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Rotation Estimation based on Anisotropic Angular
Radon Spectrum

Dario Lodi Rizzini1,2 and Ernesto Fontana1

Abstract—In this paper, we present the anisotropic Angular
Radon Spectrum (ARS), a novel feature for global estimation
of rotation in a two dimension space. ARS effectively describes
collinearity of points and has the properties of translation-
invariance and shift-rotation. We derive the analytical expression
of ARS for Gaussian Mixture Models (GMM) representing point
clouds where the Gaussian kernels have arbitrary covariances.
Furthermore, we developed a preliminary procedure for simplifi-
cation of GMM suitable for efficient computation of ARS. Rota-
tion between point clouds is estimated by searching of maximum
of correlation between their spectra. Correlation is efficiently
computed from Fourier series expansion of ARS. Experiments
on datasets of distorted object shapes, laser scans and on robotic
mapping datasets assess the accuracy and robustness to noise in
global rotation estimation.

Index Terms—Mapping; Rotation estimation

I. INTRODUCTION

THE alignment of point clouds is an important primitive
for many applications in robot localization and map-

ping. This operation is also known as registration and allows
merging of views of the same object or scene differing in
orientation and position. The standard approach to registration
requires detection of corresponding parts between the two
views, which are usually represented in the form of point
clouds. Correspondence-based methods [1]–[5] estimate the
rigid transformation by minimizing the distances between
corresponding points in the two compared point sets. The
computation of rigid transformation has well known closed-
form solution for 2D, 3D and arbitrary dimensions, but in
order to establish correct point-to-point or point-to-surface
associations a good initial guess of the transformation is
required. Inaccurate correspondences often lead to wrong
estimation, since standard registration methods only solve
local optimization problems.

Unfortunately, the availability of initial guess is retrieved
by another measurement (e.g. the robot odometry) or by
preliminary feature matching [3]. Robust associations tech-
niques like Vector Field Consensus (VFC) [2] and Procrustes
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analysis for deformable objects [5] have been proposed to
detect consistent associations and filter outliers associations.
Formally guaranteed methods like TEASER [4] effectively
estimate with high number of outlier associations, but they
may still fail with highly inaccurate initial correspondences.
They exploit regularization and other consensus techniques to
remove outlier associations. Global registration methods [6],
[7] provide guaranteed global optimal solution with branch-
and-bound search, but are not adequately efficient for practical
applications. Another category of global methods model the
input point clouds as a continuous functions like a Bayesian
model of normals [8] or kernel Hilbert space [9], [10] and
perform global optimization.

Global registration algorithms often rely on features like lo-
cal descriptors, global histograms or functions extracted from
each point set. Several correspondence-less methods enable
separation between estimation of rotation and of translation.
They include PCA-based techniques [5], Hough Spectrum
(HS) [11], [12] and Angular Radon Spectrum (ARS) [13],
Fourier and spherical harmonics expansion of point distri-
butions [14], [15]. A classic approach to registration in 2D
domain uses correlation of occupancy grid map [16], which is
effective once the discretization parameters have been properly
tuned. This approach estimates the transformation between
point clouds though global optimization of objectives functions
depending on the features. Then, the feature viewpoint invari-
ance is a major factor. Several algorithms allow decoupling of
rotation and translation estimation thanks to independence of
the features.

In this paper, we propose the planar anisotropic Angular
Radon Spectrum (ARS), a novel global feature associated to
point clouds that enables globally optimal estimation of ro-
tation. ARS effectively describes collinearity relations among
the 2D points of a set, possibly the simplest and strongest
property that is invariant to rigid motion. It is related to
HS [11], a histogram weighting point collinearity to angular
directions which is derived from Hough Transform. However,
ARS has the form of continuous function computed from a
Gaussian mixture model (GMM) representing the distribution
of a set of noisy points. It provides a sound mathematical
measure of the point density along each pencil of lines.
Contrary to HS, it is exactly invariant to translation and a
rotation induces an angle-shift without affecting the function
shape. In our previous work [13], we formulated ARS for
GMMs with isotropic and identical Gaussian kernels, pro-
posed a convenient Fourier series expansion and a correlation
function serving as objective function for global optimization
of rotation estimation. A Gaussian distribution is isotropic
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a) b)

c) d)

Fig. 1: Visual steps of rotation estimation through Anisotropic ARS:
a) point cloud representing planar mapping data; b) simplification of
initial point set kernel representation through GMM; c) spectra of
ARS on source and destination clouds, and correlation between the
two; d) result of consecutive maps alignment through Anisotropic
ARS.

if its covariance matrix has the same eigenvalues and the
distribution is identical from all the directions. In general,
the distribution of noisy point sets is more correctly and
efficiently represented by general anisotropic Gaussian kernels.
Unfortunately, the analytical expression of ARS function is
not as straightforward as in the case of isotropic kernels. The
original contributions of this paper are the following.

1) We derive the general expression of ARS for the case
of anisotropic GMMs representing the distribution of 2D
point sets.

2) We present an effective and novel procedure for GMM
simplification as well as the numerical computation
of the approximated Fourier series expansion of the
anisotropic ARS, the spectrum correlation and its ap-
plication to rotation estimation.

We also present a procedure for computation of general
GMMs from input point clouds and for translation estimation.
Experiments illustrate the accuracy and robustness of rotation
estimation with the proposed anisotropic ARS compared to
local and global state-of-the-art algorithms.

This paper is organized as follows. Section II presents
the problem definition and the Radon transform of a GMM.
Section III illustrates the expression of anisotropic ARS. Sec-
tion IV shows how to compute the rotation through correlation
of a pair of ARSs. Section V shows experimental results on
standard datasets. Finally, Section VI gives the concluding
remarks.

II. RADON TRANSFORM OF A GAUSSIAN MIXTURE
MODEL

Let P = {µi}i=1,...,np
with µi ∈ R2 be the estimated

position vectors of the points. It is convenient to define the
density function f : R2 → R⩾0 that represents the point
density in the plane and is proportional to the probability
density function (PDF) of finding a point. If the point positions
are exactly known, then the density function consists of Dirac
impulse distributions, i.e. f(r) =

∑np

i=1(1/np)δ(r − µi).

However, in most problems the point coordinates are estimated
with a given uncertainty and the function f(r) should represent
a looser concentration around the input points. The GMM [8],
[13] is a widely used model in kernel density estimation and
other machine learning applications. According to this model,
each point is associated to a Gaussian kernel N (µi,Σi)
centered on µi and with covariance matrix Σi. The following
symbols are used for respectively Mahalanobis distance and
Gaussian PDF function

∥v∥2Σ = v⊤Σ−1v (1)

n (v,Σ) = (2π|Σ|)−dim(v)/2 exp
(
−∥v∥2Σ/2

)
(2)

Thus, a set of points modeled with GMM has the probability
density function

f(r) =

np∑
i=1

wi fi(r) =

np∑
i=1

wi n (r− µi,Σi) (3)

where the positive weights wi ⩾ 0 are such that their sum
is equal to 1. Given a point distribution model, the goal is to
measure the alignment of the point set to a line. Such measure
is provided by the Radon Transform (RT) [17]. In the most
general case, the RT is a functional that associates a function
f(·) with values in Rd to its integral over a d− 1 dimension
manifold Fq ⊂ Rd with parameter q.

R[f ](q) =

∫
Fq

f(r) dr =

np∑
i=1

wi

∫
Fq

n (r− µi,Σi) dr (4)

In our case, Fq is a line represented by its polar parameters
q = [θ, ρ]⊤ and the equation of a point in Fq is

r(t) = t1 u1 + t2 u2 = Ut (5)

where t1 = ρ is a fixed constant, t2 is the parameter associated
to the points on the line, u1 = û(θ) = [cos θ, sin θ]⊤ is the
unitary vector orthogonal to the line and u2 = û(θ + π/2) =
[− sin θ, cos θ]⊤ corresponds to the line direction. The matrix
U = [u1,u2] is an orthonormal matrix. The Radon transform
in eq. (4) becomes the integral of f(Ut) in the parameter t2.

Let us focus on each single Gaussian kernel fi(r). Since
r ∼ N (µi,Σi) and t is a linear transformation of r, i.e. t =
U⊤r, t is also Gaussian [18] and, in particular, t ∼ N (µ̃i, Σ̃i)

fi(r) = n (r− µi,Σi) = n
(
t− µ̃i, Σ̃i

)
= fi(t) (6)

where µ̃i = U⊤µi and Σ̃i = U⊤ΣiU. After the variable
change, the computation of Radon Transform of eq. (6) is
straightforward, since the integral of the Gaussian Kernel
function in t2 is equivalent to the marginalization of the
distribution. The marginal distribution t1 ∼ N (µ̃i,1, σ̃

2
i,1) has

mean value and covariance equal to

µ̃i,1 = u⊤
1 µi σ̃2

i,1 = u⊤
1 Σiu1 (7)

Thus, the RT of a single Gaussian kernel has the form of a
Gaussian function as

R[fi](θ, ρ) = n
(
ρ− µ̃i,1, σ̃

2
i,1

)
(8)

where we substituted t1 = ρ and the values of mean µ̃i,1

an variance σ̃2
i,1 depend on the angle θ of U. The covariance
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matrix is decomposed into the product Σi = R(γi)ΛiR
⊤(γi),

where R(γi) is a rotation matrix by angle γi and the diagonal
matrix Λi = diag([σ2

i , σ
2
i ]) where the 0 ⩽ σ2

i ⩽ σ2
i are the

eigenvalues of Σi. Thus, the variance σ̃2
i,1 of the marginal can

be rewritten as

σ̃2
i,1(θ) = û⊤(θ) R⊤(γi) Λi R(γi) û(θ) (9)

= σ̂2
i (1 + δi cos (2θ − 2γi)) (10)

where we have substituted σ̂2
i = (σ2

i + σ2
i )/2 and δi = (σ2

i −
σ2
i )/(σ

2
i + σ2

i ). Observe that

0 ⩽ σ̂2
i (1− δi) ⩽ σ̃2

i,1(θ) ⩽ σ̂2
i (1 + δi) (11)

and, in the case of isotropic covariance, δi = 0 and σ̃2
i,1(θ) is

constant.

III. ANGULAR RADON SPECTRUM

Radon Spectra are functionals applied to the Radon Trans-
form in order to detect specific patterns with respect to one of
the line parameters. Geometrically, Radon Transform measures
the concentration of point distribution on a line defined by
parameters q = [θ, ρ]⊤. If θ is fixed and ρ is free to assume
arbitrary values, then the equation represents a family of
parallel lines. Radon Spectrum operates on Radon Transform
in order to highlight concentration patterns over each family
of lines identified by a given direction θ. Such concentration
patterns enable characterization of orientation and, thus, can
be exploited to perform registration between two point sets.
The Angular Radon Spectrum (ARS) is defined as

S [f ] (θ) =

∫ +∞

−∞
κ (R[f ](θ, ρ)) dρ (12)

where the function κ(·) is called concentration function. The
concentration function κ : R⩾0 → R⩾0 must be strictly super-
additive, i.e. κ(x+ y) > κ(x) + κ(y) for 0 < x ⩽ y. If only
simple superadditivity holds, i.e. κ(x+ y) ⩾ κ(x)+κ(y), the
resulting spectra may not properly discriminate the parameters
with maxima. Following the suggestion in [11], the function
κ(x) = x2 is implicitly used in the remaining. Thus, the square
of a sum of Gaussian kernels κ(R[f ]) in eq. (3) consists of
double products of Gaussians

κ (R[f ]) =

np∑
i=1

np∑
j=1

wi wj πij(ρ, θ) (13)

where the double product πij can be rewritten using the
formula about the product of Gaussian densities [19, sec. 8.1.8,
p. 42] as

πij(ρ, θ) = n
(
ρ− µ̃i,1, σ̃

2
i,1

)
n
(
ρ− µ̃j,1, σ̃

2
j,1

)
= n

(
µ̃j,1 − µ̃i,1, σ̃

2
j,1 + σ̃2

i,1

)
n
(
ρ− µ̃ij , σ̃

2
ij

)
(14)

where µ̃ij = σ̃2
ij(σ̃

−2
i,1 µ̃i,1 + σ̃−2

j,1 µ̃j,1) and σ̃2
ij = (σ̃−2

i,1 +

σ̃−2
j,1 )

−1. The integral of each double product in ρ has a simple
expression due to the normalization of Gaussian function

ψij(θ)=

∫ +∞

−∞
πij(ρ, θ)dρ = n

(
µ̃i,1 − µ̃j,1, σ̃

2
i,1 + σ̃2

j,1

)
=

1√
2π bij(θ)

e
−

aij(θ)

2 bij(θ) (15)

The terms aij(θ) and bij(θ) of the kernel function are

aij(θ)=(u⊤
1 (µi−µj))

2=
m2

ij

2
(1+ cos (2θ−2βij)) (16)

bij(θ)=u⊤
1 (Σi+Σj)u1=σ̂

2
ij (1+δij cos (2θ−2γij)) (17)

where parameters (mij , βij) are such that µj − µi =
miju(βij) and (σ̂2

ij , γij , δij) are defined according to eq. (10)
referred to matrix Σi +Σj .

Thus, the ARS of a GMM has the form of a summation of
kernels ψij(θ) defined for each pair of Gaussians i, j

S [f ] (θ) =

np∑
i=1

np∑
j=1

wi wj ψij(θ) (18)

The general ARS satisfies the following important property.

Proposition 1 (Translation-invariance and Rotation-shift). Let
f(r) be a GMM subject to rotation R(δ) = R ∈ SO(2) and
translation t ∈ R2. Then, its ARS is equal to

S [f(R(δ) r+ t)] (θ) = S [f(r)] (θ + δ) (19)

where the transformed spectrum does not depend on transla-
tion vector t and is shifted by angle δ.

Proof. The property is proved observing the expression of
each transformed Gaussian kernel

n (R r+ t− µi,Σi) = n
(
r−R⊤(µi − t),R⊤ΣiR

)
(20)

The transformed means µ′
i = R⊤(µi − t) and covariance

matrices Σ′
i = R⊤ΣiR can be substituted in the ARS kernel

terms in eq. (16) and (17) for each indices pair i, j. Vector t
is canceled in the first term

a′ij(θ)=(u⊤
1 R

⊤(µi−µj))
2=aij(θ + δ) (21)

whereas the second term is

b′ij(θ)=u⊤
1 R

⊤(Σi+Σj)Ru1=bij(θ + δ) (22)

Thus, the translation on a GMM does not modify its ARS
kernels and the rotation achieves a circular shift.

Such property allows decoupling of estimation of rotation
and translation as explained in the next section.

IV. ESTIMATION OF ROTATION

The translation-invariance of ARS can be used to estimate
the rotation between two planar GMMs representing the same
scene observed from different viewpoints. Given fS(r) and
fD(r) be respectively the density functions of the source and
the destination point sets, the estimated rotation angle δ is the
one which better overlaps the shifted spectrum of source set
S [fS ] (θ+ δ∗) and the spectrum of destination set S [fT ] (θ).
The proposed algorithm consists of the following steps:

1) simplification of the input source and destination GMMs
fS(r) and fD(r);

2) computation of the Fourier coefficients of source and
destination ARS;

3) computation of the Fourier coefficients of the correlation
function;

4) estimation of maximum δ∗ of correlation function.
This outlined algorithm is described in the following.
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A. Simplification of Gaussian Mixture Models

The measurements provided by range sensors can be effec-
tively modeled in the form of GMMs as previously discussed.
The anisotropic ARS illustrated in section III can be applied
to GMMs consisting of kernels with arbitrary covariance
matrices. Such generalization offers theoretical and practical
advantages. First, anisotropic ARS better fits the distribution of
sensor uncertainty using the right covariance matrix. Second,
an arbitrary input GMM can be approximated and substituted
by another GMM with a lower number of Gaussian kernels.
Thus, we propose a procedure for simplification and approx-
imation of GMMs to significantly speed up the computation
of ARS (quadratic in np).

Let fr(r) be the input GMM defined by parameters
{(wr

i ,µ
r
i ,Σ

r
i )}i=0,...,nr

p
where wr

i are the mixture weights,
µr

i the mean values and Σr
i the covariances. A significant ap-

plication scenario occurs when the GMM consists of isotropic
kernels, Σr

i = σI. Simplification is achieved by substituting a
subset of input Gaussians Ij , called frIj

(r), with the merged
Gaussian fmj (r), with parameters (wm

j ,µ
m
j ,Σ

m
j ), defined as

wm
j =

∑
i∈Ij

wr
i µm

j =
1

wm
j

∑
i∈Ij

wr
i µr

i

Σm
j =

∑
i∈Ij

wr
i

wm
j

(
Σr

i + (µr
i − µm

j )(µr
i − µm

j )⊤
) (23)

Here, the superscript r denotes the reference input GMM
whereas the superscript m refers to the merged GMM. The
pre-conditions for merging are that the input kernels in Ij
lie inside the same region of space, and that the difference
between the merged Gaussian j and input kernel, measured
according to a proper metric, is less then a given threshold.

The normalized integral squared error (NISE) [20] is taken
as distance for comparing two distributions over their domain.
The NISE between the distributions fIj

(r) and fmj (r) is
defined as

nise(fmj , f
r
Ij
) =

D[frIj
− fmj ]

D[fmj ] +D[frIj
]

(24)

where the above integral norm D[f ] is defined as the integral
of probability distribution f on the whole domain R2. In case
fIj

(r) is a sum of Gaussian kernels and fmj (r) is a single
Gaussian kernel, there are closed-form expressions for all the
above terms:

D[frIj
−fmj ]=

∑
i∈Ij

wm
j w

r
i n

(
µr

i−µm
j ,Σ

r
i+Σm

j

)
D[frIj

]=
∑

i1,i2∈Ij

wr
i1w

r
i2n

(
µr

i1−µr
i2 ,Σ

r
i1+Σr

i2

)
D[fmj ]= (wm

j )2 n
(
0,Σm

j

)
(25)

The NISE measures the difference in probability concentra-
tion, has closed-form expression for GMMs and is bounded
between 0 and 1. A subset Ij of Gaussian kernels from fr,
all locally concentrated in the same region, is merged into a
single Gaussian kernel fm when their NISE is less than the
threshold nisethr.

Algorithm 1 SimplifyGMM

1: function SIMPLIFYGMM(fr := {(wr
i ,µ

r
i ,Σ

r
i )}i=0,...,nr

p−1)
2: Parameters: nisethr , qsize, qres;
3: levelmax← ⌈log2(qsize/qres)⌉;
4: for i = 0, . . . , nr

p − 1 do
5: kr

i ← ⌊µr
i /qres⌋;

6: T .insert({kr
i , w

r
i ,µ

r
i ,Σ

r
i });

7: end for
8: sort keys kr

i in T in Morton order;
9: Q.push([0, nr

p[);
10: G ← ∅;
11: while Q ≠ ∅ do
12: [l, u[← Q.pop();
13: h← computeTreeLevel(l, u); ▷ eq. (26)
14: Ij ← {i|l ⩽ i < u};
15: compute fm

j := (wm
j ,µm

j ,Σm
j ) from Ij ; ▷ eq. (23)

16: nisecur ← nise[fm
j , fr

Ij
]; ▷ eq. (24)

17: if h < levelmax and nisecur < nisethr then
18: G ← G ∪ {(wm

j ,µm
j ,Σm

j )};
19: else
20: m← splitInterval(T , l, u);
21: Q.push([l,m[);
22: Q.push([m,u[);
23: end if
24: end while return simplified GMM G;
25: end function

The procedure to simplify the reference input GMM is
presented by Algorithm 1. The general idea is to merge a
subset of Gaussian kernels belonging to the same region into
a merged Gaussian, to check the accuracy of such substitution
using NISE, and to split the region into smaller subregions
when the error is above a threshold. The kernels lying in the
same regions are detected using an implicit quadtree, which
is implemented as a list T of GMM kernels sorted according
to Morton order. Each mean vector µr

i is encoded by its index
vector kr

i of the implicit grid of resolution qres (line 5). List
T is sorted in Morton order with respect to the keys µr

i using
Chan’s xor trick [21].

In the main loop (lines 11-24), T is recursively split into
smaller intervals until the simplified GMM is found. Each
interval [l, u[ to be visited is extracted from queue Q and its
level h in the quadtree (line 13) is computed as

h= max
d=1,2

lev(kl,d,ku,d) lev(a, b)=nbit−nlz(a⊕b) (26)

where nbit is the number of bits of the integer type used for
indices and nlz() returns the number of leading zeros. Then,
the algorithm assesses the Gaussian kernel fm candidate for
substituting the kernels Ij = [l, u[ and evaluates the NISE
(lines 15-16). If the NISE of the substitution is less than
nisethr (and the tree level is large enough), fm is added to
output Gaussian kernel set G. Otherwise, the interval [l, u[ is
split on its largest span dimension (lines 20-22). Hereinafter
we assume that ARSs are computed on simplified GMMs G
and omit the superscripts r and m.

B. Fourier Expansion and Pairwise Correlation of ARS

The ARS in the form of Fourier series can be used to
estimate the rotation between two GMMs representing the
same scene observed from different viewpoints. Thanks to the
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invariance of ARS to translation and its rotation-shift stated in
proposition 1, the computation of rotation angle is decoupled
from translation. We only need a convenient metric to measure
the similarity of the ARS of two input GMMs.

Let fS(r) and fT (r) be respectively the density functions
of the source and the target point sets, with S [fS ] (θ) and
S [fT ] (θ) as their corresponding GMM-ARSs. Suppose that
fT (r) represents the transformed version of fS(r), except
for noise and field-of-view issues commonly occurring in
perception problems. The rotation between fS(r) and fT (r)
can be found by searching the angular shift δ that maximizes
the overlap between the two spectra. The overlap is measured
by

C[fS , fT ](δ) =
1

π

∫ π

0

S [fS ] (θ + δ) S [fT ] (θ) dθ (27)

that represents the correlation of the two spectra. The best
alignment δ is found when the similarity C[fS , fT ](δ) between
the two spectra is maximum.

The computation of correlation in eq. (27) is complex and
not convenient if the source and destination ARSs are in
the form of eq. (18). Indeed, each ARS consists of O(n2p)
kernels, one for each pair of Gaussians, and a kernel-by-
kernel comparison would be computationally expensive. A
better approach is to express each ARS kernel φij(θ) as the
sum of orthogonal function bases. Since the functions φij(θ)
are π-periodic, the natural choice is its Fourier series. Thus, the
Fourier series of the ARS S [f ] (θ) of the GMM is obtained by
summing the corresponding Fourier coefficients of each φij .

The closed formula of Fourier coefficients for isotropic
GMMs [13] cannot be trivially extended to the anisotropic
case. Hence, the Fourier series of each point pair is computed
using Fast Fourier Transform (FFT) on nf samples φij(θk)
taken at equally spaced sampling points θk = k π/nf for
k = 0, . . . , nf − 1. Thus, the ARS of the GMMs in eq. (18)
is approximated by the discrete Fourier

S [f ] (θ) ≃ af0 +

nf∑
k=1

(
afk cos(2kθ) + bfk sin(2kθ)

)
(28)

From the above expression of coefficients it is clear that the
complexity of the estimation of {afk , b

f
k}k is O(n2p nf log nf ).

It is quadratic in the number of points np, since there is an
ARS kernel for each pair of input Gaussian kernels. It is
linearithmic with respect to the Fourier order nf , since the
coefficients are computed using FFT. In practice, a relative
low order nf = 64 is sufficient for accurate representation.

Then, the ARS S [fS ] and S [fT ] are expressed as Fourier
series. We observe that the chosen correlation function
C[fS , fT ] is a convolution of S [fS ] and S [fT ] and can
also be represented as Fourier series. The formulas of the
Fourier coefficients of C[fS , fT ], as well as the computation
of its global maximum through a branch-and-bound (B&B)
procedure, have been illustrated in our previous work [13].
The lower and upper bounds of correlation on any angular
interval [θ, θ] have been computed through simple interval
arithmetic on sines and cosines of Fourier series. The splitting
of a generic interval [θ∗, θ

∗
] in B&B iterations stops when the

Fig. 2: Above: maps dataset sample from Cartographer output;
Below: Gaussian simplification, zoomed at incremental levels
of detail.

desired accuracy ∆θ is reached, θ
∗ − θ∗ > ∆θ. We can em-

pirically observe that low-frequency coefficients of correlation
are predominant and C[fS , fT ](δ) is a rather smooth function,
since it is obtained as a convolution. Thus, its global maxima
are well defined.

C. Estimation of Translation

The goal of this paper is the estimation of rotation based on
ARS. However, to illustrate the advantage of decoupling the
estimation of translation and rotation, we also implemented a
simple algorithm based on consensus to estimate the transla-
tion. Let {µ̄T

i }i=1...nT
be the target point set and {µ̄S

j }j=1...nS

be the mean values of source point set rotated according to
the estimated rotation. Under the hypothesis that there is an
overlap between the source and the destination point sets, there
are pairs of corresponding Gaussian kernels i and j and their
difference vector ∆µij = µT

i − µ̄S
j is the translation vector

up to correspondence inaccuracy and noise. Translation can
be estimated by computing the histogram on a grid of all
vectors ∆µij for all pairs i = 1 . . . nT and j = 1 . . . nS . The
correctly associated pairs (i, j) belong to the same histogram
bin, which should also correspond to the absolute maximum of
the histogram. This approach is not computationally efficient
and is affected by discretization, but it can provide a global
estimation of translation once the rotation is given.

V. EXPERIMENTS

The experiments presented in this section are designed to
assess the performance on rotation estimation of the pro-
posed anisotropic ARS (ARS-Aniso) and to compare it with
other state-of-the-art algorithms. The methods used in the
experiments are the original isotropic ARS (ARS-Iso) [13],
HS [11], PCA (Principal Component Analysis) [22], a standard
implementation of ICP, VFC [2] and TEASER [4]. In the case
of isotropic ARS, the input points are used as mean values of
an isotropic GMM. In the case of anisotropic ARS, there is
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TABLE I: Parameters configuration.

Description Symbol Value
mpeg7 maps scans

ARS-Iso Fourier order nf 32
ARS-Aniso Fourier order nf 64
ARS standard deviation σmin 1.0 0.05 0.05
ARS tolerance on B&B ∆θ 0.5◦

NISE threshold nisethr 0.15
Quadtree resolution qres 1.0 0.05 0.05
Quadtree max quadrant size qsize 16 ∗ qres
HS angular resolution ∆θhs 1.0 0.05 0.5
HS polar range resolution ∆ρhs 2.0 0.1 0.05 ÷ 0.01
HS polar range max ρmax,hs 400.0 400.0 150.0

more flexibility and the input GMM is simplified according to
the procedure described in section IV-A. The implementations
of ARS-Aniso, ARS-Iso and HS are available in public repos-
itory1. ICP, VFC and TEASER are local search methods and
their performance depends on initial guess of rotation, which
is given by PCA. Both VFC and TEASER are able to remove
most wrong associations, but still rely on reasonable input
estimation that is not guaranteed in our experiments. Moreover,
TEASER is designed for 3D registration, not to deal with 2D
point clouds. Three categories of datasets, discussed in the
following subsections, have been used in the trials: the MPEG7
shape dataset, 3 occupancy map datasets, and 4 classic laser
scan datasets. The parameters of the algorithms used in the
experiments, in particular for isotropic and anisotropic ARS
and HS, are reported in Table I. Some of the parameters have
different values depending on the dataset scale. Precision and
accuracy of methods across the different types of dataset are
analyzed in the following subsections.
Table II reports the number of comparison trials (i.e. the num-
ber of pair map), the average execution times and the number
of GMM kernels processed by ARS-Aniso, ARS-Iso and HS.
The experiments have been performed on processor Intel Core
i9-11900F@2.50GHz with 32GB RAM. The average execu-
tion times of ARS-Aniso for datasets mpeg7, backpack2d,
unipr-dia, fr079, intel-lab and mit-csail is less than those of
ARS-Iso. The reduced time is straightforwardly attributed to
the reduction to about 10% of the number of GMM kernels
achieved by the procedure described in section IV-A. When
such reduction is not achieved (backpack3d) or is limited (fr-
clinic), the flexibility of ARS-Aniso cannot be exploited. HS
generally outperforms (sometimes only slightly) both ARS
methods in terms of speed, but it requires parameter tuning
and suffers from relative speed as discussed in section V-C.

A. MPEG7 Dataset

The original MPEG-7 database [23] consists of 1440 im-
ages of different shapes representing objects or animals. The
contour points are used as noisy input points. The point set
is translated and rotated according to known parameters and
then distorted to assess the robustness in rotation estimation.
The rotation angles are uniformly distributed on interval
[0, 180] deg, whereas the translation is uniformly distributed
up to a maximum value approximately corresponding to the

1https://github.com/dlr1516/ars
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Fig. 3: Positive estimation percentage (top) and mean angular error
(bottom) obtained by ARS-Aniso, ARS-Iso, HS, PCA, ICP, VFC
and TEASER on three experiments: (a) additive Gaussian noise
with different standard deviation σnoise, (b) occlusion with different
occlusion rates β (in percentage), (c) random points with different
rates γ (in percentage).

dimension of the object. Since this dataset has been used in
our previous work [13], we briefly recapitulate the three kinds
of distortion applied to the original point sets.

1) Noise. A Gaussian noise with standard deviation σnoise
in interval 0÷ 50 is applied to each point coordinate.

2) Occlusion. All the points inside a circle centered in a
randomly selected point of the set and with radius equal
to a portion β of the dimension of the shape are removed
(β ∈ 0÷ 50%).

3) Random Points. The input set of nin points is augmented
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TABLE II: Execution Time Results

dataset type trial num avg points num ARS-Aniso ARS-Iso HS
avg kernel num GMM kernel ratio avg time [ms] avg time [ms] avg time [ms]

mpeg7 images 1400 1444 30.93 8.99 % 129.81 376.29 2.08
backpack2d maps 419 2140 177.19 8.28 % 13.30 625.02 5.82
backpack3d maps 134 968 967.62 100.00 % 424.17 146.83 4.19
unipr-dia maps 25 4100 340.74 8.31 % 54.49 2473.42 8.84
fr079 scans 1023 360 53.13 14.76 % 2.32 14.25 1.80 ÷ 14.13
fr-clinic scans 377 180 136.43 75.69 % 13.93 3.51 1.63 ÷ 13.67
intel-lab scans 905 180 39.61 22.01 % 1.47 3.66 1.46 ÷ 13.86
mit-csail scans 760 361 53.53 14.83 % 2.60 14.23 1.81 ÷ 13.97

by γ nin random points (γ ∈ 0÷ 300%) drawn from a
uniform distribution over the shape.

Figures 3(a)-(c) illustrate the results achieved using the
discussed algorithms. The mean angular error is computed
only on positives, i.e. with error less than 5◦. Effective
local registration algorithms like VFC perform well only
on the noise distortion experiments, where the contour out-
line is preserved and point-to-point association is feasible.
The poor performance of state-of-the-art TEASER may be
attributed to inaccuracy of correspondences, to ineffectual
tuning of parameters and to issues related to the application
of a 3D registration algorithm to 2D domain. Most trials
of TEASER terminate with the validity flag unset due to
inconsistency in graph-based inference. More investigation is
required to understand the problem. In all other cases, the
global correspondence-less methods ARS-Aniso, ARS-Iso and
HS outperform the other techniques. In particular, they have
similar results in occlusion tests since they are based on
collinearity of points. The error of ARS-Aniso is usually close
and intermediate between those achieved by ARS-Iso and HS.

B. Occupancy Grid Map Datasets

The second group of tests has been performed on GMMs
generated from occupancy grid maps. The three datasets are
backpack2d and backpack3d from the collection of Deutsches
Museum, and unipr-dia acquired in the main hallways of the
Dipartimento di Ingegneria e Architettura of the University
of Parma. The raw laser scans and odometry measurements
from these datasets have been processed by mapping tool
Carthographer [24]. The maps built by Carthographer consist
of several local occupancy grid submaps, which are used for
rotation estimation. The cell centers of each occupancy grid
submap are used as the mean values of an associated GMM.

The rotation estimation experiments are performed as fol-
lows. We select the candidate pairs of maps to be compared
based on their index in the general map, which the Carthogra-
pher generally assigns according to the trajectory traveled by
the robot. The majority of the maps with consecutive index are
partially overlapping. The Carthographer tends to initialize the
submap reference frames with orientation close to the origin
frame. Thus, we manually added a random rotation to all the
maps for testing arbitrary orientations.

The performances on rotation estimation of the compared al-
gorithms are summarized in Figure 4. The first histogram rep-
resents the number of negative trials, i.e. with estimation error

greater than 3◦. Several negatives are due to non-overlapping
submaps, even though with consecutive indices. The average
rotation errors of ARS-Aniso, ARS-Iso and HS are close to
0.2◦ and are significantly lower than those achieved by local
methods. ARS-Aniso performance is comparable to ARS-Iso
and HS with no clear predominance of one method over the
others.

C. Laser Scan Datasets

The third group of tests has been conducted on standard
benchmarks of laser scans for robot localization and mapping
applications: fr079, fr-clinic, intel-lab and mit-csail. Each of
said datasets contains about 5000 scans. The goal of the exper-
iments that have been run is to correctly estimate the rotation
between subsequent scans in each dataset, and comparing
the results obtained with the already mentioned six methods
through the ground truth information contained in the datasets.
Results are reported in figure 5. Only subsequent scans with
reciprocal ground truth rotations of at least 3° have been
considered in order not to overrate the algorithm performance
when limited rotation occurs. As for the Occupancy Grid
Map experiments, several negative estimations are due to non-
overlapping scans. The better results are achieved by ARS-Iso,
ARS-Aniso and HS. For the latter dataset, an additional set
of tests has been performed, in order to further assess the
comparison between the mean execution times of ARS-Aniso
and HS. By varying the HS polar range resolution from 0.05
to 0.01 (see corresponding line in table I), the mean execution
time of HS, initially lower the ones of both ARSs, saw a
noticeable increase of up to 10 times.

VI. CONCLUSION

This work has presented the anisotropic Angular Radon
Spectrum, a novel method for global estimation of rotation
in two dimension spaces. The algorithm extends the isotropic
spectrum and operates on GMMs with arbitrary kernel covari-
ances. We have derived the general analytical expression of
RT of GMMs and of the corresponding ARS. Moreover, we
have proposed a procedure for simplifying the GMMs based
on implicit quadtrees and NISE, the numerical computation
of Fourier coefficients of anisotropic ARS, and the estimation
of the rotation angle as the maximum of correlation function.
The proposed method has been implemented and compared
with other state-of-the-art algorithms. Experiments have been
executed on datasets from shape images, occupancy grid
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Fig. 4: Negative estimation percentage, average rotation mean error [◦] and standard deviation obtained in rotation accuracy
tests on occupancy grid datasets backpack2d, backpack3d and unipr-dia (from left to right).
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Fig. 5: Negative estimation percentage, average rotation mean
error [◦] and standard deviation obtained in rotation accuracy
tests on scan datasets fr079, fr-clinic, intel-lab and mit-csail
(from left to right, top to bottom).

maps and laser scans. The proposed anisotropic ARS achieves
performance comparable to other global methods, but it allows
larger adaptation to arbitrary GMMs and potential reduction in
execution time. In future works, we expect to extend Angular
Radon Spectrum to the estimation of rotation in space and
to exploit its potential in a complete mapping pipeline. The
3D ARS will capture the point cloud coplanarity and its
computational complexity is expected to be also quadratic in
the number of GMM kernels.
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