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Minimum Relative Entropy for Quantum
Estimation: Feasibility and General Solution

Mattia Zorzi, Francesco Ticozzi and Augusto Ferrante

Abstract—We propose a general framework for solving quan-
tum state estimation problems using the minimum relative
entropy criterion. A convex optimization approach allows us to
decide the feasibility of the problem given the data, find the
maximal common kernel of all admissible states and, whenever
necessary, to relax the constraints in order to allow for a physi-
cally admissible solution. Building on these results, the variational
analysis can be completed ensuring existence and uniqueness of
the optimum. The latter can then be computed by standard,
efficient standard algorithms for convex optimization, without
resorting to approximate methods or restrictive assumptions on
its rank.

Index Terms—Quantum estimation, Kullback-Leibler diver-
gence, Convex optimization

I. INTRODUCTION

Quantum devices implementing information processing
tasks promise potential advantages with respect to their clas-
sical counterparts in a remarkably wide spectrum of applica-
tions, ranging from secure communications to simulators of
large scale physical systems [1], [2], [3].

In order to exploit quantum features to the advantage of a
desired task, tremendous challenges are posed to experimental-
ists and engineers, and many of these have stimulated substan-
tial theoretically-oriented research. Which particular problem
is critical depends on the physical system under consideration:
from optical integrated circuits to solid-state devices, the
tasks in the device engineering, protection from noise and
control are manifold [3], [2], [4], [5], [6]. However, quantum
estimation [7] problems are ubiquitous in applications, be it in
testing the output of a quantum algorithm, in reconstructing the
behavior of a quantum channel or in retrieving information at
the receiver of a communication system [3], [8], [9], [10], [11].
In this paper we focus on state estimation problem for finite-
dimensional quantum system, namely the reconstruction of a
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trace-one, positive semidefinite matrix given from data, and in
particular on an estimation method that addresses two critical
problems for most real-world situations. The first regards
situation in which the system dimension is large and the
available measurement are insufficient to completely determine
the state. The second arises when only a set of noisy data is
available, yielding no physically-acceptable solution.

In order to address the first issue, a typical approach in both
the classical and the quantum world is to resort to a MAXENT
principle [12], [13], [14], [15], [16], [17], [18], [7], [19],
where one opts for a “maximum ignorance” criterion on the
choice of parameters that are not uniquely determined by data.
The MAXENT estimation can indeed be seen as a particular
case of minimum relative entropy estimation, [20], where the
information-theoretic pseudo-distance of the estimated state
with respect to some a priori state is minimized subjected
to a set of constraints representing the available data [21],
[22], [23], [24], [25]. This a priori information introduces a
new ingredient with respect to typical maximum-likelihood
methods for quantum estimation [7], [26], [27], and allows
e.g. for taking into account previous estimates of the state to
be reconstructed. It is worth remarking that when a full set of
observables are not available, any estimation method will not
in general be able to reconstruct the actual state. The minimal
entropy methods offer a criterion to choose the state that is
informationally closest to some a priori guess between those
that are compatible with the measurement data.

A quantum minimum relative entropy method for quantum
state estimation has been discussed in [23], [28], where ap-
proximate solutions to minimum relative entropy problems are
provided: the estimates are shown to be good approximation
of the optimal solution when this is close enough to the a
priori state. On the other hand, a way towards the computation
of the exact optimal solution is indicated in [21]: Georgiou
has analyzed the MAXENT problem for estimating positive
definite matrices, providing a generic form for the optimal
solution, parametric in the Lagrange multipliers. He has also
observed that the results can be extended to the more general
minimum relative entropy problem.

We shall here extend Georgiou’s approach, proving exis-
tence, uniqueness and continuity of the solution with respect
to the measured data, when a generic prior state is considered.
The solution can then be computed by standard numerical
methods. However, the approach returns a meaningful answer
only when there is a full-rank admissible solution among the
states compatible with the data. While this appears to be a
reasonable assumption as quantum full-rank states are generic,
this is no longer the case whenever the unknown state is pure
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or near the boundary of the physical state set. In fact, it is
easy to picture realistic scenarios where the effect of noisy
or biased data might actually force the solutions to be on the
boundary, or even outside of the admissible set [29], [26].
In the latter case the constrained optimization problem “as
is” is not feasible, and one has to relax the constraints. We
here propose a convex-optimization method that solves the
feasibility problem and that determines the maximal common
kernel of the states compatible with the constraints. This
allows for the construction of a reduced optimization problem
which can always be successfully tackled within Georgiou’s
framework.

Regarding the effect of noise and limited accuracy of
the available data, our contribution is twofold: we provide
both a way to relax the constraints in order to allow for a
physically admissible solution when the noisy data are not
compatible with physical states, and ensure that the estimated
state depends continuously on the data, while providing a way
to estimate the error by bounding the modulus of continuity.

The paperis organized as follows: a general setting for
posing the feasibility problem and quantum minimum rela-
tive entropy with data corresponding to linear constraints is
presented in Section II. In Section III, we propose a way to
reformulate the feasibility analysis as a convex optimization
problem. The solution of this ancillary problem, for which we
provide a numerical approach in Appendix A, also indicates
an optimal way to perturb, or relax the constraints in order to
allow for admissible solutions to the estimation problem. We
also show how the way in which the constraints are relaxed can
be tailored to match the error distribution or the level of noise
we assume on the measurements. One of the key features of the
proposed approach is that, once the feasibility analysis returns
a positive answer, it directly leads to the construction of a
reduced problem for which there exists a positive definite state
satisfying the given constraints. In Section IV, we address the
corresponding (reduced, if needed) minimum relative entropy
problem, showing it admits a unique full-rank solution. The
latter can be computed from the closed-form solution of the
primal problem, and a standard numerical algorithm to find
the corresponding Lagrange multipliers is suggested. Then, the
solution to the non-reduced, original problem is immediately
obtained. A proof of the continuity of the solution with respect
to the data and a way to estimate the induced error are provided
in Appendix B. Some concluding remarks and future directions
and applications are summarized in Section V.

II. PROBLEM SETTING

A. Quantum States and Measurement Data

Consider a quantum n-level system. Its state is described by
a density operator, namely by a positive semidefinite unit-trace
matrix

ρ ∈ Dn =
{
ρ ∈ Cn×n | ρ = ρ† ≥ 0, tr(ρ) = 1

}
, (1)

which plays the role of probability distribution in the classical
probability framework. Note that a density matrix depends on
n2 − 1 real parameters.

In this work we will be concerned on the problem of recon-
structing an unknown ρ from a set of repeated measurement
data. This is of course an estimation problem in the statistical
language, while in the physics community it is usually referred
to as state tomography [7].

We assume that data are provided in one of the following
forms:

1) Outcome frequencies for projective measurements: con-
sider repeated measurements of a (Hermitian) observable [30],
O =

∑
k okΠk, where {Πk} is the associated spectral family

of orthogonal projections. The spectrum {ok} represents the
possible outcomes at each measurement, and the frequency
of the k-th outcome given a state ρ can be computed as
pk = tr(ρΠk). After K measurements of O, we assume we
are provided with some experimental estimates of pk, i.e. the
experimental relative frequencies of occurences p̂k = #(O =
ok)/K, with #(O = ok) the number of measurements that
returned outcome ok.

2) Observable averages: consider a set of no measured
observables, represented by Hermitian matrices Oi, where now
we only have access to the mean values of the outcomes,
denoted by 〈Oi〉 (and with possible outcomes oi,k), that can be
theoretically computed as 〈Oi〉 := tr(ρOi) and experimentally
estimated by 〈Ôi〉 =

∑
k oi,kp̂k.

3) Outcome frequencies for general measurements: con-
sider repeated measurements of a Positive-Operator Valued
Measure (POVM), that is generalized measurements that can
be used to describe indirect measurements on a system of
interest [3]. A POVM with M outcomes, say k = 1, . . .M, is
associated with a set of non-negative operators {Qk}Mk=1 such
that

∑
kQk = I, playing the role of resolution of the identity

for projective measurements. The probability of obtaining the
k-th outcome can be computed by qk = tr(ρQk), and ex-
perimentally estimated by q̂k after K repeated measurements.
This case in fact includes the first one, and the generalization
to multiple POVM is straightforward.

In all these scenarios, data are provided as a set of real
values representing estimates f̂i of quantities fi (that can
be either pi, 〈Oi〉 or qi), each associated with the state
through a linear relation of the form fi = tr(ρZi), where
Zi have the role of Πi, Oi or Qi described above. Clearly
f̂i → fi = tr(Ziρ) with probability one as N → ∞. Here,
N is the number of repeated measurements. This framework
is quite general, and can be adapted to include any case if
the data are given as linear constraints. Another significant
situation that fits in this framework is when reduced states of a
multipartite systems are available as data [31], [32]. Finally, by
the well-known Choi-Jamiolkowski isomorphism, [33], [34],
the same setting, and methods for solution, can be adapted to
include estimation of quantum channels, or quantum process
tomography [7], [26].

From a theoretical viewpoint, ρ can be in principle recon-
structed exactly from at least n2 − 1 averages fi = tr(ρZi)
i = 1 . . . n2 − 1 when Z1 . . . Zn2−1 are observables which do
not carry redundant information, namely they form a basis for
the space of traceless Hermitian matrices.

Remark: In this case, if the measurement statistics f were
known exactly, there would be a unique state compatible with
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the corresponding constraints. Hence, the optimization step
would become superfluous as the unique state fitting the data
would correspond to the actual state. In the case where the
measurement statistics f̂ are computed from a finite number
of data N , the probability that the error is larger than ε could
be estimated e.g. using the central limit theorem. In fact, f̂i
would be the sample average of N i.i.d. random variables
associated to repeated measurements of each observable Zi on
identical preparation of the system. Let σ2

i be the variance of
such random variables, and assume the Zi to be orthonormal
for simplicity. This allows for the following standard estimate,
using Chebyshev’s inequality and the law of large numbers:

P(|f̂i − fi| ≥ ε) ≤
σ2
i

Nε2
. (2)

The estimated solution would have the structure:

ρ̂ =
1

2
I +

∑
i

fiZi.

Therefore, considering the Hilbert-Schmidt norm ‖ · ‖, we

have ‖ρ̂ − ρ‖ ≤
√∑

i n
2|λi|2|f̂i − fi|2, with λi being the

eigenvalue of Zi with maximum absolute value. Define εtot =√∑
i n

2|λi|2ε2, in terms of ε used in (2). Hence if we have N
measurement available for each observable we can guarantee
that

P(‖ρ̂− ρ‖ ≤ εtot) ≥
(

1− σ2
max

Nε2

)n2−1

,

where σ2
max is the maximum variance. Given the number

of measurements N we can estimate the accuracy of the
reconstructed state, which converges to the actual one for N
approaching infinity.

In any practical application, however, one has to face the
following issues:

1) Accurate estimates f̂i of fi are only obtained by aver-
aging over a large quantity of trials; Often only a small
set of trials is available, and/or the data are subject to
significant errors;

2) The number of observables required for a unique recon-
struction of ρ grows quadratically with respect to the
dimension of the quantum system, and exponentially in
the number of subsystems. Typically only a small subset
of these is available;

We here analyze the estimation problem when these two
aspects are taken into account. The first one will lead us
to consider the feasibility problem, that is, if the problem
admits a physically admissible solution for the given data.
Since errors may affect the f̂i, the reconstructed state may
not be positive semidefinite, or a valid state that satisfies the
constraints might not even exist. The second issue generically
leads to a estimation problem where more than one state
satisfy the constraints, and thus an additional criterion has
to be introduced to arrive at a unique solution. As we said,
a typical strategy in this setting is to introduce an entropic
functional, e.g. relative entropy with respect to some reference
state representing a priori information.

B. Statement of the Main Problems

Consider the setting described above, where we want to
estimate the state of an n-dimensional quantum systems from
the real data {f̂i}pi=2, experimental estimates of the quantities
fi = tr(Ziρ), for the Hermitian matrices Z2 . . . Zp, with
p � n2 − 1. In addition to these, we introduce an auxiliary
observable Z1 = I and the corresponding estimate f̂1 = 1.
In this way, we include the linear constraint tr(ρ) = 1 in the
constraints associated with the “data”. We wish now to solve
the following problem.

Problem 1: Given {Zi} and {f̂i}, i = 1 . . . p, find all:

ρ ∈ Hn, such that ρ ≥ 0, f̂i = tr(ρZi), i = 1, . . . , p.
(3)

Here, Hn denotes the vector space of Hermitian matrices of
dimension equal to n. Notice that, if we remove the positivity
constraint ρ ≥ 0, all other constraints are linear and identify a
hyperplane in Hn. To our aim it is convenient to first address
a simpler problem: let

S :=
{
ρ ∈ Hn | ρ ≥ 0, f̂i = tr(ρZi)

}
be the set of the density matrices which solve Problem 1.

Problem 2 (Feasibility): Determine if S is not empty.
When the problem is feasible, in general S contains more

than one solution, and in principle any solution in S fits the
data. We focus on choosing a solution that has minimum
distance with respect to an a priori state 1. In the same spirit
of MAXENT problem, this corresponds to give maximum
priority to fitting the data, and then choosing the admissible
solution that is the closest (in the relative-entropy pseudo-
distance) to our a priori knowledge on the systems. To
this aim, consider the (Umegaki’s) quantum relative entropy
between ρ ∈ Dn, and τ ∈ Dn [35]:

S(ρ‖τ) = tr(ρ log ρ− ρ log τ). (4)

If we assume τ ∈ int(Dn) and the usual convention that
0 log(0) = 0, we do not have to worry about unbounded values
of S(ρ‖τ). We will see that the condition τ ∈ int(Dn) is
not necessary if ρ lies on the boundary of the admissible set,
but whether τ is acceptable depends on the data: this will be
discussed in Section IV-A.

Problem 3 (Minimum relative entropy estimation): Given
the observables Z1 . . . Zp, the corresponding estimates
f̂1 . . . f̂p and a state τ ∈ int(Dn), solve

minimize
ρ≥0

S(ρ‖τ) subject to tr(ρZi) = f̂i, i = 1 . . . p. (5)

Here, τ represents the a priori information on the considered
quantum system. We set τ = 1

nI if no information is
available. In this situation, S(ρ‖τ) = log(n) − S(ρ), where
S(ρ) = − tr(ρ log(ρ)) is von Neumann’s entropy of ρ, and
thus the problem is equivalent to a MAXENT problem. Note
that, in either case, the solution to the Problem above may be
singular.

1It is worth noting that, in a Bayesian perspective, this correspond to
assuming a prior distribution on the set of states which is a Dirac delta
centered in τ , i.e. in absence of additional information the previously available
estimate is considered the best one.
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III. FEASIBILITY ANALYSIS

A. An auxiliary problem

We start by addressing the feasibility problem, i.e. to
determine when S is not empty. In addition, whenever the
problem is not feasible, we show how to determine a suitable
perturbation of the {f̂i} that makes our problem feasible. We
will show that the corresponding S only contains singular
density matrices when the constraints are relaxed.

Note that, the constraints are linear in f̂i and Zi, and can
be linearly combined: αf̂i + βf̂k = tr[ρ(αZi + βZk)] for
each α, β ∈ R \ {0} and i, k = 1 . . . p. Consider the vector
space generated by the observed operators, span {Z1 . . . Zp}.
Thus, by applying the Gram-Schmidt process, starting with
X1 = 1√

n
Z1 = 1√

n
I , we can compute an orthonormal basis

for it:

Xi := αiiZi +

i−1∑
l=1

αilXl, i = 2 . . .m ≤ p. (6)

By linearity, by associating these basis elements to the esti-
mates

f̄1 :=
1√
n

f̄i := αiif̂i +

i−1∑
l=1

αil f̄l, i = 2 . . .m, (7)

we obtain a new yet equivalent set of constraints:

f̄i = tr(ρXi), i = 1 . . .m. (8)

Note that, I ∈ span {X1 . . . Xm}.
Let Y1 . . . Yn2−m be an orthonormal completion of

X1 . . . Xm to a basis of Hn. Accordingly, all the Hermitian
matrices, and in particular density operators, can be expressed
as

ρ =

m∑
i=1

αiXi +

n2−m∑
i=1

βiYi, (9)

with tr(ρXi) = αi. In particular, all the Hermitian matrices
satisfying the linear constraints in (8) depend on n2 − m
parameters β = [β1 . . . βn2−m]:

ρ = ρ̃0 +

n2−m∑
i=1

βiYi (10)

where we have defined the (not necessarily positive) pseudo-
state associated with the constraints:

ρ̃0 =

m∑
i=1

f̄iXi. (11)

In the light of this observation, the feasibility problem
consists in checking if there exists at least one vector β ∈
Rn2−m such that ρ ≥ 0. To this aim, we introduce an
auxiliary problem. Intuitively, the idea is the following: given
any Hermitian matrix ρ̃0, there always exists a real µ such
that ρ̃0 + µI is positive definite. More precisely, if ρ̃0 is
not positive definite already, it is easy to see that such a µ
will need to be positive. On the other hand, if ρ̃0 is already
positive, the perturbed matrix remains positive semi-definite

for some small, negative µ. Studying the minimal µ that
correspond to a positive semidefinite matrix offers us a way
to understand whether our constraints allow for physically
admissible solutions.

Let us formalize these idea: we define c :=[
0 . . . 0 1

]T ∈ Rn2−m+1, and

H(v) := ρ̃0 +

n2−m∑
i=1

viYi + vn2−m+1X1

with v =
[
v1 . . . vn2−m+1

]T
and we consider the

following minimum eigenvalue problem.
Problem 4: Given ρ̃0 as in (11) and Y1 . . . , Yn2−m an

orthonormal completion of span {X1 . . . Xm}, solve

minimize cT v subject to v ∈ I := {v | H(v) ≥ 0} .
(12)

Lemma 3.1: Problem 4 always admits solution.
Proof: First of all, notice that Problem 4 is a convex

optimization problem, and the objective function cT v is linear
and continuous over the set I. Then, the proof is divided in
three steps.
Step 1: We show that cT v = vn2−m+1 is bounded from below
on I: since X1, . . . , Xm, Y1, . . . , Yn2−m forms an orthonormal
basis and I ∈ span {X1, . . . , Xm}, the matrices {Yi} are
traceless. Thus,

tr[H(v)] = tr[ρ̃0 +

n2−m∑
i=1

viYi + vn2−m+1X1]

= tr(ρ̃0) +
√
nvn2−m+1 = 1 +

√
nvn2−m+1

and tr[H(v)] ≥ 0 for each v ∈ I. Hence,
cT v = vn2−m+1 ≥ − 1√

n
for each v ∈ I.

Step 2: Let us consider v0 =[
0 . . . 0

√
n(−λmin(ρ̃0) + 1)

]
∈ I where λmin(ρ̃0)

denotes the minimum eigenvalue of ρ̃0. Accordingly,
cT v0 =

√
n(−λmin(ρ̃0) + 1) and Problem 4 is equivalent to

minimize cT v over the closed sublevel set I0 = {v | H(v) ≥
0, − 1√

n
≤ vn2−m+1 ≤

√
n(−λmin(ρ̃0) + 1)} ⊂ I. We

want to show that I0 is bounded and accordingly compact
(recall that we are working in a finite dimensional space).
This can done by proving that a sequence

{
vk
}
k≥0 such that

‖vk‖ → ∞ cannot belong to I0. It is therefore sufficient to
show that the minimum eigenvalue of the associated Hermitian
matrix H(vk) tends to −∞ as ‖vk‖ → ∞ with vm2−n+1

bounded. Note that the affine map v 7→ H(v) is injective,
since Y1 . . . Yn2−m, X1 are linearly independent. Accordingly
‖H(vk)‖ → ∞ as ‖vk‖ → ∞. Since H(vk) is an Hermitian
matrix, H(vk) has an eigenvalue ηk such that |ηk| → ∞ as
‖vk‖ → ∞. By construction tr[H(vk)] = 1 +

√
nvkn2−m+1

and vkn2−m+1 is bounded in I0. Thus tr[H(vk)] <∞, namely
the sum of its eigenvalues is always bounded. Thus, there
exists an eigenvalue of H(vk) which approaches −∞ as
k →∞. So, I0 is bounded.
Step 3: Since cT v is continuous over the compact set I0, by
Weiestrass’ theorem we conclude that cT v admits a minimum
point over I0.
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We need to take into account that the vector which mini-
mizes cT v over I may not be in general unique. However, to
our aim we are more interested in the sign of the minimum.

Proposition 3.1: Let µ = min
v∈I

cT v. Then, the following

facts hold:
1) If µ > 0, then Problem 1 is not feasible
2) If µ < 0, then Problem 1 is feasible and there exists at

least one positive definite matrix satisfying constraints
in (8)

3) If µ = 0, then Problem 1 is feasible and all the matrices
satisfying constraints in (8) are singular.

Proof: Note that G(v1, . . . , vn2−m) := ρ̃0 +
∑n2−m
i=1 viYi

represents the parametric family of Hermitian matrices (not
necessary positive semidefinite) satisfying constraints in (8).
Define ε := −vn2−m+1, thus Problem 4 can be rewritten in
the following way:

maximize ε subject to G(v1, . . . , vn2−m) ≥ ε√
n
I. (13)

Let ε◦ = −µ be the solution of the above problem. If
ε◦ < 0, the parametric family G(v1, . . . , vn2−m) does not
contains positive semidefinite matrices, accordingly Problem
1 does not admit solution. If ε◦ ≥ 0, the parametric family
G(v1, . . . , vn2−m) contains at least one positive semidefinite
matrix and Problem 1 admits solution. Moreover if ε◦ > 0, the
parametric family contains at least one matrix ρ ≥ ε◦√

n
I > 0

which is positive definite. On the contrary, for ε◦ = 0 there
only exist positive semidefinite matrices which are singular.

An effective numerical approach for the solution to the
problem is described in Appendix A. This also allows to
determine the maximal common kernel of the states in S,
which is key to the general solution we present in Section
IV.

In the light of the previous result, if µ < 0 Problem 1 is
feasible and S contains at least one positive definite solution.
As we will see in Section IV, this condition ensures that a
minimum relative entropy criterion will lead to an admissible
solution in S. The remaining cases need to be studied more
carefully. We start by showing how to make Problem 1 feasible
when it is not be so for the given constraints. It turns out that
a minimally relaxed problem is feasible and S only contains
singular density matrices. Next, we deal with the case in which
Problem 1 is feasible and all its solutions are singular, showing
how they all share a minimal kernel and how to construct
a reduced problem with a full-rank solution for which the
minimum relative entropy methods work.

B. Forcing the feasibility condition (case µ > 0)
The parameter µ given by the auxiliary problem described

above reveals if the original problem is feasible, but also
suggests an “optimal” way to relax unfeasible constraints so
that they make Problem 1 feasible. In fact, from the definition
of µ, we know that there exist v1 . . . vn2−m ∈ R such that

ρ̃µ := ρ̃0 +

n2−m∑
i=1

viYi + µX1 ≥ 0,

and:
tr(ρ̃µ) = 1 +

√
nµ.

From this positive operator, in order to obtain a density
operator, we only need to normalize the trace by defining:

ρ :=
1

1 +
√
nµ

ρ̃µ (14)

=
1√
n
X1 +

m∑
i=2

f̄i
1 +
√
nµ

Xi +

n2−m∑
i=1

vi
1 +
√
nµ

Yi.

This implies that the original problem can be made feasible by
uniformly, “isotropically” contracting the data {f̄i} of a factor
1/(1 +

√
nµ) and, in light of the fact that µ is a solution to

Problem 4, that this is the minimum amount of contraction that
makes Problem 1 feasible. Moreover, the corresponding set S
only contains singular solutions.

However, the entries in the data set {f̄i} may differ in
their reliability, and one would like to be able to relax the
corresponding constraints accordingly. This is complicated by
the fact that the original {Zi} may not be orthogonal, and the
data we are contracting are in fact the linearly transformed
output of the Gram-Schmidt orthonormalization described
above.

This weighed relaxation can be realized as follows: consider
the initial setting of Section II, where we have p observables
Z1 . . . Zp (not necessarily orthonormal), with Z1 = I and
f̂1 = 1. Define the reliability indexes 0 < d2 . . . dp ≤ 1
associated with each observable Z2 . . . Zp. More precisely, the
more f̂i is reliable, the closer to one di is. This information
can be extracted, for example, from an error analysis on
the measurement procedures, with di associated with the
normalized reciprocal of the variances.

When we obtain the orthonormal generators X1 . . . Xm, the
Gram-Schmidt process induces a linear transformation on the
original estimates f̂1, . . . , f̂p: f̄1

...
f̄m

 = T

 f̂1
...
f̂p

 (15)

where T =

[ 1√
n

0

T1 T2

]
∈ Rm×p.

In order to modify the data {f̂i} according to their reliability
indexes, we define the new set of data:

 f̂ ′1
...
f̂ ′m

 = T


f̂1

kd2f̂2
...

kdpf̂p

 . (16)

where k > max{d−1i }. In this way f̂2, . . . , f̂p are amplified
of a factor kdi > 1 according their reliability indexes. This
will allow for the maximum contraction to be applied to the
most noisy estimates.

In order to compute the minimum µ that makes the original
problem feasible perturbing the data consistently with their
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reliability indexes, we can solve Problem 4 with respect to
the new pseudo-state:

ρ̃′0 =

m∑
i=1

f̂ ′iXi. (17)

It is easy to see that if the original problem was unfeasible,
this modified problem is unfeasible as well for k large enough,
since all the f̂i corresponding to traceless operators are mul-
tiplied for a factor kdi >> 1. Let µ′ > 0 be the parameter
given by the auxiliary problem when ρ̃′0 is considered. By the
results of the previous subsection and (14) above, we consider
the perturbed constraints

f̄1 =
1√
n

f̄i =
1

1 +
√
nµ′

f̂ ′m, i = 2 . . .m. (18)

Thus, the corresponding Problem 1 is feasible and S only
contains singular solutions.

Observation: Let us consider the limit case in which some
di = 0. One immediate way of dealing with it would be
to exclude the corresponding data: this implies that in our
estimation procedure the number of independent constraints is
decreased, and hence the measured information associated to
the expectation of Zi is completely discarded. The component
of the estimated state along the corresponding (traceless)
component of Zi is then computed in the optimization step
by minimizing the relative entropy with respect to τ.

However, one may consider a different approach, in which
the unreliable measurement still has an effect. More precisely,
consider the estimate f̂i associated with the observable Zi
and with the smallest reliability index di > 0. Accordingly,
k = αd−1i with α > 1 and tr(ρ̃′0Zi) = αf̂i. Let ZIi and
Z⊥i be the unique decomposition Zi = ZIi + Z⊥i such that
tr(Z⊥i ) = 0 and tr(ZIi Z

⊥
i ) = 0. Moreover, let f̂ Ii and f̂⊥i

be such that tr(ρ̃′0Z
I
i ) = f̂ Ii and tr(ρ̃′0Z

⊥
i ) = f̂⊥i . The

corresponding density operator ρ := 1
1+
√
nµ
ρ̃µ is such that

tr(ρZ⊥i ) = α
f̂⊥i

1+
√
nµ

. Hence, in the limit di → 0 we get
µ→∞ and thus tr(ρZ⊥i )→ 0.

This is equivalent to the expectation that the maximally
mixed state would have along Z⊥i , and can be interpreted
in our estimation framework as follows: a completely unre-
liable measurement has been performed, and its effect is to
“substitute” the information associated to the sample average
of Z⊥i with the one corresponding to maximum ignorance
(MAXENT), that is, the same we would obtain if the state
were the maximally mixed state.

C. Case µ = 0

In the limit case µ = 0, not only all solutions are singular,
but they share a key property.

Proposition 3.2: Assume that, with the definition above,
µ = 0. Then there exists a kernel K which is common for
all ρ ∈ S.

Proof: Let us assume µ = 0, accordingly Problem 1
does only admit singular solutions, with dim ker(ρ) > 0

∀ ρ ∈ S . Pick a solution ρ◦ ∈ S with kernel of min-
imal dimension. Suppose by contradiction that there exists
ρ̄ ∈ S such that ker(ρ◦) * ker(ρ̄). Taking into account
p ∈ (0, 1), we define ρ := pρ◦ + (1 − p)ρ̄ ∈ S. Accordingly
dim ker(ρ) < dim ker(ρ◦) which is a contradiction, since ρ◦

has kernel with minimal dimension on S. We conclude that
K = ker(ρ◦) ⊆ ker(ρ) ∀ ρ ∈ S.

This directly implies the following block-form for all the
solutions to Problem 1.

Corollary 3.1: Let ρ◦ ∈ S be a solution with minimal
kernel K and consider its block-diagonal form

ρ◦ = U

[
ρ◦1 0
0 0

]
U†,

where U is a unitary change of basis consistent with the
Hilbert space decomposition H = K⊥ ⊕ K so that ρ◦1 > 0.
Then, the set of all the solutions of Problem 1 is

S =

{
ρ = U

[
ρ1 0
0 0

]
U† | ρ1 ≥ 0, f̄i = tr(ρXi)

}
. (19)

As consequence of Corollary 3.1, we can focus on a reduced
version of Problem 1, by considering optimization only on
the support of ρ◦, for which the minimum relative entropy is
applicable since ρ◦1 is positive definite, see Section IV.

IV. STATE ESTIMATION WITH MINIMUM RELATIVE
ENTROPY CRITERION

A. Reduced Problem

In the previous part of the paper we showed how to check
the feasibility of Problem 1 given the constraints associated
with the data and, if needed, how to relax the constraints in
such a way that the corresponding Problem 1 is feasible. In
general, however, the set of solutions S is not constituted by
only one element. In this section, we show how to choose, and
then compute, a solution in S according the minimum quantum
relative entropy criterion.

Given the results of the previous sections, we can assume
that either Problem 1 admits at least one (strictly) positive
definite solution, or we can resort to a reduced problem for
which a full rank solution exists. In fact, if S only contains
singular matrices (case µ = 0, or after relaxation of the
constraints), by Corollary 3.1 we have that the set of solution
is

S =

{
ρ = U

[
ρ1 0
0 0

]
U† | ρ1 ≥ 0, f̄i = tr(ρXi)

}
(20)

for some unitary change of basis U consistent with the Hilbert
space partition H = K⊥ ⊕ K. Accordingly for each ρ ∈ S ,
constraints in (8) can be rewritten in the following way

f̄i = tr(ρXi) = tr

(
U

[
ρ1 0
0 0

]
U†Xi

)
= tr(ρ1X̄i) (21)

where X̄i :=
[
I 0

]
U†X1U

[
I
0

]
∈ Hn1 with n1 < n.

Accordingly Problem 1 is equivalent to the corresponding
reduced problem with X̄1 . . . X̄m and f̄1 . . . f̄m. The corre-
sponding set of solutions is

S1 =
{
ρ1 ∈ Hn1

| ρ1 ≥ 0, f̄i = tr(ρ1X̄i)
}

(22)
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which contains the positive definite solution ρ◦1. Once chosen
a solution ρ̂1 ∈ S1, the corresponding original solution is

ρ̂ = U

[
ρ̂1 0
0 0

]
U†. (23)

Finally, given the a priori estimate τ ∈ int(Dn) it is easy to
see that S(ρ‖τ) = S(ρ1‖τ1) where

τ1 :=
[
I 0

]
U†τU

[
I
0

]
∈ int(Dn1).

Notice that in order to have bounded values of the entropy
it is only necessary that range(ρ) ⊆ range(τ). However,
whether a certain τ is acceptable can be determined only after
having analyzed the data and found the minimal kernel K. In
order to avoid this complication, it is convenient to choose a
τ ∈ int(Dn) from the beginning. Full rank τ can be chosen
arbitrarily close to any prior state with nontrivial kernel. In the
effort of keeping a simple notation, we will not distinguish
between the reduced and the full problem in the following
discussion, therefore using ρ for either the full or the reduced
state, τ for either the full or the reduced a priori state, {Xi} for
either the full or reduced observable, and n for the dimension
of the full Hilbert space or the reduced one as needed. We can
consider the following simpler problem, restricted to strictly
positive matrices:

Problem 5: Given τ ∈ int(Dn), the observables X1 . . . Xm

and the corresponding estimates f̄1 . . . f̄m, solve

minimize
ρ>0

S(ρ‖τ) subject to tr(ρX̄i) = f̄i, i = 1 . . .m.

(24)

B. Lagrangian and Form of the Full-Rank Solution

Now we are ready to derive a solution method for problem
the entropic criterion. Consider the linear operator associated
with the above constraints:

L : Hn → Rm

ρ 7→

 tr(ρX1)
...

tr(ρXm)

 . (25)

Given λ =
[
λ1 . . . λm

]T ∈ Rm and ρ ∈ Hn,

〈L(ρ), λ〉 =

m∑
i=1

λi tr(ρXi) = tr(ρ

m∑
i=1

λiXi) = 〈ρ, L∗(λ)〉

(26)
where

L∗ : Rm → Hn

λ 7→
m∑
i=1

λiXi (27)

is the adjoint operator of L. Define f̄ =
[
f̄1 . . . f̄m

]T
.

Since Problem 5 is a constrained convex optimization problem,
we consider its Lagrangian

L(ρ, λ) = tr(ρ log ρ− ρ log τ)−
〈
λ, f̄ − L(ρ)

〉
= tr(ρ log ρ− ρ log τ) + 〈L∗(λ), ρ〉 −

〈
λ, f̄

〉
= tr[ρ(log ρ− log τ + L∗(λ))]−

〈
λ, f̄

〉
(28)

where λ ∈ Rm is the Lagrange multiplier. Note that L(·, λ)
is strictly convex over Hn,+ where Hn,+ denotes the cone
of the positive definite matrices. Thus, its minimum point is
given by annihilating its first variation

δL(ρ, λ; δρ) = tr[(log ρ+ I − log τ + L∗(λ))δρ] (29)

for each direction δρ ∈ Hn. Accordingly, the unique minimum
point for L(·, λ) is

ρ(λ) = elog τ−I−L
∗(λ) (30)

and
L(ρ(λ), λ) ≤ L(ρ̄, λ), ∀ ρ̄ ∈ Hn,+. (31)

If there exists λ◦ such that ρ(λ◦) ∈ S, i.e. f̄ = L(ρ(λ◦)),
then (31) implies

S(ρ(λ◦)‖τ) ≤ S(ρ̄‖τ), ∀ ρ̄ ∈ S. (32)

Thus, if we are able to find λ◦ ∈ Rm such that

f̄ − L(ρ(λ◦)) = 0, (33)

then ρ(λ◦) is the unique solution to Problem 5. This issue
can be addressed by considering the dual problem. In fact, λ◦

is a solution of (33) if and only if it maximizes the following
dual functional over Rm

inf
ρ∈Hn,+

L(ρ, λ) = L(ρ(λ), λ)

= − tr(elog τ−I−L
∗(λ))−

〈
λ, f̄

〉
. (34)

The existence of such a λ◦ is proved in Section IV-C.
Moreover, we suggest how to efficiently compute it.

Remark 4.1: When µ = 0, S only contains singular matri-
ces. Instead of considering the reduced problem as we did, one
could try to consider Problem 3 with relaxed constraint ρ ≥ 0.
In this situation the Slater’s condition [36, 5.2.3], however,
does not hold because S does not contain positive definite
matrices. Hence, we cannot conclude that ρ(λ◦) is the desired
solution of the primal problem.

C. Dual Problem: Existence and Uniqueness of the Solution

The dual problem consists in maximizing (34) over Rm
which is equivalent to minimize

J(λ) = tr(elog τ−I−L
∗(λ)) +

〈
λ, f̄

〉
. (35)

This functional will be referred to as dual function throughout
this Section. Before to prove the existence of λ◦ which
minimizes J we need to introduce the following technical
results.

First of all, note that
〈
λ⊥, f̄

〉
= 0 for each λ⊥ ∈

[RangeL]⊥. In fact, if λ⊥ ∈ [RangeL]⊥ = kerL∗, then
L∗(λ⊥) = 0. Since S ∩ Hn,+ 6= ∅, there exists ρf ∈ Hn,+
such that f̄ = L(ρf ). Thus,〈
λ⊥, f̄

〉
=
〈
λ⊥, L(ρf )

〉
=
〈
L∗(λ⊥), ρf

〉
= tr(L∗(λ⊥)ρf ) = 0.

(36)
We conclude that λ⊥ does not affect J , i.e.

J(λ+ λ⊥) = J(λ), ∀ λ⊥ ∈ [RangeL]⊥. (37)
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We may therefore restrict the search of the minimum point for
J over RangeL.

Proposition 4.1: J is strictly convex over RangeL.
Proof: Since J is the opposite of L(ρ(λ), λ), it is convex

over Rm. The first and the second variation of J(λ) in
direction δλ ∈ Rm are:

δJ(λ; δλ) = − tr

∫ 1

0

(e(1−t)(log τ−I−L
∗(λ))L∗(δλ)

· et(log τ−I−L
∗(λ)))dt+

〈
δλ, f̄

〉
= − tr

∫ 1

0

elog τ−I−L
∗(λ)dtL∗(δλ) +

〈
δλ, f̄

〉
= − tr(elog τ−I−L

∗(λ)L∗(δλ)) +
〈
δλ, f̄

〉
(38)

δ2J(λ; δλ) = tr[

∫ 1

0

e(1−t)(log τ−I−L
∗(λ))L∗(δλ)

· et(log τ−I−L
∗(λ))L∗(δλ)dt]. (39)

Here, we exploited the expression for the differential of the
matrix exponential (see [21, Appendix IA]). Define

Qt = et(log τ−I−L
∗(λ)) (40)

which is positive definite for each t ∈ R. Thus,

δ2J(λ; δλ) =

∫ 1

0

tr(Q1−tL
∗(δλ)QtL

∗(δλ))dt

=

∫ 1

0

tr(Q
1
2
t L
∗(δλ)Q1−tL

∗(δλ)Q
1
2
t )dt ≥ 0. (41)

Assume now that δλ ∈ RangeL. If δ2J(λ; δλ) = 0, then
tr(Q

1
2
t L
∗(δλ)Q1−tL

∗(δλ)Q
1
2
t ) = 0. Since Qt > 0 for each

t ∈ R, it follows that L∗(δλ) = 0. Since δλ ∈ RangeL,
we get δλ = 0. We conclude that δ2J(λ; δλ) > 0, for each
δλ 6= 0, i.e. the statement holds.

In the light of the previous result, the dual problem admits at
most one solution, say λ◦, over RangeL. If such a λ◦ does
exist, then δJ(λ; δλ) = 0 ∀ δλ ∈ RangeL which is equivalent
to −L(elog τ−I−L

∗(λ◦)) + f̄ = 0. It means that ρ(λ◦) satisfies
constraints in (8) and it is therefore the unique solution to
Problem 5. It remains to show that such a λ◦ does exist.

Proposition 4.2: J admits a minimum point over RangeL.
Proof: We have to show that the continuous function J

takes minimum value over RangeL. Observing that J(0) =
1
e tr(τ), we can restrict our search over the closed set

M := {λ ∈ Rm | J(λ) ≤ J(0)} ∩ RangeL.

We shall show that M is bounded. To this aim, consider a
sequence {λi}i∈N, λi ∈ RangeL such that ‖λi‖ → ∞. It is
therefore sufficient to show that J(λi)→∞, as i→∞. First
of all note that the minimum singular value α of L∗ restricted
to RangeL = [kerL∗]⊥ is strictly positive, accordingly

‖L∗(λi)‖ ≥ α‖λi‖ → ∞. (42)

This means that L∗(λi), which is an Hermitian matrix, has
at least one eigenvalue βi such that |βi| approach infinity.
If βi → −∞, then the first term of J tends to infinity and
dominates the second one, accordingly J(λi) → ∞. In the

remaining possible case no eigenvalue of L(λi) approaches
−∞ and βi → ∞. Thus, L∗(λi) ≥ MI where M ∈ R is
a finite constant and the first term of J takes a finite value.
Since S ∩ Hn,+ is not empty, there exists ρf ∈ Hn,+ such
that f̄ = L(ρf ) and〈

λi, f̄
〉

= 〈L∗(λi), ρf 〉 = tr(ρ
1
2

f L
∗(λi)ρ

1
2

f ) ≥M, (43)

where we exploited the fact that tr(ρf ) = 1. This means that〈
λi, f̄

〉
cannot approach −∞. Finally, ‖ρ

1
2

f L
∗(λi)ρ

1
2

f ‖ → ∞,

because ρf > 0. It follows that ρ
1
2

f L
∗(λi)ρ

1
2

f , and hence
L∗(Λi), have at least one eigenvalue tending to ∞. Accord-
ingly J(λi)→∞ as i→∞. We conclude thatM is bounded
and accordingly compact. By Weierstrass’ theorem, J admits
minimum point over M.

Finally, λ◦ may be computed by e.g. employing a Newton
algorithm with backtracking, see Section VI in [37], which
globally converges.

V. CONCLUSIONS

The proposed set of analytic results and algorithms provides
a general method to find the exact minimum relative entropy
estimate of a quantum state under general assumptions, that
is, without requiring the constraints to include a full-rank
solution to begin with. A general solution to the problem was
missing for quantum estimation, and our feasibility analysis
is of interest for the classical case as well. Summarizing, we
have proposed: (i) A numerical method to decide the feasibility
of Problem 1, which is of interest on his own, and compute
the minimum necessary relaxation of the constraints whenever
necessary to obtain at least one solution; (ii) As a side product,
we are able to determine whether there is at least a full-rank
solution. When this is not the case, we proved there exists,
and devised a way to determine, the maximal common kernel
of all the solution; (iii) We extended Georgiou’s approach to
maximum entropy estimation to our setting, and analyzed in
depth both the primal and the dual optimization problems. The
general form of a full-rank solution of the reduced problem,
namely the one we obtain by removing the common kernel,
is given explicitly and depends on the solution of the dual
problem. The latter is proven to be a convex optimization
problem with a unique solution, λ◦, which can be obtained
by standard numerical algorithms.

We also show that λ◦ is continuous with respect to the
data set f̄ (see Appendix B). Since, in view of (30), ρ(λ◦)
is continuous with respect to λ◦, we can conclude that the
solution to Problem 5 is continuous with respect to the data
f̄1 . . . f̄m. This is of course a desirable property, and ensures
that for a increasing accuracy of the estimates, the computed
solution will converge to the one corresponding to the exact
statistics. A way to estimate the errors due to the finite
accuracy of the data is also provided in the Appendix.

Possible extensions of the present framework include ap-
plications to state reconstruction from local marginals and
its connection to entanglement generation [31], [32], as well
as comparison with the existing approximate results [23] in
physically meaningful situation. Lastly, the advantage offered
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by the introduction of an a priori state in the estimation
problem can be exploited to devise recursive algorithms, that
update existing estimate in an optimal way relying only on
partial data.

APPENDIX

A. Numerical solution for the feasibility problem

We propose a Newton-type algorithm with logarithmic
barrier for numerically find one solution v◦ to Problem 4.
Using the same approach of [26, Section 4], we resort to the
approximate problem

min
v∈int(I)

gq(v) (44)

where q > 0, and

gq(v) := qcT v − log det(H(v)). (45)

Recall that we defined

I = {v | H(v) ≥ 0},

and notice that gq is continuous and strictly convex over
the set int(I). Moreover limv→∂I gq(v) = +∞ and the
component vn2−m+1 can be restricted to belong to a closed
and bounded interval. Accordingly the approximated problem
admits a unique solution, denoted by v̂q , which is numerically
computed by employing the Newton algorithm with back-
tracking, [36, 9.5]. Here, we can choose as initial guess the
vector v̂q0 =

[
0 . . . 0

√
n(−λmin(ρ̃0) + 1

]T ∈ int(I).
Concerning the l-th Newton step, we have to solve

∆v̂ql = −H−1
v̂ql
∇Gv̂ql (46)

where

∇Gv̂ql = qc−


tr(H(v̂ql )

−1Y1)
...

tr(H(v̂ql )
−1Yn2−m)

tr(H(v̂ql )
−1X1)


Hv̂ql

= (47) tr(H(v̂ql )
−1Y1H(v̂ql )

−1Y1) tr(H(v̂ql )
−1Y1H(v̂ql )

−1Y2) . . .
tr(H(v̂ql )

−1Y2H(v̂ql )
−1Y1) tr(H(v̂ql )

−1Y2H(v̂ql )
−1Y2)

...
. . .


(48)

are the gradient and the Hessian computed at v̂ql , respectively.
Note that, it is not difficult to prove that

1) The sequence {vql }l≥0 generated by the
algorithm is contained in the compact set
N =

{
v ∈ int(I) | − 1√

n
≤ cT v ≤ cT vq0

}
;

2) gq is twice differentiable and strongly convex on N ;
3) The Hessian of gq is Lipschitz continuous on N .

Accordingly, the Newton algorithm with backtracking globally
converges, [36, 9.5.3]. Moreover, the rate of convergence is
quadratic in the last stage. Finally, note that the found solution
v̂q satisfies the following inequalities, [36, p. 566],

cT v◦ ≤ cT vq ≤ cT v◦ +
n

q
(49)

where v◦ is a solution to Problem 4 and n
q the accuracy of

cT vq with respect to the optimal value cT v◦.
This method works well only setting a moderate accuracy.

To improve the accuracy, we can iterate the above Newton
algorithm and in each iteration we gradually increase q in
order to find a solution vξ with a specified accuracy ξ > 0
[36, p. 569]:

1) Set the initial conditions q0 > 0 and vq0 =[
0 . . . 0

√
n(−λmin(ρ̃0) + 1)

]T ∈ int(I).
2) At the k-th iteration compute vqk ∈ int(I) by minimiz-

ing gqk with starting point vqk−1 by using the Newton
method previously presented.

3) Set qk+1 = βqk with β > 1 closer to one.
4) Repeat steps 2 and 3 until the condition n

qk
< ξ is

satisfied.
Finally, we deal with the problem to compute a solution

to Problem 1 with kernel K when µ = 0. In this situation,
consider the non-empty convex set

I∗ =

w | ρ̃0 +

n2−m∑
i=1

wiYi ≥ 0

 , (50)

where w =
[
w1 . . . wn2−m

]T ∈ Rn2−m. Thus, the set
of solutions to Problem 1 is

S =

ρ̃0 +

n2−m∑
i=1

wiYi | w ∈ I∗

 . (51)

We wish to compute a matrix ρ◦ ∈ S having kernel cor-
responding to the minimum common kernel K. To this aim
consider the following problem.

Problem 6: Pick u ∈ Rn2−m at random and solve:

wu = arg min
w∈I∗

(w − u)T (w − u). (52)

Note that:
• I∗ is compact (i.e. closed and bounded)
• (w−u)T (w−u) is continuous and strictly convex on I∗.

By Weiestrass’ theorem, the above problem admits a unique
solution wu.

Let us define ρ◦,u := ρ̃0 +
∑n2−m
k=1 wui Yi ∈ S and ρu :=

ρ̃0 +
∑n2−m
k=1 uiYi ∈ S. It is easy to see that Problem 6 can

be rewritten in terms of the matrix ρ◦,u as follows:

ρ◦,u = arg min
ρ∈S
‖ρu − ρ‖2F , (53)

where ‖ ·‖F denotes the Frobenius matrix norm. Thus, ρ◦,u is
the closest matrix in S (with respect to the Frobenius norm)
to the matrix ρu belonging to the hyperplane characterized
by the constraints (8). Hence, randomly generating a finite
sequence {u1 . . . ul} of elements in Rn2−m we obtain a subset
U := {ρ◦,u1 . . . ρ◦,ul} contained in S. Construct the convex
combination ρ̄ := 1

l

∑l
j=1 ρ

◦,uj . Then ρ̄ has minimal kernel
if either one of the ρ◦,uj belongs to the interior of S, or ρ◦,uj

belong to different faces of S, which is a compact convex set.
By the randomized construction, the probability of remaining
on the boundary of S becomes small as l grows.
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Concerning the computation of wu, we can resort a Newton-
type algorithm with logarithmic barrier named exterior-point
method, [38, Chapter 4].

B. Continuity of λ◦ with respect to f̄

We show that the solution λ◦ is continuous with respect to
the data set f̄ . To this aim we take into account the following
result, see [39, Theorem 3.1].

Theorem A.1: Let A be an open and convex subset of a
finite-dimensional euclidean space V . Let h : A → R be a
strictly convex function, and suppose that a minimum point x̄
of h exists. Then, for all ε > 0, there exists δ > 0 such that,
for p ∈ Rn, ‖p‖ < δ, the function hp : A→ R defined as

hp(x) := h(x)− 〈p, x〉 (54)

admits a unique minimum point x̄p, and moreover

‖x̄p − x̄‖ < ε. (55)

In order to exploit this result, consider

J(λ, f̄) = tr(elog τ−I−L
∗(λ)) +

〈
λ, f̄

〉
(56)

where we make explicit the dependence of J upon f̄ . Then,
the unique minimum point is

λ(f̄) = arg min
λ∈Rm

J(λ, f̄). (57)

Let δf ∈ Rm be a perturbation of f̄ . We have J(λ, f̄ + δf) =
J(λ, f̄) + λT δf . Applying the previous theorem, where δf
is −p, we have: ∀ ε > 0 ∃ δ > 0 s.t. if ‖δf‖ < δ then
J(λ, f̄ + δf) admits a unique minimum point

λ(f̄ + δf) = arg min
λ∈Rm

J(λ, f̄ + δf) (58)

and
‖λ(f̄ + δf)− λ(f̄)‖ < ε. (59)

Accordingly, the map f̄ 7→ λ(f̄) is continuous.
Remark: By exploiting the ideas of the proof of Theorem

3.1 in [39], we can easily obtain an estimate and a lower bound
of the constant δ as a function of ε. In fact, following [39],
we can pick

δ =
J(λ◦(f̄) + εδµ◦)− J(λ◦(f̄))

ε

where δµ◦ is a perturbation that minimizes J(λ◦(f̄) + εδµ)
over the set {δµ : ‖δµ‖ = 1}. Let us consider a second order
Taylor expansion of J(λ◦(f̄) + εδµ◦):

J(λ◦(f̄) + εδµ◦) = J(λ◦(f̄)) + ε2 · 1

2!
δ2J(λ◦(f̄) + δλ, δµ◦)

for a certain ‖δλ‖ ≤ ε. Here δ2J is the second variation of
J . We immediately get that

δ = ε · 1

2
δ2J(λ◦(f̄) + δλ, δµ◦)

with ‖δµ◦‖ = 1. Therefore we have

δ ≥ 1

2
min

‖δµ‖=1, ‖δλ‖≤ε
ε · δ2J(λ◦(f̄) + δλ, δµ).

If we exploit the explicit expression (41) for the second
variation δ2J , we can directly compute a lower bound for
δ2J(λ◦(f̄) + δλ, δµ). In fact,

1

2
min

‖δµ‖=1, ‖δλ‖≤ε
δ2J(λ◦(f̄) + δλ, δµ)

≥ K :=
1

2
σ2
m min
‖δµ‖=1

tr[(L∗(δµ))2]

where σ2
m is the minimum eigenvalue of Qt (as defined in

(40)) over t ∈ [0, 1] and λ = λ◦(f̄) + δλ, with ‖δλ‖ ≤ ε.
Let us now focus on the right hand side of the inequality.
The value of σ2

m is very easy to compute: first notice that this
minimum is either attained for t = 0 (in which case it equals
1) or for t = 1. Next, since the matrix Qt is the exponential
of an affine function of λ, in order to compute its minimum
eigenvalue is it sufficient to compute the minimum eigenvalue
of A(λ) := log τ − I −L∗(λ) as λ varies in λ = λ◦(f̄) + δλ,
with ‖δλ‖ ≤ ε. Similarly, since L∗(δµ) is a linear function of
δµ, we can easily compute

min
‖δµ‖=1

tr[(L∗(δµ))2].

Summing up, we have derived an inequality of the form

δ ≥ Kε

where K can be explicitly computed for the specific problem.
This inequality can serve a twofold purpose: on the one hand,
once we fix the desired precision ε with which we would
like to obtain the optimal solution, we have a bound for the
precision δ up to which the f̄ should be known. Being these
obtained from repeated measurements with i.i.d. distribution,
the needed number of trials can be estimated using the
central limit theorem. Conversely, if due to limited statistical
confidence on the data the measurements f̄ are known up to a
certain tolerance δ, we can estimate the maximum error ε on
the precision with which the optimal (dual) solution λ◦(f) will
be computed. Accordingly, since the optimal solution ρ(λ◦)
of Problem 5 is a known (continuous) function of λ◦, we
can estimate the maximum error on the precision with which
ρ(λ◦(f)) will be computed.
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