
This is the accepted version.
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-78890-6 49.

Reconfigurable FPGA-Based Channelization
Using Polyphase Filter Banks for Quantum

Computing Systems

Johannes Pfau, Shalina Percy Delicia Figuli, Steffen Bähr, and Jürgen Becker

Karlsruhe Institute of Technology, Institute for Information Processing Technologies,
Engesserstr. 5, 76131 Karlsruhe, Germany

{johannes.pfau,shalina.ford,steffen.baehr,juergen.becker}@kit.edu

Abstract. Recently proposed quantum systems use frequency multi-
plexed qubit technology for readout electronics rather than analog cir-
cuitry, to increase cost effectiveness of the system. In order to restore
individual channels for further processing, these systems require a demul-
tiplexing or channelization approach which can process high data rates
with low latency and uses few hardware resources. In this paper, a low
latency, adaptable, FPGA-based channelizer using the Polyphase Filter
Bank (PFB) signal processing algorithm is presented. As only a single
prototype lowpass filter needs to be designed to process all channels,
PFBs can be easily adapted to different requirements and further allow
for simplified filter design. Due to reutilization of the same filter for each
channel they also reduce hardware resource utilization when compared
to the traditional Digital Down Conversion approach. The realized sys-
tem architecture is extensively generic, allowing the user to select from
different numbers of channels, sample bit widths and throughput spec-
ifications. For a test setup using a 28 coefficient transpose filter and 4
output channels, the proposed architecture yields a throughput of 12.8
Gb/s with a latency of 7 clock cycles.

Keywords: quantum computing, FPGA, signal processing, channeliza-
tion

1 Introduction

“Is there a boundary to the never ending, data hungry applications that emerge
afresh every day?” is the constant question confronted in the world of science
and technology. On one hand, modern applications ranging from data-streaming
to video conferencing, high-resolution detectors to quantum computing have the
urgency to process a huge amount of data with input frequencies in the range of
THz and beyond. On the other hand, Moore’s law, the engine that has powered
the semiconductor industry is descending towards obsoleteness, as the state-of-
the-art Field Programmable Gate Arrays (FPGAs) are struggling to be clocked
above 1GHz. Even in the analog domain, although recent Analog to Digital
Converters (ADCs) have been pushed to GHz range, dividing the ever-widening

https://doi.org/10.1007/978-3-319-78890-6_49

2 Johannes Pfau et al.

multiplexed input spectrum into narrower bandwidths through analog front-ends
gets more complicated, requires higher cost, more power and greater area. An
alternate method to tackle this problem is to turn the focus towards available
channelization techniques which can be further optimized and made scalable to
meet our requirements. Channelizers, also known as filter banks, perform the
task of processing an input signal with a certain bandwidth into one or multiple
derived signals covering a subset of the input signal’s bandwidth. Through the
lineage of channelization commencing from the latter half of 1970s has its trail
all along the way from television receivers to Wi-Fi, the recent, more sophisti-
cated and hot off the fire application cases such as Cryogenic Particle Detectors
(CPDs), multi-qubit Quantum Computing (QC) and the like use frequency mul-
tiplexed readouts and thereby require a channelizer which can fulfill the following
requirements:

1. Allow for high input sampling and data rates required by wide-bandwidth
inputs and high-resolution samples.

2. Process data with low latency, as certain applications in QC use feedback
loops and therefore limit the highest tolerable latency.

3. Utilize as few resources as possible to fit in state-of-the-art or even low budget
FPGAs.

4. Allow scaling for different, and large number of channels to adapt to a variety
of application use cases.

5. Allow reconfiguration to allow for rapid development and easy adaption to
other applications.

Among the popular channelization techniques available, such as Digital Down
Conversion (DDC), Weighted Overlap Add (WOLA) and Pipelined Frequency
Transform (PFT) [1], this paper focuses on the implementation of PFBs on
FPGAs. PFBs allow scaling with larger number of channels and performing
filtering at lower sample rates. Combined with advantages of FPGAs such as
reconfigurability, flexibility and fast I/O interfaces, this enables PFBs to meet
the aforementioned requirements. The main design scheme of our channelizer is
not only a solution for applications with high data throughput but also for the
ones in QC where maintaining low latency is crucial. Thereby, the objective is to
make appropriate trade-offs between supported sample rate, required resources
and filter specification in order to embrace high data rates with lower latency.
The rest of the paper is structured as follows: Section 2 briefs the available
common channelization concepts with Sect. 3 discussing the related work. The
proposed channelizer architecture is elaborated in Sect. 4 and its implementa-
tion in FPGA technology along with validation results are presented in Sect. 5.
Finally, conclusions are summarized in Sect. 6.

2 Common Channelization Concepts

Fast implementations of well-studied Digital Down Conversion systems have
been presented by Meyer et al. [2], but one of the limitations of such systems is

Polyphase Filter Bank for Quantum Computing Systems 3

resource sharing. The components cannot be shared between multiple channels,
even though each channel requires the same components for data processing. As
shown in Fig. 1a, each channel’s input signal has to be multiplied with a het-
erodyne to shift the desired channel’s center frequency to the base band. This
is followed by a low pass filter to limit the signal bandwidth to the channel
width. The filtered signal is then downsampled to reduce the sample rate for
further processing. This same chain of working principle is followed for all the
other channels. As the number of channels increases, duplication of heterodyne
multiplication and filtering operation also increases proportional to the num-
ber of channels and thereby makes this approach cost ineffective. When certain
characteristics about the input signal are met, specialized Orthogonal Frequency
Division Multiplexing (OFDM) demultiplexing systems are also a valid option
[3]. But as our system has to deal with arbitrary input signals, such a solution
can not be used here.

Shown in Fig. 1b, the Pipelined Frequency Transform channelizer recursively
applies half band filtering to split the current signal into two new signals con-
sisting of the lower and upper half of the original bandwidth. When equal band-
width channels are desired, the number of channels supported by PFT is limited
to powers of two. As the number of channels increases, the hardware resource
requirements increase on a logarithmic scale with data processing latency be-
ing increased for every added filter stage. The absolute processing latency and
resource usage depends largely on the used half band filters. The design of ef-
ficient half band filters such as Infinite Impulse Response (IIR) filters depends
on output characteristics, for instance on linear phase requirements [4]. As our
channelizer needs to be easily adaptable to different applications, approaches
such as PFT depending on filters to be manually optimized for each application
are not further considered.

In Weighted Overlap Add filter banks, a block of input data is multiplied with
a signal processing window and the multiplied data is sliced into multiple buffers.
These are then overlapped and added. This summed data is further block pro-
cessed by a Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT)
block processor as depicted in Fig. 1c. Although arbitrary resampling rates can
be adopted for polyphase channelizers as exhibited in [5] and [6], it demands
modifications in the channelizer’s structure, whereas WOLA channelizers require
only a different overlap and therefore no change to the structure is needed [7].
On the other hand, adjusting channel filter characteristics is more straightfor-
ward in PFBs, as the filter which shapes individual channels is designed directly,
whereas WOLA channelizers require a windowing function which is a more ab-
stract way to describe channel characteristics. As simple reconfigurability for
different channel shaping filters is a requirement and arbitrary oversampling is
not mandatory for our use case, PFB is chosen over WOLA channelizer.

Polyphase Filter Banks. PFBs are an extension of polyphase filters to pro-
cess multiple channels in parallel using a single prototype filter. Polyphase filter
partitioning is a special structure used to describe FIR filters, leading to new per-

4 Johannes Pfau et al.

H(z)x y

ejθn

(a) One channel of Digital Down Conversion (DDC)

x

y0

y1

y2

y3

(b) Pipelined Frequency Transform (PFT)

Weighting

Overlap-Add

DFT
Phase Correction

x Input Block

h

+
Weighted Input Block

y

(c) Weighted Overlap Add (WOLA)

Fig. 1: Block diagrams of various channelizer systems

spectives in signal processing. These structures are possible when an FIR filter is
followed by an interpolator or decimator which respectively increases or reduces
the sample rate after filtering. Since splitting one wide-band signal into multiple
narrow-band signals with lower sampling rates is of interest in this context, only
decimating filters are described here. The well-known Finite Impulse Response
(FIR) filtering equation is combined with the equation of a downsampler [5] to
yield equations (1) to (3) with (1) describing the filter phases pρ, (2) illustrating
the filter input signals xρ and (3) the restructured filtering equation for an M
phase polyphase filter. The equations represent a counterclockwise commutator
structure, where h(n) represents the FIR filter coefficients and x(n) represents
the input signal. Alternatively, equations for the clockwise commutator model
can be deduced as well. The models are mathematically equivalent and neither
provides an advantage in implementation, but it is important not to mix filter
phase signals and filter input signals of the different models.

pρ(n) = h(nM + ρ) (1)

xρ(n) = x(nM − ρ) (2)

y(n) =

M−1∑
ρ=0

pρ(n) ∗ xρ(n) (3)

A block diagram for a two phase polyphase filter (M = 2) is shown in Fig. 2.
The commutator depicted by a bent arrow takes input signal x(n) to produce
filter input signals xρ(n) according to (2). The phase filters p0 and p1 are stan-
dard FIR filters using coefficients as described by (1). The inputs are filtered
using the phase filters and are summed at the output according to (3).

The polyphase channelizer concept extends polyphase filters to form a chan-
nelizer. A polyphase lowpass filter produces the downsampled output of the

Polyphase Filter Bank for Quantum Computing Systems 5

p0(n)

x(n) y(n)

p1(n)

x0(n)

x1(n)

Fig. 2: Block diagram of a polyphase filter

input spectrum filtered by a lowpass spectrum centered on DC frequency. This
produces a single output channel, whereas a polyphase channelizer duplicates
and shifts the prototype filter’s spectrum to generate multiple output channels.
Equation (4) as derived in [4] describes the output signals of a polyphase chan-
nelizer. In this equation, yr is the r-th polyphase filter phase output signal and
M is the number of total output signals. When comparing this output equation
to the well-known DFT transform equation, the polyphase channelizer struc-
ture can be deduced as shown in Fig. 3 using a combination of polyphase filter
and DFT. It should be noted that the center frequencies of the channels in a
polyphase channelizer are distributed equidistantly and the distance between ad-
jacent center frequencies is entirely determined by the number of output channels
and the input bandwidth. The center frequencies of the channels can therefore
only be further modified by shifting all the channels simultaneously such as in
the Generalized Discrete Fourier Transform (GDFT) channelizer [5].

y(nM, k) =

M−1∑
r=0

yr (nM) ej
2π
M rk (4)

p0(z)

x

y0

p1(z) y1

D
F
T

Fig. 3: Block diagram of a polyphase channelizer

3 Related Work

PFBs have been first studied in digital signal processing fields [5] and are often
applied in audio applications for signal processing, composition and decompo-
sition [8]. More recently, PFBs are introduced in the domain of communication
technology, where they are called polyphase channelizers [4], and in the field of
astrophysics [9]. They have also been used as spectrum analyzers, as described
by Fahmy in 2010 [10]. It is interersting to note that in [11] PFBs are combined

6 Johannes Pfau et al.

with Frequency Response Masking (FRM) filters instead of FIR filters. Wu also
described an FPGA based polyphase channelizer with odd or even stacking sup-
port and optional oversampling [12]. A polyphase channelizer for many-core CPU
systems has been proposed in [13] and Chennamangalam et al. have developed
a polyphase channelizer system for astrophysics running on GPUs [14].

Previous work has not been concerned with latency introduced by the chan-
nelization process and thereby provides no latency measurements. As our chan-
nelizer needs to be used in QC applications, where the channelization output
is used as feedback to the system, it needs to have well-defined and well-known
latency characteristics. Using polyphase channelizers in such systems has the
potential to significantly reduce hardware resource consumption while obeying
the latency requirements.

4 Proposed Channelizer Architecture

System Overview. An overview of the proposed channelizer architecture is
shown in Fig. 4. The data flow closely follows the channelizer block diagram
presented in Fig. 3 with some additional modules for signal processing. As this
is a pipelined approach, there is no need for any control signals except for local
signals handling data flows between modules. In order to allow combinations
of commutator and filter modules to either pass the input data in parallel to
polyphase branches or to implement the branches in a single filter and pass the
input samples serially, interfacing between the modules is kept generic.

Poly-
phase
FIR

Prepro-
cess-
ing

DFT
Post-
pro-
cess-
ing

I

Q
I
Q Com-

mutator

Fig. 4: Overview of modules in the channelizer architecture

The commutator being the first module maps the incoming complex-valued
data stream (I and Q) to the polyphase filter phases. If the input data is already
available as parallel bitstreams and in the correct format, then the commutator
can be skipped with the bitstreams directly given to the respective polyphase
filters. These filters are implemented in the polyphase FIR module. In this case,
the sample rate of each filter branch is the same as the data rate of a single
input bitstream. When the input data is a single bitstream, then the commu-
tator uses a time based demultiplexing approach with the sample rate equal to
(data rate / number of channels). For an optimized implementation, FIR filters
can be either clocked at a lower frequency or some filters can be combined into a
single filter clocked at higher frequency. The FFT module is a standard FFT or
DFT component and can be implemented either as a pipelined FFT processing

Polyphase Filter Bank for Quantum Computing Systems 7

data serially or as a parallel FFT processing data in parallel for achieving maxi-
mum throughput. The preprocessing and postprocessing modules are responsible
for additional processing at the DFT input and output. They are required only
for advanced cases such as oversampled PFBs or GDFT PFBs which are not
further discussed in this paper.

Truncation and Scaling of Intermediate Values. As filtering and FFT
operations are based on multiple additions and multiplications, the output bit
width increases significantly due to fixed point data processing. In order to allow
maximum precision in channelizer’s result, the output samples are supported
with full bit growth. For reduced resource usage, each module can optionally
apply truncation and scaling to its output data.

5 Implementation, Test Application and Results

In addition to hardware implementation on Xilinx Virtex-7 VC707 evaluation
board, a complete MATLAB model has been developed to pre-evaluate the ex-
pected behavior and to serve as a reference for the implemented system.

5.1 FPGA Implementation

Commutator Module. The commutator module splits the incoming bit stream
into parallel streams to be processed by the polyphase filter branches using a
counter driven demultiplexer. Whenever a valid input sample is processed, the
counter is incremented and the next sample is delivered to a different filter
branch. When data is transferred from a fast ADC, it is already available as
parallel streams. In such cases, if the number of parallel streams and the num-
ber of channels (filter branches) match, then the commutator is replaced by a
simple pass-through entity. If the input is available as parallel streams but does
not match the number of channels, a more advanced remuxing concept has been
implemented. Two clock sources have been utilized with the commutator making
use of the faster one.

FIR Filter Bank. Each implemented FIR phase filter is structurally equivalent
to other filters but with different coefficients. For our use case, the incoming bit
stream is split into multiple parallel streams and thereby all the filter branches
are processed in parallel. This in turn will increase the hardware requirements
especially when the number of channels is very high. In order to reduce resource
usage, various filters can be merged into a single hardware filter implementation
using time domain multiplexing. When using fully parallel processing, the data
rate and clock rate of the individual phase filters are reduced compared to the
input signal sample rate. As the filters are built using Digital Signal Processing
(DSP) slices, having lower clock frequency will allow for using less pipelining
and thereby introduce less latency.

8 Johannes Pfau et al.

Using a direct form FIR filter is favorable when implementing hardware shar-
ing by using multiple filter coefficient sets with one filter implementation. This
kind of filter however requires additional pipelining at the output stage due to
the large adder tree. As lower latency is one of the key criteria in QC, a sim-
ple transpose FIR filter as shown in Fig. 5 has been implemented using DSP48
slices. In transpose filters, delay registers are not used at the input stage as shift
registers, but are instead interposed into the adder chain. This makes the adder
chain intrinsically pipelined. By using dedicated routing channels on the FPGA,
this structure can be implemented efficiently. Even though increased complex-
ity in realizing multiple filters in such a transpose filter hardware structure is
a disadvantage, hardware sharing is not a concern for our fully parallel filter
bank. While higher fanout at the circuit driving filter inputs may limit the filter
performance, testing shows a simple transpose filter to be a better option for
our parallel filter bank implementation.

h
n

x

z
-1

z
-1

z
-1

z
-1

z
-1

h
0

h
1

h
2

h
3

y

DSP

Fig. 5: Transpose form FIR filter

DFT. Considering a four channel configuration in the QC system, an optimized
four channel channelizer using the well-known radix-2 Cooley-Tukey decimation
algorithm has been employed. Explicit equations for real and imaginary compo-
nents of each output channel derived from the standard DFT equation (5) yield
a simple FFT structure, which can be implemented using two stages of adders.
In this special case of a four channel DFT, all phase shifts degenerate to multipli-
cations by 1, −1, j or −j which can be interpreted as sign inversion and coupling
between real and imaginary channels. Therefore, the need for multipliers can be
eliminated. For example, derived equations for channel 0 depicted in (6) and (7)
can be directly used to implement a 4-point parallel DFT where the input data
samples xn are passed as two independent values Re(xn) and Im(xn).

X(k) =
1

N

N−1∑
n=0

xne
−j 2πnk

N (5)

Re (X0) = (Re (x0) +Re (x2)) + (Re (x1) +Re (x3)) (6)

Im (X0) = (Im (x0) + Im (x2)) + (Im (x1) + Im (x3)) (7)

The 4-point DFT equations can therefore be simplified as a signed addition of
the outputs of two other signed additions, which results in an adder tree. Though
pipelining the adder stages leads to shorter critical paths and thereby higher

Polyphase Filter Bank for Quantum Computing Systems 9

clock frequencies, it comes at the cost of introduced cycle delays. Consequently,
the 4-point FFT has been configured to use zero, one or two pipeline stages
and also supports both DSP slices and fabric logic implementation. Although
Xilinx synthesis tool sets fabric logic as default, DSP slice implementation has
been preferred as their utilization ratio is very small and fabric usage can be
minimized by using DSP slices.

5.2 Integration into the Testing System

Although the channelizer is primarily meant to target QC systems, we use a
generic, non-application specific test setup to enable testing and evaluation with
different system parameters and for different application cases. The channelizer
has been integrated into an existing data processing system1 to test its function-
ality when the center frequencies of the channel do not exactly match the center
frequencies dictated by the PFB structure. The test system needs to channelize
two frequencies at f1 = 4492.63MHz and f2 = 4627MHz with the input signal
being down-mixed using a configurable local oscillator (flo). The down-mixed
signal is given as input to the 500MHz ADC, which converts it into four paral-
lel input data streams with 16-bit per sample at a sample rate of 125MHz per
channel.

Fig. 6a shows the absolute frequencies of the input signals before mixing with
the oscillator frequency flo. By setting flo = 4497.315MHz the input frequencies
f1 and f2 are translated to f ′

1 and f ′
2 as shown in Fig. 6b. As each channel has

a sample rate of 125MHz, the center frequencies of the channels are placed at
multiples of 125MHz which in turn offsets the input frequencies by 4.685MHz
compared to the channel centers. The prototype filter’s bandwidth must be large
enough to include these frequencies and therefore, a passband width of 6MHz
with an acceptable passband ripple of 5 dBand a stopband starting at 7.5MHz
with stop band attenuation set to 40 dB are chosen as system parameters. This
results in a 337-tap FIR prototype filter.

f
f1 f2flo

(a) Input signal before local oscillator

f
f'1 f'2

(b) Signal after local oscillator mixing

Fig. 6: Input signal and channel filter layout for the test system

1 Our special thanks to Nick Karcher and Oliver Sander of IPE, KIT for providing
the test setup.

10 Johannes Pfau et al.

Figure 7 shows a block diagram of the integrated system. As the ADC streams
out four complex data streams in parallel, the commutator module has been
omitted and the channelizer is implemented using only PFB and DFT modules.
As the DFT outputs data at the same sampling rate of 125MHz with 16-bit

Poly-
phase
FIR

DFTADC
Down-
sam-
ple

10
GBE

Fig. 7: Block diagram of polyphase channelizer integration

complex-valued samples, a data rate of 125MHz × 16 bit × 2 × 4 channels is
too demanding for the 10Gbit/s Ethernet interface. Hence, a simple decimator
module has been employed to downsample the output data to a sample rate of
125MHz / 8 = 15.625MHz by removing seven out of eight samples. No addi-
tional band-limiting filters are required as the bandwidth is sufficiently limited
by the PFB. To evaluate the setup, a linear combination of complex phasors fed
to a Digital to Analog Converter produced the input signal for the system. Veri-
fication of the results is done by examining the output data of the PFB channels
using spectrum analysis techniques.

5.3 Results

Latency and Throughput. For hardware utilization analysis, a simpler test
setup with only the channelizer has been synthesized using Vivado 2016.2 on a
Virtex - 7 FPGA platform. The setup uses a 28 coefficient FIR filter with 8 bit
sample size and four channels. A single input bitstream with 200MHz data rate
is fed to the commutator. Then each channel transfers data to a prototype filter
of length 7.

Table 1: Clock cycle latency

Configuration FIR Pre FFT Post Total

Transpose DFT 6 0 1 0 7
Transpose GDFT 7 0 1 1 9
Xilinx serial - - - - 16–19

As shown in Table 1, transpose DFT configuration requires only 6 clock cyles
for FIR filter with n− 1 stages being fully pipelined, where n denotes filter length
and 1 additional clock cycle for FFT module. The GDFT implementation used
for odd channel stacking has 1 clock cycle overhead due to the implementation of

Polyphase Filter Bank for Quantum Computing Systems 11

complex filter coefficients. The Xilinx serial filter is included as a reference serial
implementation. It processes the polyphase filter branches using a partially time
multiplexed, optimized filter component and our standard, parallel DFT module.
Because of some inherent parallelism in the Xilinx filter core combined with serial
processing of branches, generating the output for all the n channels requires 16
to 19 clock cycles. The input samples are passed serially, but the output is
provided in parallel so measured latency for different channels varies. The tested
configuration does not require any preprocessing, so the latency introduced in
this module is zero. Latency is calculated as the time required for the first input
sample to be available at the output. Depending upon the channelizer’s use
case, another relevant metric is the group delay depending the FIR filter. It is
generally lower than the presented delay metric. The throughput of the system
can be calculated as the data input sample rate multiplied by the bit width of
the complex samples: 50MHz × 8 bit× 2 × 4 channels.

Resource Usage. The resource usage per module has been charted down in
Table 2. As expected since GDFT filter banks modulate the filters and therefore
require complex filter coefficients, a higher LUT and DSP utilization can be
observed for FIR filter in the GDFT configuration.

Table 2: Resource utilization per component

Configuration Commutator FIR FFT Post Other Total

LUT Transpose DFT 6 2 0 0 11 19
Transpose GDFT 6 46 30 18 10 110

Register Transpose DFT 131 8 1 0 35 175
Transpose GDFT 131 8 1 35 35 210

DSP Transpose DFT 0 50 6 0 0 56
Transpose GDFT 0 67 6 0 0 73

6 Conclusion

The proposed reconfigurable FPGA-based polyphase channelizer has been tested
and synthesized using Vivado 2016.2 on a Virtex-7 FPGA platform. The recon-
figurability of FPGAs allows for fast development iterations and adaption to
changing system requirements. When compared to per-channel approaches like
traditional Digital Down Conversion, PFB operates filters at lower clock fre-
quency. This allows PFBs to process large input bandwidths as made available
by high throughput data interfaces of modern FPGAs. The PFB can be adapted
to different application cases by configuring the number of channels, data width
and throughput specifications. Different configurations using transpose filters

12 Johannes Pfau et al.

and DFT or GDFT transforms have been analyzed for a test setup with a 28 coef-
ficient FIR filter and 4 channels. In order to balance latency against throughput,
the user has the choice of optional pipelining. Additionally, resource utilization
can be balanced against throughput by configuring the hardware parallelism of
the FIR filter and DFT. The test results show the transpose PFB with DFT
to yield throughput of 12.8 Gb/s with a latency of 7 clock cycles for a sam-
pling frequency of 200 MHz. These results suggest that a PFB may well be used
in high-bandwidth, latency critical QC systems. Additionally, the possibility to
gauge spectral channel shape, latency and resource requirements is especially
useful for these systems.

References

1. Lillington, J.: Comparison of Wideband Channelisation Architectures. Interna-
tional Signal Processing Conference (ISPC), Dallas (2003)

2. Meyer, J. et al.: Ultra High Speed Digital Down Converter Design for Virtex-6
FPGAs. 17th International OFDM Workshop 2012 (InOWo’12), 1–5 (2012)

3. Meyer, J. et al.: A Novel System on Chip for Software-Defined, High-Speed OFDM
Signal Processing. 2013 26th Symposium on Integrated Circuits and Systems De-
sign (SBCCI), 1–6 (2013)

4. harris, f.j.: Multirate Signal Processing for Communication Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA (2004)

5. Crochiere, R.E., Rabiner, L.R.: Multirate Digital Signal Processing. Prentice-Hall,
Eaglewood Cliffs, NJ, USA (1983)

6. harris, f.j., Dick, C., Rice, M.: Digital Receivers and Transmitters using Polyphase
Filter Banks for Wireless Communications. IEEE Transactions on Microwave The-
ory Techniques 51, 1395–1412 (2003)

7. Wang, H., Lu, Y., Wang, X.: Channelized Receiver with WOLA Filterbank. 2006
CIE International Conference on Radar (2006)

8. Löllmann, H.W., Vary, P.: Low Delay Filter-Banks for Speech and Audio Pro-
cessing. Speech and Audio Processing in Adverse Environments, Springer Berlin
Heidelberg, Berlin, Heidelberg, 13–61 (2008)

9. Tuthill, J., Hampson, G., Bunton, J.D., harris, f.j., Brown, A., Ferris, R., Bate-
man, T.: Compensating for Oversampling Effects in Polyphase Channelizers: A
Radio Astronomy Application. 2015 IEEE Signal Processing and Signal Process-
ing Education Workshop (SP/SPE), 255–260 (2015)

10. Fahmy, S.A., Doyle, L.: Reconfigurable Polyphase Filter Bank Architecture for
Spectrum Sensing. Reconfigurable Computing: Architectures, Tools and Applica-
tions: 6th International Symposium, ARC 2010, Bangkok, Thailand, March 17–19,
2010. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 343–350 (2010)

11. Wu, F., Villing, R.: FPGA based FRM GDFT Filter Banks. 2016 27th Irish Signals
and Systems Conference (ISSC)

12. Wu, F., Palomo-Navarro, Á., Villing, R.: FPGA Realization of GDFT-FB Based
Channelizers. 2015 26th Irish Signals and Systems Conference (ISSC)

13. Adámek, K., Novotný, J., Armour, W.: A Polyphase Filter for Many-Core Archi-
tectures. Astronomy and Computing 16, 1-–16 (2016)

14. Chennamangalam, J. et al.: A GPU-Based Wide-Band Radio Spectrometer. Pub-
lications of the Astronomical Society of Australia 31 (2014)

	Reconfigurable FPGA-Based Channelization Using Polyphase Filter Banks for Quantum Computing Systems

