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A B S T R A C T

We propose pro-social control strategies for connected automated vehicles (CAVs) to mitigate jamming waves in
mixed-autonomy multi-lane traffic, resulting from car-following dynamics of human-driven vehicles (HDVs).
Different from existing studies, which focus mostly on ego vehicle objectives to control CAVs in an individualistic
manner, we devise a pro-social control algorithm. The latter takes into account the objectives (i.e., driving
comfort and traffic efficiency) of both the ego vehicle and surrounding HDVs to improve smoothness of the entire
observable traffic. Under a model predictive control (MPC) framework that uses acceleration and lane change
sequences of CAVs as optimization variables, the problem of individualistic, altruistic, and pro-social control is
formulated as a non-convex mixed-integer nonlinear program (MINLP) and relaxed to a convex quadratic program
through converting the piece-wise-linear constraints due to the optimal velocity with relative velocity (OVRV)
car-following model into linear constraints by introducing slack variables. Low-fidelity simulations using the
OVRV model and high-fidelity simulations using PTV VISSIM simulator show that pro-social and altruistic control
can provide significant performance gains over individualistic driving in terms of efficiency and comfort on both
single- and multi-lane roads.
1. Introduction

In urban transportation systems, traffic jams pose a significant threat
to vehicle safety, exhaust gas emission, fuel economy and passenger
comfort, especially in dense traffic scenarios with stop-and-go waves.
Disturbances such as accidents, lane restrictions or random braking may
propagate backwards through the traffic as a result of the car-following
dynamics of human-driven vehicles (HDVs), which leads to moving
traffic jams Sugiyama et al. (2008); Wang et al. (2016); Stern et al.
(2018); Dabiri and Kulcs�ar (2017); Pereira et al. (2022). To reduce such
disturbance propagation, connected automated vehicles (CAVs) can be
applied to control traffic flow and smooth out stop-and-go waves Kamal
et al. (2014, 2016); Wang et al. (2016); Stern et al. (2018); Luspay et al.
(2010). To circumvent jamming waves on single-lane roads, predictive
control of CAV acceleration has recently been a popular strategy Kamal
et al. (2014); Dollar and Vahidi (2018); Stern et al. (2018); Csikos and
Kulcsar (2017); Dabiri and Kulcs�ar (2017); Luspay et al. (2012), while,
for multi-lane highways, high-level lane changing decisions can be
incorporated as additional degrees of freedom that can be optimized
jointly with low-level acceleration inputs Yu et al. (2019).
).
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Historically in the literature, the emphasis of autonomous driving has
been focused on CAVs’ own (selfish) driving objectives Kamal et al.
(2016); Bahram (2017); Yu et al. (2019), while ignoring the
traffic-smoothing properties of CAVs Stern et al. (2018). In Kamal et al.
(2016), a model predictive control (MPC) framework is proposed, where
efficiency, comfort and safety of the CAV is improved by optimizing the
acceleration and lane changes in a multi-lane traffic scenario. However,
the focus of Kamal et al. (2016) is solely on the driving objectives of the
CAV and not the surroundings, making such a driving strategy selfish.
Another MPC-based approach is presented in Bahram (2017), where a
mixed-integer quadratic programming problem is setup to optimize
longitudinal velocity and lane-change maneuvers of the CAV. An entirely
different selfish control strategy using reinforcement learning (RL) is
presented in Yu et al. (2019), where a multi-agent (multi-vehicle) RL
algorithm is trained to achieve coordination between multiple CAVs in a
highway scenario.

Altruistic agents have been considered in a variety of fields, including
social dynamics analysis via linear quadratic Gaussian (LQG) control
Huang et al. (2010), traffic route management Levy and Ben-Elia (2016);
Bıyık et al. (2018), microscopic traffic control Wang et al. (2017), water
ed 18 November 2021
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resource planning via Markov decision processes (MDP) Desquesnes et al.
(2017) and uncertain dynamic games Camponogara et al. (2006). In Levy
and Ben-Elia (2016), a macroscopic routing perspective is presented to
compare the total driving time of vehicles in a network obtained by a
selfish user equilibrium (UE) model and an altruistic social optimum (SO)
model. Similarly, the work in Bıyık et al. (2018) provides a
game-theoretic analysis of altruistic autonomy from a vehicle routing
perspective and investigates its effect on traffic latency under varying
degrees of altruism of CAVs. Regarding microscopic control, a coopera-
tive altruistic driving strategy is developed in Wang et al. (2017), where
traffic jamming on highways is resolved by coordinating a group of CAVs
using vehicle-to-vehicle (V2V) communications.

In light of the existing literature on traffic control, implementing
purely individualistic (selfish) and/or purely altruistic behaviour have
partially been investigated before. While a vehicle that behaves selfish/
individualistic allocates control input to actions to reward only itself,
pure altruistic behaviour allocates input in a way to reward only others
(and disregard its own rewards or benefits). These forms of expected CAV
behaviours can often be conflicting, even though they may be beneficial
in different traffic scenarios. Therefore, one possible way to overcome the
behaviour dilemma (selfish or altruistic?) is to use both at the same time.
As shown in Fig. 1, the key insight of the altruistic controller is that
performing altruistic lane change maneuvers help to dissolve jamming
waves while improving comfort and efficiency. In Buckman et al. (2019);
Pierson et al. (2020), socially compliant central coordination algorithms
are suggested to solve a traffic coordination problem. In particular, these
studies propose a large variety of Social Value Orientation (SVO) algo-
rithms via the definition of two independent reward metrics: reward to
self and reward to others. In case of intersection crossing, in Buckman
et al. (2019), pro-social (combination of selfish and altruistic) behaviour
provides most of the benefits in terms of wait time reduction. Mavro-
giannis et al. (2020) proposes a decentralized intersection coordination
mechanism using principles similar to Buckman et al. (2019): topological
braids capture selfish-altruistic modes. In the latter, however, elimina-
tion of unsafe trajectories is the goal. SVOs are mapped via proper
weighting strategies, emphasizing the relative importance of altruistic or
selfish objectives.

The aim with the above state-of-the-art methods to influence/con-
trol/coordinate automated vehicles is the same: adapt their behaviour in
mixed traffic conditions. As in mixed-autonomy traffic scenarios, both
HDVs and CAVs have to co-exist and CAVs may be coordinated following
social values known for human drivers.

In this paper, extending our preliminary work in Keskin et al. (2020)
with comprehensive low- and high-fidelity simulation results, we pro-
pose in a comparative environment altruistic and pro-social con-
trol/coordination strategies where CAVs mitigate traffic jams by
optimizing the driving objectives of the overall traffic as well as of their
own selfish trajectories. We define the optimization problem that
Fig. 1. Exemplary multi-lane highway scenario with CAVs (blue) and HDVs
(yellow) and decelerating HDVs (red). An altruistic strategy would involve
turning left in to lane 1 and try to mitigate the traffic jamming caused by the red
HDV by acting as a damper and help improve overall traffic smoothness. A
selfish decision is to take a right on to lane 3 and avoid the jamming, which
would improve smoothness for the CAV itself, but lead to jamming on lane 1.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

2

empowers CAVs with social behaviours as a model based, finite horizon,
multi-objective optimization problem.

Therefore, the contribution of this paper is twofold:

� We develop solutions to incentivize the pro-social coordination of
mixed autonomy vehicles with model based predictive optimization
algorithms. To that end, we use proper weighting strategies to map
SVOs into vehicle control solutions (traffic efficiency and comfort).
The key idea is to emphasize the relative importance of altruistic
versus selfish objectives and reach pro-social behavior.

� We evaluate the proposed methods on both low- and high-fidelity
traffic simulators, which helps us quantify the benefits/drawbacks
of SVOs in terms of fuel economy, ride comfort, trajectory alignment,
etc.

More precisely, in this work, we propose an MPC-based selfish,
altruistic, and pro-social coordination algorithm, where CAVs in mixed
traffic scenarios model HDVs with the Optimal Velocity with Relative
Velocity (OVRV) car-following model Wilson and Ward (2011). Then, a
finite horizon time prediction window is created in which CAVs can
select their speed and lanes to minimize themulti-objective cost function.
The result is a non-convex mixed-integer nonlinear program, which is
relaxed to a simpler convex quadratic program via penalty based refor-
mulation of the OVRV model. Simulations with low fidelity simulations
by the OVRV model, and with high fidelity simulations by PTV VISSIM
microscopic traffic simulator are carried out to investigate the impact of
different social behaviour triggered by CAVs.

2. System model

In Fig. 1, a mixed autonomy multi-highway traffic scenario is depic-
ted, with both CAVs and HDVs. It is assumed that the CAVs obtain po-
sition and speed information from surrounding HDVs1 via vehicle-to-
vehicle (V2V) communications Zhang and Orosz (2018); Avedisov
et al. (2020). Although there may be any number of CAVs in the traffic,
the focus here lies on individual automated driving, i.e., CAVs take de-
cision without cooperating explicitly with other CAVs. In the scenario,
the objective of individual CAVs is to obtain optimal control input se-
quences in terms of vehicle acceleration input and lane change decisions.
The CAV applies an altruistic MPC controller and thus the optimization
objective is to maximize the entire traffic objectives in terms of comfort,
efficiency and indirectly, emissions.
2.1. Vehicle states

The state vector of ith CAV at discrete time k, with sampling time Δt,
is defined as

xCAVi;k ¼
h
pCAVi;k vCAVi;k yCAVi;k

iT
(1)

for i ¼ 1, …, NCAV, where pCAVi;k 2 R and vCAVi;k 2 R are, respectively, the

longitudinal position and velocity of the vehicle, and yCAVi;k 2 L ≜ f1;2;…
;Nlaneg represents the lane number of the vehicle. Similarly, the state
vector of the jth HDV at time k is expressed as

xHDVj;k ¼
h
pHDVj;k vHDVj;k yHDVj;k

iT
(2)

for j ¼ 1, …, NHDV, where pHDVj;k ; vHDVj;k 2 R and yHDVj;k 2 L.
1 The set of surrounding HDVs for a given CAV consists of HDVs that reside in
the communication range of the CAV. Hence, HDVs with no line-of-sight (LOS)
link to the CAV can also belong to this set if V2V communication between the
two vehicles is possible.



J. Larsson et al. Communications in Transportation Research 1 (2021) 100019
2.2. CAV control inputs

The control input vector of the ith CAV at time k is given by

uCAV
i;k ¼

h
aCAVi;k δCAVi;k

iT
(3)

where aCAVi;k 2 R is the longitudinal acceleration and δCAVi;k represents the
lateral movement, i.e., the lane change decision, defined as

δCAVi;k 2 LΔ ≜ f�1; 0; 1g (4)

where 0 denotes a lane-keeping decision and 1/ � 1 represents a left/
right lane change decision. To reduce modelling complexity in controller
design step (prediction), it is assumed that the lane change is instanta-
neous and is thus completed in a single time step Kheterpal et al. (2018).
Note, more complex and dynamic lane change maneuvers can be added if
needed. Finally, in the numerical case study, we use VISSIM that has a
continuous and dynamic lane change model.

2.3. Car-following behavior of HDVs

The longitudinal dynamics of HDVs is described using a car-following
model as in Orosz et al. (2010, 2009)

aHDVj;k ¼ f ðhHDVj;k ; vHDVj;k ;ΔvHDVj;k Þ (5)

where aHDVj;k 2 R is the longitudinal acceleration of the jth HDV at time k,

hHDVj;k is the headway and ΔvHDVj;k the velocity difference between the jth
HDV and the preceding vehicle, written as

hHDVj;k ¼ pHDV;prej;k � pHDVj;k ; (6)

ΔvHDVj;k ¼ vHDV;prej;k � vHDVj;k ; (7)

with pHDV;prej;k and vHDV;prej;k representing the position and speed of the

vehicle preceding the jth HDV at time k on the same lane. The car-
following dynamics are represented by the Optimal Velocity with Rela-
tive Velocity (OVRV) model Wilson and Ward (2011)

f ðh; v;ΔvÞ ¼ αðVðhÞ� vÞ þ βΔv (8)

where the velocity function V(h) is a piecewise-linear function of head-
way h (driver perceived optimal and headway based velocity), defined as
Zhang and Orosz (2016)

VðhÞ ¼
h
~VðhÞ

i
vmax
0 ; ~VðhÞ ¼ vmax

h� hmin

hmax � hmin
; (9)

with ½v�vmax
0 ≜ maxð0;minðvmax;vÞÞ, and α, β, hmin, hmax and vmax are driver-

dependent model parameters. Furthermore, it is also assumed that HDVs
keep the same lane over the entire MPC prediction horizon Kamal et al.
(2016), i.e., δHDVj;kþn ¼ 0 for n ¼ 0, 1, …, Np � 1, where Np denotes the
prediction horizon. In Fig. 1, the described car-following behaviour is
shared among the yellow HDVs. However, the red HDV causing distur-
bance on lane 1 is considered a leading HDV on that lane. These HDVs are
handled differently, where we implement MPC prediction heuristics in
the form of constant acceleration over the horizon.

2.4. Discrete-time vehicle dynamics

The dynamics of the ith CAV can be expressed as

xCAVi;kþ1 ¼ AxCAVi;k þ BuCAV
i;k (10)

where
3

A ¼ 4 1 Δt 0
0 1 05; B ¼ 4Δt2 2 0

Δt 05 (11)
2
0 0 1

3 2 �
0 1

3

In a similar fashion, the dynamics of the jth HDV can be written as

xHDVj;kþ1 ¼ AxHDVj;k þ BuHDV
j;k (12)

where the input is defined as

uHDV
j;k ¼

h
aHDVj;k δHDVj;k

iT
: (13)

Remark 1. By assumption, HDVs are either equipped with communi-
cation devices (e.g., app, specific hardware, V2I or V2V communication
device) or the infrastructure can sense HDVs (e.g. camera, 5G). In both of
the cases, we consider HDVs to actively or passively share with CAVs
some of their dynamic variables (position, speed).

Remark 2. CAVs require to have access to position and speed variables
of the surrounding vehicles. Pro-social receding control algorithm can
then be run by a CAV (e.g., on-board optimizer units). This means that
CAVs do not necessary need to share any further data among themselves.
Note, that cooperative pro-social control algorithms create future
research directions (see Conclusions).

3. MPC formulation for individual altruistic driving

This section covers the problem of how altruism can be reached with
carefully selecting CAV control input. The constraints for inputs and
states are provided for a multi-lane traffic scenario, and then the optimal
CAV control problem is formulated in the MPC framework.

3.1. Constraints

For the optimal CAV control problem, the following constraints are
imposed on the vehicle inputs and states.

3.1.1. Acceleration bounds
The following constraints bound the longitudinal acceleration, i.e.,

amin � aCAVi;kþn � amax ; n ¼ 0; 1;…;Np � 1 (14)

where Np is the horizon length.

3.1.2. Lateral safety constraints
At the nth prediction step, a lane change occurs when δCAVi;kþn ¼ 1. Here,

the ith CAV should keep the headway hsafe to the closest vehicle in the
new lane, i.e.,

pCAV;bgi;kþn � pCAVi;kþn � hsafe; pCAVi;kþn � pCAV;smi;kþn � hsafe (15)

where pCAV;bgi;kþn and pCAV;smi;kþn are the longitudinal positions of the vehicles on
the new lane that are closest to the ith CAV at time k þ n with

pCAV;bgi;kþn � pCAVi;kþn � pCAV;smi;kþn . Furthermore, we also limit the number of lane
changes over the horizon to at most 1.

XNp�1

n¼1
δCAVi;kþn � 1 (16)

3.1.3. Longitudinal safety constraints
In order to avoid collisions and keep a safe minimum headway to

preceding vehicles on the lane, CAVs and HDVs are constrained to a
dynamic headway Kamal et al. (2014). Hence, for the ith CAV, we have

pCAV;prei;kþn � pCAVi;kþn � hmin þ tminvCAVi;kþn ; n ¼ 1;…;Np (17)

where pCAV;prei;kþn is the position of the vehicle preceding the ith CAV at time
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k þ n and tmin denotes the minimum time headway. Similar constraints
also bound all HDVs during the prediction in order to augment the OVRV
model behaviour with a dynamic and realistic headway behaviour.

3.2. Objectives

For the optimal CAV control problem, we apply two categories of
objectives, namely, traffic efficiency and driving comfort. In addition, we
split the driving comfort into acceleration and jerk components.

3.2.1. Traffic efficiency
Traffic efficiency can be defined as the objective of maintaining a

desired velocity V* for the ith CAV and for the overall traffic including
observable HDVs and other CAVs:

J eff
i ðuCAV

i;k:kþNp�1Þ

¼ PNp�1
n¼0

2
4ðvCAVi;kþn � V*Þ2 þ κ

X
j2GHDVi;k

ðvHDVj;kþn � V*Þ2
3
5 (18)

where GHDV
i;k is the set of indices of those HDVs succeeding the ith CAV at

time k and that are also observable by it,2 and κ is a constant variable that
indicates the level of altruism, i.e., a weight that controls the CAV's pri-
oritization between its own selfish driving objectives and the surround-
ing traffics objectives.3 Finally, V* stands for the expected target speed
(lane-wise speed limit or equilibrium speed). The dependency of HDV
velocities on CAV control inputs is through Eqs. (5)–(7).

3.2.2. Driving comfort - acceleration magnitude
This driving objective aims to reduce the discomfort associated with

large magnitudes of acceleration:

J mag
i ðuCAV

i;k:kþNp�1Þ

¼ PNp�1
n¼0

2
4�aCAVi;kþn

�2
þ κ

X
j2GHDVi;k

�
aHDVj;kþn

�2

3
5 (19)

where the dependency of HDV accelerations on CAV control inputs is
through Eqs. (5)–(7).

3.2.3. Driving comfort - jerk
Another component of discomfort associated with acceleration is the

jerky behaviour due to rapid changes in the acceleration derivative:

J jerk
i ðuCAV

i;k:kþNp�1Þ ¼
XNp�1

n¼0

"�
aCAVi;kþnþ1 � aCAVi;kþn

Δt

�2

þκ
P

j2GHDVi;k

�
aHDVj;kþnþ1 � aHDVj;kþn

Δt

�2
3
5

(20)

which is an approximation of the functions derivative obtained by Euler's
method.
2 The CAV is only able to control succeeding vehicles, i.e., Lagrangian control
scheme Stern et al. (2018)), utilizing state information from both preceding and
succeeding vehicles.
3 We note that both CAV and HDV velocities in Eq. (18) depend on CAV

control inputs uCAVi;k:kþNp�1 through Eqs. (5)–(7) and Eq. (10). From the car-
following behavior in Eqs. (5)–(7), HDV acceleration is a function of the posi-
tion and speed of the preceding vehicle, which implies that the effect of CAV
control actions can be propagated downstream towards HDVs moving on the
same lane and affect the traffic efficiency in Eq. (18).

4

3.2.4. Driving comfort - total objective
We define the total driving comfort as a two-component objective,

where the individual parts above are weighted against each other. The
total driving comfort objective for the ith CAV at time k is defined as

J comf
i ðuCAV

i;k:kþNp�1Þ
¼ J mag

i ðuCAV
i;k:kþNp�1Þ þ w2 J jerk

i ðuCAV
i;k:kþNp�1Þ

(21)

where w2 is a weight to indicate the importance of the jerk component on
to the overall comfort objective.

3.2.5. Total objective function
For the ith CAV, the total objective function at time k with prediction

horizon length Np is defined as

J tot
i ðuCAV

i;k:kþNp�1Þ
¼ J eff

i ðuCAV
i;k:kþNp�1Þ þ w1 J comf

i ðuCAV
i;k:kþNp�1Þ

(22)

where w1 is a weight that balances the impact between efficiency and
comfort objectives. We note that safety is taken into consideration as
hard physical constraints through Eq. (15) and Eq. (17) in the MPC
formulation.
3.3. MPC prediction heuristics

Over the MPC prediction horizon, we assume a constant acceleration
heuristic Hamdar et al. (2008); Kesting et al. (2010); M Treiber (2013);
Yu et al. (2021) for predicting the leading HDV trajectory.4 At time k, we
have

aHDVj;kþn ¼ âHDVj;k ; j 2 FHDV
i;k (23)

for n¼ 0, 1,…, Np � 1, where FHDV
i;k is the set of indices for leading HDVs

that are observed by the ith CAV, and âHDVj;k is the measured acceleration
of the jth leading HDV at time k. To ensure the non-negativity of the
velocity over the prediction horizon in Eq. (23), aHDVj;kþn is set to zero for n >

~n if vHDV
j;kþ~n

< 0. In other words, we prioritize constraining the velocity over

Eq. (23) in the prediction horizon.
3.4. Problem formulation

Given the initial internal states of the ith CAV at time k and the initial
states of HDVs observed by the ith CAV at time k, the MPC problem over a
prediction horizon of length Np can be formulated as follows:

minimize
uCAVi;k:kþNp�1

J tot
i ðuCAV

i;k:kþNp�1Þ

subjectto

ðPrediction of Leading HDVsÞEq: ð23Þ
ðHDV Car � Following ModelÞEqs: ð5Þ–ð9Þ
ðCAV� HDV DynamicsÞEqs: ð10Þ–ð13Þ
ðVehicle=TrafficConstraintsÞEqs: ð14Þ–ð17Þ :

(24)

The formulation in Eq. (24) is a mixed-integer non-linear program-
ming problem (MINLP). The non-linearity (and non-convexity) stem from
the car-following dynamics of the HDVs in Eq. (8), where the range policy
Eq. (9) is a piecewise-linear function. The integer variables come from
the lane change sequence variables δCAVi;k:kþNp�1.
4 Accelerations of leading HDVs on each lane cannot be determined using a
car-following function as in Eq. (5). Thus, we assume the accelerations are
available through on-board tracking filters on CAVs and therefore the acceler-
ations can be used to predict leading HDVs trajectories.



5 The acceleration profile reflects hard braking and acceleration with an
amplitude of 5 m/s2 with a period of 20 seconds. The HDV speed will never
reach 0 m/s.
6 The CAV is has no prior knowledge of the leading HDVs acceleration profile.
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4. Optimization strategies for altruistic driving

In this section, we propose an optimization strategy for handling the
MINLP in Eq. (24). This is achieved by firstly reformulating the non-
linear car-following dynamics in Eq. (8) as linear constraints. To
handle the integer lane change variables in δCAVi;k:kþNp�1, we decompose the

optimization problem into lower-level subproblems on each reachable
lane. The solutions of these problems can then be combined to form a
final lane-change decision.

4.1. Transformation of piecewise-linear car-following constraints

To avoid the intractability of the piecewise-linear car-following dy-
namics in Eqs. (5)–(9), we take a penalty based approach for constraint
reformulation. Precisely, we transform the piecewise-linear equality
constraint in Eq. (5) to a linear equality constraint, two linear inequality
constraints that bound the function from above and below, along with a
penalty term in the objective function. The car-following dynamics
constraint in Eq. (5) with the OVRV model in Eq. (8), given by

aHDVj;kþn ¼ αðVðhHDVj;kþnÞ� vHDVj;kþnÞ þ βΔvHDVj;kþn (25)

for n ¼ 0, 1, …, Np � 1 and j 2 HHDV
i;k , where HHDV

i;k is a set of indices for
HDVs observed by the ith CAV, except for the leading HDVs on each lane,

can be rewritten by introducing slack variables γj ¼
h
γj;Np�1;…; γj;0

i
T as

follows. We begin by introducing a penalty term in the objective function
Eq. (24) using the ℓ2-norm as

J tot
i ðuCAV

i;k:kþNp�1Þ þ λJ slack (26)

where

J slack ¼
X

j2HHDV
i;k

jγjj2 : (27)

and γj ¼
h
γj;0 … γj;Np�1

i
T. Here, λ is a weight that controls the tightness of

car-following dynamics in Eq. (25) and J slack enforces the driving
models' slack variable to be minimized. Secondly, we reformulate Eq.
(25) by introducing one equality constraint and two inequality con-
straints that bound the function from above and below, as

aHDVj;kþn ¼ αð~VðhHDVj;kþnÞ� vHDVj;kþnÞ þ βΔvHDVj;kþn þ γj;n (28)

aHDVj;kþn � αð~VðhmaxÞ� vHDVj;kþnÞ þ βΔvHDVj;kþn (29)

aHDVj;kþn � αð~VðhminÞ� vHDVj;kþnÞ þ βΔvHDVj;kþn (30)

for n ¼ 0, 1, …, Np � 1 and j 2 HHDV
i;k .

Remark 3. Equation 28, 29 and 30 are linear constraints that we use in
order to replace the non-linear function from equation from equation 5�
9. This is an approximation of the true driving model (OVRV), but by
using a penalty function (equation 27) and minimize the slack variable in
equation 28, we in fact can get very close to the OVRV driving model.

4.2. Optimization subproblem for fixed lane change decision

In order to handle the integer lane change variables in Eq. (24), we
create three separate subproblems for each reachable lane for the ith
CAV, where each subproblem corresponds to a fixed lane changing de-
cision δCAVi;k 2 LΔ. This means that each lane change decision is optimized
only for the initial time of the MPC control problem, while the acceler-
ation control inputs are still obtained forNp steps forward in time on each
lane. With this reformulation in Eqs. 26–30, the MPC optimization
5

subproblem for each reachable lane of Eq. (24) for a given lane change
decision can be written as:

minimize
aCAVi;k:kþNp�1 ;fγjg

J tot
i ðuCAV

i;k:kþNp�1Þ þ λJ slack

subjectto

ðPrediction of Leading HDVsÞEq: ð23Þ
ðHDV Car � Following ModelÞEqs: ð28Þ–ð30Þ
ðCAV� HDV DynamicsÞEqs: ð10Þ–ð13Þ
ðVehicle=TrafficConstraintsÞEqs: ð14Þ–ð17Þ :

(31)

Note that Eq. (31) is a convex optimization problem, with convex
quadratic objective function and linear constraints. Thus, the optimiza-
tion problem can be solved efficiently using interior-point methods Boyd
and Vandenberghe (2004). The solution of Eq. (31) for the three different
lane sub-problems can then be compared against each other, and the lane
change decision with the lowest cost with its corresponding acceleration
sequence is chosen as the optimal control inputs.

Remark 4. With the above relaxations complexity of the modeling and
optimization are kept low for two main reasons. First, the dynamism of
the lane change is faster in our setup than the longitudinal changes of
variables. Second, the the runtime of the control algorithm is acceptable.

Remark 5. No lane change maneuvers are executed by the HDVs in the
prediction model. CAVs can decide the lane they take at the begining of
the optimization. Note, however, in the case of an HDV changing lane,
the prediction model is updated with the new lane position. Since the
controller uses the receding horizon paradigms, this update is done at
every sampling time.

5. Experiments

We perform experiments at two levels of simulation fidelity. First, we
carry out low-fidelity simulations where the simpler OVRV model in Eq.
(8) is used to simulate the car-following dynamics of HDVs in evaluating
the performance of the proposed MPC controller in Eq. (31) on a single
lane scenario. Then, the high-fidelity microscopic multi-modal traffic
simulator PTV VISSIM is deployed to verify the controller in realistic
single- and multi-lane settings. Whilst with the OVRV model we validate
the proof of concept in simplified traffic scenarios, with the multi-lane
scenario VISSIM tools, we partially test the nominal controller in un-
certain (car-following model mismatch) and more complex and realistic
traffic environments.
5.1. Simulation setup and parameters

We consider three simulation scenarios with two different setups.
Firstly, the OVRV and VISSIM single lane scenarios use a setup where
there is a leading HDV driving with a sinusoidal acceleration profile.5

Following this leading vehicle there is directly a CAV that tries to miti-
gate these disturbances.6 HDV driving with the OVRV model or the
VISSIMWiedemann99 model is then following this CAV, and these HDVs
are being controlled by the CAV.

For the third scenario, which is multi-lane VISSIM, there is a second
setup. The road consists of three lanes and the first row of vehicles
contain HDVs following a sinusoidal acceleration profile on all three
lanes. Following these leading HDVs, there is the second row of another
three HDVs, behaving according to the OVRV or W99 driving model, on
all three lanes. Succeeding these HDVs is a single CAV in the middle lane.
After the CAV comes several rows of HDVs depending on the penetration



Fig. 2. Single lane OVRV simulation results of cumulative RMS acceleration
with varying altruism parameter κ.
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rate, e.g. 10 rows of HDVs per CAV with a penetration rate of 10%.
For all setups, HDVs that are behind the leading row of HDVs are

using the OVRV or W99 model and the traffic scenarios are similar to
stop-and-go traffic. The simulation is on a continuous loop track with 1 or
3 lanes for the VISSIM simulations and the OVRV model only considers a
straight infinitely long road. The simulation time for the OVRV and
VISSIM experiments is 200 and 800 seconds respectively. The initial
headway distance for all vehicles is 40 meters for every scenario and
driving model.

Both the low-fidelity OVRV and high-fidelity VISSIM simulations
have several parameters that determine the behaviour of the MPC
controller and HDV trajectories. In the appendix, we briefly cover the
parameters pertaining to the driver model and the MPC optimization,
used for the different simulation scenarios. See Appendix A for specific
optimization parameters and Appendix B for specific simulation
parameters.

Remark 6. The pro-social control actions can be calculated centrally,
assuming high performance computers. This can be relaxed and
computation can be distributed. The computational time for the rolling
horizon optimization depends on the number of HDVs.

5.2. Evaluation metrics

For assessing the performance of the controller and the impact of the
different levels of altruism (parameter κ), we evaluate three areas: overall
traffic acceleration and velocity directly impacted by the objective
functions along with vehicle emissions, which is an indirect byproduct of
acceleration and velocity via the Virginia Tech microscopic (VT-Micro)
vehicle emission model.

5.2.1. Vehicle emission model
Since vehicle emissions are not directly optimized in the MPC

controller, we use a vehicle emission model to calculate the emissions of
carbon monoxide (CO), hydrocarbons (HC), nitrogen oxide (NOx) and
fuel consumption (FC). We adopt the VT-Micro model Zegeye et al.
(2013) to calculate these metrics from the acceleration and velocity data
gathered from simulation. In addition, it is assumed that the traffic
consists solely of gasoline passenger vehicles. Under this setting, emis-
sions can be calculated as

J y
kðvi;k; ai;kÞ ¼ expðvTi;kPyai;kÞ (32)

where J y
kðvi;k; ai;kÞ is the prediction of the variable y 2 fCO;HC;NOx;

FCg at every simulation step k of the i-th vehicle (CAV or HDV), Py 2
R4�4 is a parameter matrix for each variable y,

vi;k ¼
�
1 v⋆i;k ðv⋆i;kÞ2 ðv⋆i;kÞ3

�T
(33)

ai;k ¼
�
1 a⋆i;k ða⋆i;kÞ2 ða⋆i;kÞ3

�T
(34)

are the velocity and acceleration vectors for the i-th vehicle at time k,
respectively, and ⋆ 2 {CAV, HDV}. Emission and fuel consumption rates
are given in the units kg/s and l/s, respectively.

5.3. Results

In this section, we present the experimental results for the OVRV
model and the VISSIM W99 model in single- and multi-lane scenarios.

5.3.1. Single lane - OVRV
To evaluate the performance of the proposed altruistic control strat-

egy in a single-lane road, Fig. 2 showcases the cumulative root-mean-
squared (RMS) acceleration obtained via the OVRV model and the
6

proposed approach with different values of the altruism parameter κ ¼
[0, 0.5, 1]. It is observed that cumulative acceleration decreases with an
increasing degree of altruism. The selfish controller improves upon the
OVRV driving model by reducing cumulative accelerations by 3.4%
while the altruistic controller with κ ¼ 1 further improves on the results
with an additional 2.1% compared to the selfish case with κ ¼ 0. This
indicates the potential of altruistic control to mitigate traffic disturbances
and improve driving comfort and safety.

As an illustration of how stop-and-go waves are dampened via the
proposed altruistic strategy, Fig. 3a shows with respect to time the
headway of the HDV that follows the CAV. Comparing the OVRV driving
model with the selfish case, κ ¼ 0, there is only a minuscule smoothing
effect that is barely noticeable. However, when the altruistic controller is
applied, with κ ¼ 1, the smoothing effect is more pronounced, i.e.,
headway fluctuations are significantly reduced, which proves the effec-
tiveness of the altruistic strategy against the disturbances caused by the
leading HDV. In Fig. 3b, we investigate the velocity fluctuations, i.e., the
velocity difference between the HDV that follows the CAV and the CAV
itself. It is seen that the amplitude of fluctuations decreases for the
altruistic case in comparison to the OVRV driving model and the selfish
controller, which again demonstrates the smoothing effect provided by
the altruistic CAV. These results evidence that an altruistic CAV can
reduce the oscillations stemming from the leading vehicle, leading to
more stable velocities (i.e., efficiency) and lower accelerations (i.e.,
comfort) experienced by the vehicles.

Fig. 4a–d illustrate the benefits of altruism on the cumulative vehicle
emissions, where altruism reduces the total emissions of all metrics.
Similarly, Fig. 4e–h demonstrate the emission rate as distributions for the
entire simulation, where the pure altruistic driving strategy exhibits a
lower mean value and variance in comparison to other altruism levels.

5.3.2. Single lane - W99
In the previous subsection, no car-following model uncertainties have

been considered, i.e., the MPC used the OVRV to create predictions. In
PTV VISSIM, the car-followingmodel W99 aims at capturing significantly
more complex driver behaviour than the OVRV. We therefore tested the
MPC algorithm (based on OVRV predictions) in a single lane context by
emulating the real environment with W99. First, the model mismatch
between the OVRV and W99 has been appropriately handled by the
altuistic controller, showing clear signs of robustness. We can also report
some degradation of the performance (compared to the nominal case in
the previous subsection).Fig. 5a–b show the benefits of the controller in
general, as the mean acceleration is reduced and the mean velocity is
increased for all altruism levels in comparison to the coordination control
free driving model. Furthermore, the proposed MPC controller indicates
lower mean and variance leading to consistency in the driving and
reducing oscillations.

Fig. 6a–d depict the cumulative emissions, which suggests that the
controller can provide significant reductions in emissions in comparison



500 550 600 650 700 750 800 850 900
30

35

40

45

50

55

60

65

70

500 550 600 650 700 750 800 850 900
-10

-5

0

5

10

15

Fig. 3. Headway and velocity difference between the HDV following the CAV for each controller.

Fig. 4. Single lane OVRV simulation results of vehicle emissions with varying altruism parameter κ.
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to W99. However, there is no noticeable difference between the altruism
levels. For emission distributions in Fig. 6e–h, the pure altruistic driving
strategy exhibits a slight reduction in the variance in comparison to the
other altruism levels and the W99model. Mean values for all altruism are
similar and all altruism levels show lower mean values in comparison to
uncontrolled W99 models.

5.3.3. Multi-lane - W99
For multi-lane simulations, the benefits of altruism are more pro-

nounced compared to single-lane scenarios. These simulations involve
the optimization of longitudinal acceleration along with lane changing
decisions, meaning that the full control strategy is utilized in this sce-
nario. Furthermore, in this simulation scenario, we are running three
CAVs in a decentralized control strategy. In other words, CAVs do not
7

coordinate their actions, and they view the other CAVs as regular HDVs.
In Fig. 7a, we observe that the mean accelerations are reduced by

adopting the pure altruistic driving strategy, while the controller in
general outperforms the W99 driving model in both mean values and
variance. The variance between the different altruism levels is similar.
For the velocity distribution in Fig. 7b, all altruism levels and the W99
model perform similarly in terms of mean values; however, the variance
differs. Pure altruism exhibits the lowest variance, while the other
altruism levels provide slightly higher variance. The W99 model per-
forms the worst when it comes to variance, indicating that the traffic
efficiency is negatively impacted.

To investigate vehicle emissions in multi-lane VISSIM scenarios,
Fig. 8a–d illustrate the cumulative emissions with respect to time. As seen
from Figs. 8a–d, the altruistic driving strategy significantly outperforms



Fig. 5. Single lane VISSIM simulation results of mean acceleration and velocity distribution with varying altruism parameter κ.

Fig. 6. Single lane VISSIM simulation results of vehicle emissions with varying altruism parameter κ.
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the W99 driving model, with the performance gap increasing with higher
levels of altruism. In addition, Fig. 8e–h show the histograms of the fuel
consumption metrics, which exhibit similar trends, i.e., the pure altruistic
driving strategy achieves lower mean emission values than the other
controllers.

To explore the CAV-specific results, Fig. 9 shows the distribution of
acceleration and velocities for only the CAVs in the simulation. As ex-
pected, the highest mean CAV acceleration is obtained in the case of pure
altruism (i.e., κ ¼ 1) since an altruistic CAV sacrifices its own driving
objectives for the sake of overall traffic smoothness. The performance
difference between the altruistic and selfish controllers in terms of mean
acceleration is 20%, while the mean velocities are very close to each
other. In addition, the variance in velocity is slightly lower for the
altruistic case and the distribution is skewed slightly towards higher
8

velocities as well, giving an indication that the traffic efficiency for HDVs
is improved at almost no cost of the efficiency of the CAVs.

Fig. 10 showcases the selfish controller, κ ¼ 0, altruistic controller κ ¼
1 and the penetration rate of CAVs, i.e. the ratio between HDVs and
CAVs. For penetration rates between 50% to 25%, the performance is
lacking due to the larger mismatch between driving models, which re-
sults from decentralized control strategy and that the CAVs assume all
vehicles it sees are HDVs. The penetration rate of 20% is the best per-
forming one in terms of mean acceleration, and the penetration rates of
10% and 5% do have lower variance than the rest. This pattern is also
present in the velocity distributions, where lower penetration rates show
a lower variance meanwhile the mean values for all penetration rates are
similar, with a slight increase for the 5% case. This indicates that even a
low penetration rate will provide the benefits of altruism to the traffic.



Fig. 7. Multi lane VISSIM simulation results of mean acceleration and velocity distribution with varying altruism parameter κ.

Fig. 8. Multi lane VISSIM simulation results of vehicle emissions with varying altruism parameter κ.

J. Larsson et al. Communications in Transportation Research 1 (2021) 100019
It is worth emphasizing the importance of the model used in predic-
tive control, which influences the performance reached by the altruistic
controller. We therefore envisage the benefits of (i) using more sophis-
ticated car-following models in the MPC design or (ii) robustifying the
nominal MPC control algorithm, which may help to reach better closed
loop performance.

6. Conclusion

We proposed rolling horizon, model based control methodologies to
coordinate connected automated vehicles (CAVs) in multi-lane highway
traffic conditions. A set of realistic traffic scenarios are defined where
automated and human driven vehicles (HDVs) have to co-exist. The
objective function of the control algorithms for CAVs is formulated in a
9

such a way that selfish and altruistic goals can be addressed separately or
simultaneously. In this way, pro-social human behaviour can be repli-
cated via the control of CAVs. Simulation results in cumulative and
empirical distribution metrics showed that traffic efficiency and comfort
metrics could be significantly improved by applying an altruistic driving
strategy. We pointed out that pro-social behaviour could be triggered
with changing the relative weights of the overall cost function, i.e.,
changing the weightings between the two objectives, namely, the
objective function to self and objective function to others.

Future research directions may involve changing the proposed
objective functions with the number of vehicles, i.e., traffic density
dependent weightings (e.g., no altruism is needed in free-flow
conditions).

In addition to the decentralized control strategies proposed in this



Fig. 9. Multi lane VISSIM simulation results of mean acceleration and velocity distribution with varying altruism parameter κ for the CAVs.

Fig. 10. Multi lane VISSIM simulation results of mean acceleration and velocity distribution with varying CAV penetration rate from 10% to 50%.
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paper, more complex MPC controllers utilizing centralized control of
CAVs on highways, or cooperative CAV driving, can be designed to
incorporate inter-CAV communication for coordinating CAV driving and
improved controllability of the traffic flow.

Finally, stability constraints and communication delays are not
considered in the proposed predictive control framework. Therefore
10
addressing the stability of adhoc delayed vehicle formations with lane-
change maneuvers can be considered as future research direction.
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Appendix

A. MPC optimization parameters

The optimization parameters involve the constant terms in the objective function and constraints in Eq. (31) used in the simulation sequences. Since
we are evaluating the altruistic parameter, all parameters except κ remain static. The static optimization parameters are set as follows: α¼ 2, β¼ 2, hmax
¼ 70 m, hmin ¼ 10 m, amax ¼ 5 m/s2, amin ¼� 5 m/s2, vmax ¼ 30.5 m/s, tmin ¼ 0.25 s, w1 ¼ 0.75, w2 ¼ 0.5, λ¼ 0.99 and Np ¼ 40. For numerical stability
in optimization, we perform scaling of the objective function in Eq. (31), as described in the following.

A.1. Scaling the objective function in Eq. (31)
While not critical for the purposes of formulating the MPC controller, there are some practical issues to consider when optimizing the objective

function. In order to avoid the practical issues related to differing scales of the numerical components of the objective function, we normalize each
objective in Eq. (18), Eq. (19) and Eq. (20) and the slack objective in Eq. (26) to lie within the interval of [0, 1] by dividing each component by its
maximum value. Additionally, we also modify the weights w1, w2, κ and λ to lie within the same interval. Furthermore, we adopt a decentralized control
strategy, i.e., each optimization concerns only a single CAV. However, there may be multiple CAVs on the road, in which case the optimized CAV treats
the other CAVs as regular HDVs in predictive optimization.

We modify the efficiency objective in Eq. (18) by

J eff;scaled
i ðuCAV

i;k:kþNp�1Þ ¼
XNp�1

n¼0

"
κ

�
vCAVkþn;�V

*

vmax

�2

þð1� κÞ P
j2GHDVi;k

�
vHDVj;kþn � V*

vmax

�2
3
5

(35)

where fκ2 R j 0� κ� 1g. Similarly, the acceleration magnitude objective Eq. (19) and jerk objective Eq. (20) now becomes

J mag;scaled
i ðuCAV

i;k:kþNp�1Þ (36)

¼
XNp�1

n¼0

2
4κ�aCAVi;kþn

amax

�2

þ ð1� κÞ
X

j2GHDVi;k

�
aHDVj;kþn

amax

�2
3
5

J jerk;scaled
i ðuCAV

i;k:kþNp�1Þ ¼
XNp�1

n¼0

"
κ

�
aCAVi;kþnþ1 � aCAVi;kþn

amaxΔt

�2

þð1� κÞ
X

j2GHDVi;k

�
aHDVj;kþnþ1 � aHDVj;kþn

amaxΔt

�2
3
5 (37)

The objective function concerning the slack variable is also modified as

J slack;scaled ¼
X

j2HHDV
i;k

j γj
max jγj

j2 (38)

The scaled version of the objective function in Eq. (31) is then given by

J tot;scaled
i ðuCAV

i;k:kþNp�1Þ
¼ ð1� λÞ

h
ð1� w1ÞJ eff;scaled

i ðuCAV
i;k:kþNp�1Þ

þw1

�
ð1� w2ÞJ mag;scaled

i ðuCAV
i;k:kþNp�1Þ

þw2J jerk;scaled
i ðuCAV

i;k:kþNp�1Þ
� i

þλJ slack;scaled :

(39)
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B. Simulation parameters

While the OVRV simulation setup uses the same parameters as the driving model in the MPC formulation, the VISSIM does use a more detailed car-
following model (Wiedemann99). The latter model has significantly more parameters: CC0 is the desired vehicle standstill distance, CC1 is the headway
time (in seconds) that the vehicle wants to keep. CC0 and CC1 define the safe vehicle headway by hsafe ¼ CC0þ CC1 _v where v [m/s] is the vehicle
velocity. CC2 controls the variation in meters by defining the oscillation boundaries such as hsafe �h �hsafe þ CC2. CC3 is a threshold parameter;
defining the distance when the vehicle in front has been recognized. CC3 is responsible for breaking down and entering into a car-following stage in
W99. CC4 and CC5 controls the speed differences during the car-following stage for deceleration and acceleration respectively. CC6 controls the speed
dependency of oscillations, where larger values lead to larger velocity with increasing distance while the vehicle is in the car-following stage. CC7, CC8
and CC9 controls the acceleration during oscillation, at standstill, and at above 80 km/h, respectively.

In the VISSIM simulations, the following parameters for W99 Gao (2008) are used, CC0 ¼ 1 [m], CC1 ¼ 0.9 [s], CC2 ¼ 1 [m], CC3 ¼ � 8, CC4 ¼ �
0.05, CC5 ¼ 0.05, CC6¼ 1, CC7¼ 10 [m/s2], CC8 ¼ 10 [m/s2], CC9¼ 10 [m/s2]. Furthermore, the look ahead distance is set to 150 m with 2 vehicles
observed at most and the look back distance is set to 100m. For the single lane scenarios, there are 5 HDVs behind the CAV. For the multi lane scenarios,
there are 15 HDVs behind the 3 CAVs.
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