to shed light on the energy efficiency per-
formance of e-scooters in real cases. We first develop a multiple logarithmic regression model to examine the
energy consumption of single trips and influencing factors. With the regression model, a Monte Carlo simulation
framework is proposed to estimate the fleet energy consumption in various scenarios, taking into account both
trip-related energy usage and energy loss in idle status. The results indicate that 40% of e-scooter battery energy
was wasted in idle status in the current practice, mainly due to the relatively low usage rate (0.83) of e-scooters. If
the average usage rate drops below 0.5, the wasted energy could reach up to 53%. In the end, we present a field
example to showcase how to optimally integrate public transport with e-scooters from the perspective of energy
efficiency. We hope the findings of this study could help understand and resolve the current and future challenges
regarding the ever-growing e-scooter services.
1. Introduction

Developing sustainable transportation systems has become a common
goal across the world. The shared purpose drives countries to promote
mobility systems that are powered by clean energy, such as electric buses
(Qu and Wang, 2021). However, the UN's yearly report shows that only
half of the world's urban population have access to public transportation
by 2019, and renewable energy accounts for merely 3.4% of the total
consumption in the transport sector by 2018 (Sachs et al., 2021). The
recent emergence of shared electric scooters (e-scooters) provides a
promising solution to relieve those two concerning problems. On the one
hand, e-scooter enters the market initially as a first/last mile service that
could improve the accessibility of public transport (Smith and Schwie-
terman, 2018); on the other hand, it naturally relies on an electric power
system and is probably the first fully electrified large transport system.

The modern form of shared e-scooters was first introduced to the
market in the United States in 2017. By the end of 2018, more than
85,000 e-scooters were deployed in U.S. cities and used in 38.5 million
trips, while dockless bicycles, which have a much longer history, were
involved only in 9 million trips (NACTO, 2019). In addition, more than
70% of people in major cities in the United States were reported to have
).
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positive attitudes towards e-scooters (Clewlow, 2019; Sellaouti et al.,
2020). Albeit with the growing popularity and promising outlook, there
is one crucial question that has yet to be answered: are e-scooters energy
efficient? This problem is vital because fossil fuel is still the major source
of electricity in today's world (Liddle and Sadorsky, 2017). Thus, energy
efficiency should be taken into account in the judgment of whether a
mobility service is truly sustainable. The present paper is devoted to this
topic and shedding light on the energy efficiency of e-scooters with field
evidence.

Specifically, we look into the dockless and shared e-scooters, which
typically have a design with a deck, a handlebar, and two-wheelers
propelled by small electric motors (see Fig. 1). Although with different
vehicle appearances and power systems, e-scooters and shared bikes
usually have similar subscription systems, positioning and unlocking
technologies, parking rules, and thus similar travel experiences (Bao
et al., 2017). However, for service providers, e-scooter fleet management
and operation are arguably more challenging due to the limited battery
capacity. To maintain a desired level of service, shared bike providers
focus mainly on the imbalance between the spatiotemporally varying
demands and vehicle supplies. E-scooter companies nevertheless have
additional concerns about the battery state of charge (SoC). The battery
d 24 November 2021
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Fig. 1. Electric scooter sharing (source: https://commons.wikimedia.org/
w/index.php?curid=90168905).
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SoC of an e-scooter drops not only during usage but also in idle status.
The energy loss in idle status for one e-scooter seems deceptively small
and thus has been overlooked in existing studies, while the cumulative
effect of a large e-scooter fleet over a long time span is nontrivial. To
provide a comprehensive understanding of the energy efficiency of
shared e-scooter systems, we collected the largest and densest data for
this topic in the literature, built upon which the structure and influencing
factors of e-scooter energy consumption are investigated.

The remainder of the paper is structured as follows. Section 2 reviews
related studies in the shared mobility area. In Section 3, we introduce the
data collection method and statistical summaries. Section 4 and 5 present
the model and case studies, respectively. Section 6 includes an example
in which we integrate buses and e-scooters to minimize trip energy
consumption. Section 7 concludes the paper with discussions.

2. Literature review

Before the e-scooter's debut, the shared bike is arguably the most
prevailing micro-mobility service in most urban areas. Considering that
shared bikes and e-scooters target the same user group, cities that have
successful bike-sharing systems will most likely be fertile grounds for e-
scooters as well. This naturally leads to follow-up studies in the shared
mobility community that investigate the differences between the two
modes (Curl and Fitt, 2020; McKenzie, 2019; Zhu et al., 2020). McKenzie
(2019) investigated when and where the e-scooters are used and
compared the spatiotemporal usage patterns of e-scooter with the
bike-sharing system in a major urban center. Younes et al. (2020)
analyzed and compared the contributing factors of dockless e-scooters
and station-based bikes based on a negative-binomial regression model.
The result indicated that the weather is less of a disutility for e-scooter
users than for shared bike users. Lazarus et al. (2020) found that the
major difference between e-scooter trips and other shared services is that
e-scooters have more usages in communities with lower population
density. Albeit with those notable differences, e-scooters are currently
following the same business model of shared bikes, especially dockless
shared bikes. Moreover, compared with the abundance of bike-sharing
studies, research on e-scooters is rare. Therefore, we first review semi-
nal studies on dockless bike-sharing systems to present the context of
shared mobility systems and then focus on recent e-scooter studies.
2

2.1. Dockless bike-sharing research

With the development of information communication technologies, it
is estimated that more than 23 million shared bikes have been deployed
around the world in 2019 (Svegander, 2020). Compared to traditional
station-based bike-sharing systems, dockless bike-sharing is more
convenient and accessible as sharing bikes could be parked in any proper
location (Chen e.t al., 2020). A majority of studies have investigated the
mobility pattern of dockless bike-sharing systems, such as the relation-
ship between trip frequency and contributory factors. Ma et al. (2020)
compared the performance of docked bike-sharing systems with dockless
ones in riding distance, usage frequency, spatial and temporal patterns.
Shen et al. (2018) reviewed the usage of dockless bike-sharing in
Singapore by spatial autoregressive models. The results indicated that a
large fleet size, convenient access to public transportation, and sup-
portive cycling facilities have positive impacts on the use of dockless
sharing bikes. Link et al. (2020) applied discrete choice models to un-
derstand dockless bike-sharing characteristics and usage patterns. They
found that the primary objective of the dockless bike-sharing trips is
leisure activities, followed by commuting purposes.

Demand prediction for dockless shared bikes is another widely
studied topic. Xu et al. (2018) developed a deep learning model to predict
the dynamic demand of dockless shared bikes. The results are informa-
tive in rebalancing bikes in the system. Ai et al. (2019) employed a
convolutional LSTM network to predict the short-term spatial and tem-
poral distribution of the dockless bike-sharing system. Hua et al. (2020)
predicted the real-time usage and distribution of dockless bike-sharing by
random forest models and found it more challenging to predict the dis-
tribution of bicycles than the usage demand.

In addition, considerable efforts have been made to improve the
dockless bike-sharing system through vehicle relocation. Pan et al.
(2019) conducted a novel deep reinforcement learning framework to
rebalance the dockless bike-sharing systems considering spatial and
temporal features. Barabonkov et al. (2020) simulated and evaluated the
rebalancing strategies for dockless bike-sharing systems with a
mixed-integer program to generate the optimal relocation solution. As for
the environmental impact, Luo et al. (2019) conducted a life cycle
assessment of dockless and docked bike-sharing systems, respectively.
The results showed that rebalancing is essential in terms of reducing
greenhouse gas emissions.

2.2. E-scooter studies

E-scooters have the potential to relieve the increasingly severe traffic
congestions and greenhouse gas emissions (Browne et al., 2020; Hardt
and Bogenberger, 2019). In this area, the literature has been focused on
travel behavior (Bai and Jiao, 2020; Caspi et al., 2020; Jiao and Bai,
2020; Severengiz et al., 2020), safety (Che et al., 2020; Dhillon et al.,
2020; Sikka et al., 2019; Yang et al., 2020), and environmental impacts
(Hollingsworth et al., 2019).

Following the bike-sharing research paradigm, recent studies have
estimated the usage patterns and influencing factors on the ridership of e-
scooter sharing systems. Bai & Jiao (2020) analyzed the e-scooter usage
characteristics and the relationship between e-scooter ridership and
related factors in the U.S. cities based on a negative binomial regression
model and GIS hotspot spatial analysis. Caspi et al. (2020) explored the
travel behavior patterns of e-scooter sharing systems and conducted
spatial regression models to evaluate the effects of land-use characteris-
tics, built environment, and demographics on e-scooter travel generation.
Besides, the result found that student is the primary source of trips.
Similarly, there are studies to understand the impacts of weather on
e-scooter usage. Mathew, Liu and Bullock (2019) conducted a study to
examine the effects of weather factors on urban e-scooter utilization by
statistical models. The result found that users would be more sensitive to
temperatures below freezing and snowfall than rain.

There are also raising concerns that e-scooters may induce safety risks
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for pedestrians and riders. The crashes and fatalities have been increasing
since the e-scooters companies are expanding rapidly across the world.
For example, the e-scooter parking and riding on the sidewalk could
impair and threaten pedestrians' safety. The safety impacts on e-scooter
riders have been measured in several studies (Fang et al., 2018; G€ossling,
2020; James et al., 2019; Maiti et al., 2020). The results indicated that
the leading causes of e-scooter rider injuries include falls and collisions
with objects or vehicles (Trivedi et al., 2019). Other studies were focused
on the safety impacts of e-scooter sharing systems. Allem andMajmundar
(2019) examined the degree that e-scooter companies emphasize safety
on Instagram and found that the protective gear is rarely used with the
e-scooters. Badeau et al. (2019) quantified and characterized the
e-scooter-related injuries based on electronic medical records. They
found that major head injuries and musculoskeletal injuries account for a
large proportion of patients.

The body of literature related to the environmental impact of e-
scooter is relatively small. Severengiz et al. (2020) assessed the ecolog-
ical effects of the e-scooter in Berlin by conducting a life cycle assess-
ment. Hollingsworth et al. (2019) conducted a Monte Carlo analysis to
estimate the average value of life cycle global warming impacts of shared
e-scooters. Severengiz et al. (2020) utilized quantifiable environmental
indicators to determine the shared e-scooters' ecological impact. The
result has also been compared with private cars, public transport, biking,
and walking. Few studies have investigated the relationship between the
energy consumption of e-scooter trips and contributing factors. Questions
remain as to how to quantify the energy consumption of an e-scooter fleet
in various scenarios.

3. Data

In this section, we introduce the data collection procedure and pre-
sent preliminary summaries of e-scooter trip characteristics. The analysis
of field data lays an evidence-based foundation for the analytical models
to be built in Section 4.

3.1. Data collection

The e-scooter data was collected in Gothenburg, the second-largest
Fig. 2. The central area of Gothenburg, S
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city in Sweden. E-scooters were mainly deployed in the central zone of
Gothenburg, as shown in Fig. 2, with exceptions in forest and lake areas.
We developed a web crawler for a major e-scooter company which
arguably dominated the local market during the study period and
recorded the geolocation and battery SoC of each available scooter (those
not currently in use nor fully depleted) in Gothenburg.

Specifically, we collected the fleet information periodically from 5
a.m. to 12 p.m. every day between November 16, 2020, and November
22, 2020. The update frequency is set up as 120 s. In total, we collected
635 million data samples, each including the time stamp, location, and
SoC of an e-scooter. Based on this log data, we identify e-scooter trips by
comparing the appearances and disappearances of identical e-scooters at
different time stamps. We noticed that there were always significant
battery SoC drops when e-scooters changed their positions, which in-
dicates that vehicle relocation was not performed for the studied e-
scooter fleet. In this regard, a new trip for an e-scooter will always start at
the same place where the previous trip ended. Due to errors and package
losses during data collection, we remove trips that have travel time over
40 min and those with trip distance less than 80 m, as McKenzie (2019)
did in his research. In total, we have identified 13547 trips.

Since we had no access to the information of e-scooters that were
being used, the trajectories of e-scooter trips could not be directed ob-
tained. However, the origin and destination (OD) locations of e-scooter
trips are accurate, although the start/end time has a 1-min error on
average (because the data update frequency is 2 min). To facilitate the
energy consumption analysis later in this paper, we estimate the travel
distance and duration of each e-scooter trip with the following approach.
To begin with, we extract the OD geolocations of every trip we have
identified. Afterward, we use the OD data as inputs to the DistanceMatrix
Service from Google Maps, which could return the shortest path for each
trip assuming that the bicycle mode is taken. We consider this approxi-
mation reasonable because e-scooters have a similar speed to that of
bicycles and use bicycle lanes in Gothenburg. Based on the shortest path
trajectories, the average speed of each e-scooter trip is calculated. An
overview of the collected data is shown in Table 1.
weden (source: OpenStreetMap.org).



Table 1
Summary for the scooter samples.

Weekends Weekdays

Total number of trips 2883 10664
Average trip distance (m) 1535 1735.1
Average trip duration (s) 677.4 648
Average number of e-scooters used per day 741.5 954.4
Average number of trips per day 1441.5 2132.8
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3.2. Spatiotemporal trip patterns

To illustrate the energy consumption intensity, we first summarize
the temporal distribution of trips as shown in Fig. 3. One can observe
significantly different patterns between weekdays and weekends. For
example, the e-scooter usage was relatively intensive during 7 a.m.–9
a.m. and 4 p.m.–5 p.m. on weekdays, corresponding to the normal
commuting hours. On the weekend, a large portion of trips occurred in
the afternoon between 1 p.m.–7 p.m. without visible peaks. This con-
tradicts the results of studies conducted in U.S. cities, which found that
the shared e-scooters were not often used for commuting (Mathew et al.,
2019; Noland, 2019). This indicates that e-scooter usage can differ from
case to case and general conclusions cannot be drawn yet.

The spatial distribution patterns of e-scooter trips are also compared
in Fig. 4, where red dots indicate zones with high trip density, and green
dots denote areas with low trip density. Fig. 4 shows distinct e-scooter
usage patterns on different days of the week. It can be found that
numerous trips occurred during 6:00–11:00 on weekdays, while e-
scooters were not heavily used during this period on the weekend, which
supports the previous inference in Fig. 3. Besides, during 15:00–20:00,
there were numerous trip attractions both on weekdays and weekends.
Areas with a high density of trips were mainly distributed in the pros-
perous commercial regions and transportation hubs. The result indicates
that e-scooters could be a competitive transport mode against walking
and cycling in the urban transportation system. The electric scooter
might also be a potential feeder mode for public transport, as demon-
strated in previous studies (Pavone et al., 2012).

Trip length is naturally an influencing factor to the energy con-
sumption of e-scooter trips. The Empirical Cumulative Distribution
Functions (ECDFs) of the travel distance per trip during weekdays and
weekends are illustrated in Fig. 5. Almost 90% of scooter trips are less
than 4 km both on weekends and on weekdays, which is consistent with
the conclusion in previous studies (Chang et al., 2019; Ciociola et al.,
2020; McKenzie, 2019). Nearly 70% are shorter than 2 km on weekends,
and the number is more than 60% on weekdays.
Fig. 3. Average trips frequency per
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4. Methodology

In this section, we present the analytical framework used to evaluate
the energy consumption of e-scooter systems in various scenarios, as
shown in Fig. 6. In the first step, we develop a multiple logarithmic
regression model based on field data to identify influencing factors to trip
energy consumptions. In the second step, we analyze the fleet energy
consumption performance through a Monto Carlo simulation approach
considering both trip energy consumptions and energy loss in idle status.

4.1. Multiple logarithmic regression

Linear regression analysis is commonly used to reveal the relation-
ships between interested variables (Mehmanpazir et al., 2019). However,
when the variables in regression analysis are highly skewed, the exis-
tence of these variables would undermine the performance of the
regression model. Transforming variables logarithmically is an effective
solution to resolve the nonlinear relationship between the independent
and dependent variables (Benoit, 2011).

As for the linear regression model Y ¼ αþ βX þ ε there are three
types of logarithm formulations as follows:

a. Log-linear model

logðYÞ¼αþ βX þ ε (1)

b. Linear-log model

Y ¼αþ βlogðXÞ þ ε (2)

c. Log-log model

logðYÞ¼αþ βlogðXÞ þ ε (3)

The coefficients indicate the change in the dependent variable for a
one-unit change in the independent variable in the linear regression
model. However, the interpretation of the coefficients in logarithmic
models is distinct. Specifically, in the log-linear model, with a one-unit
increase in X, the logðYÞ will increase β units. In the linear-log model,
Y will increase β units if there is a one-unit increase in the logðXÞ.In the
log-log model, the dependent variable and independent variables are
both log-transformed, and thus the coefficients should be also interpreted
in the same way.
hour on weekday and weekend.



Fig. 4. The spatial distribution of e-scooter trip origins.

Fig. 5. ECDFs for electric scooter trips distance and duration on weekends and weekdays.

Y. Wang et al. Communications in Transportation Research 1 (2021) 100022
4.2. Monte Carlo simulation

In this section, the empirical distributions of influencing variables and
the results of the multiple logarithmic regression are embedded into a
Monte Carlo simulation framework to investigate the overall perfor-
mance of the fleet energy consumption in various scenarios. In the
simulation, the value of each variable is obtained by sampling randomly
according to their respective distributions. The Probability Density
Function (PDF) is used to describe the range of the Monte Carlo analysis
output. Generally, there are parametric and nonparametric methods to
estimate the PDF. With parametric methods, the output range could be
presented by a probability density function of the contributing variables.
With the nonparametric methods, the PDF could be constructed by
probability density function estimators with a large number of samples
(Leontaritis et al., 2020). Therefore, when the information regarding the
PDF is insufficient, the nonparametric methods are more suitable for our
study.

The kernel density estimator is a widely applied nonparametric
5

method to approximate the PDF, estimating the function at discrete
points (Burke and Kiedrowski, 2018). The formulation is as follows:

bf ðxÞ¼
PM

j¼1k
�

x�xj
p

�
Mp

(4)

where x1, …, xj, …, xM are the samples; p represents the bandwidth; k is
the kernel function; and the optimal value is calculated by minimizing
the mean integrated square error (Bashtannyk and Hyndman, 2001). In
this research, k satisfies the following properties (Silverman, 2018).

8>>><>>>:

Z
ωkðωÞdω ¼ 0Z
kðωÞdω ¼ 1Z
ω2kðωÞdω ¼ k2 6¼ 0

(5)



Fig. 6. The structure of the hybrid framework.
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5. Results

In this section, we show the results of the proposed models in Section
3 based on the field data introduced in Section 2.
5.1. Trip energy consumption

In Fig. 7, we illustrate the distribution of e-scooter trip distance before
and after the logarithmic transformation. As shown in the figure, the
empirical distribution of trip distance is highly skewed while the trans-
formed distribution exhibits a normal distribution. Therefore, the loga-
rithmic transformation of trip distance is applied in the regression model
instead of empirical data. The descriptive statistics for the variables are
summarized in Table 2. Table 3 shows the results of the regression model
which has the following formulation.

q¼ � 7:290þ 0:953 lnðDÞ þ 1:267vþ 0:493t (6)

To demonstrate the quality of the regression model, we examine the
residual distribution as shown in Fig. 8. In Fig. 8(a), the histogram of the
regression standardized residual largely follows the normal distribution,
and, in Fig. 8(b), the normal P–P plot also follows the diagonal line, both
indicating a reasonably good fitting result.
5.2. Fleet energy consumption

In practice, the fleet energy consumption is affected by both the
macroscopic e-scooter usage intensity and the microscopic energy con-
sumption of each trip. In previous sections, we have addressed the energy
consumption estimation of single trips. In this section, we first present
the distribution of the fleet usage intensity, based on which the fleet
energy consumption analysis is conducted.

Fig. 9 illustrates the usage frequency of e-scooters during the study
period. It can be found that a large proportion of the fleet was not used
during the day. On weekdays, the e-scooters were used more frequently
but still at a relatively low rate. Considering the obvious patterns in
Fig. 9, we model the usage frequency of the fleet with an exponential
distribution. The fleet energy consumption in a typical day could then be
formulated as Eq. (7), where δi is the usage frequency of e-scooter i; yi is
the idle energy loss of e-scooter i; N is the fleet size; and Q is the fleet
energy consumption. Values and distributions of other key variables used
in the Monte Carlo simulation are listed in Table 4.
6

Q¼
XN

ðδiqi þ yiÞ (7)

i¼1

Calibrated by the field data, the simulation result shows that the
energy consumption on weekdays and weekends were 30653.1% and
23999.1% fully battery capacity, respectively. The average energy con-
sumption of each trip were 16.81% (SoC) on weekends and 14.50% (SoC)
on weekdays, which can be explained by that e-scooters were used more
frequently on weekdays than weekends. The energy consumption per
passenger per kilometer (ECPP) were 9.72% (SoC) and 7.47% (SoC) on
weekends and weekdays, respectively. The ECPP was higher on week-
ends mainly because more energy was wasted in idle status. We
demonstrate the accuracy of our simulation models by comparing the
empirical ECPP with the simulation results using the same set of pa-
rameters. The ECPP on weekends and weekdays equal 9.397% (SoC) and
8.333% (SoC), respectively, indicating a reasonably good simulation
accuracy.

In addition, the energy loss in idle status is 32.8% on weekdays and
41.9% on weekends according to the field data mainly due to the rela-
tively low usage frequency. This considerable energy loss in idle status
will heavily affect the fleet availability which not only reduces the profits
and undermines the level of service but also requires frequent charging.
Unfortunately, this issue has been largely overlooked in the literature. To
further estimate the influence of different usage intensities on the overall
energy consumption performance, we conduct the Monte Carlo simula-
tion by changing the usage rate parameter λ (1/λ denotes the average
number of usages for each e-scooter in the fleet) in the exponential dis-
tribution from 0.5 to 2.6 with an interval of 0.1, and the results are
provided in Table 5.

In the table, it can be found that when the usage frequency of each
scooter is large, a larger fleet energy consumption and a smaller ECPP are
observed. For example, when λ is equal to 2, the proportion of the energy
loss in idle status would account for 53% of the total energy consumption
in the system. This means that, if the average usage frequency of each e-
scooter (1/λ) in the system is lower than 0.5, more than half of the energy
consumption in the sharing e-scooter systemwill be wasted in idle status.
In such cases, e-scooters are hardly energy efficient.

6. The integration of bus and e-scooter

Since both e-scooters and public transport may suffer from low usage
rates, we here show the possibility to achieve a system optimum of



Fig. 7. The distribution of trip distance before and after logarithmic transformation.

Table 2
Descriptive statistics for variables in the model.

Variable Description Mean S.D.

q The battery energy consumed per trip, measured by
SoC (%)

8.23 5.61

Ln(D) The logarithm of the travel distance per trip (m) 7.14 0.81
t The travel duration per trip (minutes) 10.90 6.87
v The average speed per trip (m/s) 2.64 1.16

Y. Wang et al. Communications in Transportation Research 1 (2021) 100022
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energy consumption by integrating e-scooters with public transport,
taking bus as an example. The basic idea is to confine the service zone of
e-scooters to increase the usage rate and reduce the length of bus lines so
that the barely used end stations are replaced by e-scooters. In this
approach, e-scooters could make the bus network more accessible as an
efficient first/last mile service.

Specifically, we present a field example to showcase how to optimally
combine e-scooters and buses from an energy consumption perspective.
We select a bus route in Gothenburg, from Storgatan to Annedalskyrkan,
which has 10 bus stations along the route (see Fig. 10). We assume that e-



Table 3
Estimation results of the model.

Estimates Std.
Error

t Sig. 95.0% Confidence
Interval

Lower
Bound

Upper
Bound

Intercept �7.290 0.526 �13.868 .000 �8.320 �6.259
Ln(D) 0.953* 0.103 9.236 .000 0.751 1.156
v 1.267* 0.062 20.534 .000 1.146 1.388
t 0.493* 0.008 59.954 .000 0.477 0.509

Note: *significant at 95% confidence level.

Table 4
Monte Carlo simulation inputs.

Variables Range or (scale, shape factors) Distribution

Weekend Weekday

Duration 3.15–39.97 Uniform
Distance (mean¼7.14,SD¼0.81) Lognormal
Average speed (mean¼2.64,SD¼1.16) Lognormal
Average use rate for each e-scooter λ ¼ 1.23 λ ¼ 0.83 Exponential
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scooters could replace several end stations where the passenger loads of
Fig. 8. Residual distribution (a) histogram of the regression standar

Fig. 9. The usage frequency of scoot

minQ¼

8>>><>>>:
γ

 Xm

i¼1
pidi þ

X9

j¼n
pjdj

!
þ α
Xn�1

k¼mþ1
dk þ β

Xn�1

k¼mþ1
pkdk; if m � 1; n

α
X9

k¼1
dk þ β

X9

k¼1
pkdk; if m ¼ 0; n ¼ 0
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buses are typically low. Therefore, the problem is how to determine the
new end stations of the bus route to optimize the energy consumption of
the whole trip. The notations used in the case study are summarized in
Table 6. The objective function can be formulated as Eq. (8):
dized residual; (b) P–P plot of regression standardized residual.

ers on weekdays and weekends.

� 9
;8i; j; k 2 Zþ (8)



Table 5
The results of different simulation scenarios.

λ Total
consumption
(SOC %)

The proportion
of the energy
loss in idle
status

The proportion
of trip energy
consumption

The energy
consumption per
passenger per
kilometer（SOC
%）

0.5 44264.95 0.227 0.773 6.998
0.6 39086.07 0.257 0.743 7.034
0.7 35567.09 0.283 0.717 7.756
0.8 31038.30 0.324 0.676 8.333
0.9 29190.51 0.344 0.656 8.486
1.0 27779.54 0.362 0.638 8.622
1.1 26245.01 0.383 0.617 8.931
1.2 24510.90 0.410 0.590 9.397
1.3 23340.59 0.431 0.569 9.896
1.4 23190.08 0.433 0.566 10.186
1.5 21581.79 0.466 0.534 10.455
1.6 20316.16 0.495 0.505 10.537
1.7 20538.59 0.490 0.510 10.659
1.8 23463.01 0.429 0.571 9.302
1.9 22643.55 0.444 0.556 9.861
2.0 18985.47 0.530 0.470 11.239
2.1 18412.93 0.546 0.454 12.425
2.2 18242.73 0.551 0.449 12.098
2.3 17599.02 0.571 0.429 12.850
2.4 17058.65 0.589 0.411 13.270
2.5 17041.32 0.590 0.410 13.483
2.6 16871.65 0.596 0.404 13.475

Table 6
Notation list.

Notations Description

Sets:
D The set of distance between adjacent stations, {d1,d2, …, d9}2D
S The set of the bus station in the bus route, {s1,s2, …, s10}2S
P The set of the number of passengers on the bus when leaving each

station, {p1,p2, …, p10}2P
Parameters:
А The energy consumption of the system when an electric bus travels 1 km

(kWh).
В The energy consumption of the system when a passenger travels 1 km

(kWh).
Γ The energy consumption of the system when an e-scooter travels 1 km

(kWh).
M The number of successive bus stations that are replaced by e-scooters at

the beginning of the bus route, 0 � m � 10, m 2 Z.
N The new end station for the bus, 1 � n � 10, n 2 Z. The sn, …, s10 are

replaced by e-scooters.
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In this study, we assume the capacity of the battery in the e-scooter is
0.48kwh. As introduced in the previous section, the energy consumption
per passenger per kilometer on weekends is 9.72% (SoC). Thus, γ equals
0.047kwh in this case study. As for the value of α and β, we use the
Fig. 10. The studied bus

9

operational data of another electric bus as a reference, of which we have
access to the field data. Specifically, we select an electric bus route in
Meihekou, Jilin province, China, where we collected the operating data
of 15 buses, including the energy consumption of each trip, timestamp,
the number of passengers on the bus at each station, and the latitude and
longitude of each bus station. With this field data, the estimated values of
β and α are 6.15� 10�6 kWh and 5.83� 10�4 kWh, respectively. Besides,
the number of passengers on the bus when the electric bus is leaving each
station was {17, 14, 18, 25, 29, 32, 25, 19, 17, 14} according to the field
data. Eventually, the optimal solution for Eq. (8) is found as m ¼ 1 and n
¼ 9. Specifically, bus station s1 is removed, and passengers take the
electric bus after riding e-scooters to station s2. The bus services are cut to
station s8, and the region near stations s9 and s10 are serviced by e-
scooters.
route in Gothenburg.
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7. Conclusion and discussion

The shared e-scooters have been increasingly used in urban areas as
an emerging shared micro-mobility service. In this study, we estimated
the energy consumption of e-scooter systems based on the field data
collected in Gothenburg. We revealed the spatial and temporal patterns
of the e-scooter usages and found both significant commuting and rec-
reation trips, based on which we modeled the energy consumption of
single e-scooter trips by a multiple logarithmic regression approach. In
addition, the Monte Carlo simulation was conducted to calculate the total
energy consumption of the e-scooter system. The result indicated that the
energy loss in idle status is considerable, which accounts for 32.8% on
weekdays and 41.9% on weekends. Eventually, we investigated how the
average usage frequency of e-scooters affects fleet energy consumption
through an extensive number of case studies. The results showed that
more than 50% of energy can be wasted in the idle status if the average
use frequency of each e-scooter is lower than 0.5 times per day. In the
end, we presented an example to demonstrate how to combine e-scooters
with electric buses to minimize the energy consumption of trips and
enable door-to-door travel.

We hope the results of this research could lay a foundation for better
operations and regulation developments of e-scooters. There are also
several notable limitations regarding this study. Firstly, the travel pat-
terns of the e-scooter could be related to land-use characteristics and
weather factors. In future studies, these factors should be considered and
integrated into the model. Moreover, the vehicle relocation was not
performed in Gothenburg but could happen in other cities. The influence
of relocation strategies on energy consumption needs to be investigated
in future research. As a new mobility service under fast expansion, more
studies in diverse regions are needed to understand and better operate
the e-scooter system.
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