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Abstract

This dissertation presents a novel hybrid grid-based and grid-free computational method for mod-
eling of turbulent flow. Reproducing the fine vortex structures with high resolution accuracy in
turbulent flows is one of the major problems in computational fluid dynamics (CFD) due to the
strong artificial dissipation of grid-based solution. The most advanced and popular technique to
resolve multi scale flow structures is the large eddy simulation (LES) which is based on the idea
of scale decomposition into large and small ones. While the large eddies, which are not universal,
are directly resolved on the grid, the effect of small scale vortices are taken into account through a
subgrid stress (SGS) model. The subgrid motion is not resolved in LES but rather it is modelled
using different functional and structural approaches. However, there are many problems which
require direct representation of the subgrid motion to simulate, for instance, mixing or particle
dynamics in turbulent flows. In this dissertation a novel hybrid grid-based and grid-free method
which is called VπLES is proposed and validated over several benchmark cases. As soon as a typical
size of any fine vortex structure becomes comparable with the cell size or less than it the structure
disappears due to artificial or numerical viscosity. The purpose of the new proposed method is to
protect such vortices from the artificial viscosity damping inherent to grid-based techniques.

VπLES splits the flow structures into large scale ones, resolved on the grid (Eulerian approach),
and small scale ones, represented by vortex particles (Lagrangian approach). Two transport equa-
tions for grid and particle solution are derived which are dynamically coupled through existence
of coupling terms in each of them. There exists a permanent exchange between these two trans-
port equations. Vortex method which is used for resolving subgrid motions in the new proposed
hybrid method is suitable for modeling of fine and fast vortices. Vortex methods possess a low
artificial viscosity and preserve fine vortex structures from excessive diffusion and have less restric-
tions to Courant number. The grid-based techniques have strong advantages in the implementation
of boundary conditions, possibility for local refinement especially close to walls and availability of
codes with multi physics modeling. The method resembles LES with an effort to directly reproduce
the subgrid motion at least in the statistical sense.

The potential of VπLES method validated for several wall-free and wall-bounded flow benchmark
cases including decay of turbulence in the cubical box, free turbulent jet flow and channel flow. A
very important conclusion of validation is that the coupling term in grid-based transport equation
which describes the influence of fine scales on large ones, behaves as an energy drain transferring
the energy of the grid-based motion into the fine scales energy. At coarse resolutions, this coupling
term acts as a diffusive LES subgrid model resulting in a LES-like behavior of the whole method.
When the resolution increases, the present method is consistent and converges to the DNS. The
proposed VπLES method is capable of resolving scales much less than the grid cell size. In such a
way, very fine scales can be resolved on coarse grids. In case of free turbulent jet, comparison with
experiments for mean velocities and fluctuations shows that the VπLES simulation with 1.5× 105

cells attains the similar accuracy as the LES with the dynamic Smagorinsky model on the Grid
with 6.04× 106 cells. Thus, a relatively high resolution of the flow can be attained at coarse grids.
The model is capable of reproducing the backward energy transfer and anisotropy of fine scales
velocities. VπLES is consistent to the laminar simulation through being automatically switched
off when the flow is laminar. The superior potential of VπLES method in resolving energy content
in high frequency scales even in the present of huge over dissipation of coarse grid is proved in the
study of channel flow case. The proposed hybrid method is simple, straightforward and utilizes
advantages of grid-based and grid-free simulations.
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1 Introduction

1.1 Motivation

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis
and data structures to analyze and solve problems that involve fluid flows. CFD is used in a broad
range of research and engineering problems in several fields of research and industrial applications
including aerodynamics and aerospace analysis, hypersonics, natural science, etc. Increasingly it is
becoming a vital tool in the design of industrial products and processes. In a CFD analysis, the
evaluation of fluid flow including its physical properties such as velocity, pressure, temperature,
density and viscosity is performed. In CFD the computational domain is sub-divided into a several
smaller, non-overlapping sub-domains which is called a grid of cells (or mesh). Several errors based
on the mesh structure and resolution can result in a poor CFD result. In case of too coarse mesh the
proper amount of physical and chemical phenomena in a single cell can not be resolved accurately
and influence the overall result. Insufficient resolution of fine vortex structures in turbulent flows is
one of the key problems in CFD. The most advanced and popular technique to resolve multi scale
flow structures is the Large Eddy Simulation (LES) which is based on the idea of scale decomposition
into large and small ones. While the large eddies which are not universal are directly resolved on the
grid, the effect of small scale vortices are taken into account through a subgrid stress (SGS) model.
Since the LES became a classical topic in CFD it has been described widely in the literature. An
overview of LES approach is discussed in section (2.2.2) and detailed discussion of different SGS
model is skipped in this thesis and the reader is referred to the references [11], [12], [13]. The subgrid
motion is not resolved in LES but rather it is modeled using different functional and structural
approaches. However, there are many problems which require direct representation of the subgrid
motion to simulate, for instance, mixing or particle dynamics in turbulent flows. In this thesis
a novel simulation technique is proposed resembling LES with an effort to directly reproduce the
subgrid motion at least in the statistical sense. It is suggested to apply a hybrid grid-based and
particle-based method (or grid-free) through a combination of the finite volume and computational
vortex method (VM) methods. Section (2.3.2) is devoted to the extended discussion about grid-
free vortex method. In this proposed hybrid grid-based grid-free method, similar to LES the large
scale field is represented on the grid, whereas the small scale one (subgrid field) is calculated using
the vortex method. The new method called VπLES (vortex particle intensified LES) is a purely
Lagrangian one for small scale structures and purely grid-based one (Eulerian approach) for large
scale structures.

1.2 The idea of VπLES method

Due to the flow instability, which is an inherent property of turbulent flows, small scales are gener-
ated inside the velocity field represented on the grid. Small vortices can experience stretching and
reduce their size. As soon as a typical size of any fine vortex structure becomes comparable with the
cell size or less than it the structure disappears due to artificial or numerical viscosity. The purpose
of the development of new method is to protect such vortices from the artificial viscosity damping
inherent to grid-based techniques. For that, the vortices are detected in small scale velocity field
and converted to vortex particles which keep their identity and are advected according to transport
equations written in vorticity velocity variables. There exists a permanent exchange and a strong
coupling between grid and particles representing vortices (see Fig. (1.1)).

VπLES is designed in such a way that the strengths of grid-based and grid-free schemes are com-
bined to become complementary. Vortex method is suitable for modeling of fine and fast vortices
because it introduces a low artificial viscosity and keeps the vortex particles identity. Vortex method
is less restricted by Courant number. Section (2.3.2) describes the Lagrangian vortex method briefly
and includes its advantages and disadvantages. For an in-depth discussion it is referred to [14], [15]
and [16]. The grid-based techniques have strong advantages in treatment of boundary conditions,
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possibility for local refinement especially close to walls and availability of codes with multi physics
modeling.

fine cocentrated vortices
modelled by VM

fine vortex structure 
detected by     and
modelled by VM

background flow modelled
by grid-based mehods

Figure 1.1: Snapshot of λci filed (left) and the field of ω2
z/ < ω2

z > within the measurement window in jet mixer,
[1]. The averaged < ω2

z > was 0.459s−2 (right). Strong uneven distribution of ω2
z pointed out that the vorticity is

concentrated in a relatively small number of spots or vortices.

In fact, the idea to combine the grid-based and grid-free vortex methods is not quite new. One
of the most important trends in modern vortex method variants is their coupling with grid-based
methods. While a part of vortex method community continue to use the traditional vortex method
in a pure Lagrangian form (see e.g. [17], [18], [19], [20] and [21]), other groups (see e.g. [22],
[23], [24], [25] and [26]) use hybrid vortex method with grid-based solver. This hybrid method is
known as vortex-in-cell (VIC) method or vortex particle-mesh method (VPM) or semi-Lagrangian
vortex method or remeshed vortex methods in various literature (see section (2.3.3) for extended
description of hybrid vortex method). In VPM approach calculation of velocity from the Poisson
equation, treatment of no slip boundary condition through the Brinkman penalization method and
calculation of diffusion term are done using underlying grid. Only the convection of vortex elements
is treated in a purely Lagrangian fashion. A uniform Cartesian grids are commonly used due to the
application of Fast Fourier Transformation procedures and high order mapping (or interpolation)
of flow variables from grid to particles locations and interpolation back (see Fig. (2.9)). The loss
of the most important advantage of pure Lagrangian methods, i.e. the grid independence, raises
discussions about the efficiency and competitiveness of VPM method with respect to common grid-
based techniques which were brought to perfection by use of massive parallelism of computations.
This major shift towards the use of grid is due the instability of pure Lagrangian VM simulations
in three dimensional flows with concentrated vortices at high Reynolds numbers. The reason of
the instability is an insufficient resolution of the vorticity enhancement and vorticity diffusion as
two competitive physical processes determining the vortex dynamics. Another reason could be dif-
ficulties with efficient approximation of arbitrary vorticity fields with the bell-like or radial based
functions commonly used in VM. The required number of such functions is just too high even for
linearly distributed functions. As shown during the last three international conferences on vortex
method in Rostock (2016), Xian (2018) and in Patras (2021) applications of the pure Lagrangian
(VM) and vortex particle-mesh approaches (VPM) for viscous flows are still restricted to a narrow
range of specific problems mostly at very small Reynolds numbers.

The method developed within this project is principally different from all vortex method (VM)
and hybrid methods (VPM) mentioned above. In this new approach vortex method only plays a
supporting role of the subgrid model and resolve only a small fraction of energetically weak vortices.
Therefore, the requirements for accurate representation of vortices can be diminished in comparison
with classical vortex method without any serious loss of the global accuracy of the simulation. Since
the formalism is different from that of the classical vortex method method (VM and VPM), many
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of vortex method weaknesses become irrelevant. The method, most similar to the present one, was
proposed in [27]. The difference is that [27] considers the fine vortices as a passive phase driven by
large scale motion without any interaction between them. The main objective of this thesis is to
demonstrate the capability and efficiency of the VπLES method in the context of three-dimensional
turbulent flow simulation resolving small scale structures. It requires the implementation the whole
algorithm in OpenFOAM library which, as already demonstrated, is a high reliable open source
library for CFD simulation.

1.3 Related works, Latest trends in computational vortex methods

The latest trends in the computational vortex methods were presented during 7th, 8th and 9th In-
ternational Conference on Vortex Flows and Vortex Models held in Rostock-Germany 2016, Xian-
China 2018 and Patras-Greece 2021 respectively. Several challenging topics in pure Lagrangian
vortex method (VM) and vortex-particle mesh (VPM) and their corresponding progresses are sum-
marized below:

1.3.1 The no-slip boundary condition

In viscous flows the solid boundaries are the key source of the creation of vorticity. Since bound-
ary condition is typically unavailable in terms of vorticity, treating boundary condition in vortex
method is complex. This issue is briefly discussed in section (2.3.2.4). Chorin in [28] and [29] pre-
sented and improved the first successful approach which is called vortex sheet/vortex blob method.
This approach uses vortex splitting method in which vortex sheet creates at solid boundary to
remove the slip velocity and to satisfy the no-slip boundary condition (see Fig. (2.5)). In the
recent works on the vortex method presented in ICVFM conferences, the no-slip boundary condi-
tion (BC) is satisfied using the penalization technique which is based on introduction of additional
artificial terms into the Navier-Stokes equation with a certain penalization parameter which should
be specified from practical experience [30], [31]. The resulting equation is called the Brinkman
Navier-Stokes equation. The method treats the solid and fluid in a unified and continuous manner
and could be very efficient as an immersed boundary condition method for bodies with complicated
geometry varying in time [32]. More traditional approach of boundary conditions implementation
in vortex methods, based on original works of Wu [33] and developed later in many works (see for
instance, [34]), was presented in ICVFM conferences in [35], [17], [36] and [37].

There are still remaining many problems of algorithmic and principal characters in the traditional
vortex method. Among them are high costs of boundary element procedures necessary to calculate
the vortex sheet on solid walls, especially in three dimensional case. With the development of
penalization approach, the hybrid methods were sufficiently improved in [38], [39] and [40]. It was
shown that it is possible to couple the Lagrangian and the Eulerian methods without the use of
time consuming Schwartz iterative method. For that the vortex method is also used close to the
wall. However employing of the vortex method close to the wall is not a proper way because of
artificial noise caused by discretization of continuous vortex fields through elements which results
in the spurious turbulence close to the wall. Far from the wall the discrete vortex elements are a
proper and natural model for real vortex structures whereas close to the wall they could provoke
nonphysical local separations. This method might work properly only at low laminar Reynolds
numbers considered in the most of vortex method applications.

1.3.2 Hybrid grid-based / grid-free methods

While a part of vortex method community continue to use the traditional vortex method in a
pure Lagrangian form (see e.g. [17], [18], [19], [20] and [21]) the other groups (see e.g. [22],
[23], [24], [25] and [26]) consider the vortex method only with coupling with grid-based simulation
within the Vortex in Cell (VIC) method or Vortex Particle mesh (VPM). This hybrid grid-based
grid-free approach is discussed in details in section (2.3.3). The advantage of this technique is
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that the computations of velocities are sufficiently accelerated due to application of the Poisson
equation and Fast Fourier Transformation (FFT) instead of direct summation using the Biot-
Savart integral, especially when Fast Multipole Method (FMM) is used only for determination of
boundary conditions. Moreover, it was shown that VIC is even faster than FMM [41]. The last
conclusion is important for this thesis. The scalability of the VIC method including remeshing
and consideration of boundary conditions is estimated as O(N logN) where N is the number of
vortex particles [42]. However, the biggest weakness of this approach is the application of uniform
∆x = const,∆y = const,∆z = const Cartesian grids. This contradicts to latest tendencies in grid-
based method, like finite difference or finite volume ones, which are developing towards non-uniform
and unstructured grids to handle flows with complex geometries. It is also proposed to map the data
from uniform grids to non uniform ones when the latter is necessary, for instance, to couple with grid
based solvers (in person discussion with Prof. Cottet during ICVFM2016 in Rostock/Germany).
As it is known, mapping on unstructured grid is a big challenge from computational point of view
and introduces additional errors. If the solution of Poisson equation (Eq. 2.91) is of the fourth
order then the mapping algorithm should have the same order to keep the accuracy order of the
overall procedure.

1.3.3 Stability of pure Lagrangian vortex method and the Remeshing methods

An important point of concern in vortex method is treating the term (ω · ∇)u (see Eq.(2.95)) in
a pure Lagrangian way, since the analytical expressions for smoothed velocity distribution u is
available and the strain rate tensor ∂ui/∂xj can also be calculated analytically. The term (ω · ∇)u
plays a key role in the vortex dynamics and generation of the turbulence. Due to amplification
mechanism this term is responsible for development of singularity |ω| → ∞ within a finite time in
inviscid vortex flows. Therefore, a correct treatment of this term in a non-diffusive way should be
the key point in numerical simulations in which this term can be a source of instability and lead
to breakdown of computations. High artificial viscosity of grid-based method helps to damp this
instability whereas in pure Lagrangian method (VM) with low artificial viscosity it could become
a big problem. One possible way to prevent the instability caused by vortex amplification is the
incorporation of folding mechanism in some way into the vortex method. Due to the folding the
stretched vortex filaments loss stability, create tangles and reduce their kinematic effect due to close
approach of elements with opposite vorticity. This mechanism, predicted by Chorin [43], could be a
reason why the kinetic energy can be kept constant despite of vorticity singularity. However, many
experts of vortex methods decided to give up the idea of pure Lagrangian treatment of (ω ·∇)u and
to apply the finite difference method of the fourth order on primitive uniform Cartesian grids in the
context of remeshed VIC method [41]. In VπLES approach which is the main focus of this thesis
the stretching equation is treated in a pure Lagrangian framework with low numerical diffusion.

1.3.4 The Remeshing methods

Remeshing is the process of redistribution of the particles, when required, to compensate for the
Lagrangian distortion of the set of particles due to the high strain regions in the flow (see section
(2.3.3.2.1) for more description of remeshing). It is done by interpolating the strength of vortex
blobs from distorted Lagrangian grid onto a underlying uniform grid. High order remeshing is
attained when it is done with Monaghan’s interpolation formula M ′4 [14] which can be applied only
on uniform Cartesian grids, Eq. (2.90). It is claimed that the remeshing is non diffusive (see [42]
and [41]). An alternative to remeshing on grid is a self-organizing adaptive resolution method (see
[44] and [45]) which doesn’t use a mapping into space of uniform resolution. Instead of remesh-
ing the particles self-organize so that the position of new vortices is adjusted to approximately
equidistribute the error of transport equation approximation. As mentioned in [31] the Lagrangian
treatment of the convection term Dω

Dt , combined with the remeshing operation leads to a method
with accurate treatment of the convection with negligible dispersion and excellent stability proper-
ties. Despite of the grid introduction the VIC method is classified as Lagrangian or semi-Lagrangian
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approach, since the convection of vortices, i.e the terms ∂ω/∂t + (ω · ∇)u, are tracked in the La-
grangian way. However, the loss of the most important advantages of pure Lagrangian methods,
i.e. grid independence, raises the big question about the efficiency and competitiveness of VIC with
respect to common grid based techniques.

1.3.5 High Reynolds number flows

The dominating part of the vortex method application is still done for very low and moderate
Reynolds numbers in laminar mode. For instance, the flow simulation around a sphere presented
in [31] is performed at Re = 1000. The simulation, which are most interesting from the engineering
point of view, were presented during ICVFM 2016 by Winckelmans and his group [40] who applied
VIC for calculation of vertical axis wind turbines (VAWT). The vortex wake shed from a blade of
VAWT interact with blades downstream like in case of rotor craft. Proper resolution of tip vortices
is then very important to predict unsteady loadings on blades in wake. VAWT are now considered
as a very promising application for vortex methods for which their advantages can play a deciding
role to predict blade wake interaction.

For the overview of vortex particle-mesh (VPM) methods the reader is referred to works of Koumout-
sakos [24], Cottet and Koumoutsakos [46], Winckelmans et al. (2016) [47], Mimeau [15] and Stock
and Garakhani [39]. An extension of the VPM to multi phase flows can be found in Chen et al.
[48]. The computational vortex particle method is far from new one and is still not so popular as
other meshless and non-conventional methods like smooth partical hydrodynamics (SPH) and Lat-
tice Boltzmann method (LBM) which made a serious progress in last decades even for engineering
tasks because of availability of open-source codes. Applications of VPM for viscous flows is still
restricted to a narrow range of specific problems mostly at small Reynolds numbers. Perhaps, one
of the reasons is that computational particle methods generally require tuning in the process of
numerical calculations, which is a know-how (Grigoryev et al., 2002 [49]) and usually not published.
Instabilities and fluctuations of simulations belong to a substantial problem of particle methods,
which according to Grigoryev et al. (2002) are connected with comparatively small number of
model particles used in calculations. The instability of vortex method simulations of three dimen-
sional flows with concentrated vortices at high Reynolds numbers is due to insufficient resolution of
the vorticity enhancement and vorticity diffusion as two competitive physical processes determining
the vortex dynamics.

In this thesis by developing a novel hybrid grid-based and grid-free Lagrangian vortex method
several deficiencies of classical VM and VPM addressed earlier in section (1.3) will be solved. The
newly proposed VπLES method is principally different in the mutual incorporation of grid and
particle in hybrid algorithm from all existing vortex and hybrid methods. Theoretical background
of VπLES method as well as its validation for several benchmark cases are described in the following
chapters.

1.4 Scope of this work

A careful review of vortex method (VM) and vortex particle-mesh (VPM) showed that there is still
some limitations in using vortex method for high Reynolds number in engineering applications. The
main objective of this thesis is to demonstrate the capability and efficiency of the VπLES method
as a novel hybrid grid-based and grid-free method with tackling the common issues in VM and
VPM as mentioned in section (1.3). The demonstration is done in the context of three-dimensional
turbulent flow simulation resolving small scale structures. The whole algorithm of VπLES method
(see chapter 3) was implemented in OpenFOAM library which is known as high reliable open source
library for CFD simulation.

This thesis is subdivided in seven chapters. First chapter is devoted to the introduction and the
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motivation of this work addressing the current challenges in vortex method algorithm and the re-
quirements of proposed new hybrid method. In the second chapter a brief review of turbulence
closure modeling for numerical treatment of Navier-Stokes equation in gird-based methods is pre-
sented. Moreover the Eulerian (grid-based) and Lagrangian (grid-free) method as two numerical
solution approaches of Navier-Stokes equation are reviewed. The algorithm of Lagrangian vortex
method (VM) (i.e. point vortex method and vortex blob method) and vortex particle-mesh (VPM)
method as popular Lagrangian (or semi-Lagrangian) approaches are presented and their main ad-
vantages and disadvantages are discussed. Third chapter describes the theoretical background and
mathematical derivation of a proposed hybrid VπLES methods which is the main focus of this
thesis. Fourth chapter validates VπLES method for the benchmark case of decaying of isotropic
homogeneous turbulence in a cubic box and compares VπLES result with LES and under-resolved
DNS. Some of the major properties of VπLES are discussed in this chapter. Fifth chapter deals
with the simulation of turbulent circular jet flow using VπLES on relatively coarse grids and shows
the superiority of VπLES over pure gird-based method on under-resolved grid. Chapter six evalu-
ates VπLES method in the case of wall-bounded flows and compares the result of under-resolved
grid with LES, VπLES and cases without turbulence models. The result of power spectrum shows
the capability of VπLES for preserving the entity of high frequency scales in the region close to
the wall. Chapter seven proposes an interesting application of VπLES method in combination with
inflow generator in order to transport small scale turbulent structures to the far distance from
inlet without decaying in total turbulent kinetic energy. The last chapter contains the review and
conclusion about VπLES application in simulation of turbulent flows and outlooks for the future
works and extensions.
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2 Fundamentals of Computational Fluid Dynamics (CFD)

2.1 Governing equations: Navier-Stokes equations

Navier-Stokes equations are partial differential equations which governs the motion of viscous fluid
substances. From mathematics point of view Navire-Stokes equations express the conservation of
mass and conservation of momentum. They are accompanied some times by an equation of state
relating pressure, temperature and density. Navier-Stokes equations describe the physics of many
phenomena such as ocean current, flow around a wing, etc. By solving this equation one can obtain
a flow velocity which is a vector field to every point in a fluid as well as pressure field. Experience
shows that Navier-Stokes equations describe the flow of a Newtonian fluid accurately. In most
cases even the simplified ones the analytical solution is not possible and one has to use numerical
method. The Navier-Stokes equations are a system of nonlinear second order equations in four
independent variables (velocity components ux,uy,uz and pressure p) including time-dependent
continuity equation for conservation of mass (Eq. (2.1)) and three time-dependent conservation
momentum (Eqs. (2.2)). For a constant ν and incompressible Newtonian fluid it is given as:

∂ui
∂xi

= 0 (2.1)

∂ui
∂t︸︷︷︸

unsteady term

+
∂(uiuj)

∂xj︸ ︷︷ ︸
advection

= −1

ρ

∂p

∂xi︸ ︷︷ ︸
pressure gradient

+ ν
∂

∂xj

(
∂

∂xj
ui

)
︸ ︷︷ ︸

diffusion

+ fi︸︷︷︸
external forcing

(2.2)

The advection term is nonlinear and must be treated with special care in numerical calculation. The
diffusion term smooths out the velocity profile and has a stabilizing influence on the numerical com-
putations. Pressure gradient includes forces on the fluid element due to spatial pressure difference
and external forces consist of gravitational, electromagnetic forces,etc. The Navier-Stokes equation
together with the continuity equation is a closed system of partial differential equations. The most
elegant approach to solve Navier-Stokes equation is the direct numerical simulation (DNS). In order
to solve equation (2.2) with DNS for a turbulent flow all flow scales from the smallest scale to the
scale proportional to the physical dimensions of the problem domain must be resolved and the
solution scheme is designed to minimize the numerical diffusion and dissipation error. The number
of grid points in DNS is proportional to the L/η where L is the largest scale in the system and η
is the Kolmogorov length scale. The resolution of time step must also be small enough to resolve
the small scale fast motions. This leads to a huge computational resources and is not applicable
in many industrial cases. The alternative approach to DNS is the large eddy simulation (LES) in
which the contribution of large scale structures to the momentum equation is solved explicitly and
the effect of small scale of turbulence is modeled (see section (2.2.2) ). Hence LES can be used
at much higher Reynolds numbers than DNS with less computational resources. However it still
needs adequate fine grids. In most engineering application it is not required to resolve all details of
the turbulent flow and information about the time-averaged properties of the flow is satisfactory.
Hence, another approach specially in industrial applications of computational fluid dynamics is us-
ing time-averaged Navier-Stokes equations. In this approach the attention is paid to the numerical
solution of the mean flow and the influence of turbulence on mean flow is modeled. This approach
also referred as the Reynolds averaged Navier-Stokes (RANS) equations is discussed more in section
(2.2.1).

2.2 Mathematical modeling of turbulent flow: Turbulence modeling

2.2.1 Reynolds Averaged Navier Stokes (RANS) equation

RANS equations are used for the approximation of the turbulent flows. It is a simplification of the
Navier-Stokes equations in which each variable in the turbulent flow will be expressed as a sum
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of a time-averaged value and its temporal variation. The equations are time averaged to get the
equations in steady form. The time averaged value is defined as:

ui(t) =
1

2T

T∫
−T

uidt (2.3)

This is called Reynolds time averaging. In turbulent flow we can decompose the instantaneous
variable into mean and fluctuating values:

ui = ui + u′i (2.4)

p = p+ p′ (2.5)

Substitution of Eqs. (2.4) and (2.5) in Eq. (2.2) and use of the averaging rule results in the
Reynolds averaged Navier-Stokes (RANS) equations in conservative form as follows:

∂ui
∂xi

= 0 (2.6)

ρ
∂ui
∂t

+ ρ
∂uiuj
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
µ
∂ui
∂xj
− ρu′iu′j

)
(2.7)

A new term −ρu′iu′j is called the Reynolds stress tensor. This is a time averaged rate of momentum

transfer due to turbulence [50]. The tensor is symmetric (e.g. u′iu
′
j = u′ju

′
i) thus has six independent

components and shows the correlations between velocity fluctuations. This term is unknown and
thus the system of transport equations will be not closed any more. This is called the closure
problem where number of unknowns are larger than the number of equations. A model must be
developed for −ρu′iu′j to close the system of equations for averaged flow quantities in Eq. (2.7).
This model is called the closure model. The purpose of all turbulence models is to calculate the
Reynolds stress tensor at all points in the flow field [50] [51] [52].

2.2.1.1 Closure models for RANS equations

Additional relations are necessary to express the Reynolds stress components through the velocities
and pressure. The majority of RANS models used in engineering are based on the Boussinesq
hypothesis which is the formal extension of the Newton hypothesis to turbulent flows. Boussinesq

proposed to express the Reynolds stress through the strain rate tensor Sij = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
in the

form of the Newton hypothesis. In the Boussinesq assumption a turbulent eddy viscosity νt is
introduced to model Reynolds stresses [51]. The unknown Reynolds stresses are approximated by
the Boussinesq hypothesis and with the help of the turbulent kinematic viscosity are expressed in
the following form:

−ρu′iu′j = ρνt

(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
ρδijk (2.8)

where νt is the turbulent viscosity or eddy viscosity. Turbulent viscosity depends on the turbulent
state of the flow and is not homogeneous (i.e. it varies in space). The second term in the RHS
is added to make it applicable to normal turbulent stress. δij is the Kronecker delta and k is the
turbulent kinetic energy. The turbulent closure model (Eq. (2.8)) is isotropic since the coefficient νt
is equal for all matrix elements. Speziale and Launder constitutive relations are the extension of the
Boussinesq approach for prediction anisotropic behavior in the turbulent flow [53]. The turbulence
models based on this principle are called eddy viscosity models. Eddy-viscosity model are used
widely in computational fluid dynamics since it is easy to implement in CFD solver. Turbulent
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viscosity also contributes to the stability of the numerical simulation. Eddy-viscosity model can be
categorized based on the number of the differential equations used to calculate νt in three different
groups:

• Zero Equation Model

• One Equation Model

• Two Equation Model

The number of equations denotes the number of additional PDEs that are being to solve. Zero
equation models (e.g. mixing length model) use only algebraic equations to correlate turbulent
viscosity µt to the measured or calculated flow properties. They are suitable for the simplest flow
(e.g. thin shear layer flows), easy to implement and the calculation times is short. The main prob-
lems with zero equation model are inability of describing flow where turbulent length scale varies
(i.e. anything with separation or circulation) and ignoring history effects of turbulence (i.e they
dont consider convective or diffusive transport of turbulence). They cannot switch from one type
of region to another (e.g. from boundary layer to a free shear layer) within a single flow [54].

In one equation models one additional transport equation (PDE) and in two equation models two
additional transport equations (PDEs) have to be solved. One equation models are popular in
aerodynamics for computing the flow around plane wing, etc, but they show a weak performance
for massively separated flows and complex internal flows. Two equation models are among the
most popular turbulence models for scientific and engineering calculations. Two separate transport
equations are solved to calculate the length and velocity scales. A transport equation for turbulent
kinetic energy k is usually solved to determine velocity scale and any combination of k and l0 (length
scale) may be used as the second transport equation. Kolmogorov proposed a transport equation
for
√
k/l0 while Spalding proposed a transport equation for vorticity, k/l20 [54]. The standard

k − ε model [55] uses a transport equation for the turbulent dissipation ε and in k − ω model the
transport equation is written for specific dissipation rate ω. Moreover, there are turbulence models
which are not based on the eddy-viscosity model such as Reynolds stress models in which transport
equations are solved for Reynolds stresses u′iu

′
j . The most popular RANS eddy viscosity models

in engineering applications are k − ε and k − ω SST models. A short review of k − ω SST model
including its advantages and disadvantages are presented in the following section.

2.2.1.2 k − ω SST Model

Although the k−ε model is much less sensitive to the assumed values in the free stream, the result of
k−ε model in near-wall region is unsatisfactory for boundary layers with adverse pressure gradient,
[56] and [57]. Mentor in [56] proposed a hybrid model using k − ω model in the near-wall region
and the standard k − ε model in the fully turbulent region away from the wall. The combination
of the two models has been accomplished using a blending function. Achieving a proper blending
requires a number of empirical functions such as wall-distance, which is not a desired model feature
when dealing with flows in complex geometries [58]. The Reynolds stress computation and the
k-equation are the same as in Wilcox ’s original k−ω model, but the ε equation is written in terms
of ω equation. The two-equation model written in conservative form reads [59]:
k-equation:

∂(ρk)

∂t
+
∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
(2.9)

ω-equation:

∂(ρω)

∂t
+
∂(ρujω)

∂xj
=
γ

νt
P − βρω2 +

∂

∂xj

[
(µ+ σmµt)

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.10)
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where:

P = min

(
τij
∂ui
∂xj

, 10β∗kω

)
(2.11)

τij = µt

(
2Sij −

2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij (2.12)

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(2.13)

in SST model the eddy viscosity is limited in order to give improved performance in flows with
adverse pressure gradients, airfoils and wake regions.

µt =
α1ρk

max(α1ω,ΩF2)
(2.14)

Switching between both turbulence models is done using the blending function. Without introduc-
ing a blending function there would be a numerical instability. This numerical instability results
from the differences in the computed eddy viscosity away from the wall using k − ε model and
near wall region using k − ω model. Blending functions make a smooth transition between the
two models. The empirical constant β, σk, σω are computed by a blend from the corresponding
constants via the following formula.

φ = F1φ1 + (1− F1)φ2 (2.15)

where φ1 and φ2 represent the coefficient of the k − ε and k − ω model respectively. Additional
functions are:

F1 = tanh(arg4
1) (2.16)

arg1 = min

[
max

( √
k

β∗ωd
,

500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
(2.17)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(2.18)

F2 = tanh(arg2
2) (2.19)

arg2 = max

(
2
√
k

β∗ωd
,

500ν

d2ω

)
(2.20)

ρ is the density, νt is the turbulent kinematic viscosity, µ is the molecular dynamic viscosity, d
is the distance from the nearest wall, F2 is another blending function and Ω =

√
2WijWij is the

vorticity magnitude with Wij = 1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
. The constants are (They are revised compare to

the standard k − ω model)[59]:

Table 1: Constants in k − ω SST model

β∗ β1 β2 σk1 σk2 σω1 σω2 α1 k

0.09 0.075 0.0828 0.85 1.0 0.5 0.856 0.31 0.41

In spite of relative complexity and several empirical coefficients the SST model has been proved to
perform well and has been adopted as a baseline eddy-viscosity model in commercial CFD package
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(e.g Ansys CFX) [58]. The k − ω SST model is most general RANS model compare to Spalart-
Allmaras, k − ε and k − ω model and test case studies show that it gives a superior performance
for zero pressure gradient and adverse pressure gradient boundary layers, free shear layers and a
NACA4412 airfoil [57]. The k − ω SST model is incapable of capturing the more detailed rela-
tionship between turbulent energy production and turbulent stresses caused by anisotropy of the
normal stresses [57]. In order to improve the incapability of RANS models in capturing turbulent
unsteadiness, there are some developments on the extending RANS closure model through formu-
lating an instability-sensitive, eddy-resolving turbulence model on the second-moment closure level
[60].

2.2.2 Large eddy simulation (LES)

In Reynolds averaged equations the resultant behavior of all eddies must be described by a sin-
gle turbulence model. The smaller eddies are nearly isotropic with universal behavior (specially
for high Reynolds number flows) while the large scale structures are more anisotropic and their
behavior is a function of domain geometry, the boundary condition and body forces. A problem
dependence of the largest eddies make it unsuccessful to achieve a general-purpose RANS model
suitable for all practical applications. A different approach to overcome this deficiency is computing
the larger eddies for each problem with a time-dependent simulation and modeling the smaller ed-
dies. Considering nearly isotropic and universal behavior of small eddies makes it more amendable
to predict them by a single model. This strategy is the concept of large eddy simulation (LES)
approach to numerical simulation of turbulent flow [57].

LES is an intermediate technique between RANS and DNS methods. It was first proposed in 1963
by Joseph Smagorinsky [61] to simulate the atmospheric flows. In LES the large three-dimensional
unsteady turbulent structures up to a given cut-off wavenumber which contain most of the energy
and do most of the transporting are explicitly resolved whereas the effect of the smaller scales which
have to some extent universal character are modeled. Since large scales are resolved explicitly in
LES, it is expected to be more accurate than Reynolds-stress models for flows with large-scale
unsteadiness motion [13].

Instead of time-averaging LES uses spatial filtering operation which is the basis rule for the separa-
tion of large (grid scale (GS)) and small scales (sub-grid scale (SGS)). The deleting small scales are
said to have been cutoff and those are retained are called resolved. This filtering is a locally derived
weighted average of flow properties over a fluid volume. In the following sections, a summary of
the large and small scales separation, LES equations and SGS models will be presented.

2.2.2.1 Filtering

For the separation of the small dissipative scales from the large energetic turbulent structures, a
spatial low-pass filtering is used. Low-pass filter removes small scale motions associated with high
frequencies. The purpose of using low pass filter is smoothing high frequency turbulence smaller
than a characteristic scale ∆ and leaving low frequency motions which corresponds to large scales
unchanged. The LES filter is a convolution filter defined for an arbitrary variable φ in a physical
space as follow [11]:

φ(x, t) =

∫ +∞

−∞

∫ +∞

−∞
φ(ζ, t′)G(x− ζ, t− t′)dt′d3ζ (2.21)

where G is the convolution kernel of the chosen filter and associated with the characteristic cutoff
scale ∆ and τ c. ∆ is also called the filter width. The filtered variables are function of space and
time. Similar to Reynolds ’s decomposition we can use filter function to decompose the arbitrary
variable φ field. φ(x, t) is commonly known as the resolved part. φ′(x, t) is the fluctuation about
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this mean value and includes all scales that are smaller than the filter width ∆. φ′(x, t) is commonly
known as the unresolved part in LES:

φ(x, t) = φ(x, t) + φ′(x, t) (2.22)

Homogeneous filters must satisfy the following propeties when applied to the Navier-Stokes equa-
tions [11]:

• Conservation of constant, The filter doesn’t change the value of a constant:

a = a⇐⇒
∫ +∞

−∞

∫ +∞

−∞
G(ζ, t′)dt′d3ζ = 1 (2.23)

• Linearity:
φ+ ψ = φ+ ψ (2.24)

• Commutation with the differentiation operator for the homogeneous filters:

∂φ

∂s
=
∂φ

∂s
(2.25)

Three most common classical filters for large eddy simulation are mentioned here. In one-dimensional
case with cutoff length ∆ [11]:

• Box or top-hat filter: In finite volume method (FVM) Box-Filter is commonly used. Box
filter in the physical space is defined as follows:

G(x− ζ) =

{
1
∆
, if |x− ζ| ≤ ∆

2

0, otherwise
(2.26)

• Gaussian filter, which has the advantage of being smooth and differentiable was introduced
for LES in finite differences by the Stanford group and is written as:

G(x− ζ) =

(
γ

π∆
2

) 1
2

exp

(
−γ|x− ζ|2

∆
2

)
(2.27)

where γ is a constant generally taken to be equal to 6.

• Spectral or sharp cutoff filter:

G(x− ζ) =
sin(kc(x− ζ))

kc(x− ζ)
, kc =

π

∆
(2.28)

In principal the cutoff length (or cutoff width) ∆ can be chosen to have any size. The smaller the
filter length is the more universal the properties of small eddies can be, but in CFD calculation with
finite volume method it is meaningless to choose the cutoff length smaller than the grid size. Since
in finite volume method each flow variable is calculated for each grid cell, any finer information is
lost. The most common selection for cutoff length is the same order as the grid size. It is common
to consider the cutoff length as a cube root of the grid cell volume thus in three dimensional
computation with grid length ∆x, width ∆y and height ∆z the cutoff width is calculated as (one
choice) [57]:

∆ = 3
√

∆x∆y∆z (2.29)

The filtering process is usually acheived through the finite-volume discretization. This means no
additional filtering step is done. This is called implicit filtering and the filtering is the same as the
discretization. In other words the integration over the finite volume is equal to the filter volume
[52].
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2.2.2.2 Filtered unsteady Navier-Stokes equations

The equation of large eddy simulation is derived by applying a homogeneous filter with properties of
linearity, conservation of constant and commutation with derivative to the Navier-Stokes equations.
The filtered Navier-Stokes and continuity equations have the following form:

∂ui
∂xi

= 0 (2.30)

∂ui
∂t

+
∂(uiuj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τSGSij

∂xj
(2.31)

Eqs. (2.30) and (2.31) describe large scale motion. The contribution of small scales to the large
scale transport equations appears through a subgrid scale (SGS) stress tensor τSGSij which is defined
as:

τSGSij = uiuj − uiuj (2.32)

Similar to RANS equations the filtered equations ((2.30) and (2.31)) are not closed and modeling
the stress tensor τSGSij is necessary. The model must accurately predict the energy exchange between
large and small scales that results from the interaction between different scale sizes.

2.2.2.3 The mechanism of energy exchange

In order to understand the interaction between resolved and model scales we consider the transport
equation of resolved kinetic energy kres = uiui, which is a twice of total resolved energy [54]:

∂kres
∂t

+
∂(kresuj)

∂xj
= −2

∂puj
∂xj

+
∂

∂xj

(
ν
∂kres
∂xj

)
− 2

∂τ ijui
∂xj

− 2ν
∂ui
∂xj

∂ui
∂xj

+ 2τijSij (2.33)

Eq. (2.33) shows that the resolved scales (grid scale) in a control volume exchange energy with the
unresolved scales (subgrid scale) and surroundings. The mechanism of energy transfer includes ad-
vection (RHS), diffusion by pressure force, viscous diffusion, diffusion due to subgrid scale stresses,

viscous dissipation and subgrid scale dissipation. The fourth term (2
∂τ ijui
∂xj

) is a diffusion of resolved

energy due to SGS stresses. The viscous diffusion term (2ν ∂ui∂xj
∂ui
∂xj

) describes the resolved energy

lost by viscous dissipation at the resolved scale level. The last term is a subgrid scale dissipation
(εsgs = τijSij) which represents the net energy exchange between the resolved and the unresolved
scales and can be positive (forward scatter) or negative (reverse cascade). Transfer of energy from
the large scales to small scale motions is called forward scatter. In this case the subgrid scale
model mimics the drain of energy from the large scales. When energy is transferred in the reversed
direction (εsgs < 0) the backscatter happens [54]. Similar analysis will be performed for the newly
developed multi-scale resolving VπLES method in section (3.3).

2.2.2.4 Subgrid scale closure - Smagorinsky (1963) model

The Smagorinsky model is the extension of the Boussinesq approach. Smagorinsky (1963) was the
first who suggested a model for anisotropic subgrid scale stresses. This model correlates τSGSij (Eq.

2.32) to the large scale strain rate tensor. The τSGSij is modeled with introducing νSGS instead of
the turbulent kinematic viscosity:

τSGSij − 1

3
τSGSkk δij ≈ −2νSGSS̃ij (2.34)

where τkk = u′ku
′
k and S̃ij = 1

2

(
∂uj
∂xi

+ ∂ui
∂xj

)
. Expression for the subgrid viscosity was obtained

by Smagorinsky with the use of idea taken from the Prandtl mixing length theory. According to
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Prandtl, the turbulent kinematic viscosity is proportional to the magnitude of strain rate tensor
Sij and to a certain length ls squared:

νSGS = l2S |S̃ij | (2.35)

The length ls is assumed to be proportional to the mesh size ls = Cs∆. Here Cs is a Smagorinsky
constant and ∆ is the filter width or grid scale. Thus the SGS viscosity is evaluated as follows:

νSGS = (Cs∆)2|S̃ij | (2.36)

This model relies on the local equilibrium of production dissipation of sub-grid scales. Lilly (1966,
1967) performed a theoretical analysis of the decay rates of isotropic turbulent eddies in the inertial
subrange of the energy spectrum, which suggests values of Cs between 0.17 and 0.21 but there is no
Cs universally applicable to different type of flow [57]. Difficulty with transitional (laminar) flows
and necessity of adding a damping function in order to damp the SGS viscosity near the wall are
the shortcoming of this model.

Very important characteristic of LES models is that they are consistent with the increasing of grid
resolution (i.e ∆ → 0). If the grid resolution is increased in order to resolve the smallest scale in
motion the LES equation is converged to the original Navier-Stokes equations and the SGS stresses
disappear. On the contrary the URANS simulation is not consistent when ∆ → 0 and the Reynolds
stress components do not disappear [51]. Similar to LES the same characteristic will be seen with
VπLES approach and will be discussed in more details in section (4.5).

2.3 Numerical solution of governing equations

2.3.1 Grid-based Finite volume method (FVM)

This section briefly reviews the cell-centered finite volume (or control volume) method (FVM)
which is used in grid-based solver as well as Eulerian part of hybrid Eulerian/Lagrangian solver of
this thesis to solve conservation Eqs. (2.1) and (2.2) numerically. FVM is based on discretizing the
integral form of the governing equations over each control volume. FVM method probably is the
most popular approach for engineering applications compared to other approaches such as finite
difference method (FDM), finite element method (FEM) and spectral method. Main advantages of
FVM are the compatibility with unstructured grid in complex geometry and the integral formulation
of conservation laws (the native form of conservation laws are integral). Moreover, FVM is the used
method in the OpenFOAM toolkit. The procedure of the discretization can be split into two parts:
discretization in time and space (temporal and spatial discretization) which has been thoroughly
studied during the last decades. Therefore, only a small overview of this discretization will be
provided in this section. The review of FVM discretization in the following section is mostly
adopted from the work of Professor Jasak, one of the two original co-authors of OpenFOAM, [62].
The standard form of the generic transport equation of physical quantity φ (scalar) is defined as:

∂ρφ

∂t︸︷︷︸
Temporal

+∇ · (ρUφ)︸ ︷︷ ︸
Convection

−∇ · (ρΓφ∇φ)︸ ︷︷ ︸
Diffusion

= Sφ(φ)︸ ︷︷ ︸
Source

(2.37)

where φ is the transported variable (e.g. velocity, pressure, mass, ...), ∇ is the Nabla operator,
U is the velocity vector, Γφ is the diffusion coefficient and Sφ(φ) is the source term. This is a
second-order partial differential equation due to the second derivative of φ in space in the diffusion
term. In the FVM, the transport equation (2.37) must be written in the integral form over control
volume Vp around point P (see Fig. (2.1)) and time t:
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∫ t+∆t

t

[
∂

∂t

∫
VP

ρφdV +

∫
VP

∇ · (ρUφ)dV −
∫
VP

∇ · (ρΓφ∇φ)dV

]
dt

=

∫ t+∆t

t

(∫
VP

Sφ(φ)dV

)
dt

(2.38)

N

f

P

Figure 2.1: Polyhedral shaped control volume cell (adopted from [2]).

For a satisfying accuracy, it is very important that the order of the discretization be equal to or
higher than the order of discretized equation. For the spatial discretization, the generalized form
of the Gauss’ theorem will be used, which reads:∫

V
∇φdV =

∮
SV

dSφ (2.39)

∫
V
∇ · adV =

∮
SV

dS · a (2.40)

where SV is the closed surface bounding the volume V and dS presents an infinitesimal surface
element with associated outward pointing normal on SV . This equation can be transformed into a
sum of integrals over all faces, taking into account that the control volume is bounded by a series
of flat faces: ∫

VP

∇ · adV =

∮
SV

dS · a =
∑
f

(∫
f
dS · a

)
(2.41)

whereas the subscript f represents the value of the variable (here, a) in the middle of the face (see
Fig. (2.1)). Assuming the linear variation of the function φ in time and space:

φ(x) = φP + (x− xP ) · (∇φ)P (2.42)

φ(t+ δt) = φt + ∆t

(
∂φ

∂t

)t
(2.43)

where:
φp = φ(xP ) (2.44)

φt = φ(t) (2.45)

The face integral in the Eq. (2.41) can be written as:∫
f
dS · a =

(∫
f
dS

)
· af +

[∫
f
dS(x− xf )

]
: (∇a)f = S · af (2.46)
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and finally leads to: ∫
Vp

∇ · adV =

∮
SV

dS · a =
∑
f

(∫
f
dS · a

)
=
∑
f

S · a (2.47)

In the rest of the text, the discretization of each term in the transport equation (2.37) will be briefly
presented.

2.3.1.1 Discretization of the convection term

Using last Eq. (2.47), the approximation of the convective volume flux through the faces is defined
as: ∫

Vp

∇ · (ρUφ)dV =

∫
SV

dS · (ρUφ) =
∑
f

S · (ρUφ)f =
∑
f

S · (ρU)fφf =
∑
f

Fφf (2.48)

where F is the mass flux through the faces of the control volume and is equal to:

F = S · (ρU)f (2.49)

It is assumed that F is calculated from the interpolated values of ρ and U. The value of the
variable φ at the faces is required in Eq. (2.48) and obtained with convection differencing scheme.
A detailed review of convection differencing schemes and their properties such as accuracy and
boundedness can be found in [57], [62] and [63]. The convection differencing scheme is going to
calculate the value of φ at the face from the value in the cell centers. To overcome the requirement
of high computational cost, the calculation of φ in differencing scheme is limited to only the nearest
neighbors of the control volume.

P Nf

Figure 2.2: Face interpolation using central differencing scheme for the value φ.

Considering the linear variation of φ between neighboring point P and N in Fig. (2.2), the value
of φ at face reads:

φf = φPγf + φN (1− γf ) (2.50)

where γf is the interpolation factor and is defined for a one-dimensional case as:

γf =
xN − xf
xN − xP

(2.51)

The differencing scheme based on Eq. (2.50) is known as central differencing scheme (CDS).
Ferziger and Péric (1996) [63] show that the CDS is of second-order accuracy and can be applied
for structured and unstructured meshes. However, the CDS can reproduce unphysical oscillations
when the convection is the dominate term in the problem. To avoid the unphysical large oscillations
and keep the boundedness, the first-order schemes like the Upwind Differencing Scheme (UDS) in
which the value φf is determined according to the direction of the flow is an alternative discretization
scheme:
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φf =

{
φf = φP for F ≥ 0

φf = φN for F < 0
(2.52)

The flow fields will be drastically smoothed due to the boundedness of the solution in UDS, which in
turn leads to an increasing diffusion and that can violate the order of accuracy of the discretization
and distort the solution. One way to avoid both the boundedness and the numerical oscillations is
using the blended differencing scheme (BDS) which is a blend of UDS and CDS.

2.3.1.2 Discretization of the diffusion term

The diffusion term of the transport equation can be discretized in a similar way with the assumption
of the linear variation of φ as follows:∫

Vp

∇ · (ρΓφ∇φ)dV =

∫
SV

dS · (ρΓφ∇φ) =
∑
f

S · (ρΓφ∇φ)f =
∑
f

(ρΓφ)fS · (∇φ)f (2.53)

The surface normal gradient of φ can be calculated using the values at the points P and N of the
neighboring cells for an orthogonal grid in which vector d and S in Fig. (2.3) are parallel, as follow:

S · (∇φ)f = |S|φN − φP
|d|

(2.54)

P Nd

S

f

Figure 2.3: Representing vector S and d in non-orthogonal mesh

Above method is a second order accurate on orthogonal mesh. An explicit correction will be used
in the calculation of the gradient of φ which is described in detail by Ferziger and Péric [63].

2.3.1.3 Discretization of the source term

All terms of the transport equation that cannot be classified as convective, diffusive or tempo-
ral terms, are consequently treated as sources. The source term should be linearized before the
discretization:

Sφ(φ) = Su + SPφ (2.55)

where Su and SP can be a function of φ. Hence, the discretization of source term with using volume
integral over a CV gives: ∫

Vp

Sφ(φ)dV = SuVP + SpVPφP (2.56)

It is advised to treat source term in an implicit manner. Further discussion about proper treating
source term is explained in [62].
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2.3.1.4 Temporal discretization

So far only the spatial discretization were presented. With respect to Eqs. (2.53), (2.56) the Eq.
(2.38) can be rewritten as:

∫ t+∆t

t

(∂ρφ
∂t

)
P

VP +
∑
f

Fφf −
∑
f

(ρΓφ)fS · (∇φ)f

 dt
=

∫ t+∆t

t
(SuVP + SPVPφP )dt

(2.57)

This equation is usually called the “semi-discretized” form of the generic transport equation. As-
suming the linear variation of the function φ, the temporal integral and the time derivative can be
written as: (

∂ρφ

∂t

)
P

=
ρnPφ

n
P − ρoPφoP

∆t
(2.58)

∫ t+∆t

t
φ(t)dt =

1

2
(φo + φn)∆t (2.59)

where

φn = φ(t+ ∆t) (2.60)

φo = φ(t) (2.61)

By assumption of constant density and diffusivity in time:

ρPφ
n
P − ρPφoP

∆t
VP +

1

2

∑
f

Fφnf −
1

2

∑
f

(ρΓφ)fS · (∇φ)nf

+
1

2

∑
f

Fφof −
1

2

∑
f

(ρΓφ)fS · (∇φ)of

= SuVP +
1

2
SpVPφ

n
P +

1

2
SpVPφ

o
P

(2.62)

The above expression of the temporal discretization is called Crank-Nicholson method and is a
second order accurate scheme in time. There are several explicit and implicit methods for the
temporal discretization which can be found in [62]. In the case of the explicit time discretization,
there is a limit to the applied time step which is restricted to Courant-Friedrichs-Lewy (CFL)
number defined as [20]:

Co =
∆t|u|
δx

(2.63)

This number is a criterion of the numerical stability, if Co number is larger than unity, the explicit
system becomes unstable.

2.3.1.5 Finite volume method in OpenFOAM

The framework OpenFOAM (Open source Field Operation And Manipulation) is a free C++ li-
brary which developed primarily by OpenCFD Ltd at ESI Group since 2004. This framework is
based on the object-oriented programming that can be used to develop wide range of computational
solver for problems in continuum mechanics with a focus on finite volume discretization. Open-
FOAM has a broad range of features to solve governing equations of complex fluid flow including
turbulence and heat transfer. The best advantage of the OpenFOAM is the free access to the source
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code in order to develop and implement new CFD algorithms. Therefore, one can easily modify the
functions of any object, turbulence models, boundary conditions, numerical solvers ..etc, and then
easily implement the new code using the present source and existing base classes in OpenFOAM.
OpenFOAM uses operator overloading that allows algorithm to be expressed in the natural way.
The discretization of transport equation for a generic scalar φ in OpenFOAM is expressed as:

∂ρφ

∂t︸︷︷︸
Temporal

+∇ · (Uφ)︸ ︷︷ ︸
Convection

−∇ · (Γφ∇φ)︸ ︷︷ ︸
Diffusion

= Pφ︸︷︷︸
Source

(2.64)

(
fvm : : ddt ( phi )

+ fvm : : div (mDot , phi )
− fvm : : l a p l a c i a n (Gammaphi , phi )
==

fvm : : Sp (P, phi )
) ;

The fvm::div operator consider the convective flux as a coefficient field over the faces of control
volumes and generic variable phi as a cell centered variable and returns a system of equations
including left hand side (LHS) matrix and right hand side (RHS) source as representation of the
discretization of convection operator. Similar LHS matrices and RHS vectors are calculated for
other operators and add or subtract to each other in order to create the final system of discretized
algebraic equations defined over each control volume of the computational domain [64]. The above
listing shows the flexibility and simplicity of the implementation and extension of new libraries in
OpenFOAM. This makes OpenFOAM a superior choice for customization compared to other com-
mercial CFD software packages. In this thesis OpenFOAM in addition to an extensive development
for the Lagrangian treatment of the terms in Eq. (3.13) and coupling algorithm with grid-based
solver is the main tool for the presented numerical results.

2.3.2 Grid-free Lagrangian vortex method

2.3.2.1 General definition and governing equations
Vortex method (VM) is a numerical approaches for solving Navier-Stokes equations in the velocity-
vorticity form. It was first introduced for inviscid and unbounded flow problem and then extended
to viscous and bounded flows. The development of vortex motion in fluid flow is responsible for
some fascinating aspects of fluid mechanics, such as mixing, shearing, transport and hydrodynamics
instability. Many incompressible flows can be characterized by regions of concentrated vorticity
embedded in irrotational fluid. The inviscid motion of these concentrated vorticity in these regions
is given by the local fluid velocity which in turn is determined kinematically from the vorticity field.
Thus it is mathematically correct to consider inviscid fluid dynamics in terms of parcels of vorticity
which induce motion on each other. The situation is analogous to the gravitational field induced by
the planets. The mass of the solar system is concentrated in relatively few places and it is easier to
focus on the position and strength of these masses at any time rather than calculating gravitational
field at any point in space. This approach leads to reduction of mathematical description of essential
components [65]. In a simple words if the flow is incompressible, knowledge of vorticity distribution
is enough to determine the velocity field [66]. This is the principal idea behind the development
of vortex methods and its consistent development as an alternative to Eulerian grid-based approach.

Traditionally flow is described by the Navier-Stokes equations in terms of flow velocity and pressure
at any point. Vortex methods belong to Lagrangian methods (also called particle methods) and it
is more convenient to solve compressible Navier-Stokes equations in velocity-vorticity formulation
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where vorticity is defined as the curl of velocity, ω = ∇× u. The velocity-vorticity formulation of
the Navier-Stokes equation reads:

∂ω

∂t
+ u · ∇ω − ω · ∇u− ν∆ω = 0 (2.65)

∇.u = 0 (2.66)

One of the advantages of this formulation is decoupling of pressure term from the evolution equation
therefor the equations are only depends on velocity and vorticity.

2.3.2.2 Introduction to vortex method

Based on the idea behind vortex method the vorticity field can be approximated by a set of point
elements. These point elements often referring to vortex particles (also known as vorton) carries
around a given amount of vorticity. The continuous vorticity field ω can be approximated by a
discrete vorticity field ωh at time t as a sum of the vorticities of the vortex elements:

ω(x, t) ≈ ωh0 =
∑
p

αpη(x− xp(t)) (2.67)

where xp is a position vector. αp is the initial local strength around particle p centered at xp and
is defined as the product of the vorticity by the particle volume αp = Vpωp. The core function η
has to satisfy the normalized distribution:∫

η(x)dx = 1 (2.68)

The simplest model for core function is the delta-Dirac function δ. In spite of the simplicity of
delta-Dirac function there is an issue of singularity when particles are very close to each other.
To avoid this problem a smoothed finite sized particles with core size σ was introduced which is
known as vortex blob method, originally introduced by Chorin and Bernard [28]. In this approach
a vorticity of each particles distributed on a blob like a sphere (disk in 2D) with finite radius σ.
For the vortex blob method the discrete vorticity is given by:

ω(x, t) ≈ ωh0 =
∑
p

αpζσp(x− xp(t)) (2.69)

Gaussian distribution is an ideal choice for smoothing function ζp (cutoff function), because of its
smoothness property, its radial symmetry and its fast decay. Fig. (2.4) shows a two dimensional
representation of ζp with Gaussian distribution given as:

ζp(x) =
1

kπσ2
exp

(
−|x|

2

kσ2

)
(2.70)

where the constant k is the width of cutoff function and is chosen between 1, 2 or 4.
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Figure 2.4: Gaussian distribution of smoothing function for k=2 and σ=1 (2D function)

In the majority of vortex methods it is assumed that the vortex element is being convected without
deformation with the local velocity. In order to recover the velocity field from vorticity field the
Biot-Savart integral is being used [67], [68]:

u(x, t) =

∫
(∇×G)(x− x′)ω(x′, t)dx′ (2.71)

u(x, t) =

∫
K(x− x′)ω(x′, t)dx′ = (K ∗ ω)(x, t) (2.72)

where K = ∇×G is a Biot-Savart kernel, G is the Green ’s function of three-dimensional Laplace
operator and ∗ means convolution. The standard Bio-Savart law in three-dimension is written as
follows:

u(x, t) = (k ∗ ω)(x, t) =
1

4π

∫
ω(x′, t)× (x− x′)

|x− x′|3
dx′ (2.73)

Replacing the standard Biot-Savart kernel in Eq. (2.73) with the smoothed (mollified) kernel gives
the following relations for calculating the discrete induced velocity field:

Kσ = K ∗ ζσ (2.74)

u(x, t) =
∑
p

αp(t)Kσ(x− xp(t)) (2.75)

The Lagrangian formulation of the (inviscid) vortex method in three dimensions is expressed with
Eqs. (2.79) and (2.80). The numerical particle locations and the local strengths are obtained by
solving the following ODEs [14], [16]:

dxp
dt

= u(x, t) (2.76)

dαp
dt

= αp.∇u(xp, t) (2.77)

u = Kσ ∗ ω (2.78)

Since vortex methods are inherently inviscid some additional steps are needed to model viscosity.
In a time marching method a common approach is to consider the inviscid and viscous parts of
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the equation one after the other in substeps. This algorithm is known as viscous splitting. Prandtl
introduced this classical concept for distinguishing the viscous and inviscid phenomena in the flow
and Chorin formulated viscous splitting approach for vortex methods [14]. For an unbounded flow
in the first substep vortices move with the local velocity which was obtained with the Biot-Savart
law and the particles locations are updated. In this substep vortex stretching changes the vorticity
carrying by each vortex particles. Diffusion effects are considered in the second substep. The
viscous splitting algorithm in Lagrangian frame can be given as follow:

• convection:

dxp
dt

= u(x, t) (2.79)

dαp
dt

= αp.∇u(xp, t) (2.80)

• diffusion:

dxp
dt

= 0 (2.81)

dαp
dt

= ν∆αp +B.C (2.82)

The advantage of viscous splitting algorithm is that one can apply different models and approaches
for each substeps while only investigate the phenomena involving in that specific substep.

2.3.2.3 Model of viscosity: Core spreading method (CSM)

In vortex method the viscous effect needs to be modeled explicitly. Several diffusion models have
been developed so far in order to solve equation (2.82). According to Barba [67] at least seven dif-
ferent schemes were designed to add viscous diffusion effect in the context of Lagrangian framework
to vortex method. As the most popular one random vortex method (RVM), core spreading method
(CSM), particle strength exchange (PSE) and diffusion velocity method (DVM) can be named [16].
In this thesis core spreading model (CSM) has been used in the newly developed hybrid grid-based
grid free method (VπLES ) and explained shortly here.

The core spreading method use spreading Gaussian blobs around particles while their circulation
remains constant. The core spreading method (core expanding) first presented by Kuwahara and
Takami [69] and reformulated by Leonard [66] is a purely Lagrangian approach which considers
the influence of viscosity by changing the core size of the particle. Core spreading method directly
consider the exact solution of diffusion equation (Eq. (2.82)) given by the Green’s function solution:

ω(x, t) =
αp

(4πνt)2
exp

(
−|x− xp|

4νt

)
(2.83)

Diffusion equation can be discretized with the approximation of continuous vorticity field by su-
perposition of discrete vortex blobs in which the cutoff function ζσp distributes the vorticity over
blob size σ. If the Gaussian distribution is chosen for cutoff function ζp it gives:

ζσp(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
(2.84)

then the discretized scheme in Eq. (2.69) reproduces the solution of diffusion equation (Eq. (2.82)).
Comparing Eq. (2.84) with Green’s function solution Eq. (2.83), the core spreading vortex method
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is then formulated to satisfy identically the viscous part of the vorticity equation by expanding the
Gaussian blob distribution in time according to σ2 = 2νt. It means that in order to satisfy the
diffusion equation the core of each particle must expand (spread out) at each time step at a rate of√
ν∆t. In the other word the diffusion of each vortex particle in this method is obtained by linear

time growth of σ2:

dσ2

dt
= 4ν (2.85)

and can be rewritten in following simple algorithm:

σ2
i (t+ ∆t) = σ2

i (t) + 2ν∆ (2.86)

Core spreading method is inexpensive and simple for implementation, fully localized and grid free
in nature and fully deterministic. This method is not necessarily rely on viscous splitting approach.
However the original implementation of core spreading method was declared inconsistent and could
only give a converged approximation of Navier-Stokes equations with a very restrictive limit of
vanishing viscosity. The reason for this inconsistency is the growth of particle size at least to

√
νT

in a simulation until to a final time T which is not in agreement with the convergence criterion of
vortex method. The convergence of vortex method depends on remaining core size σ as a small
parameter. Rossi [70] developed a CSM with correction step and proposed vortex splitting and
merging. The merging is a mean to control the problem size as splitting increases the vortex blob
numbers. Yokota et al. [71] applied the CSM with correction for study of 3D isotropic turbulence
[67], [16].

2.3.2.4 Boundary condition treatment

Application of vortex method for bounded flow needs the satisfaction of boundary condition at
wall. No-slip boundary condition exerts a torque to the fluid elements adjacent to the wall leading
to the rotational motion in the fluid. Hence in viscous flows the solid boundaries are the key source
of the creation of vorticity. The challenge is that no-slip boundary condition is expressed based
on the velocity field while vortex method is based on the vorticity formulation of Navier-Stokes
equation. To formulate boundary condition for vortex method both Dirichlet formulation (wall
vorticity) or Neumann formulation (wall-normall vorticity flux) is possible. Neumann ∂ω

∂n is often
preferred since it explicitly expresses the local production of vorticity at solid boundaries (walls)
[14], [16]. According to [16] boundary condition can be categorized in three main groups. The first
group belongs to pure Lagrangian methods and is based on viscous splitting and mimics the vortex
creation at the interface by generation of vortex sheet. The other two groups include underlying
grid thus often used with vortex-particle-mesh (VPM) approach. Chorin in [28] and [29] presented
and improved the first successful approach which is called vortex sheet/vortex blob method. This
approach uses vortex splitting method in which vortex sheet creates at solid boundary to remove the
slip velocity and satisfy the no-slip boundary condition (see Fig. (2.5)). To do so the wall discretized
into different segment. Each segment represents a local slip velocity where vortex element creating
at each time steps is designed to remove this velocity. In the original version of Chorin ’s approach
[28] the removal of velocities at the walls was achieved by generating vortex blobs instead of vortex
sheets. The vortex blob on the boundary introduces an artificial smoothing region for the vorticity
field near the surface which increase remarkably the total numerical dissipation of the method.
To reduce this problem Chorin [29] introduced vortex sheet method based on a coupling of the
Prandtl boundary layer equation near the surface with Navier-Stokes equations away from it. One
can mention the limitation of Prandtl approximation which is only valid for attached flows as the
main limitation for Chorin ’s Method. The details of vortex sheet/vortex blob algorithm and its
improvement can be found in [14], [15], [28] and [29].
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no-slip BCboundary boundary

Figure 2.5: Schematic view of Chorin’s vortex sheet method to mimic the no-slip boundary condition in vortex
method.

2.3.2.5 Velocity computations in vortex methods: Biot-Savart integral solution ap-
proaches

The Biot-Savart integral equation (2.73) calculates the local velocity of each vortex particle using
other particle locations and strength. It can be calculated in two different Lagrangian ways:
Direct calculation of Biot-Savart integral: Due to the global influence of vortex particles
on the computational domain a direct integration is very time consuming and for N number of
particles O(N2) operations is required in each time step which has known as a N -body problem.
This is inappropriate for large value of N which would be a case in three dimensional turbulence.
One solution would be considering a cutoff distance and ignore the particles locating beyond this
distance [72]. Although it reduces the number of operations, might be inconsistent in term of
conserving total vorticity.

Fast Multiple Method (FMM): Greengard and Rokhlin [73] proposed a fast summation al-
gorithm for particle simulations. The main idea behind FMM method is clustering particles at
various spatial length and calculate the interaction between clusters which are located far away.
Interaction between neighboring particles is treated directly. FMM algorithm reduces the number of
direct particle particle interaction by replacing distant particles by multipole expansions of groups
(see Fig. (2.6)). The algorithm divides a domain filled with particles scattered in arbitrary order
in to the rectangular sub-domains. Each sub-domains again is divided into the smaller domains
until each cell contains a given maximum number of particles. This approach is based on tree data
structure and can reduce the computational cost to O(N). Parallel implememtation of FMM have
widely developed and used with Lagrangian vortex methods [74]. FMM keeps the grid-free nature
of vortex method at the cost of some complexity in implementation.
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Figure 2.6: FMM block structure with the limit of maximum three particles per cell (adopted from [3]).

2.3.2.6 Basic building blocks of vortex method (VM)

Based on the description of vortex method algorithm in the previous sections the following diagram
represents the flowchart of any viscous vortex method. The arrows shows the sequence of different
steps in a time-marching algorithm:

1. Discretization of continuous vorticity field

2. Calculation of velocity

3. Convection of vortex elements

4. Diffusion

5. Satisfaction of B.C.

6. Spatial adapataion (remeshing or regridding)

Figure 2.7: Basic steps of a viscous vortex method

The first step is dealing with the distribution of continuum vorticity field to the discrete vortex
blobs (see section (2.3.2.2)). The next block is velocity evaluation by using discrete Biot-Savart law
or FMM [73] as an efficient solution to N-body problem. Convection step is done in the Lagrangian
fashion by accurate time dicretization scheme such as Runge-Kutta forth order scheme and choos-
ing an appropriate time step with respect to the flow characteristic and required accuracy [67].
In order to model the viscous diffusion effect several models have been named in section (2.3.2.3)
and CSM was reviewed shortly. Spatial adaption in vortex method would be necessary due to
the clustering or dispersion of vortex particles. Spatial adaption in the form of remeshing will be
discussed later in section (2.3.3.2.1).

Vortex method as was explained here have several advantages over traditional Euler (grid-based)
scheme. As might be expected there are aslo several side effects or disadvantages cited in various
literature [16], [67]. One can mention the following items as advantages of vortex method:
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• Due to Lagrangian treatment of advection term the fine scale structures can often be convected
accurately and preserved for a larger time step.

• In the vortex method formulation the pressure term is decoupled from the evolution equations
in incompressible flow.

• Vorticity field is a compact field compared to the velocity field, this helps vortex method to
focus on the areas of vorticity and saves resources from neglecting irrotational part of the
domain.

• Vortex method is much less restricted by Courant-Friedrichs-Lewy (CFL) condition compared
to the Eulerian method. Hence larger time step compared to grid-based method is allowed in
vortex method. In vortex method time step is only related to velocity gradient ∆t ≤ C

||∇u||∞ ,

where C is a constant less than or equal to one [15].

• In vortex method far field boundary condition can be treated precisely and an accurate outflow
boundary condition which is easy to implement is available [66].

Development and improvement in the original algorithm vortex methods have not been a standard
or mainstream tools of CFD. The following points can be mentioned as main limitations for vortex
method to be not involved in the mainstream of CFD community:

• High computational cost for calculating the velocity with Biot-Savart law referred to N-body
problem discussed in section (2.3.2.5). Development of fast summation algorithm such as Fast
Multiple Method (FMM) [73] requiring an amount of work proportional to N has treated this
difficulty to some extent.

• Complexity of modeling viscous effect in a Lagrangian framework. Diffusion term is more
appropriate to solve with grid-based methods.

• Lost of accuracy due to the distortion of vortex particle in high strain region of flow is often
observed and the necessity of using spatial adaption scheme (or remeshing) at the cost of
some numerical diffusion and appearance of oscillatory results is inevitable.

• Treatment of no-slip boundary condition is much more complex compared to grid-based
method (section 2.3.2.4).

• Deficiency in high Reynolds number due to numerical instability which arises from treating
stretching term in Lagrangian fashion. In order to converge the simulation the vorticity field
must be redistributed to a large number of vortex particles and these particle must keep
the overlapping for the all time of the simulation. The convergence condition h = O(σ) is
observed by [75] in their investigation of propagation and stability of three dimensional vortex
ring where h is the particle spacing and σ is the vortex blob radius. Thus in high Re number
the simulation cost is more than available resources.

According to Leonard [66] it is up to the practitioner to make a benefit of the advantages while
finding ways to tackle the disadvantages.

2.3.3 Hybrid Vortex method

Hybrid numerical method combines Lagrangian grid-free vortex methods with Eulerian grid-based
method to various extent. In hybrid scheme Lagrangian and Eulerian framewrok are combined
in the same or separate part of the domain. Each method with respect to its advantages and
capabilities can be used to discretize different terms of governing equation. Also the numerical
diffusion induced by grid improves the stability of the numerical simulation. Eulerian grid is used
to take the benefit of the prescription of the no-slip boundary conditions as well as solving the
velocity Poisson equation and modeling the diffusion term while the particle overlapping criteria
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is ensured. Lagrangian framework is used for solving advection term. Main difference between
various approaches in hybrid vortex method is based on how particle or grid contribute in the
hybrid algorithm. Two types of hybrid Eulerian-Lagrangian method are reviewed in this chapter
briefly.

2.3.3.1 Domain decomposition method

Based on the idea of using grid method and Lagrangian method in different part of the compu-
tational domain the popular domain decomposition method was first proposed by Cottet in 1991
[76]. Domain decomposition method uses grid-based scheme in the region close to the immersed
obstacle in order to implement accurate constrains for boundary conditions. On the other hand
the Lagrangian approach is applied in the remaining region of domain to accurate modeling of
advection-diffusion effects. Farfield boundary conditions are also satisfied using vortex method.
The coupling between subdomains relies on Schwartz alternating method where the boundary con-
dition on each subdomain are obtained iteratively and transfer information between two frame work
is being performed. Fig. (2.8) shows the schematic view of a typical domain decomposition method
with overlapping. There are two overlapping domain Ω1 for grid-based method and Ω2 belongs to
pure vortex method. S1 and S2 are the outer boundary of Ω1 and inner boundary of Ω2.

overlapping zone

Lagrangian subdomain

Eulerian subdomain

Figure 2.8: Domain decomposition method (adopted from [4]).

Based on [14] and [15] a very short description of the classical framework of domain decomposition
techniques for partially overlapping domain is presented here. With respect to the viscous splitting
in the first substep the Poison equation for the velocity ∆ψ = −ω and in the second subset the
convection-diffusion equation are solved (Eq. (2.65)). It is assumed that the vorticity is known in
both grid domain Ω1 and on the particles in Ω2 domain. In domain decomposition method the
Schwartz alternating method is commonly used for solving Poisson equation. It solves alternatively
the Poisson equation in Ω1 and Ω2. Each domain uses the stream function value obtained in the
other domain at the preceding iteration as a boundary condition. It first calculate the solution of
Poisson equation on Ω1 with boundary condition on S1 calculated in Ω2 at the previous iteration
and then calculate the solution in Lagrangian domain Ω2 with boundary condition S2 obtained in
Ω1 at the current iteration. After Schwartz algorithm convergence the convection-diffusion equation
is solved in each domain. More comprehensive description of each steps of domain decomposition
approach can be seen in [14], [15], [76], [77]. Another type of hybrid vortex method known as
vortex-in-cell (VIC) method was first proposed by [78]. A review of main aspects of vortex-in-cell
method is presented in the following section.
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2.3.3.2 Vortex-in-cell method VIC

As an alternative method to pure Lagrangian vortex method Christiansen [78] proposed vortex-in-
cell (VIC) method. VIC is so called hybrid Eulerian-Lagrangian approach using both framework
according to their strengths. The Eulerian framework (underlying grid) is used to compute par-
ticle velocities and diffusion term and Lagrangian method is used for calculating the advection of
particles. VIC calculates the velocity as a field from the Poisson equation instead of the individ-
ual element velocities as direct Biot-Savart integration would produce. Main four steps which are
common in VIC methods include: particle to grid mapping (or assigning), solving equations on the
underlying grid, grid to particle mapping (or interpolation) (see Fig. 2.9 ) and Lagrangian advec-
tion of particle. Based on the specific implementation the outline of VIC algorithm is summarized
as follow:

1. Solving Poisson equation using underlying grid:

(a) assigning (or redistributing) particle vorticity value to the underlying grid using particle
to mesh mapping with any redistribution formula:

ωi =
1

Vi

∑
p

ΓpW

(
xp − xi

h

)
(2.87)

where xp is the position of the particle carrying the circulation Γp, xi is the position of
the ith interpolation node, Vi is the volume of the grid cell centered at xi, W (x) is the
interpolation kernel whose properties determine the type and quality of the interpolation.
The kernel must satisfy the conservation of the total circulation as measured on the
particles and grid (Eq. (2.88)) and also conservation of linear and angular impulse (Eq.
(2.89)). ∑

i

ωiVi =
∑
p

Γp (2.88)

∑
i

W

(
x− xi
h

)
≡ 1

∑
i

xiW

(
x− xi
h

)
≡ x

∑
i

x2
iW

(
x− xi
h

)
≡ x2

(2.89)

The third order accurate, piecewise smooth interpolation scheme which is known in
literature as M ′4 is widely used in VIC literature. The kernel is continuously differentiable
and satisfies the conservation of first three moments of the particle distribution (total
circulation, linear and angular impulse). Monaghan [5] proposed and improved this
interpolation formula as:

M ′4(X) =


1
2(2− 5X2 + 3X3), if 0 ≤ X ≤ 1
1
2(1−X)(2−X)2, if 1 < X ≤ 2

0 otherwise

(2.90)

where X is the distance between the particle and the grid node normalized by grid
spacing, h. A fraction of the particle quantities which is assigned to the grid node
is given by M ′4. The M ′4 kernel has a width of four in 1D meaning that a particle
information is being assigned onto four grid nodes. The extension of 1D representaion
of equation (2.92) in 2D and 3D is performed with tensor product of 1D schemes in
each direction W (x) =

∏d
n=1W (x(k)). As expected the use of such interpolation provide

some numerical or subgrid dissipation which essentially remedied the divergence issue
[14], [79], [38].
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(b) computing the induced velocity by solving the Poisson equation on the grid:

∆u = −∇× ω (2.91)

2. Lagrangian treatment of Advection:

(a) interpolating the calculated velocity field from grid to particles locations with formula:

up =
∑
p

uiW

(
x− xi
h

)
(2.92)

(b) advection of particles in a Lagrangian fashion and calculate their new positions and
vorticity:

dxp
dt

= up (2.93)

dω

dt
= 0 (2.94)

(c) assigning (back interpolation) the vorticity values and vortex elements volumes to the
grid using equation(2.87).

3. Stretching or tilting of vortex particle vorticity:

(a) using underlying grid to solve the stretching term in the Eulerian framework:

∂ω

∂t
= (ω.∇)u (2.95)

4. Solving diffusion equation using Eulerian framework

(a) using underlying grid to solve the diffusion equation and update the vorticity field on
the grid

∂ω

∂t
= ν∆ω (2.96)

(b) interpolate the updated vorticity from grid to particles using back interpolation.

The order of accuracy of VIC method rely on the order of accuracy of each scheme used for each sub-
steps. The Poisson equation in step 1 is often handled with Fast Fourier Transform (FFT) method
or Fast Multiple Method (FMM). VIC method also known nowadays as the vortex particle-mesh
method (VPM) in the literature. After several time steps particles have a tendency to accumulate
in area where velocity gradient is very high. This may lead to spurious vortex structure. The
remeshing or regridding (see section (2.3.3.2.1)) relocates the particle in the grid points and solve
this problem at the cost of adding interpolation error. VIC method variants uses different remesh-
ing procedure. Remeshing can be done at each time step or every 5th, 10th, ... time steps.

As a summary it can be noticed that VIC has some advantages similar to vortex method such as
less restriction to CFL condition and also treating the advection term in Lagrangian fashion. There
are also some advantages in using VIC method over pure Lagrangian vortex method which is given
as:

• Computation of viscous effect using grid-base schemes (e.g. finite difference method) is more
accurate in comparison to Lagrangian model for viscous term.

• In VIC method Fast velocity evaluation is possible using fast Poison solver instead of direct
summation with Biot-Savart integral.
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(b) grid to particle mapping (or interpola-
tion)

Figure 2.9: Communication of particle information with underlying grid.

2.3.3.2.1 Remeshing
In vortex method overlap criterion is defined as a ratio between particle spacing h and core size σ.

According to convergence properties of vortex method with finite core it is essential that the particle
must overlap (h < σ) at all times although it can be relaxed to some extent (see Fig. (2.11)). This
condition might not hold in practice because of the clustering and dispersion of vortex blobs due
to the high strain regions in the flow. This situation results in the loss of the accuracy in vortex
method because of destroying the communication between particles. A common solution for this
issue is regular spatial adaptation or remeshing (or regridding) of particles with conservation of
physical invariants to retain the proper distribution. Remeshing restarts the particle field on a
underlying Cartesian grid where the overlapping condition is satisfied. It is done by interpolating
the strength of vortex blobs from distorted Lagrangian grid onto a underlying uniform grid [67],
[14], [80]. The strength of the blobs on new grid αp is obtained by interpolation of the circulation
carried by the old particles as:

αp =
∑
q

α̃qW

(
xp − x̃q

h

)
(2.97)

With equation (2.97) new particles at location xp on a uniform grid with spacing h and with
strength αp are obtained from old particles with strength of blobs α̃q on the distorted Lagrangian
grid x̃q. The interpolation kernel must satisfy the conservation of the first three moments of
particle distribution (see Eqs. (2.88), (2.89)). M ′4 interpolation kernel is widely used in literature
for remeshing. Time scale for remeshing should be larger than the time step for the particle
advection but in practice it is conducted every few time steps and often every time step [16].
Several side effects of remeshing techniques have also mentioned in literature. Remeshing induces
some numerical errors in VIC approach. It is observed that the subgrid scale effect of remeshing
facilitates underresolved calculations. Remeshed particle simulations in particular with high order
finite difference schemes shows some problems related to oscillations in result. Some work such as
[81] has been done for developing a non-oscillatory remeshing scheme for vortex particle.
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(a) h < σ, overlap criterion has been fulfilled (b) h > σ, overlap criterion has been broken

Figure 2.10: The overlap criterion is essential for accuracy of vortex method.
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Figure 2.11: a) Grey area is the area assigned to the particle number 10, redistribution of particle 10 is done with
M ′4 interpolation into 16 nodes in 2D Cartesian grid using Eq. (2.90). b)M ′4 interpolation scheme by Monagan [5]

2.3.3.2.2 Basic building blocks of VIC method

One time step in the original version of VIC by [78] can be summarized as Fig. (2.12) from step
1 to 5. In the improved version of VIC method in order to avoid the clustering and dispersion of
vortex particles an addition step for spatial adaptation (remeshing or regridding) is necessary. The
improved algorithm is also called remeshed VIC method in some literature.
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1. Discretization of continuous vorticity field (Eq. 2.87)

2. Velocity Evaluation using Pois-
son equation on the grid (Eq. 2.91)

3. Interpolating velocity from grid to particle loca
tion and advection of particle in a La-

grangian framework (Eqs. 2.92 and 2.93)

4. Solving stretching equation (Eq. 2.95) on the grid

5. Solving Diffusion equation (Eq. 2.96) on the grid

6. Spatial adapataion

Figure 2.12: Basic steps of a viscous remeshed Vortex in Cell (VIC) method

In the next chapter a novel hybrid grid-based and grid-free method which is principally different
form all other hybrid methods from point of view of combination of particle-based (or grid-free)
and grid-based simulation is proposed and its physical and mathematical derivation is presented.
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3 Hybrid grid-based and grid-free vortex method, VπLES

In this chapter a novel hybrid grid-based grid-free method is introduced. The method is based on the
decomposition of the velocity and vorticity fields into the distributed large scale and concentrated
small scale motions similar to the first step in LES approach. The large scale field is represented
on the grid, whereas the small scale one is calculated using the grid-free computational vortex
method. The method is a pure Lagrangian one for small structures and pure grid-based one for
large scale structures. The simulation with vortex method (VM) is embedded into the grid-based
simulation and are dynamically coupled. There exists a permanent exchange between grid and
particle represented vortices. The idea of the method is illustrated in Fig. (3.1) where the vorticity
squared ω2

z is presented for a confining jet flow. Study of turbulent structures was performed using
high resolved PIV [82]. Regardless of initial conditions in turbulent flow and Reynolds numbers
which were sufficiently different the following features of flow structures were documented in [82]:

• The vorticity is represented mostly by fine concentrated vortices and their clusters. Existence
of large strong vortices was not observed. Only a small fraction of fine vortex structures
contributes to the total enstrophy.

• Fine strong vortices of the turbulent flow at high Reynolds numbers are distributed very
unevenly in space. They are approximately axisymmetric.

These facts confirm plausibility of the following concepts and assumptions for developing the new
hybrid technology. With operator splitting method one can split a partial differential equation into
less complex parts solved then sequentially. In the context of this novel hybrid method the Navier-
Stokes equation is split with respect to the size of flow structure using velocity decomposition.
The velocity decomposition techniques was already presented by Beale [83] in order to split the
Navier-Stokes equation into the Stokes part and regular part. The idea behind the new proposed
hybrid method is to decompose the velocity filed into the velocities induced by the concentrated
vortex structure uv and background (or grid-based) velocities ug.

fine cocentrated vortices
modelled by VM

fine cocentrated vortices
modelled by VM

background flow modelled
by grid-based mehods

Figure 3.1: Snapshot of the field ω2
z/ < ω2

z > within the measurement window in jet mixer. The averaged < ω2
z >

was 1.19s−2 and 0.459s−2, respectively [1].

3.1 Decomposition of Navier-Stokes equations

The governing equations are derived using the splitting procedure. The operator splitting method
widely used in numerical analysis dates back to 1950th [84]. In the computational fluid mechanics
splitting is commonly based on two principles [85]: splitting according to physical processes (con-
secutive individual treatment of convection, diffusion, pressure term, etc.) or splitting according
to coordinate directions (see, for instance, alternating direction implicit ADI approach [86]). In
this work the splitting of Navier Stokes equation into a system of two coupled transport equations
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according to scales is proposed. Following this approach the Navier-Stokes equation can be split
into a part which represent the concentrated vortex velocities solved by Lagrangian approach (or
grid-free method) and a part for background velocities solved by Eulerian approach (or grid-based
method) such as finite volume method. Based on physical concept which is illustrated in Fig.
(3.1) velocity and vorticity field can be represented by a sum of concentrated (superscript v) and
background part (superscript g):

u(x, t) = ug(x, t) + uv(x, t)

ω(x, t) = ωg(x, t) + ωv(x, t)
(3.1)

Substituting the decomposed velocity and vorticity in to the vorticity transport equation (2.65)
gives:

∂(ωg + ωv)

∂t
+ ((ug + uv) · ∇)(ωg + ωv) = ((ωg + ωv) · ∇)(ug + uv) + ν∆(ωg + ωv) (3.2)

equation (3.2) is split to the tranport equation for grid-based vorticity ωg and vorticity transport
equation for grid-free method ωv:

∂ωg

∂t
+ ((ug + uv) · ∇)ωg = (ωg · ∇)(ug + uv) + ν∆ωg (3.3)

∂ωv

∂t
+ ((ug + uv) · ∇)ωv = (ωv · ∇)(ug + uv) + ν∆ωv (3.4)

original velocity (ug + uv) transports the vorticity in both equation. Eq. (3.3) should be written
in u− p formulation in order to solve with traditional finite volume methods. Using vector identity
as:

(ug × ωg) = ug × (∇× ug) =
1

2
∇(ug · ug)− (ug · ∇)ug (3.5)

∇× (u× ω) = −(u · ∇)ω + (ω · ∇)u (3.6)

The system of equation to be solved reads:

∂ug

∂t
+ (ug · ∇)ug = −∇pg + ν∆ug + uv × ωg (3.7)

dωv

dt
= (ωv · ∇)(uv + ug) + ν∆ωv (3.8)

∇ · (ug + uv) = 0 (3.9)

By using the divergence free vortex element the induced velocity uv will automatically fulfills the
divergence free constraint. Thus the mass conservation equation only has to be valid for the grid
velocities ug and Eq. (3.9) is reduced to:

∇ · ug = 0 (3.10)

Eqs. (3.7) and (3.8) are dynamically coupled. Eq. (3.7) is coupled with the Eq. (3.8) through
the additional term uv × ωg whereas the coupling of the second equation with the first one is due
to the terms (ug · ∇)ωv and (ωv · ∇)ug. Eqs. (3.7) and (3.8) are solved sequentially. Eq. (3.7)
is solved using grid-based scheme whereas Eq. (3.8) is treated using the grid free computational
vortex method. The sum of these two equations written in the same variables retrieves the original
Navier–Stokes equation. The effect of small structures on gird based solution is taken by the term
uv × ωg into account. The physical meaning of this term can easily be explained when applying
the curl operator:

∇× (uv × ωg) = −(uv · ∇)ωg + (ωg · ∇)uv (3.11)
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The first term on the r.h.s. of Eq. (3.11) describes the transport of the grid based vorticity ωg by
the velocity induced by small vortices uv , whereas the second term is responsible for the rotation
and amplification of the grid based vorticity in field of uv . Since the vortices are getting small
due to stretching of vortex lines and can become invisible on the grid, this term needs a special
treatment.

3.2 Correction of governing equations

The term uv×ωg in the grid-based equation (3.7) involves spatial and temporal scales which can be
much less than the quantities represented on the grid. This can lead to the stiffness of the Eq. (3.7)
which is a common problem in the modeling of multiscale physics. A common way to overcome
this problem is the averaging of the terms representing fine scales [87]. Generally the term uv×ωg
can produce scales compared with grid size and beyond. To remedy the stiffness issue the system
of Eqs. (3.7) and (3.8) are rewritten in the form:

∂ug

∂t
+ (ug · ∇)ug = −∇pg + ν∆ug + uv × ωg (3.12)

dωv

dt
= (ωv · ∇)(uv + ug) + ν∆ωv +∇× [uv × ωg − uv × ωg] (3.13)

where uv × ωg is spatially filtered vector. Averaged terms are often used in transport equations
describing multiscale processes to avoid stiffness. For instance, averaged source term is used in
species transport equation in combustion, subgrid stresses in large eddy simulation (LES) equations,
Reynolds stresses in RANS equations and etc. They cannot be calculated from transport equations
for averaged quantities. They should be modelled and non-universality of these closure models is
the biggest weakness of many theories. An important advantage of the current method is that the
value of uv × ωg can be calculated directly since uv and ωg are both known. Thus the system of
Eq. (3.12) and (3.13) is closed and no closure model is necessary. Averaging is necessary to avoid
numerical noise caused by irregular distribution of vortex elements inside of cells. This formalism
doesn’t use commutation of differencing and filtering operators which results in big difficulties in
LES formalism.

3.3 Derivation of the equation for kinetic energy of grid-based velocity field

To understand the energy exchange between large scales on the grid and fine scales in Lagrangian
framework the transport equation for kinetic energy should be analyzed. By multiplying Eq. (3.12)
with ugi one obtains the equation of kinetic energy for grid-based velocity field kg = 1

2u
g
ju
g
j

∂kg

∂t
+ ugj

∂kg

∂xj
=

∂

∂xj

(
pgugj + ν

∂kg

∂xj

)
+ uguv × ωg (3.14)

last term in Eq. (3.14) describes the contribution of fine scales to the energy of the grid based
motion. It shows that the large scales resolved on the grid exchange energy with fine scale motions
resolved with vortex method. The mechanism of energy exchange between scales is evaluated in the
real case of three dimensional turbulence simulation in the following chapters (see section (4.4)).

3.4 Scale separation

The large scale flow field represented on the grid is separated from the small scale one to be
represented by vortex elements using the filtration procedure taken from Large Eddy Simulation
(LES) (see section (2.2.2.1)). First, the original velocity field ug is filtered with some filter function:

ug(x, t) =

∞∫
−∞

ug(ζ, t)G(x− ζ)ds (3.15)
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where G(x − ζ) is a certain filter function. The small scale velocity field u′ calculated as the
difference between the original and filtered fields equation. u′ must be approximated by vortex
particles in regions of concentrated vortices. The procedure for detecting concentrated vortices will
be discussed in section (3.6) in details.

u′(x, t) = ug(x, t)− ug(x, t) (3.16)

3.5 Interaction between different flow scales

Eqs. (3.12) and (3.13) are dynamically coupled, i.e. the large scale motions influence the small
scale ones and vice versa. All interaction mechanisms between scales can be mentioned as follow:

• Interaction through generation of small vortices due to evolution of large grid-based vorticity.
Due to instability the vorticity represented on the grid tends to creation of concentrated
vortex structures. As soon as the size of vortex is getting comparable with the cell size, small
vortices are generated from large grid based ones according to the algorithm described in
section 3.6.

• Influence of large grid based vortices on small vortices. This influence is taken by terms
(ug · ∇)ωv and (ωv · ∇)ug in Eq. (3.13). The large vortices represented on grid contribute to
the vortex convection, rotation and amplification of small vortices.

• Influence of small vortices on large ones by generation of additional small vortices in grid
based field. This process is discussed shortly in section (3.1).

• Influence of small vortices on large ones by mapping of small vortices to grid. The mapping
is performed in two cases:

– Diffusion of small vortices according to Eq.(2.86) and mapping them back to the grid if
they become large.

– Fine vortices can create the clusters. For this case a special algorithm should be devel-
oped to recognize the clusters, their approximation and mapping them to the grid.

3.6 Approximation of small vortices by vortex elements: Algorithm of vortex
cluster identification

Creation of small scale vortices occurs in the large scale flow due to natural instability. As described
in [88], the first step of vortex identification is the computation of the pulsation velocity field as
the difference between the original and filtered fields at each grid point (equation 3.16). Then the
vortex identification criterion λci [89] is applied to the pulsation field and generating the field λi.
The cells at which λi > λci,min contain the vortices which in principle can be converted to vortex
particles. Such cells are marked as active ones using the λi,active field. λci,min is a certain small
value introduced in order to limit the number of particles.

λi,active =

{
1, if λci > λci,min

0, otherwise
(3.17)

To keep the required computational resources on an acceptable level, only small vortices with size
proportional to the local cell size ∆ are to be converted to single vortex particles. It is supposed
that the larger vortices with scales of a few ∆ can accurately be represented on the grid. Therefore
they should be identified and separated from small scale ones. According to designed algorithm,
all neighboring cells of the ith cell are checked for the condition λci > λci,min. If all neighbors
fulfill this condition they are identified as a cell cluster which remains on the grid and all their
cells become non-active λi,active = 0. Only activated vortices in cells with λi,active = 1 must be
replaced by vortex particles. At the present stage of our development, the cluster identification
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for the unstructured grids implemented in OpenFOAM is performed only for cells with joint faces
marked by A in Fig. (3.2). The neighbors marked by B are converted to vortex particles. This
means that the number of particles is a little bit larger than it could be. In the future, this shortage
can be overcome by enlargement of the neighbor list, which can be pre-processed in OpenFOAM
if it will be necessary. Thus, the vortices with scales of less than three cell sizes and some vortices
located on clusters borders are converted to particles.
At each cell with λi,active = 1 the new vortex particle is introduced at the cell center if the permissi-
ble number of vortex particles per cell Npt is not exceeded. Otherwise, the new vortex replaces the
cell’s weakest one. The number Npt was introduced to keep the total number at a reasonable level.
This restriction is conform with the concept that the largest contribution to the subgrid kinetic
energy is made by a small fraction of the strongest vortices. The radius of the new vortex is set as

σ = βV ol
1/3
i , where β is the overlapping ratio which is taken as β = 2 and V oli is the volume of

the i-th cell. If the distance from the new particle to one already existing in the cell is smaller than
some permissible distance α∆, α � 1 they are merged. The vortex particle strength is calculated
as:

α = V oliω
v = V oli(∇× u′) (3.18)

The velocity uv(x, t), induced by the vortex particles, is calculated at grid points x using the Biot-
Savart law (equation (2.73)) and subtracted from the grid velocity ug,new = ug − uv. Thus, the
total velocity at grid points ug,new + uv = ug remains constant after the vortex particle generation
procedure.

A

AA
A

A
A

A A
A
AA

A
B B

B
B

B B
BA
AAA

A

Figure 3.2: Cells with λci > 0 (shadowed), cluster cells (A), cells with fine scale vortices converted to vortex particles
(B).

3.7 A-priori test for JBC (Japan Bulk Carrier) benchmark case

Computation of the velocity induced by vortex particles is an acknowledged bottleneck of vortex
methods (VM) (see section (2.3.2.5)). The problem can be reduced using either the vortex-in-
cell (VIC) approach or the Fast Multipole Method (FMM). VIC has several limitations. First,
common VIC application is based on simple Cartesian grids providing a sufficiently acceleration of
computations due to employment of the Poisson equation and Fast Fourier Transformation (FFT).
The biggest weakness of the Cartesian grids is the inability of an efficient local refinement to handle
flows with complex geometries. The use of many overlapping Cartesian grids is, certainly, a not
proper way. Extension of the VIC towards arbitrary grids needs development of procedures of vortex
redistribution on unstructured grids which is a complicated problem for high order interpolations.
Moreover, the resolution of the VIC method is determined by the resolution of the grid used to
solve the Poisson equation. In this case the advantages of the vortex methods become questionable.
The same limitations can be ascribed to FMM. To choose the optimal algorithm a kind of a-priori
analysis has been done for the turbulent field behind the full-bottomed ship JBC (Japan Bulk
Carrier) which is a new benchmark test designed by the National Maritime Research Institute in
Tokyo to validate CFD in ship hydromechanics. This test case was selected for the analysis since
high quality results for the prediction of the turbulent kinetic energy in the stern area of JBC
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using grid-based finite volume method and hybrid URANS/LES turbulence model is available [90].
Therefore, it can be assumed that the vortex structures were also predicted with a high accuracy
and can be considered for the analysis which was aimed at development of the following algorithms:

• Efficient algorithm to calculate velocities induced by small scale vortices which can be imple-
mented in OpenFOAM library.

• Efficient algorithm to calculate (ωv · ∇)ug term in Eq. (3.13).

As described in section (3.4) the large scale flow field resolved on the grid is separated from the small
scale one to be represented by vortex elements using the filtration procedure taken from Large Eddy
Simulation (LES). First, the original velocity field ug is filtered with some filter function. The small
scale velocity field calculated as the difference between the original and filtered fields uv(x, t) =
ug(x, t) − ug(x, t) is approximated by vortex elements. Identification of vortices corresponding to
the velocity field uv is performed using one of the vortex identification criteria, for instance Q, λ2

of λci. The details of this study can be found in [91]. The main conclusions is listed here:

• The correlation between the small scale vortices is weak.

• The velocity uv induced by small scale vortices is much less than ug . The probability density
function of of the ratio |uv|/|ug| shows that the velocity uv is in average less than one percent
of ug . The maximum possible ratio is barely about ten percent.

• The velocity induced by vortices can be calculated accurately with the maximum error of
less than five percent from Biot-Savart law taking into account only the induction of neigh-
boring elements from adjacent two cell layers. Very laborious FMM and VIC procedures can
be avoided without loss of accuracy. Strong decay of vortex induction is due to a strong

decorrelation of fine scale vorticity, i.e.
ω(x)vi
|ω(xx)vi |

ω(x+r)vi
|ω(x+r)vi |

, decaying very quickly when r grows.

• Enhancement of small scale vorticity is mostly due to enhancement ωv((ωv · ∇)ug) caused
by large scale motion whereas the contribution of fine scales ωv((ωv · ∇)uv) is small.

Based on this analysis a modified algorithm has been proposed for VπLES and discussed in details
in [91]. An important advantage of this algorithm is that it is based on the procedures which are
already available in Lagrangian particle tracking routines of OpenFOAM.

3.8 Fukuda & Kamemoto algorithm for vortex tube in incompressible flow

Instability of numerical solution of the vorticity transport equation using vortex method (VM)
caused by the stretching term (ω ·∆)u is the most important bottleneck of the vortex method along
with the computation of the velocity uv. This problem was also described in section (2.3.3.2.2). In
grid-based methods with low and moderate order schemes the action of the stretching is effectively
counterbalanced by the numerical viscosity [92] which is very low in Langrangian vortex methods.
The instability caused by this term is much stronger than that due to irregular distribution of
vortex particles. Theoretically, a stable vortex method solution can be obtained by increase of
the accuracy of the stretching and diffusion simulation which can be achieved by high number
of vortex particles and high temporal resolution. Both make the method impractical at least
for high Reynolds numbers. Another solution is using different algorithms containing inherent
stabilization like remeshing (see section (2.3.3.2.1)) which became an inevitable part of the Vortex-
Particle Mesh (VPM) method. The remeshing (or regriding) is based on the grid application and
posses the effective resolution proportional to the cell size. The advantages of such a method in
comparison with a common grid-based methods are questionable and are still being a point of active
discussion among vortex method (VM) community. After a wide literature review an algorithm
which was originally proposed in [93] was chosen for current research work to remedy the instability
originated from (ω ·∆)u term. The proposed method by Fukuda and Kamemoto [93] is based on
three conservation laws:
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Figure 3.3: A symmetric vortex blob.

• the conservation of the vortex particle volume:

σ2l = const (3.19)

where σ and l are the core radius and length of the particle respectively. From Eq. (3.19) it follows

dσ

dt
= − σ

2l

dl

dt
(3.20)

• the conservation of the circulation of the vortex tube if the viscosity is neglected

σ2|ωv| = const (3.21)

From Eq.(3.21) it follows:

dσ

dt
= − σ

2|ωv|
d|ωv|
dt

(3.22)

and

|ωv(t+ ∆t)| = |ωv(t)|
(

σ(t)

σ(t+ ∆t)

)2

(3.23)

Multiplying Eq. (3.23) with the volume V ol ascribed to the vortex particle we obtain a simple
equation for the magnitude of the vortex particle strength α

|α(t+ ∆t)| = |α(t)|
(

σ(t)

σ(t+ ∆t)

)2 V ol(t+ ∆t)

V ol(t)
(3.24)

Since the volume is proportional to σ3 the last equation can be written in the form

|α(t+ ∆t)| = |α(t)|σ(t+ ∆t)

σ(t)
(3.25)

Stabilizing property of the scheme becomes obvious [93]. In case of stretching ( σ(t+∆t)
σ(t) < 1) the

strength of the particle decreases |α(t+∆t)|
|α(t)| < 1. To avoid the loss of the total vorticity the authors

of [93] proposed to insert new vortex particles using the redistribution algorithm. This procedure
simulates the vortex tube elongation described by the equation derived from Eqs. (3.20) and (3.21):

dl

dt
=

l

|ωv|
d|ωv|
dt

(3.26)

The algorithm consists of the following substeps:
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• Calculation of the change of the vorticity strength magnitude:

d|ωv|
dt

=
ωv

|ωv|
dωv

dt
(3.27)

where dωv

dt is calculated from (3.13) without viscous diffusion term. The term (ωv · ∇)uv is
calculated taking into account adjacent vortex particles located only within one or two layers
of neighboring cells.

• Calculation of the particle length from Eq. (3.26)

• Calculation of the particle core radius. First, the intermediate core radius σ∗ is calculated
from Eq. (3.22). The viscosity influence is modeled additionally by the core spreading method
(CSM) (section 2.3.2.3). Thus, the updated radius is σ(t+∆t) = σ∗+

√
4ν∆t. In contrast to,

for instance Particle Strength Exchange (PSE) ([14]), CSM is the most suitable way within the
general design of our method. If the vortices size grows due to viscosity and flow stagnation
they are mapped back to the grid.

• Calculation of the new particle orientation:

ω∗ = ωv(t) +
dωv

dt
∆t (3.28)

• Calculation of the particle strength magnitude from Eq. (3.25).

• Calculation of the new strength vector:

α(t+ ∆t) = |α(t+ ∆t)| ω
∗

|ω∗|
(3.29)

• Redistribution.

The method was successfully tested in [93] for the inclined collision of two vortex rings which
is a popular test case in vortex method. A disadvantage of this model is an avalanche-like
increase of the vortex particles number due to the redistribution when the stretching occurs.
The growth of vortex particles number should be counterbalanced by a special elimination
procedure of [93] based on a knowledge of a threshold for the dissipation rate which is difficult
to set in a general flow case. To develop a robust algorithm, to obtain a stable solution and
to keep the particle number in a reasonable range the redistribution procedure in the current
research work has been avoided. Thus, the finest vortices are removed. This reduces the range
of scales that must be resolved in a numerical calculation. Such a reduction, as pointed by
[68], is a major goal of every turbulence model and is an immanent part of every turbulence
model.

The particle displacement is calculated from the trajectory equation:

dri
dt

= ugi + uvi (3.30)

The velocity uvi is calculated from the Biot-Savart law taking into account adjacent vortex particles
located only within one or two layers (L = 2) of neighboring cells. The simple Euler method is
used for the integration of differential equations.

40



3.9 Choice of vortex elements

The choice of vortex elements is dictated by requirements of simplicity of calculation of induced
velocities and operators of convection and diffusion. The most comprehensive analysis of different
vortex elements is given by [94]. The results presented in this thesis is based on the vortex particles
(vortex blob) with mollified vorticity of:

ω = 3/(4πσ3)αe−ξ
3/σ3

(3.31)

This smoothing function was proposed first by [95]. The velocity induced by this vortex particle
(or vortex blob) and the strain rate tensor are given by:

uvp =
1

4π

α× ξ
ξ3

(1− e−ξ3/σ3
) (3.32)

∂uvi
∂xj

=
3

4πσ3

ξj(α× ξ)

ξ5
(ξ3e−ξ

3/σ3
+ σ3(e−ξ

3/σ3 − 1))− 1

4π
εijkαk

1− e−ξ3/σ3

ξ3
(3.33)

where ζ = |x− xp|.

3.10 Rescaling

The computations shows that the velocity uv calculated using Biot-Savart law and the strength γ is
much less than target value of u′. The reason is not only because a part of vortex particles belonging
to clusters were eliminated in VπLES algorithm but also if vortex particles would be generated at
each cell the velocity calculated from the Bio-Savart formula uv differs from the expected u′. The
reason is that the identity:

uv(xj ,α) =
1

4π
∇×

M∑
i=1

(∇× u′(xi))V oli
|xi − xj |

=
1

4π
∇×

M∑
i=1

αi
|xi − xj |

≡ u′(xj) (3.34)

is satisfied in computations only in the limit M → ∞. This means there must be many vortex
particles within each cell which remarkably increase the computational costs. To avoid this and to
get a proper level of uv, it is suggested to recalculate the strengths using the rescaling procedure:

αrescaledi =
|∇ × u′(xi))|
|∇ × uv(xi,α)|

αi (3.35)
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3.10.1 Description of one step of VπLES algorithm in explicit coupling

Implementation of the method into OpenFOAM was sufficiently simplified by the availability of
many libraries developed in OpenFOAM for Lagrangian particle class. The class of solidParticle
was used for representing vortex particles (vortex blobs). The routines for the interpolation of ug,
∂ugi /∂xj and ωg = ∇ × ug from grid points to particles, particle tracking, filtering procedure to
calculate uv × ωg and the list of neighbors are available in OpenFOAM and effectively used to
develop a fast working code. The flowchart of the whole algorithm is presented in Fig. (3.4), (3.5)
and (3.6). Vortex particles identification procedure, computation of the source term uv × ωg and
an OpenFOAM class for solving vortex transport equation (Eq.3.13) in Lagrangian fashion has
been developed in this research. The term uv × ωg in (3.12) is treated in an explicit way. In the
present version of VπLES library most of routines were parallalized excepting computation of uv

and ∂uvi /∂xj both at particle centers and grid points which need to be parallelized in the future.

1. Calculation of velocities ug and pressure pg using Open-
FOAM. uv × ωg is taken from the previous time step

2. Vortex particles identification (see Fig. 3.5)

3. Updating particle positions and strengths (see Fig. 3.6)

4. Computation of the term uv × ωg for each cell. ωg is from OF.

5. Mapping vortex particles onto grid if their size > γ∆

Figure 3.4: Outline of each time step of VπLES method. Steps 2-5 are newly developed routines implemented into
OpenFOAM.
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2.1 Filtration of ug and calculation of the pulsations u′ = ug − ug

2.2 Determination of λci(u
′) criterion at cell centers

and selection of active cells according to Eq. (3.17)

2.3 Calculation of velocity uv induced by vortices
and vorticity ∇ × uv at grid points using BS law

2.4 Rescaling of vorticity according to formula Eq. (3.35)

2.5 Clusters elimination. If all neighbors for each j-th cell
are active λi,active = 1, then all of them are deactivated

2.6 Vortex element is placed at each j-th cell if λj,active = 1. The

size and vortex strength are σ = βV ol
1/3
j and α = V oljωrescaled.

2.7 At each cell N − Npt weakest vortices are deleted if
N > Npt. Npt is the maximum number of vortices in each cell.

2.8 Velocity uv(x, t) induced by vortex particles is calculated at
grid points using BS law and subtracted from the grid velocity.

Figure 3.5: Flowchart of the vortex particle identification procedure. BS stands for Bio-Savart.
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3.1 Velocities uv and
tensor ∂uvi /∂xj at vor-
tex centers from BS law

3.2 Velocities ug and
tensor ∂ugi /∂xj at vor-
tex centers from OF

3.3 Vortex displacement from
equation dr/dt = uv + ug (OF)

3.1 Velocities ug and
tensor ∂ugi /∂xj at vor-
tex centers from OF

3.4 Change of the vortic-
ity strength magnitude at
vortex centers from (3.27)

3.2 Vortex displacement from
equation dr/dt = ug (OF)

3.5 Particle length from (3.26)

3.6 Particle core ra-
dius from (3.20)

3.7 Calculation of the par-
ticle core spreading using
Core Spreading Method

3.8 New particle ori-
entation from (3.28)

3.9 Particle strength
magnitude from (3.25)

3.10 New strength
vector from (3.29)

3.11 At each cell N −Npt weakest
vortices are deleted if N > Npt.

Algorithm for active vortices
Algorithm for passive vortices when

the inner interaction between vortices

is neglected

Figure 3.6: Flowchart of the updating procedure for the particle positions and strengths. OF stands for OpenFoam.

3.10.2 Free parameters of the method

VπLES method consists of a few free parameters which are:

• λci,min is a threshold to sort out weak fine scale vortices (see definition (3.17)).

• β is the overlapping ratio of vortex particles.

• γ is the parameter to map the large particles back to the grid. If a size of a vortex exceeds
γ∆ it is mapped onto grid.

• Npt is the permitted number of particles in cell.
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Experience in practical applications shows that λci is high at the vortex and then abruptly decays.
That is why the results are relatively insensitive to the choice of λci,min if this parameter is smaller
than, say, ten percent of the maximum λci determined in the whole flow. The overlapping parameter
β is a typical parameter widely used in vortex particle methods to attain a proper accuracy and
stability of computations. Unfortunately, it is difficult to find any unambiguous recommendation
for its choice. In this work β = 2 relying on the positive experience of [96] and [97] was chosen.
Parameter γ is taken as four since all vortices with sizes larger than three cell sizes are not converted
to the particles according to the algorithm described in section (3.10.1). Npt is the most critical
free parameter which influence is proven in section (4.10).

3.11 Treatment of no-slip boundary condition in VπLES for wall-bounded flow

The boundary conditions (BC) are explicitly formulated only for the grid solution. There are no
boundary conditions for the vortex method. For instance, the no slip BC for the velocity can be
written in the form:

ug + uv = 0← ug = −uv (3.36)

The necessary and sufficient boundary condition for the pressure in incompressible case, which is
used in the Poisson equation within pressure correction approaches, is the Neumann BC obtained
by the projection of the Eq. (3.12) onto the normal direction n [88]:

∂pg

∂n
= −(

∂ug

∂t
+ (ug · ∇)ug) + uv × ωgn (3.37)

where the term proportional to the kinematic viscosity was traditionally neglected. Similar bound-
ary condition can be derived for the scalar field and for flows with variable transport properties.
In this thesis this boundary condition was not applied and the traditional ones for the grid-based
solution was utilized based on the following considerations:

• Close to the wall the flow is rather smooth and the creation of energetically important con-
centrated fine structures is unlikely.

• Representation of the continuously spatially distributed structures by discrete particles with
a primitive spatial spherical distribution of vorticity ω = 3/(4πσ3)αe(−r3/σ3) results in a
serious approximation error and cause numerical instability.

• This approximation can be not physical if the vorticity induced by a particle is not zero
beneath the wall ω(y < 0) 6= 0, where y is the distance from the wall (see Fig. 3.7). This
case takes place when the elongated cells with ∆x� ∆y, where x is the coordinate along the
wall, are usually used. In this case the vortex radius σ ≈ β∆x = 2∆x� ∆y. If the vortex is
located to the wall closer than 2∆x the particle approximation of vorticity is fully wrong.

To avoid these difficulties and taking into account the fact, that the influence radius of the vortex
particle (area of a sufficient induced velocity) is approximately 2σ we don’t allow the particle
generation at the distances y ≤ 4σ introducing the security zone schematically shown in Fig. (3.8).
The width of the zone depends on the grid and covers a few grid wall layers in vertical direction.
Since the influence of particles at the boundary in such a way is avoided, we use traditional boundary
condition for the grid part of the solution.
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y

Figure 3.7: Wrong approximation of the vorticity by a vortex particle when the distance from the wall y is less than
the vortex particle radius σ.

no-slip wall

security zonesecurity zone

Figure 3.8: Vortex particles utilized in VπLES method. Filled circles are the vortices newly generated at a time
instant at cell centers, filled star are the fine old vortices generated at previous time steps, the arrows show the
velocities of vortices. In the security zone the generation of new particles is not allowed.
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4 Decaying of homogeneous isotropic turbulence

Decaying of homogeneous isotropic turbulence has been a popular test case in the evaluation of SGS
models. As a classical turbulence test case the decay of turbulence in a cubical box is investigated
in this chapter using VπLES approach and compared with experimental data of Comte-Bellot &
Corrsin [98]. Although the experiment of Comte-Bellot & Corrsin was performed in a wind tunnel
flow, the result can be extended to the case of decaying homogeneous isotropic turbulence in a box
[99]. This simple flow configuration is used to evaluate VπLES method through investigating the
turbulent quantities.

In order to initialize turbulent structures, the energy spectrum in wavenumber space at the first
location in Comte-Bellot & Corrsin experiment was generated artificially using spacial inverse
Fourier transformation. According to [100] Inverse Fourier (IF) approach shows better agreement
with experiment compared to Filtered noise and Diffused noise methods. In the context of this
work a fully integrated tool in OpenFOAM was developed to construct a turbulent velocity field
using random Fourier modes. This utility is based on the very popular method which was proposed
by Kraichnan [101]. In this work further development by [102] and [103] and in particular [104]
were considered for implementation in OpenFOAM. The measured energy spectrum was modeled
by von Karman-Pao spectrum.

4.1 Numerical Setup

The numerical cubical domain have edge lengths of L = 0.508m. Grid resolution of 323, 643, 1283

and 2563 cells which consist of hexahedral elements with an equidistant grid spacing were gen-
erated using blockMesh utility of OpenFOAM. Periodic boundary condition was applied on each
faces of cubical box to be isolated from near wall effect. In order to be consistent with experiment
of Comte-Bellot & Corrsin [98] Taylor Reynolds number is chosen as Reλ = urmsλ

ν = 71.6 with

air kinematic viscosity of 1.5e − 5m
2

s . Comte-Bellot & Corrsin measured turbulence properties at

three different locations downstream of the grid at tU0
M = 42, 98 and 171. These three locations

can be transferred to three dimensionless times of t = 0, t = 56 and t = 129 by means of Taylor
hypothesis [100]. Temporal evaluation of turbulence and passive scalar mixing properties at these
dimensionless times were investigated in the current work using VπLES approach.

For time discretization a second order Cranck-Nickolson scheme was used. The spacial discretization
of convective term is performed using several first and second order schemes to show the influence
of discretization scheme on the decay of turbulent kinetic energy, auto-correlation function and
scalar dissipation rate. CFL criterion is kept less than 0.1 and the time steps is calculated based
on that. To initialize turbulent fluctuation at t = 0, IF-method is applied to generate a Fourier
series of N modes at the arbitrary point x in space. According to [104] a total number of N=5000
modes is a value with minimum error in this case. The velocity field and spectra of generated
synthetic turbulence is presented in Figure 4.2 and 4.3 for all mesh resolutions. The maximum
resolved wavenumber is determined based on the grid spacing through kmax = 2π

∆x . In order to
have exactly the same root-mean-square velocity (urms) as in experiment, there is a scaling process
which correct the prescribed urms with respect to desired one. Therefor for all grid resolution the
initial urms is constant and equals 0.222m/s. In order to be consistent with the experiment the
integral length scale is set to 0.024m. A more comprehensive discussion about the synthesized
turbulence generator used in this thesis is presented in section 4.2.

Figs. (4.2) and (4.3) show the x-components of generated turbulent velocity fields and the cor-
responding power spectra respectively. In Fig. (4.2) coherent structures can be distinguished as
uniformly colored regions. Increasing the maximum resolved wave number through grid refinement
is visible in Fig. (4.3). Fig. (4.4) shows the initialized longitudinal velocity correlations with
respect to the grid resolution. In a very coarse grid (323) the autocorrelation function is over-
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predicated whereas it matches well with experiment in case of fine mesh. In Fig. (4.2.a) colored
large scale structures are visible in the case of 323 mesh cells. In this under-resolved grid there
are not significant small scale structures compare to fine gird. Hence in coarse grid the correlation
is stronger. By increasing the grid resolution small scale structures appear in the flow field and
the homogeneous isotropic turbulence is being achieved. In this case the correlation of neighboring
structures are weaker and match well with experiment.

4.2 Inverse Fourier (IF) approach for generating synthesized turbulent fluctu-
ations

A fully integrated tool in OpenFOAM was developed to construct a turbulent velocity field using
random Fourier mode. This utility is based on the very popular method which was proposed first
by Kraichnan [101]. According to the theory an arbitrary spatially varying velocity field is given
by N random Fourier modes as:

u′i(xj) = 2

N∑
n=1

ûncos(knj xj + ψn)σ̂ni (4.1)

where N is the number of random Fourier modes, ûn is the amplitude, ψn and σ̂ are phase angle
and direction of the nth mode associated with the nth wave vector kn . Equation (4.1) generates a
Fourier series of N modes at the arbitrary point x in space. The notation used here follows that in
[103]. For computing a synthesized turbulent velocity field using equation (4.1) the following steps
are necessary [103], [104]:

(a) Random direction of a wave number vec-
tor kni . The wave vector is characterized by
its spherical coordinates (kn, φn, θn)

(b) The unit vector σn is located in the (ζn1 ,
ζn1 ) plane and is perpendicular to kni . Its po-
lar angle αn has an arbitrary random orien-
tation.

Figure 4.1: Wave vector geometry for the nth Fourier velocity mode (adopted from [6]).

• For each Fourier mode n, compute the random angles φn, αn and θn (see Fig. (4.1)) and
random phase ψn.

• Compute the maximum wave number according to the mesh resolution kmax = π
∆x .

• Define the minimum wave number as kmin = 2π
L , where L is the edge length of the cubical

domain.

• Divide the wavenumber space (kmax-kmin) into N equidistant modes:

knj = kmin +
kmax − kmin

N
(n− 1) (4.2)
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• Compute the randomized wave number unit vector at random point on a unit sphere:

knx = sin(θn)cos(ψn)

kny = sin(θn)sin(ψn)

knz = cos(θn) (4.3)

• In order to satisfy continuity the unit vector, σi has to be orthogonal to wave number vector
kj .

• Compute the amplitude ûn of each mode from modified von Karman-Pao spectrum using:

ûn =
√
E(|kj |) (4.4)

E(k) = α
u2
rms

ke

(k/ke)
4

[1 + (k/ke)]17/6
e[−2(k/kη)2] (4.5)

where α ≈ 1.453 is a dimensionless constant, urms is the root-mean-square of the velocity
fluctuation, ke is the wave number where the spectrum reaches its maximum (most energetic
eddies), kη is Kolmogorov wave number (smallest turbulent structure). The algorithm imple-
mented in OpenFOAM is closely similar to the work of [104]. The initialized velocity field
and power spectra are presented in Figs. (4.2) and (4.3).

(a) grid resolution 323 (b) grid resolution 2563

Figure 4.2: x-component of initialized velocity field using inverse-Fourier approach
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(d) grid resolution 2563

Figure 4.3: Energy spectra of initialized velocity field by inverse Fourier method
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Figure 4.4: Autocorrelation function of initialized velocity field with respect to the grid resolution

4.3 Decay of Turbulent kinetic energy

Since in the case of homogeneous isotropic turbulence in cubical box there is no production of
energy, the turbulent kinetic energy decays monotonically in time. This test case does not contain
a global shear, strain rotation or near wall effects, therefore it is a proper test case to validate the
performance of VπLES in prediction of energy cascading from large scale motion to small scales.
Consequently it also shows the proper implementation of balancing between the stretching and
diffusion model in the proposed SGS model (VπLES method).

Fig. (4.6) shows the decay of spatially averaged turbulent kinetic energy in a coarse mesh (323).
The spacial discretization of convective term is performed using linear (central difference) scheme.
In the case of coarse grid (323 and 643) without using any turbulence model, there is a strong
over-prediction of turbulent kinetic energy at each time instance. It shows that the grid is too
coarse to predict the energy cascading properly without any turbulence model. Since small scale
are not resolved here, the dissipation of energy can not be reached with the physical decay. This
over prediction issue can also be observed in Fig. (4.9) of the power spectra when less diffusive
scheme such as linear scheme was applied for the discretization of convective term. Repeating
similar simulation with two different SGS models one with Smagorinsky and one with resolving
SGS term with vortex method (VπLES ) shows that VπLES is in a pretty good agreement with
experiment.

Two different constant Cs in Smagorinsky model were used in order to adjust to the decay prop-
erly. As it is observed Cs = 0.2 slightly increases the dissipation of kinetic energy k and follow
well the decay of turbulence. This effect is similar to increasing the number of particles in VπLES
simulation. In both cases of VπLES method and Smagorinsky model there is a clear discrepancy in
the first time step. This deviation shows the insufficient amount of subgrid scale energy in VπLES
and Smagorinsky at the beginning. Dietzel et al. [100] reports the same discrepancy in first time
step.
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4.4 Contribution of the term uv × ωg to the energy budget

In section (3.3) a transport equation for kinetic energy of grid-based velocity has been derived.
In Fig. (4.7) the term ug uv × ωg from Eq. (3.14) is plotted to understand the energy exchange
between large and fine scale motions. Fig. (4.7) shows a very important fact that the term uv × ωg
behaves as an energy drain transferring the energy of the grid-based motion into fine scale energy.
In the other words, it acts as a diffusive Large Eddy Simulation subgrid model. This is true only
in the averaged sense because in contrast to pure diffusive models like the Smagorinsky one, the
present term allows the energy back scattering, i.e. flux of the energy from fine scales to the large
ones. Indeed, as mentioned above, this term reproduces amplification of the grid-based vorticity in
field of uv and can lead to a local increase of the kinetic energy. This is illustrated in Fig. (4.5). Fig.
(4.7) shows that the energy drain gets larger when the number of particle per cell Npt (see Section
(4.10) for more detailes about free parameter Npt) increases. This is a quite logic result, because
the energy of fine scale motion grows when Npt increases. The flux of energy, discussed above, is
only a part of the total flux. Another part, which is definitely negative, is due to conversion of
grid-based vorticity into vortex elements.

Some instantaneous points
of energy back scattering

Figure 4.5: Instantaneous distribution of the energy production term ug uv × ωg in the middle plane of the compu-
tational box at τ = 56. Positive values correspond to the energy increase, grid resolution 643.

4.5 LES like behavior and consistency of the model

As mentioned in section (4.4) the coupling term has the same property as the LES subgrid stress
with respect to the energy budget. Fig. (4.8) is an additional confirmation of this property. For
coarse resolution with 323 cells, the kinetic energy k = 1

2(ugi + uvi )(u
g
i + uvi ) averaged on the box

decays like in LES simulations performed with a simple Smagorinsky model with Cs = const.
and with the same resolution as VπLES . The pure grid simulations performed with OpenFOAM
without any turbulence model indicate a delayed underestimated energy decay (red line). The lower
picture illustrates a remarkable fact. When the resolution grows, the effect of the term uv × ωg
reduces and VπLES method converges to the purely grid simulation (compare results for 323 and
1283 cells grids). In the other words, the VπLES method is consistent and converges to the Direct
Numerical Simulation (DNS) when the resolution increases. In all simulations there is a clear drop
of the kinetic energy at the first time step reported also by [100]. When the resolution grows the
drop slightly decreases but not sufficiently. The literature review shows that this is an artefact
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which is specific for the method of artificial generation of initial turbulence used in this paper.
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4.6 Spectrum evolution

Fig. (4.9) shows the evolution of power spectra and growing velocity correlation at different di-
mensionless times for grid 323 without using any turbulence model (i.e. under-resolved DNS). The
caption ”pure grid simulation” means cases without using any turbulence model. Three different
numerical schemes were applied for discretization of convection term in Eq. (2.2). It is observed
that in the case of using linear scheme (CDS) with 2nd order of accuracy the energy at high wave
numbers is over predicted. Since small scales are not resolved here and also there is no turbulence
model to model the subgrid scales, the dissipation of energy can not be reached and kinetic energy
will accumulate. In contrast to linear scheme a more diffusive scheme such as upwind or linearUp-
wind prevents the over-prediction at the middle scales but drastically damps the energy at small
scales (Figs. (4.9.c) and (4.9.e)).

As already discussed the longitudinal velocity correlation of the initialized synthetic turbulence is
not in good agreement with experiment for grid 323. Figs. (4.9.d) and (4.9.f) show cases in which
more diffusive discretization schemes has been used. In these cases temporal evaluation of velocity
correlation follows the experiment but the prescribed integral length scale is over predicted. The
case with linear scheme does not predict the same tendency as in experiment and the growing of
integral length scale is not physical (Fig. (4.9.b)).

Fig. (4.10) shows the influence of using SGS model on the temporal evolution of energy spectra in
grid 323. The Smagorinsky model with a model constant of Cs = 0.17 and VπLES method with
direct resolution of subgrid motion using vortex method are compared in Fig. (4.10). In both cases
the evolution of energy spectra follow the experiment. In case of VπLES method there is no large
over-prediction in middle scales and also energy at small scales are preserved. Fig. (4.11) shows the
influence of number of particles per cell Npt on the prediction of power spectra at each dimension-
less time instance. Increasing number of allowed particles per cell Npt from 2 to 10 leads to more
accurate prediction of energy content at small scales. In fact it increases the resolution of VπLES
model to predict small scale motions and consequently more physical diffusion rate. Increasing
Npt from 10 to 20 doesn’t show remarkable changes in the result. This means new vortices which
are allowed to add beyond 10 particles per cell in the numerical domain are very weak and do not
have influence on the grid solution. It confirms the convergency of number of particles per cell to a
specific value. It should be noted that this value might be different for various grid resolution. In
Fig. (4.12) similar influence on power spectra can be seen by increasing Smagorinsky constant to
Cs = 0.2. Sohm [99] also ended up with Cs = 0.2 for accurate prediction of decay of homogeneous
isotropic turbulence.

Fig. (4.13) depicts the longitudinal autocorrelation function. When no turbulence model is used
the growth of autocorrelation function (the increase of the integral length scale) is nonphysical (as
time passes it shows decreasing in correlation). Using VπLES the autocorrelation function shows
reasonably good agreement with experiment at short and long distances. Although this coarse
grid can not resolve the integral length scale sufficiently, the growing of the integral length scale is
predicted well with the similar trend as in experiment. It should be noted that although the physical
growing of velocity correlation can be obtained by using low order numerical scheme (see Fig. 4.9.d
and 4.9.f), there is a huge over dissipation of small scale structures in these cases (see Fig. 4.9.c
and 4.9.e). VπLES method as well as Smagorinsky SGS model with Cs = 0.17 properly resolve the
growth of velocity correlation while preserve the small scale motions from over dissipation (see Fig.
(4.11)). This result confirms that the energy transfer between large and small scales is properly
resolved with VπLES and LES with Smagorinsky model in this coarse grid. Similar result for LES
Smagorinsky were presented in [99] and [100].
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(c) pure grid simulation (323) - linearUpwind scheme
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(d) pure grid simulation (323) - linearUpwind scheme
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(e) pure grid simulation (323) - upwind scheme
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(f) pure grid simulation (323) - upwind scheme

Figure 4.9: Comparison of energy spectra of experiment and simulation for linear, linearUpwind and upwind scheme
without using any turbulence model - grid resolution is 323.
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(c) LES Cs=0.17 - simulation (323) - linear scheme

Figure 4.10: Comparison of energy spectra of experiment and simulation with and without SGS model - grid resolution
is 323.
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(c) VπLES simulation (323) - linear scheme -10pt
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(d) VπLES simulation (323) - linear scheme -20pt

Figure 4.11: Investigating the influence of number of particles in each cell on the energy spectra evolution - grid
resolution is 323.
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(a) LES Cs=0.17 - simulation (323) - linear scheme
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(b) LES Cs=0.20 - simulation (323) - linear scheme

Figure 4.12: The influence of Smagorinsky constant Cs on the predication of the evolution of energy spectra - grid
resolution is 323.
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(d) VπLES simulation (323) - linear scheme -20pt
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(e) LES Cs=0.17 - simulation (323) - linear scheme

Figure 4.13: Growing longitudinal velocity correlation - grid resolution is 323.

4.7 Influence of Grid Resolution

In this section VπLES method and LES Smagorinsky model are used with the cases with high
grid resolution. Fig. (4.14) shows the decay of turbulent kinetic energy using grid resolution 643

with and without SGS model. The legend ”pure grid simulation” means not using any turbulence
model. Fig. (4.15) shows energy spectra evolution in grid resolution 643. In a case of not using any
turbulence model (Fig. (4.15.a-b)) the energy spectra and autocorrelation growth are nonphysi-
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cal and as time passes it shows decreasing in the velocity correlation. As already discussed this
under-resolved grid can not resolve the subgrid scales and proper dissipation of energy can not be
achieved. Consequently the accumulation and over prediction of kinetic energy happens at high fre-
quency scales. Using subgrid scale model either through LES Smagorinsky model or VπLES drain
energy from large scales in order to mimic the effects of the dissipation scales. Figure 4.14 shows the
drain of energy from grid-based solution (large scales) using VπLES method for grid resolution 643.

As can be seen in Fig. (4.15.c-d) energy spectra is in a good agreement with experiment in inertial
and dissipation range with using VπLES method. At the highest wave number the decay of energy
does not follow the experiment exactly. The reason can be due to the simple diffusion model which
is implemented in VπLES from work of Fukuda (see section (3.8)) in combination with CSM (see
section (2.3.2.3)). Fig. (4.17) describes this pile-up with deeper investigation of energy exchanges
of different scales. As it is shown the curve of energy of small scale vortex particles Ev growth with
k when their size decreases due to the stretching. Further improvement of the result is possible by
using more realistic diffusion model and more proper criterion for mapping back particles to the grid.

Figs. (4.16) and (4.18) show the energy spectra and autocorrelation function for cases with 1283

and 2563 grid cells without using turbulence model. Influence of VπLES method in fine grid is
neglectable. In fine grid with 2563 cells although the energy spectra follows well the experiment in
dissipation range as well as inertial range, correlation of velocity doesn’t grow well with physical
rate. In the other word the lack of any numerical viscosity due to fine resolution and less diffusive
scheme as well as not using any turbulence model result in a nonphysical and negligible growth of
integral length scale in case of 2563 grid cells.
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(d) VπLES simulation (643) - linear scheme -1pt
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(f) LES Cs=0.17 - simulation (643) - linear scheme

Figure 4.15: Energy spectra during decay of turbulence in a cubical box - grid resolution 643 cells
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(a) pure grid simulation (1283) - linear scheme
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(b) pure grid simulation (1283) - linear scheme
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(c) VπLES simulation (1283) - linear scheme -1pt
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(d) VπLES simulation (1283) - linear scheme -1pt

101 102 103

k[1/m]

10-8

10-7

10-6

10-5

10-4

10-3

E
[m

3
/s

2
]

OF - t=0
OF - t=56
OF - t=129
Exp - t=0
Exp - t=56
Exp - t=129
(-5/3)
(-4/3)

(e) LES Cs=0.17 - simulation (1283) - linear scheme
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(f) LES Cs=0.17 - simulation (1283) - linear scheme

Figure 4.16: Energy spectra during decay of turbulence in a cubical box - grid resolution 1283 cells
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Figure 4.17: Spectrum E obtained using three different methods with grid resolution 643. Eg = 1
2
(ugug), Ev =

1
2
(uvuv) and Egv = E − Eg − Evare different contributions to the spectrum (middle picture).
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(a) pure grid simulation (2563) - linear scheme
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(b) pure grid simulation (2563) - linear scheme

Figure 4.18: Energy spectra during decay of turbulence in a cubical box - grid resolution 2563 cells

4.8 Capturing fine scales

Probability density function of the vortex sizes σ is presented in Fig. (4.19) at different time steps.
As seen, there is a big variety of fine vortices with sizes ranging from 0.1∆ to ∆. This is an
illustration of the fact that the VπLES method is capable of resolving scales an order less than the
grid cell size even at small Npt = 4. The vortices smaller than 0.1∆ are excluded by selection of
strongest vortices in cells and restriction of Npt. In principle, they could be much smaller. The
only restriction is the computational time and memory space. Resolution of the vortices with
σ ≈ 0.1∆ in pure grid-based methods would require grids with number of cells at least 104 larger
than in the VπLES simulations provided each vortex would be represented only by three cells. The
largest vortex size of 4∆ is a specific feature of the present algorithm, because if σ > 4∆ the vortex
particle is mapped back to the grid. The p.d.f distribution is shifted towards larger σ in time. This
tendency is due to temporal growth of the structures in the grid based flow which is in accordance
with widening of the autocorrelation function (e.g. fig. (4.15)) and increase of the integral length.
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Figure 4.19: Distribution of initial scalar field

4.9 Influence of the inner interaction between vortex

As mentioned in section (2.3.2.5) the computational cost of the calculation of the velocity induced
by vortex particles using Biot-Savart law is a well known limitation of the Lagrangian vortex
particle method. The number of required operations is proportional to O(N2) for N number of

particles in each time step. Within the present approach the calculation of
∂uvi
∂xj

and the velocity

induced by particle on each other uvp (Eqs. (3.32) and (3.33)) is the largest time consuming part of
calculations with O(L2N2

pt) operations, where L is the number of adjacent neighboring cells. Thus,
it is necessary to estimate the importance of these calculations on the spatially averaged results.
Fig. (4.20) shows results obtained when the inner interaction between particles is neglected and
they are driven only by the grid-based flow. With this assumption the Eq. (3.13) reduces to:

dωv

dt
= (ωv · ∇)ug + ν∆ωv (4.6)

dri
dt

= ugi (4.7)
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Figure 4.20: Influence of interaction between vortex particles on the spatially averaged kinetic energy

Fig. (4.20) shows that the influence of inner interactions on spatially averaged kinetic energy and
scalar dissipation rate is relatively weak and can be neglected in the calculation. Thereby the
computations can be done sufficiently faster without lost of accuracy. It seems to be that the
vortex particles serve just as triggers of turbulence and their inner interaction does not contribute
sufficiently to the flow evolution. This issue should thoroughly be studied in future works for more
complex flows. The insignificance of the interaction reduces the importance of the increase of the
scheme accuracy for the integration of the particle trajectory and particle strength equations. The
simple Euler method can be used as the most simple and fast procedure.

4.10 Influence of the Number of particles per cell Npt

One of the weaknesses of particle methods is the presence of free parameters which are often tuned
to match desirable results. Strictly speaking, the number of particle per cell Npt is not a freely
selectable parameter within the VπLES method. It should be as large as possible. Fig. (4.21) shows
the convergence of numerical results for k when Npt increases. The spatially averaged kinetic energy
is independent of Npt. Such a saturation indicates that the numerical results become independent
of Npt after some relatively small threshold value Npt ≈ 4.
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Figure 4.21: Influence of the parameter Npt on the spatially averaged kinetic energy

4.11 Conclusion

This chapter presented the results of the validation of the method for a well tried benchmark test
of the decaying homogeneous isotropic turbulence using the experimental data of Comte-Bellot
and Corrsin (1971) [98]. A very important conclusion of validation is that the spatially averaged
term uv × ωg which describes the influence of fine scales on large ones, behaves as an energy drain
transferring the energy of the grid based motion into the fine scales energy. At coarse resolutions,
it acts as a diffusive Large Eddy Simulation subgrid model resulting in a LES-like behavior of the
whole method. When the resolution increases, the present method is consistent and converges to
the DNS. It was shown that the present method is capable of resolving scales much less than the
grid cell size. In such a way, very fine scales can be resolved on coarse grids. The plausibility of
simulations were successfully checked for the second order statistics, i.e. for the spectral density
E and the longitudinal autocorrelation coefficient. VπLES method can preserve energy at high
wave number motions (small scales) while pure grid simulation (or under-resolved DNS) shows
instability in numerical simulation due to the accumulation of kinetic energy. Using more diffusive
numerical scheme like upwind in pure grid simulation can remove the pile-up in the energy spectral
at middle range structure but results in a strong decay in energy of small scale structures (see Fig.
(4.9)). The methodical study demonstrated that the inner interaction between particles can be
neglected at least for the test case considered in this chapter (see Fig.(4.20)). This results in a very
efficient and fast computational procedure. Next chapter validate VπLES method for the case of
turbulent circular jet through comparison with several measurements of mean velocity and velocity
fluctuations along the jet center line.
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5 Free turbulent jet flow

In this chapter, the results of free jet flow simulation at Re = 104 with and without VπLES as
well as comparison with two SGS models (Smagorinsky and dynamic Smagorinsky) are presented.
Section (5.1) is entirely dedicated to the high resolution grid simulation with 6.04Mio mesh cells.
The case with high resolution grid is used for accurate prediction of the free jet flow evolution and
to study the effect of inflow conditions on the variation of mean and r.m.s of axial velocity along
the jet centerline. LES with dynamic Smagorinsky model is used for high resolution grid-based
simulation. Dynamic Smagorinsky SGS model is already proven to have a good performance in
predicting the evolution of turbulent free jet flow [105]. The influence of the inflow condition such
as momentum thickness at the nozzle exit and adding random fluctuations to the mean velocity
profile on the jet flow evolution is investigated in details in sections (5.1.4) and (5.1.6). Validation
of result is performed through comparing with experiment of [9], [7] and [10]. The influence of
domain size in radial direction on the development of velocity fluctuations is also investigated. The
result of section (5.1) is later used as a reference in case there is no experimental data available. In
section (5.2) VπLES method is used for numerical simulation of turbulent free jet flow with coarse
grid. The performance of VπLES on two coarse grids named Grid I ≈ 114k and Gird II ≈ 150k
mesh cells are evaluated through comparison with two classical SGS model on the same mesh
resolution. The results presented in section (5.2) show a superior performance of VπLES method
in comparison with pure grid-based simulation using Smagorinsky and dynamic Smagorinsky model
with relatively coarse grid.

5.1 Pure grid-based simulation

5.1.1 Inflow condition

Fig. (5.1) shows the jet inflow profile. The jet inlet velocity profile consists of a constant velocity Uj
in the jet core region and a laminar Blasius profile near the wall to be consistent with experimental
work of [9], [7] and [10]. Three different momentum thicknesses are applied to cover a shear layer
thickness in experiment. D/θ = 50, D/θ = 120, D/θ = 180 are considered for the boundary layer
thickness where θ is an initial momentum thickness at the nozzle exit and D is the nozzle diameter.
The instantaneous velocity profile at the inlet at each time step is defined as follows:

uninlet(r, t) = unprofile(r, t) + undisturbances(r, t) (5.1)

In several literature the time-averaged stream-wise velocity profile given by Michalke and Hermann
[106] which is known as tangent hyperbolic profile is used for unprofile(r, t) in Eq. (5.1). In this work
as already mentioned different profiles which are shown in Fig. (5.1) are applied at the inlet of
computational domain following the work [105]. undisturbances(r, t) is a background disturbances or
fluctuations which are randomly distributed in space at the jet exit. In the present study random
Gaussian fluctuations with an rms (amplitude) value of 0.1% of the mean velocity (u′ = 0.001Uj)
are superimposed to the reference (mean) velocity field. This amount of disturbances is consistent
with the experimental work of Russ & Strykowsky (1993) [7]. Unfortunately, both in experiment of
[7] and LES of [105] there are no quantitative information about the integral lengths and spectrum
at the nozzle orifice which are necessary to generate inlet signal with account for the second order
statistics. Since the results of simulations agree well with both measurements of Russ & Strykowsky
(1993) [7] and LES simulation of Kim and Choi (2009) [105] at the same grid resolution as well as
because of lack of additional inflow information no more advanced inflow generation technique was
utilized.

66



D x

r

(a)

0.0 0.1 0.2 0.3 0.4 0.5
r/D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
/
U
j

Grid III

D/θ=50

D/θ=120

D/θ=180

(b)

Figure 5.1: a) Schematic view of computational domain. b) Mean axial velocity profile at the nozzle exit with tree
different momentum thicknesses. Vertical lines show the grid lines of the Grid III

5.1.2 Numerical set up

The choice of the computational domain, grid and numerical setup are based on the work of [105].
Totally six different non-uniform grids were generated for this investigation (see table 2). Two
coarse grids named Grid I ≈ 114k and Gird II ≈ 150k mesh cells are considered to evaluate the
performance of VπLES method. One high resolution grid Grid III ≈ 6.04 Mio is also considered to
be reference for comparison with coarse grid results. Next three grids IV-VI are used for the grid
convergence study in pure grid simulations. Non-uniform grid is distributed in axial and radial
directions. In order to resolve velocity gradient in shear layer the concentration of grid points in
shear layer are higher than in other locations in radial direction (see Fig. (5.2)). Also in axial direc-
tion grids are clustered at the nozzle exit. In circumferential direction the grids are uniform. The
high resolution grid named here Grid III with LES dynamic Smagorinsky model is used throughout
section (5.1) to study the flow details of free jet flow at Re = 104. The spatial discretization of
the convective term (see Eq. (2.2)) was performed using the second order central difference scheme
(CDS) or linear scheme in OpenFOAM. For the time discretization a mixed scheme based on the
Euler (10 percent) and Crank-Nicolson (90 percent) schemes was used. The Courant number was
kept less than 0.3 in all simulations. To get stable and robust results the simulation is started
with a more diffusive upwind scheme for the convective term. As soon as the simulation becomes
stable (after ≈ 3 sec) the CDS scheme is applied to the convection term. The time averaged values
are calculated from 5 sec to 25 sec when the second order scheme has been utilized for convection
discretization.

Grid Grid points in streamwise x, radial
r and circumferential φ directions

Total number of
grid cells

∆rmin/D ∆xmin/D

I 128(x)× 31(r)× 28(φ) 114,716 0.0100 0.0598
II 128(x)× 41(r)× 28(φ) 149,436 0.0068 0.0598
III 460(x)× 132(r)× 106(φ) 6,040,112 0.0030 0.0167
IV 234(x)× 68(r)× 66(φ) 1,000,000 0.0083 0.0327
V 328(x)× 94(r)× 92(φ) 2,800,000 0.0044 0.0233
VI 552(x)× 160(r)× 128(φ) 10,600,000 0.0025 0.0137

Table 2: Grid parameters.
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Figure 5.2: Distribution and clustering of the grid close to nozzle exit, Gird II.

5.1.3 Influence of domain size on the evolution of r.m.s of velocity fluctuation

In order to have proper domain size in radial direction three different domain extension in radial
direction are examined. Fig. (5.3) shows that the extension of computational domain to r/D = 15
keeps the surrounding walls far enough from the jet centerline to diminish the wall effect. In this
case the evolution of axial fluctuation follows well the experimental result. Computational domain
with r/D = 15 and x/D = 30 was chosen for further numerical study in this chapter.
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(a) Influence of domain size on the evolution of r.m.s of velocity fluctuations

Figure 5.3: r.m.s of axial velocity fluctuations along the jet centerline

5.1.4 Influence of momentum thickness on mean axial velocity and velocity fluctua-
tions

To evaluate the degree of jet mixing one can refer to the evolution of jet centerline velocity as an
important identification factor for the jet mixing. Fig. (5.4) shows the decay of time averaged
stream-wised velocity along the jet center line. By increasing the momentum thickness a more
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rapid decay happens from D/θ = 50 and D/θ = 180. This is due to the earlier formation of large
scale structure as shown in Figs (5.7) and (5.8). Similar dependence of mean axial velocity decay
on the initial momentum thickness at Re = 104 was reported and discussed by Kim & Choi (2009)
[105]. So inflow condition such as momentum thickness is an important factor in determining the
jet mixing and decay rate of mean axial velocity.

0 2 4 6 8 10 12 14
x/D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
c
/
U
j

D/θ=50

D/θ=120

D/θ=180

Russ & Strykowsky(1993)

Zaman & Hussain(1981)

(a) Influence of momentum thickness on mean axial ve-
locity - Re104

0 2 4 6 8 10
x/D

0.00

0.05

0.10

0.15

0.20

u
rm

s
/U

j

D/θ=50 - w/ Disturbance

D/θ=120 - w/ Disturbance

D/θ=180 - w/ Disturbance

Zaman & Hussain(1981)

Cho et al.(1998)

(b) Influence of momentum thickness on the evolution of
r.m.s of velocity fluctuations

Figure 5.4: Variation of mean and r.m.s of axial velocity fluctuations, comparing with experiments of Russ &
Strykowski (1993) [7] Re = 104 and D/θ = 110 , Zaman & Hussain (1981) [8] Re = 2 × 104 and D/θ = 120
[9], Choa et al. (1998) [10] Re = 2 × 104 and D/θ = 200.

5.1.5 Influence of grid resolution

In order to study the grid convergence several OpenFOAM simulations with Dynamic Smagorinsky
model are carried out for four grids with D/θ = 180. Fig. (5.5) shows the results for decay of
time-averaged axial velocity and the r.m.s of velocity fluctuation. The result are converged already
for the Grid III with 6.04Mio mesh cells and further refinement does not have important influence
on results. Therefore, pure grid-based simulations with Grid III and D/θ = 180 are used further
as a reference to evaluate the efficiency of the VπLES method.
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Figure 5.5: Influence of grid resolution on mean axial velocity and r.m.s - Re104
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5.1.6 Influence of background disturbances on the evolution of mean axial velocity
and r.m.s of velocity fluctuation

Figs (5.6) shows the influence of superimposed velocity fluctuation (undisturbances(r, t) in Eq. (5.1))
on the evolution of free jet flow. In the absence of background disturbances strong coherent ring like
structures are created behind the nozzle and propagates without visible breakdown to a long dis-
tance downstream. They induce large velocity fluctuations. On the other hand, forced background
disturbance results in the formation of small ring close to nozzle exit and finer structures in down-
stream. This high frequency perturbations at the inlet leads to an earlier saturation (breakdown)
of vortex ring as shown in Figs. (5.7) and (5.8) consequently smaller r.m.s values in downstream
locations are obtained. Fig. (5.6) shows that by imposing disturbances at the nozzle exit (inlet of
computational domain) evolution of velocity fluctuations along the jet center line reproduces the
result of experiment more accurately.
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Figure 5.6: Influence of background disturbances on the evolution of r.m.s of velocity fluctuations

5.1.7 Influence of momentum thickness on evolution of vortical structures

As shown in Figs. (5.7) and (5.8) with increasing D/θ the formation of vortex ring occurs earlier.
This happens due to the higher instability of the thin shear layer (D/θ = 180) at the nozzle exit.
This result is consistent with observation of Kim and Choi (2009) [105].
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(a) Re = 104, D/θ = 50 w/o background disturbances (b) Re = 104, D/θ = 50 w/ background disturbances

(c) Re = 104, D/θ = 120 w/o background disturbances (d) Re = 104, D/θ = 120 w/ background disturbances

(e) Re = 104, D/θ = 180 w/o background disturbances (f) Re = 104, D/θ = 180 w/ background disturbances

Figure 5.7: Instantaneous vortical structure of Iso-surface of pressure p/ρUj
2 = −0.3, Re = 104
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(a) Re = 104, D/θ = 50 w/o background disturbances (b) Re = 104, D/θ = 50 w/ background disturbances

(c) Re = 104, D/θ = 120 w/o background disturbances (d) Re = 104, D/θ = 120 w/ background disturbances

(e) Re = 104, D/θ = 180 w/o background disturbances (f) Re = 104, D/θ = 180 w/ background disturbances

Figure 5.8: Instantaneous vortical structure visualized by Q criterion, Re = 104

5.2 VπLES ; Hybrid grid-based grid-free simulation

In this section the performance of newly developed hybrid grid-based grid-free method called VπLES
is being investigated. VπLES method was applied on Grid I and Grid II in order to solve the dy-
namic of small scale motions through computational vortex method and two-way coupling with
dynamic of large scale ones. Two pure grid-based simulations were also performed using Smagorin-
sky and dynamic Smagorinsky to model the effect of small scale motion on large structures. The
result of these two different approaches in treatment of small scales effect are presented in the fol-
lowing sections. All VπLES results were obtained with Npt = 4. In section (4.10) the definition and
importance of Npt was already discussed. Section (5.1.4) shows that the inflow conditions such as
initial momentum thickness and the background disturbances has a great influence on the evolution
of axial velocity fluctuations along the jet centerline. As conclusion the initial momentum thickness
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of the value of D/θ = 180 shows more accurate agreement with experiment. In the simulation of
free jet flow with VπLES the initial momentum thickness is considered as D/θ = 180 at nozzle
exit. It should me mentioned that in case of the simulation with VπLES method, turbulence is de-
veloped without initial perturbation (background disturbances). The small scale vortices modeled
by vortex method are proved to be capable to trigger the turbulence.

5.2.1 Hybrid method - evolution of mean axial velocity and r.m.s of velocity fluctu-
ation along the jet centerline - Grid I

Fig. (5.9.a) shows the decay of mean axial velocity using Grid I with three different SGS models
and one case without using any turbulence model (DNS on coarse grid). As can be seen the rate
of decay with VπLES is more physical in comparison to other methods. It is due to the smaller
length of potential core which itself is the result of more proper prediction of the jet instability.
Smagorinsky with Cs = 0.17 is very diffusive and predict very long and stable potential core. In
the current work the Cs = 0.06 was considered for Smagorinsky constant in the simulations. Fig.
(5.15) shows that the Smagorinsky model has longer potential core length and consequently slow
decay of mean axial velocity (see Fig. (5.9)) and a very low value for fluctuation at the near jet
exit region. Fig. (5.9.b) shows a very good agreement between VπLES method and experimental
result until x/D = 5 whereas other SGS models show very big discrepancy in the region near to
nozzle exit. As can be seen in Fig. (5.15) the smaller length of potential core in case of VπLES
method results in occurring an earlier instability and higher value of fluctuating at the near jet exit.
Since VπLES method differs from the case of without SGS model (under-resolved DNS) only in
the presence of the coupling term uv × ωg , difference between two simulations directly illustrates
the effect of this coupling term. Coupling term uv × ωg in VπLES provokes a more earlier jet
breakdown and a correct formation of fluctuations starting directly from the nozzle. By refining
Grid I in a shear layer a new grid called Grid II is being used in next section for evaluating the
VπLES method.

0 2 4 6 8 10 12 14
x/D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
c
/U

j

Grid I w/o Turb. Model
Grid I VπLES

Grid I LES-Smagorinsky

Grid I LES-dynSmagorinsky

Russ & Strykowsky(1993)

Zaman & Hussain(1981)

(a) mean axial velocity

0 2 4 6 8 10
x/D

0.00

0.05

0.10

0.15

0.20

u
rm

s
/U

j

Grid I w/o Turb. Model
Grid I VπLES

Grid I LES-Smagorinsky

Grid I LES-dynSmagorinsky

Zaman & Hussain(1981)

Cho et al.(1998)

(b) r.m.s of axial velocity fluctuation

Figure 5.9: Comparison of performance of the new hybrid method and LES with two SGS models

5.2.2 Hybrid method - Grid I vs. Grid II

By increasing the mesh resolution in the shear layer the evolution of axial velocity fluctuation is
remarkably improved (see Fig. (5.10.b)) while the result of LES with both standard and dynamic
Smagorinsky mode still shows a strong deviation from experiment specifically in the region near
the nozzle exit ( xD < 4) (see Fig. 5.11).
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Figure 5.10: Comparison of VπLES result on Grid I and Grid II with experiment and high resolution grid III result
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Figure 5.11: Comparison of performance of VπLES method and LES with two SGS models

5.2.3 Hybrid method - Influence of number of particle per cell Npt, Grid II

Fig. (5.12) shows that by increasing the number of allowed particles per cell Npt there is a slightly
improvement in prediction of urms especially in the far field. This improvement can be a result of
slightly increase in energy drain from large scale structure through the term uguv × ωg (see section
(3.3)).
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Figure 5.12: Influence of number of particle per cell Npt on the evolution of urms along the jet centerline, Grid II,
Re = 104

5.2.4 Hybrid method - Radial profile of mean axial velocity, Grid I and Grid II

Figs. (5.13) and (5.14) show the radial velocity profile of mean and r.m.s of axial velocity for
two coarse grids with VπLES method and LES with two SGS models. The result of Grid III is
considered as reference point for comparison. As can be seen in Figs. (5.13) and (5.14) although
the discrepancy between target results and VπLES are still substantial, the qualitative agreement
is pretty good. Specifically at the nozzle exit in the near field ( xD < 4) the discrepancy of two
classical SGS models with reference result is not acceptable while VπLES simulation shows very
good performances.
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Figure 5.13: Radial profile of mean and r.m.s of velocity fluctuations at five locations along the jet centerline for the
Grid I
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Figure 5.14: Radial profile of mean and r.m.s of velocity fluctuations at five locations along the jet centerline for the
Grid II

5.2.5 Contour of instantaneous velocity field, Grid I

By looking at contour of instantaneous velocity field in Fig. (5.16) and (5.15) one can compare the
length of potential core for different SGS models. While the Smagorinsky model shows stable and
longer length of potential core, VπLES results in a shorter potential core and consequently more
proper physical result. The result of high resolution grid (Grid III) was also presented in the last
subfigure of Fig. (5.16).

w/o Turbulence model

LES-Smagorinsky model

LES-dynSmagorinsky model

VπLES method

Figure 5.15: Grid I - Instantaneous velocity field - Re = 104
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Figure 5.16: Grid II - Instantaneous velocity field - Re = 104. Last picture shows instantaneous velocity of high
resolution grid (Grid III) using dynSmagorinsky model

5.2.6 Vortical structure shown by Q criterion, Grid II

To extract the region where rotation is assumed to dominate plane strain one can use a Q func-
tion. Obviously the transition to turbulence and jet breakdown is still delayed in pure grid-based
simulations as can be revealed in the vortical structures displayed by Q criterion in Fig. (5.17).
Analysis of results for the Grids I and II reveals similar trends. The simple Smagorinsky model
is very diffusive and sufficiently delays the formation of the jet breakdown in comparison with the
no-model especially at a very coarse resolution (Grid I). On the contrary, the dynamic Smagorinsky
approach provokes earlier instability than the no-model and provides more satisfactory results at
the distance x/D > 6. The turbulence intensification by vortex particles in VπLES is proved to be
sufficient to trigger the turbulence already at small x/D.
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Figure 5.17: Grid II - Instantaneous vortical structure - Q criterion - Re = 104.

5.2.7 Model reduction

As shown in section (4.9) the Eqs. (3.30) and (3.13) can sufficiently be reduced by neglecting
inner interaction between vortex particles without a significant loss of the simulation accuracy.
The reduced equations take the form of Eqs. (4.6) and (4.7). This model is further referred to
as the passive vortices model. Within the next simplification step the influence of the grid based
solution on the evolution of vortex particles strengths is neglected. In other words, the stretching
and rotation of fine vorticity caused by grid velocities is neglected. The equations describing the
vortex particle evolution take the simplest form:

dri
dt

= ugi (5.2)

∂ωv

∂t
+ (ug · ∇)ωv = ν∆ωv (5.3)

Fig. (5.18) demonstrates results for the r.m.s. of the axial velocity obtained using the full model
Eqs. (3.13) and (3.30), passive vortices model Eqs. (4.6) and (4.7) and the model without influence
of the grid based flow on vortex particles strengths Eqs. (5.2) and (5.3). The difference between
results is negligible pointing out that vortex particles serve just as triggers or intensifiers of turbu-

78



lence and their inner interaction does not contribute sufficiently to the flow evolution. Hence the
name of the method is the LES intensified by the vortex particles or VπLES.
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Figure 5.18: Influence of the interaction between vortex particles and grid on urms.

5.2.8 Properties of VπLES subgrid model represented by the term uv × ωg

Since a deterministic prediction of a turbulent flow as mentioned in the definition of the turbulent
motion by [107] is practically impossible, the task of every SGS model is to reproduce the subgrid
motion only in the statistical sense. The following features of the subgrid motion should be cap-
tured by a proper subgrid model: non-equilibrium effects including laminar-turbulent zones, energy
backscatter and anisotropy of fine scale motion.

5.2.8.1 Contribution of the term uv × ωg in kinetic energy transport equation
The term uguv × ωg describes the contribution of fine scales to the energy of the large structures
motion in the grid solution. This phenomenon is similar to the energy backward cascade process
or the energy backscatter known from LES. If uguv × ωg is positive the energy of fine scales is
transferred from fine scale motion to the large one. We use the same terminology in context of
VπLES . However, it should be noted, that the backscatter phenomenon is a inherent part of
modeling and strongly depends on the way of scale decomposition including, for instance, filtering
problems. In the other words, different definitions of the scale decomposition in the model and/or in
its numerical implementation result in different relations for backward and forward energy transfers
for the same flow. Since VπLES uses an own concept of decomposition, a certain difference of
qualitative and quantitative characters between LES and VπLES energy transfers is to be expected.
Fig. (5.19) shows the time averaged distribution of uguv × ωg at the short distance x/D = 2 from
the nozzle. The energy transfer from small scales to large ones occurs in the mixing layer at the
jet border. It has maximum at the beginning of the jet and decreases downstream. The ring-like
energy backscatter area encircles the ring-like area of a strong forward energy flux from large to
small scales which is two orders larger than the backward one. In [108] an extended analysis of the
mechanism of energy exchanges between different scales and a comparison with a LES backscatter
with plane jet was given.
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Figure 5.19: Time averaged energy contribution uguv × ωg at x/D = 2. Left: full range, Right: energy backscatter
uguv × ωg > 0. VπLES simulations on the Grid II.

5.2.8.2 Consistency of the model for laminar flows
Fig. (5.20) shows the velocity decay on the centerline of jet at a very small Re number Re = 100.
From comparison of results for the simulation without model and VπLES simulations it follows
that the influence of the coupling term uv × ωg is negligible when the flow is laminar. Generally,
such a result could be due to the two following reasons. First, it could be due to reduction of
vortex particles population and weakening their strengths in the smooth laminar velocity fields.
Second, it could be just a mistake of the numerical setup when the same setup is applied for laminar
and turbulent flows. Indeed, for Re = 100 the mean value of λci,mean used for the detection of
vortex particles is almost two orders smaller than for Re = 104. Erroneous application of the same
threshold λci,min for both cases would result in a drastic reduction of the number of generated vortex
particles and weakening their influence. To clear this question, two simulations with λci,min = 0.002
which is about 5% of the mean λci and λci,min = 0.1 ≈ 3λci,mean have been performed. Although
around 5× 104 particles are generated each time instant in the first case and only 3 × 103 ones in
the second case there is no visible difference between two simulations. This is a clear indication
that the particles strengths and the term uv × ωg are negligible for the Re = 100 case and the
term switches off in laminar flows. This happens because the difference between filtered and non
filtered velocities in Eq. (3.16) becomes smaller for smooth velocity fields in laminar flows.
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Figure 5.20: Decay of axial velocity along the jet centerline at Re = 100. Computations with the Grid II.

5.2.8.3 Anisotropy of small scale motions induced by vortex particles
The total flow shows a well pronounced anisotropy with the dominance of the axial fluctuations
on the jet centerline (see Fig. (5.21)). Reynolds stress components Rvij of the velocity field uv

show also a clear strong anisotropy which is space-dependent. Relations between the Reynolds
stress components induced by the vortex particles and their orientation, strengths and spatial
distribution is still remaining unclear and will be studied in future works.
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Figure 5.21: Distribution of the diagonal Reynolds stress components for the total velocity (uv + ug) along the jet
axis
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5.3 Choice of free parameter

One of the weaknesses of many particle based Lagrangian methods is the presence of free parameters
which are often tuned to match desirable results if the latter are known before simulations. Strictly
speaking, scheme parameters are an inherent part of every numerical technique including grid based
ones. Their presence does not cause objections if there exists certain rules for their choice. VπLES
has two parameters which choice could cause difficulties. The first parameter is the number of par-
ticles per cell Npt. Theoretically, Npt should be as large as possible. Practically, it is restricted to
perform the solution in a reasonable computational time. Fortunately, Figs. (4.21) and (5.12) show
that increase of Npt does not change the results significantly. More precisely, in Fig. (5.12) there is
a slight improvement in prediction of urms especially in the far field. This improvement is a result
of a small increase in energy drain from large scale structures through the term uv × ωg . The
same conclusions were drawn for the decaying homogeneous isotropic turbulence (HIT) in cubical
box (see section 4.10). The value Npt = 4 seems to be sufficient to attain a proper accuracy. The
second important parameter is the threshold λci,min used for the vortex particle identification. The
recommendation is to set λci,min being equal to ≈ 5% of the mean λci, i.e. λci,min = 0.05λci,mean.
Fig. (5.22) illustrates the number of newly generated vortex particles depending on λci,min calcu-
lated at a certain time instant when the jet flow is well developed. The λci criterion attains the
maximum value λci,max = 128.61 with λci,mean being equal to 1.76. The picture has a clear physi-
cal interpretation. If λci,min = 0 the number of vortex particles with λci ≥ 0 is equal to the total
number of cells N = 1.5 × 105. They form a single cluster which is eliminated and the number of
injected particles is zero. The function λci is a rapidly growing function at the places with vorticity.

Therefore, a small change of λci,min results in an jump-like reduction of cells with λci > λci,min from
N = 1.5× 105 to N = 5.8× 104 and in increase of injected particles from zero to Np = 2.2× 104.
The increase of λci,min leads to a further decrease of N and Np. N > Npt because a part of
vortex cells with λci > λci,min are recognized as clusters with a size of a few cell sizes which
are eliminated according to the algorithm described in section (3.6). However, there is a clear
tendency Np → N when λci,min increases because peaks of λci distribution correspond to spots of
concentrated vorticity which have small extent in space and, therefore, all of them are converted
to particles. At λci,min ≈ 0.06...0.07λci,mean ≈ 0.106...0.123, Npt is stabilized around the value of
1.1× 104 and further does not change significantly. The value λci,min = 0.1 was used in all VπLES
simulations for Re = 104. As follows from Fig. (5.22) increase of λci,min has a minor effect on Npt.
Smaller values λci,min < 10 would not be advisable because the number of particles will sufficiently
be increased by involving a big portion of weak vortices corresponding to small λci. For the time
step ∆t = 10−4 around 108 particles are generated within one second of real time. Most of them are
eliminated by the sorting algorithm (see section 3.6) when the number of particles in cell exceeds
Npt so that only 1.5× 104 Npt particles are kept each time on the Grid II.
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Figure 5.22: Influence of λci,min on the number of generated vortex particles.

5.4 Summary

After a successful validation for the case of decaying homogeneous isotropic turbulence presented
in chapter (4) and published in [91] the VπLES method is applied to the turbulent circular free
jet at Re = 104. Numerical results are compared with experiments of [7], [8] and [10] for mean
velocities and fluctuations. It was shown that the VπLES simulation with 1.5× 105 mesh cells can
attain similar accuracy as LES with the Dynamic Smagorinsky model on the grid with 6.04× 106

cells. For these grids, the computational time using one core is 2.69 sec for VπLES and 65 sec for
LES, i.e. the speed up factor is around 24. For the same grid resolution the performance of VπLES
is superior compared to a pure grid-based LES.

VπLES method is considered as a LES with direct resolution of the subgrid motion represented
by vortex particles. The model of the subgrid motion reproduces the energy transfer from fine
vortices represented by particles to large scale ones modeled on the grid. In terms of LES it can be
interpreted as the energy back scattering which occurs in the mixing layer at the jet border. The
intensification of the turbulent kinetic energy due to back scattering is proved to be very important
to properly reproduce the jet breakdown and transition to turbulence close to the nozzle without
any artificial turbulence forcing at the nozzle. In the laminar flows the vortex particle influence is
automatically switched off because of reduction of vortex particles population and weakening their
strengths in the smooth laminar velocity fields. The Reynolds stress of the velocity field induced
by particles possesses the pronounced anisotropy which is space dependent. The physics behind
this anisotropy is to be explained in the future works by more thorough study of vortex particles
distributions and their orientations.

Choice of the scheme (free) parameters is studied and discussed. Like for the case of decay of
isotropic turbulence in a box presented in chapter (4) the model for the jet case can be sufficiently
reduced by neglecting the inner interaction between particles. In section (5.2.7) it was shown that
the stretching and rotation of fine vortices caused by grid can also be neglected. The vortex particles
serve just as a triggers of turbulence and their inner interaction does not contribute sufficiently to
the flow evolution. This results in a very efficient and fast computational procedure. The result
and conclusion achieved in this chapter was published in [108].
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6 Wall-bounded flow

In the previous chapters the potential of VπLES method has been evaluated for the simulation
of free shear flows. In unbounded flow the largest majority of turbulent kinetic energy has been
carried by the large scale eddies, this concept is reverse near the wall, where small scale motions
contain the most energetically productive eddies. Both these descriptions are valid in wall-bounded
flow and both mechanisms contribute significantly to the overall turbulent flow field [109]. Most
turbulent flows are bounded (at least in part) by one or more solid surfaces, flow through pipes
and ducts, around ships’ hull and atmospheric boundary layers are some examples of wall-bounded
flow. One of the major reason for high cost of modeling of wall-bounded flow is the requirements of
the resolution of small-scale motions in the boundary layer. The streak process is the main source
for the majority of turbulence production at low to medium Reynolds numbers for wall-bounded
flows. In order to achieve accurate result this structured flow must be resolved properly in LES [6].

The purpose of this chapter is to evaluate the VπLES method capability of treating near-wall flow
properly. The test case in the current chapter is a fully developed channel flow in which the mean
velocity vector is (or nearly is) parallel to the wall. Fully developed channel flow is considered as a
flow through a rectangular duct of height 2δ, where δ is a half channel height. The channel is long
(L/δ � 1) and has a large aspect ratio (b/δ � 1). The mean flow is in axial direction and varies in
the cross stream direction. The dimension of the channel in spanwise direction must be considered
large enough compared to δ so that the flow is statistically independent of z [13]. The schematic
view of channel computational domain is shown in Fig. (6.1).

6.1 High resolution pure grid-based simulation using LES

6.1.1 Numerical set up

Fully developed channel flow is homogeneous in streamwise and spanwise directions. The size of
computational domain was chosen as 6(m) × 2(m) × 3(m) in the streamwise, wall normal and
spanwise directions respectively. In the first step the computation was carried out with a high reso-
lutions grid with 4.6 Mio grid cells named C3. Case C3 has resolutions in streamwise and spanwise
directions similar to DNS data of [110] and much larger first cell distance to the wall (see table 3).
The purpose of high resolution grid study is to investigate the turbulence properties in the channel
flow with LES approach using dynamic Smagorinsky model and to find the proper numerical set
up through comparing the results with DNS data of [110]. The result of high resolution grid is
later used as a reference to validate the performance of VπLES on coarse grid. All simulations
are performed for Reynolds number of 395 which is based on the friction velocity uτ and channel
half-height δ, (Reτ = uτ δ

ν ).

The mesh parameters are presented in table 3. Considering the size of computational domain, the
grid spacing in streamwise and spanwise directions for the case C3 are ∆x+ = 11.32 and ∆z+ = 6.28
in wall unit. The distance of the first grid cell center from the wall is y+ = 0.41 in wall unit and
the maximum spacing at the center of the channel is ∆y+ = 18. Periodic boundaries have been
applied in streamwise and spanwise directions. The boundary must be located far apart enough to
include the largest eddy structures in the flow. Later discussion of two-point correlation confirms
the proper choice of domain size (see section (6.1.4)). A large number of turbulence statistics is
computed and compared with the existing DNS data of [110].
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Figure 6.1: Schematic view of channel flow computational domain.

Table 3: Grid parameters

Case No Mesh cells y+ (Normalized by uτ
from each simulation)

∆x+ ∆z+

C1 30 k 5.4 63 47

C2 72 k 1.7 37 21

C3 4.6 mio 0.41 11.32 6.28

DNS 9.5 mio 0.05 10.0 6.5

6.1.2 Mean axial velocity and turbulent kinetic energy profiles

Fig. (6.2) shows the resolved streamwise velocity profile in wall unit coordinate as well as global
coordinate scaled by friction velocity uτ and bulk velocity Ub respectively. In LES simulation with
grid C2 four points were located in the viscous sublayer (y+ < 5). The viscous sublayer is resolved
well enough and accurately represents the DNS data for the whole sublayer. In log-law region
(y+ > 30) there is a slight overprediction while in buffer region (5 < y < 30) the agreement with
DNS data is pretty good (see Fig. (6.2.a)). All simulations normalized by the same value of uτ
from DNS.
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Figure 6.2: Mean velocity profiles in fully developed turbulent channel flow, Grid C3.

6.1.3 Kinetic energy and Reynolds stresses

Figs. (6.3) and (6.4) show the kinetic energy, Reynolds stress components and the negative of the
correlation of velocity fluctuation components u and v (− < uv >). In Fig. (6.3.a) the location of
peak for the predicted total kinetic energy is in a good agreement with DNS data while the value
is slightly smaller. The underprediction of the kinetic energy is the result of coarse grid resolution
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in buffer layer in comparison with DNS. Components of Reynolds stress tensor are the primary
quantities defining the turbulent kinetic energy. u′2i is the variance of the velocity components but
it is more convenient to consider the root mean square ui

rms of ui components. Fig. (6.3.b) shows
that the value and the location of the peak of ui

rms is accurately match the DNS data. In the
outer region ui

rms profiles depend linearly on y/δ until y/δ ≈ 0.85. The off-diagonal component of
Reynolds stress tensor (Reynolds shear stress) presented in Fig. (6.4.a) agrees well with DNS data.
For y/δ > 0.2 the profile is linear similarly to DNS data. It is possible to look at turbulent shear
stress from another quantity by scaling it in a different way. The stress − < uv > is the negative
of covariance of u and v and normalizing with urmsvrms gives the negative correlation of u and v
[111]. Fig. (6.4.b) shows the comparison of the correlation coefficient of LES simulation and DNS
data in grid C3. In the profile of negative correlation there is a local peak near the wall and there is
also a local minimum right after that. High resolution grid C3 properly resolved these two peaks.
In [110] the presence of the peak is explained by the presence of certain organized motion in that
region.
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Figure 6.3: kinetic energy and Reynolds stress components, grid C3.

0.0 0.2 0.4 0.6 0.8 1.0
y/δ

0.0

0.2

0.4

0.6

0.8

−
<
u
v
>
/u

2 τ

dynSmag y + =0. 41

DNS

(a) Reynolds shear stress normalized by friction velocity

0.0 0.2 0.4 0.6 0.8 1.0
y +

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−
<
u
v
>
/u

rm
s
v
rm

s

dynSmag y + =0. 41

DNS

(b) Negative of the correlation coefficient of u and v

Figure 6.4: Normalized Reynolds shear stress and correlation coefficient, Grid C3.

6.1.4 Power spectral density and two point correlation

As can be seen in Fig. (6.5) the power spectral density of high frequency scales is several orders
lower than the low frequency scales indicating the adequacy of grid resolution. There is no evidence
of energy pile-up at high frequencies due to the resolving enough small scales for energy drain.
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According to [110] it should be kept in mind that this drop-off of the energy spectra at high
frequencies is not a sufficient evidence that the role of unresolved high frequencies scales on the
computed result can be ignored and are negligible. Fig. (6.5) also shows that the most energetic
structures exist in the region close to the wall. Close to the wall the spectrum of the vertical
component of the velocity is less than that for other flow components of velocity due to the damping
effect of the wall. The energy contained in the flow structures decreases by moving from y+ = 10
to y+ = 392. Far away from the wall the isotropy property of the flow is visible (y+ = 392). The
result for the two-point correlation is shown in Figs. (6.6) and (6.7). These results confirm that the
size of the computational domain is properly selected. Approaching of the two-point correlation
curve to zero values for large streamwise and spanwise separation shows that the computational
domain is large enough so that the turbulence fluctuation becomes uncorrelated at a separation of
half the domain size.
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Figure 6.5: Power Spectral Density of the resolved fluctuation (Welch method), y+ = 0.41, with dynamic Smagorinsky
turbulence model, grid C3.
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Figure 6.6: Streamwise separation: Two-point correlation falls to zero value for large separation, indicating that the
computational domain is sufficiently large (uncorrelated at a separation of half period in homogeneous direction),
grid C3.
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Figure 6.7: Spanwise separation: Two-point correlation falls to zero value for large separation, indicating that the
computational domain is sufficiently large (uncorrelated at a separation of half period in homogeneous direction),
grid C3.

6.1.5 Budget of turbulent kinetic energy

Analysis of the budget of the mean turbulent kinetic energy in Fig. (6.8) shows that the produc-
tion, diffusion and dissipation terms in the budget become important close to the wall. Dissipation(
ν ∂ui∂xj

ui
∂xj

)
is much greater than the production

(
u′iu
′
j
∂ui
∂xj

)
in the viscous sublayer region while

they are approximately equal for y+ > 50 in the log-law region (turbulent equilibrium). It is
also confirmed the homogeneous character of the flow at y+ > 50. The viscous-diffusion rate

term
(

∂
∂xj

(
ν ∂kres∂xj

))
is small compared to the other terms except the region very close to the wall

(y+ < 20) and reaches the maximum at the wall. Dissipation rate has nonzero value at the wall
and is almost equal to the viscous-diffusion rate. Fig. (6.8.b) shows the ratio of production and
dissipation of turbulent kinetic energy. The result of LES simulation is higher than DNS data
which can be due to the insufficient dissipation rate at the wall resulting from not-including the
dynamical roles of all small scales in the buffer and log-law region.
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Figure 6.8: Budgets of turbulent kinetic energy

6.2 Under-resolved grid calculation

In order to investigate the potential of VπLES approach for the modeling of wall-bounded flow
a comprehensive study of channel flow simulation has been performed. Two coarse grids have
been constructed for the similar computational domain and called C1 and C2 (see table 3). The
influence of different SGS models including VπLES have been investigated for these under-resolved
grids through study the turbulence flow properties in the channel. Fist the results of C1 and C2
are presented in sections (6.2.1) and (6.2.2) then in sections (6.3) and (6.3.2) the results of VπLES
method are also included in under-resolved grid simulation.

6.2.1 Mean axial velocity and turbulent kinetic energy profiles

Fig.(6.9) shows that grid C1 have a large deviation from DNS data for resolving mean velocity
profile. This mesh is too coarse for LES resolution and even cells adjacent to the wall can not re-
solve the correct turbulence cycle. The difference between LES with dynamic Smagorinsky model
and the cases without turbulence model is negligible. Profiles of kinetic energy in Fig. (6.9) and
Reynolds stresses in Fig (6.10) show that the coarse meshes have a remarkably over-prediction of
the near-wall normal components of Reynolds stress. This is a result of excessive resolved scale
motion. Coarse meshes at the wall can not reproduce the fine near-wall turbulence features. This
leads to the reproducing of a larger scale (as somewhat pseudo turbulence) corresponding to the
larger grid size in the coarse mesh [112]. This behavior of under-resolved meshes is in agreement
with the other published results [112]. Because of the increasing of the eddy size the eddy core
moves further from the wall surface and the peak value of ui

rms profile moves to the higher y+

value as in Fig. (6.10).
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Figure 6.9: Mean velocity and kinetic energy profiles in under-resolved grids C1 and C2.
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Figure 6.10: Reynolds stress components in under-resolved grids C1 and C2.

6.2.2 Power spectral density of resolved fluctuations with under-resolved grid

Fig. (6.11) and (6.11) show the energy spectra of the resolved fluctuations in coarse grid simulations
C1 and C2 with dynamic Smagorinsky SGS model. In both grids the majority of turbulent energy
is contained in the lower frequency or larger eddies compared with the fine mesh. There is an
overdissipation of energy contained in the large scales because of a low resolution SGS model in C1
and C2. The results of power spectra of two under-resolved grids are very similar.
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Figure 6.11: Power Spectral Density of the resolved fluctuation (Welch method), under-resolved grid C1 with LES
dynamic Smagorinsky model.
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Figure 6.12: Power Spectral Density of the resolved fluctuation (Welch method), under-resolved grid C2 with LES
dynamic Smagorinsky model.

6.3 VπLES with under-resolved grid calculation

6.3.1 Mean axial velocity and turbulent kinetic energy profiles

As presented in chapters (4) and (5) VπLES method could improve the results of under-resolved
grid in case of decay of turbulence in box and free turbulent jet. In the same way grid C1 is
chosen for further investigation using VπLES method. The aim of this study is to see if VπLES
has a positive influence on the result of coarse grid C1 through resolving the small scales with
Lagrangian vortex method. Fig (6.13) shows the mean velocity profiles in the case of dynamic
Smagorinsky, VπLES and without turbulence model. The result of VπLES is similar to the case
of dynamic Smagorinsky and without turbulence model and no improvement is achieved. In the
other word the influence of the coupling term uv × ωg is very weak in the mean velocity profile. In
Fig. (6.14) VπLES predicts larger value for kinetic energy and Reynolds stresses. The location of
the peak is shifted to the higher value of y+ due to the increasing of eddy size in coarse grid C1.
The higher value in kinetic energy in VπLES method compared with dynamic Smagorinsky results
from preserving the small scale vortex particle entities with vortex method. A remarkable amount
of energy at high frequency scales shown in Fig. (6.15) also supports this fact.
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Figure 6.13: Validation of VπLES in comparison with dynamic Smagorinsky model and without turbulence model
on grid C1.
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Figure 6.14: Validation of VπLES in comparison with dynamic Smagorinsky model and without turbulence model
on grid C1.

6.3.2 Power spectral density of resolved fluctuations with under-resolved grid

Fig. (6.15) shows the power spectral density of the resolved fluctuations in coarse grid C1 with
VπLES method (black lines) compared with LES with dynamic Smagorinsky model (red lines). It is
clear that VπLES method can improve the power spectral density at high frequency scales through
modeling them with Lagrangian vortex particles. The small scale entities are preserved from
excessive artificial viscosity of grid C1 while in case of LES with dynamic Smagorinsky model there
is a huge overdissipation of energy. In Fig. (6.15.a) the energy of fluctuations caused by vertical
velocity component is larger than that in the other velocity components due to an improper vortex-
wall interaction. Actually for vortex wall interaction no new model is developed in this thesis and
the simple rebounding model developed in OpenFOAM for particle laden flows was used. In this
case the vortex particle after collision with the wall still exists in the computational domain and
keeps its entity. As we go far away from the wall the VπLES method shows the isotropic behavior
in energy of velocity fluctuation components. Fig. (6.16) shows the results of energy content of
different scales with VπLES method and grid C1 in comparison with high resolution LES with grid
C3. At large and intermediate scales the result of VπLES is similar to LES while at very high
frequency motions VπLES method preserves structures from artificial viscosity of grid. LES with
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dynamic Smagorinsky model in high resolution grid C3 can resolve energy content of small scales
in the cost of much higher computational cost.
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Figure 6.15: Power Spectral Density of the resolved fluctuation (Welch method), under-resolved DNS, C1. Black
lines show VπLES method and red line corresponds to LES with dynamic Smagorinsky model.
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Figure 6.16: Black lines show VπLES with grid C1 and red line corresponds to high resolution LES with grid C3.

6.4 Summary

In this chapter the potential of VπLES method for simulation of wall-bounded flow has been inves-
tigated. First a high resolution grid-based simulation was performed in order to compare with DNS
of [110] and to find a proper numerical set up as well as to post-process the turbulence statistics
in the channel flow simulation. The validation of VπLES has been done for under-resolved grid
C1. In case of mean velocity profile VπLES does not show any influence in the velocity profile.
Simulations with LES dynamic Smagorinsky model as well as no turbulence model with grid C1
also have similar results. In the other world using LES or VπLES or no SGS model results in a very
similar normalized velocity profile in the inner region of boundary layer. It can be concluded that
the influence of coupling term uv × ωg is negligible in mean velocity profile. In case of turbulent
kinetic energy, VπLES shows slightly larger value for kinetic energy and Reynolds stress compo-
nents in comparison with both LES and the case without SGS model. VπLES treats small scale
fluctuations in a Lagrangian way and preserves their entities resulting in larger value of kinetic
energy. Fig. (6.15) and (6.15) show the superior potential of VπLES method in resolving energy
content in the range of high frequencies even in the present huge overdissipation of coarse grid
C1 while dynamic Smagorinsky model fails to reproduce energy at small scales. Using VπLES in
applications in which the presence of small scales close to the wall play an important role would
be beneficial. In order to improve the VπLES method for wall-bounded flows a physical model for
vortex particle wall collision must be developed for further investigations.
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7 Application of VπLES technology for LES inlet condition

Application of Large Eddy Simulation (LES) requires a turbulent content in inlet conditions for
the velocity field. There are various methods to generate inlet turbulent fluctuatuons with repro-
duction of the first and second order statistics, integral lengths, with account for the divergence
free constraint, etc. The problem arises if the typical scales of the turbulent inlet velocity field
are comparable with the cell sizes of the grid in front of the area of computational interest, for
instance in front of a body. In this case, the turbulent fluctuations are quickly damped (diffused)
by numerical or artificial viscosity of numerical methods and the turbulence does not reach the
body of interest. Section (7.1) demonstrates that the decay of the inlet turbulence depending on
the ratio between the integral length of the turbulence L and the cell size ∆. It was shown that
if L ∼ ∆ the turbulent kinetic energy decays rapidly downstream. A trivial way to overcome this
difficulty is to use very fine grids starting from the inlet to the body of interest. This is surely
not a proper way because the distance between the body and the inlet should be large enough to
exclude the inlet boundary location influence on the body. Especially it is important if the flow
experiences some transformations between the inlet and the body, for instance due to formation of
waves in ship hydromechanics. In this case, the distance between the inlet and the ship should be
about two ship lengths. Using high resolution gird along this distance would result in over-sized
impractical grids. An alternative way is the injection of the fluctuations inside the computational
domain directly in front of the body (see Fig. (7.1)). This way is quite effective and useful if the
location of the inlet turbulence is known, for instance, it is distributed uniformly within the whole
cross section of the computational domain or its part. If the turbulence appearing in front of the
body is transformed before it meets the body this approach is not applicable. A typical sample
of such a problem could be the simulation of interaction between the turbulence generated by any
small bodies and a large body located downstream of small bodies.

region of coarse grid resolution 

inlet
velocity

injection of fine vortices generated
with synthetic inflow generator

Figure 7.1: Schematic view of the injection of synthetic fluctuations inside computational domain in front of the body
of interest.

7.1 Decay of fine scale inlet turbulence on coarse grids

Fig. (7.2) shows decay of the inlet isotropic turbulence downstream in a rectangular domain with
cyclic boundary conditions at the lateral boundaries. The inlet velocity is 10[m/s]. The inflow
generator boundary condition is used at the inlet of computational domain (see [113] for details
of inflow generator BC) and a usual pressure boundary condition is applied in the outlet. The
dependence of turbulent kinetic energy decay on the ratio of integral length scale to cell size is
presented in Fig. (7.2). In case of L/δ ≤ 2 a very pronounced initial drop in turbulence kinetic
energy is observed. Increasing the length scale of synthetic fluctuation to the values above L/δ > 4
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is a one way to slow down the rate of the turbulence decay. This is not always a proper solution since
large value for length scale may not be physical and does not fulfill the measurement conditions
at the inlet. In order to preserve generated fine vortices for a longer distance inside computational
domain they are represented by set of vortex particles and convected with the Lagrangian approach.
To achieve this strategy it is proposed to use a VπLES method in combination with synthetic inflow
generator. The next section describes the application of VπLES for convection of artificial fine
vortices from location of injection to the location of interest as well as some preliminary result.
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Figure 7.2: The influence of the ratio of integral length scale to cell size on the decay of turbulent kinetic energy
(TKE).

7.2 Using VπLES for transport small scale structures on coarse grid

The inlet conditions are usually formulated at a real distance from the main body of interest. In
the area between the inlet and the body VπLES method is applied. Fine vortices are generated on
a part of the inlet using synthetic inflow generator. Fine vortices are modeled directly by vortex
particles and convected toward the body of interest without disappearing due to less numerical
diffusivity of VπLES . The influence of fine vortices on the grid solution is taken into account by
the term uv × ωg . The flow in front of the body is almost potential ωg = 0. Therefore, the term
uv × ωg is almost zero (it is not exactly zero because of approximation errors) and don’t have a
serious effect. In this approach the grid size in the region of computational domain in front of the
immersed body can be larger than the grid around and in the wake of the body of interest. Fig.
(7.3) presents an overview of the proposed algorithm. Modeling fine vortices with vortex particles
and its negligible artificial viscosity makes it possible to use much coarse grid in the inlet region.
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inlet
velocity

(A) (B)

Figure 7.3: Schematic view using VπLES method alongside with synthetic inflow generator for convection of small
scale turbulent structures on coarse grid.

7.3 Transporting turbulent contents to a far distance from the injected cross
section

In this section the preliminary result of transporting the fine scale structures with corresponding
area averaged kinetic energy equal to 1[m2/s2] from cross section A to cross section B is presented.
The aim of using VπLES in this application is to transport fine scale motions with the minimum
artificial viscosity imposed by grid and numerical schemes. In this configuration all random vortex
particles generated in cross section A are treated in Lagrangian vortex method framework (see
Eq. (3.13)) and are convected based on Eq. (3.30) to cross section B. At cross section B all
vortex particles mapped back to the grid. In this algorithm mapping particles to grid includes first
calculation of induced velocity by particles on surrounding cell centers then deleting them from
computational domain. The influence of coupling term uv × ωg is negligible since ωg ≈ 0 in this
uniform flow. This technology was implemented in to the OpenFOAM and some preliminary result
was post-processed. Fig. (7.4) represents the induced velocity field of fine vortices uv in cross
sections A and B. The resultant turbulent kinetic energy from each velocity fluctuating filed in A
and B are equal. Fig. (7.5) shows the convection of the generated fine scales in cross section A
with Lagrangian vortex particles (or vortex blobs) to cross section B. At cross section B the vortex
particles are deleted from computational domain. Figs. (7.6) and (7.7) shows the transporting
of fine vortical structures visualized by Q criterion. The fine structures are convected from A
to B without being influenced by the artificial viscosity of the grid scheme. Right after section
B remarkable dissipation of fine scale structures is visible. In Fig. (7.8) the decay of TKE in
grid-based and grid-free domain was shown by blue and red line respectively. It is shown that
treating fine scales in the Eulerian grid-based approach results in a fast decay of turbulent kinetic
energy especially when the size of fluctuating structures is close to the grid size. On the contrary
application of VπLES allows one to keep the initial turbulence almost unchanged on a big distance.
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Figure 7.4: Field of velocity induced by concentrated vortex structures represented by vortex particles.

Figure 7.5: Visualization of small scale fluctuating structures in Lagrangian framework with vortex particles.
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Figure 7.6: Visualization of flow structures in total velocity field ( uv + ug ) with Q criterion.

Figure 7.7: Visualization of small scale fluctuating structures. Between section A and B structures are convected
in Lagrangian framework using vortex particles and from section B to the outlet only the grid-based simulation is
utilized.
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Figure 7.8: Convection of turbulent kinetic energy (TKE) in Lagrangian domain as well as Eulerian (pure grid-based)
domain.

7.4 Summary

In this chapter a very short introduction as well as preliminary results of the application of VπLES
for transporting the prescribed amount of turbulent contents for LES simulation in coarse grid
were presented. In this algorithm Lagrangian part of VπLES method is only active in part of

100



the computational domain which is between the location of injection of synthetic turbulence and
the location of interest (e.g. cross section A and B in Fig. (7.3)). The key idea of application
of VπLES is preservation of the fine turbulent structures from artificial viscosity effect caused by
error of discretization schemes especially for coarse grids. A continuous future work on this topic
would be the study of the influence of inlet condition on the aerodynamic performance of airfoils.
In this case with VπLES method the desired amount of turbulence intensity imposed at the inlet
will convect without any lost of energy to the region close to the airfoil and a real condition of
experiment (e.g. [114] ) can be reproduced.
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8 Conclusion

A novel hybrid grid-based grid-free (Eulerian-Lagrangian) method which is called VπLES was in-
troduced and validated over several benchmark cases including decay of homogeneous isotropic
turbulence in box, free turbulent jet and turbulent channel flow. VπLES splits the flow structures
as large scale ones, resolved on the grid, and small scale ones, represented by vortex particles.
The evolution of both scales is described by a set of two transport equations (see Eqs. (3.12) and
(3.13)) which contain the terms describing the dynamic coupling between the scales. The method
is simple, straightforward and utilizes advantages of grid-based and grid-free simulations. Vortex
methods are suitable for modeling of fine and fast vortices because they possess a low artificial
viscosity, a typical side effectof grid-based methods, keep vortex particles from excessive diffusion
and has less restrictions to Courant number. Thus, a relatively high resolution of the flow can be
attained at coarse grids.

The method is considered as a LES with direct resolution of the subgrid motion represented by
vortex particles. The model of the subgrid motion reproduces the energy transfer from fine vortices
represented by particles to large scale ones modeled on the grid. In terms of LES it can be inter-
preted as the energy back scattering which occurs for example in the mixing layer at the jet border.
In the laminar flows the vortex particle influence is automatically switched off because of reduction
of vortex particles population and weakening their strengths in the smooth laminar velocity fields.
The Reynolds stress of the velocity field induced by particles possesses the pronounced anisotropy
which is space dependent. The physics behind this anisotropy is to be explained in the future works
of the authors by a more thorough study of vortex particles distributions and their orientations.

Choice of the scheme (free) parameters is studied and discussed in section (5.3). As already men-
tioned one of the weaknesses of many particle based Lagrangian methods is the presence of free
parameters which are often tuned to match desirable results if the latter are known before simula-
tions. Scheme parameters are an inherent part of every numerical technique including grid based
ones. Their presence does not cause objections if there exists certain rules for their choice. VπLES
has two parameters which choice could cause difficulties. The first parameter is the number of
particles per cell Npt. Theoretically, Npt should be as large as possible. Practically, it is restricted
to perform the solution in a reasonable computational time. Fortunately, Figs. (4.21) and (5.12)
show that increase of Npt does not change the results significantly. The value Npt = 4 seems to
be sufficient to attain a proper accuracy. The second important parameter is the threshold λci,min
used for the vortex particle identification. The recommendation is to set λci,min being equal to
≈ 5% of the mean λci, i.e. λci,min = 0.05λci,mean (more discussion is available in section (5.3)).

The VπLES model can be sufficiently reduced by neglecting the inner interaction between particles.
In VπLES method the calculation of velocity induced by particle on each other uv is the largest
time consuming part of computational cost. The results obtained for decay of turbulence in box
shows that the inner interaction between particles is neglected and they are driven only by the
grid-based flow (see Fig. (4.20)). In case of free turbulent jet flow vortex particles serve just as
triggers of turbulence and their inner interaction does not contribute sufficiently to the flow evolu-
tion. This results in a very efficient and fast computational procedure.

A very important conclusion of validation is that the spatially averaged term uv × ωg which de-
scribes the influence of fine scales on large ones, behaves as an energy drain transferring the energy
of the grid based motion into the fine scales energy. At coarse resolutions, it acts as a diffusive
LES subgrid model resulting in a LES-like behavior of the whole method. When the resolution
increases, the present method is consistent and converges to the DNS. In section (4.8) it was shown
that the VπLES method is capable of resolving scales much less than the grid cell size. In such a
way, very fine scales can be resolved on coarse grids.
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The potential of VπLES method for simulation of wall-bounded flow has been investigated in chap-
ter (6). The resolved velocity profile in the inner region of boundary layer using VπLES method,
LES with dynamic Smagorinsky and case without SGS model result in a very similar normalized
mean velocity profile while VπLES shows slightly larger value for kinetic energy and Reynolds
stress components in comparison with other two cases (see Fig. (6.14)). VπLES treats small scale
fluctuations in a Lagrangian way and preserves their entities resulting in larger value of kinetic
energy. Fig. (6.15) and (6.15) show the superior potential of VπLES method in resolving energy
content in high frequency scales even in the present huge over dissipation of coarse grid while dy-
namic Smagorinsky model fails to reproduce energy at small scales. Using VπLES in applications
in which the presence of small scales close to the wall play an important role would be beneficial.
In order to improve the VπLES method for wall-bounded flows a more advanced model for vortex
particle generation and interaction with wall must be developed in future works.

A preliminary result of the application of VπLES for transporting the prescribed amount of tur-
bulent contents for LES simulation in coarse grid were also presented and discussed briefly. In this
proposed algorithm Lagrangian part of VπLES method only active in part of the computational
domain from the location of injection of synthetic turbulence to the location of interest. The key
idea of application of VπLES method is preservation of the fine turbulent structures from artificial
viscosity effect caused by error of discretization schemes especially for coarse grids. With VπLES
method the desired amount of turbulence intensity imposed at the inlet will convect without any
lost of energy to the region close to the object of interest and a real conditions of measurement can
be reproduced.

The estimation of computational time for VπLES method was performed for the one-processor
computations. For the same grid, the resolution of the subgrid motion proposed in the VπLES
method increases the computational time in comparison with LES remarkably. For instance, the
computational time of one time step on the grid with 323 points is 0.123 s for the simulation
without turbulence model, 0.14s for the LES simulation with Smagorinsky model and 0.563 s for
the hybrid simulation with passive vortons (without inner interaction) and two particles per cell
Npt = 2. These results look at first glance, perhaps, pessimistic. However, one has to bear in mind
the following considerations. First, resolution of additional scales requires additional computational
costs. As shown in Fig. (4.19) for the grid 643 the VπLES approacha resolved structures with sizes
ten times less than the cell size, 0.1∆. Resolution of these structures using a pure grid method
using only four cells per structure would require 643×((∆/(0.1∆))3×43) = 1.7×1010 cells. Second,
and this is a very important note, one has to compare the computational costs of two simulations
with the same level of accuracy. For instance, in section the accuracy of VπLES approach with
1.5× 105 cells is the same as that of LES with 6Mio cells (see Fig. (5.11)), whereas the LES with
the same resolution is fully improper. The computational time for one time step using LES with
6 Mio is 65 s whereas VπLES method requires only 3.2 s (i.e. the speed up factor is around 20).
Certainly, the parallelization will change this ratio because the finite volume method and vortex
method have different parallelization efficiency.
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[2] Ž. Tuković and H. Jasak, “A moving mesh finite volume interface tracking method for surface
tension dominated interfacial fluid flow,” Computers & fluids, vol. 55, pp. 70–84, 2012.

[3] B. Egilsson, “Hybrid vortex models in 2d: Arbitrary moving bodies,” 2015.

[4] M. Ould-Salihi, G. Cottet, and M. El Hamraoui, “Blending finite-difference and vortex meth-
ods,” SIAM J. Sci. Comput., vol. 22, no. 5, pp. 1655–1674, 2000.

[5] J. Monaghan, “Extrapolating b splines for interpolation,” Journal of Computational Physics,
vol. 60, no. 2, pp. 253–262, 1985.

[6] L. Davidson and M. Billson, “Hybrid les-rans using synthesized turbulent fluctuations for
forcing in the interface region,” International journal of heat and fluid flow, vol. 27, no. 6,
pp. 1028–1042, 2006.

[7] S. Russ and P. Strykowski, “Turbulent structure and entrainment in heated jets: The effect
of initial conditions,” Physics of Fluids A: Fluid Dynamics, vol. 5, no. 12, pp. 3216–3225,
1993.

[8] K. Zaman and A. Hussain, “Turbulence suppression in free shear flows by controlled excita-
tion,” Journal of Fluid Mechanics, vol. 103, pp. 133–159, 1981.

[9] A. F. Hussain and K. Zaman, “The ‘preferred mode’of the axisymmetric jet,” Journal of fluid
mechanics, vol. 110, pp. 39–71, 1981.

[10] S. Cho, J. Yoo, and H. Choi, “Vortex pairing in an axisymmetric jet using two-frequency
acoustic forcing at low to moderate strouhal numbers,” Experiments in Fluids, vol. 25, no. 4,
pp. 305–315, 1998.

[11] P. Sagaut, Large eddy simulation for incompressible flows: an introduction. Springer Science
& Business Media, 2006.
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