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Memory Devices and A/D Interfaces: Design
Trade-offs in Mixed-Signal Accelerators for

Machine Learning Applications
Michele Caselli , Member, IEEE, Peter Debacker , and Andrea Boni , Member, IEEE

Abstract—This tutorial focuses on memory elements and ana-
log/digital (A/D) interfaces used in mixed-signal accelerators
for deep neural networks (DNNs) in machine learning (ML)
applications. These very dedicated systems exploit analog in-
memory computation (AiMC) of weights and input activations
to accelerate the DNN algorithm. The co-optimization of the
memory cell storing the weights with the peripheral circuits
is mandatory for improving the performance metrics of the
accelerator. In this tutorial, four memory devices for AiMC
are reported and analyzed with their computation scheme,
including the digital-to-analog converter (DAC). Moreover, we
review analog-to-digital converters (ADCs) for the quantization
of the AiMC results, focusing on the design trade-offs of the
different topologies given by the context.

Index Terms—Analog computing, deep neural networks
(DNNs), AiMC, SRAM, resistive RAM (RRAM), Indium-
Gallium-Zinc-Oxide (IGZO) DRAM, Spin Orbit Torque (SOT)
MRAM, A/D Converters, SAR ADCs, Flash ADCs.

I. INTRODUCTION

DDEEP Neural Networks have demonstrated great poten-
tial in a wide variety of AI/ML applications, from image

classification to speech recognition. Mixed-signal accelerators
aim to maximize throughput and energy efficiency during
the DNN algorithm execution, exploiting Analog in-Memory
Computation to reduce the data movement [1]. Moreover,
they can obtain high classification accuracy, working with
low precision operands, with large benefits for the energy
consumption [2]. In the AiMC approach, the huge amount
of Matrix-Vector Multiplications (MVMs) for the inference
is realized directly inside memory computing cores. These
circuits are composed of a massive number of memory cells,
used to store the pre-trained DNN weights w(i, j), and ar-
ranged in crossbar arrays, as shown in Fig. 1. The activations
a(i), representing the input data or the features extracted by
a layer, are transmitted along the crossbar rows. The result
output vector Y (j) is accumulated on the matrix columns in
analog fashion:

Y (j) =

N∑
i=1

a(i) · w(i, j), ∀ j ∈ [1,M ] (1)

where N and M are the rows and the columns of the memory.
To store the weights, emerging memories, like Resistive RAM
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Fig. 1: AiMC accelerator architecture. Dot product and MAC equa-
tion in the dashed box.

(RRAM), Indium-Gallium-Zinc-Oxide (IGZO) DRAM, and
Spin-Orbit Torque (SOT) MRAM, have attractive features for
the AiMC context [3], [4], [5], and they can compete with stan-
dard SRAM-based implementation. Indeed, recent prototypes
of compute arrays, with both emerging and standard memories,
show performances close to 1000 Tera-OPerations per Watt
(TOPs/W) [6]. Few simulated fully-analog accelerators have
been recently reported in [7], [8], but the large majority of
the architectures are mixed-signal, so including analog-digital
interfaces. On the crossbar input in Fig. 1, the voltage on
the rows is modulated by means of D/A converters (DACs),
controlled by the input activations. At the output, the Multiply-
accumulate (MAC) results are accumulated on the columns,
and quantized with A/D converters (ADCs) for further process-
ing in the digital domain. Sequential architectures, like SAR
[9] or integrating ADCs [1], provide high energy efficiency and
small area. For low-resolutions, Flash ADCs become energy-
competitive, thanks to the higher conversion speed, guaranteed
by the parallel operation [10]–[12].
This tutorial focuses on memory devices and A/D interfaces
for mixed-signal accelerators, with AiMC approach, for convo-
lutional neural networks. Section II proposes memory elements
for analog computing, considering pros and challenges specific
of the context. Then, computation schemes including the
proposed memory cells and the input DACs are proposed,
evaluating the trade-offs in the different schemes. Finally,
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TABLE I: Memory Devices for AiMC

RRAM SOT SRAM IGZO Ideal

Type Res Res CS CS -

NV Yes Yes No No Yes

Ron <0.1MΩ >1MΩ - - >1MΩ

Ion - - <1µA <1µA <1µA

ON/OFF Large Small Large Large Large

Cell Area Medium Medium Huge Small Small

Variations High Low Low High Low

FEOL Free No No No Yes Yes

Multilevel Yes Yes No Yes Yes

NV: non-volatile - FEOL: front-end of line
Memory devices in [3], [13], [5], [14], [4], [15].

in Section III, the tutorial describes three ADC topologies
reported in literature to quantize the MAC result, focusing
on the design trade-offs of the AiMC context.

II. MVM COMPUTATION CIRCUITS

In mixed-signal accelerators, the memory elements for
weight storage are exploited as compute cells for the analog
MAC. Together with the DAC, they define the computa-
tion scheme, and impact several specifications of the output
peripheral circuits. Table I reports four memory elements
for AiMC, comparing their features with an ideal memory
for the context. SRAM cells co-integrate well with highly
scaled CMOS technology and are easy to integrate with
periphery. Memories made with emerging technologies, like
RRAM, IGZO DRAM, and SOT MRAM, outperform SRAM
in several AiMC metrics, but with additional challenges for
the design, and costs due to the co-integration with standard
CMOS process. Moreover, none of these devices is available
in current leading edge CMOS nodes. RRAM are potentially
very dense, non volatile, and based on a relatively more mature
process, compared with the other emerging memories [13]. A
common RRAM is a two-terminal device, where a thin layer of
insulation material separates two metallic electrodes, Fig. 2(a).
This memory can switch between high resistance RHRS and
low resistance states RLRS , by means of a reversible physical
process of formation and rupture of a conductive filament in
the oxide. By an external voltage applied across the device
terminals, the filament is created, lowering the resistance at
RLRS . The reverse voltage resets the device resistance at
RHRS . RRAM device can potentially offer multi-bit weight
capability, for increased DNN accuracy. Nonetheless, at the
current maturity state of this technology the variability and
reliability of the multilevel states remain an issue [3], [13].
1-transistor 1-resistor (1T1R) RRAM cell for AiMC context
integrates a selector to write the memory, partially limiting the
area benefits of this very small device.
SOT MRAM is an attractive option due to the non-volatility,
the small area, and the high endurance [16]. The memory is
composed of two magnetic layers, the free layer (FL) and the
reference layer (RL), separated by an insulating Magnesium-
Oxide (MgO) tunneling barrier, Fig. 2(b). In FL, magnetization
can be changed, whereas it is fixed in RL. Even if a first

Fig. 2: Resistive cells: (a) Computation scheme with PAM DAC and
output clamp - RRAM device for AiMC [3]. (b) Computation scheme
with PWE DAC - Binary SOT MRAM device [5].

conceptual demonstrator for multi-bit memory is proposed in
[17], SOT MRAM is binary, and it switches between RHRS

and RLRS , where the tunneling probability through the Oxide
barrier is different. Differently from the spin-transfer torque
MRAM, SOT MRAM is a tripole, where the write current does
not pass through device. This allows to achieve MΩ resistance
values in both states.
C-Axis Aligned Crystalline IGZO transistors (CAAC-IGZO)
are ultra-low leakage devices that can compose a DRAM
memory for AiMC, Fig 3(b) [15]. The 2-transistors 0-capacitor
(2T0C) IGZO DRAM is implemented with just two transistors,
exploiting for the storage the oxide capacitance COX of the
read transistor T2. Thanks to the extremely low leakage current
of the access device T1, this DRAM can achieve weight re-
tention in the order of tens of seconds, drastically limiting the
costs for the periodic data refresh [4]. The data is memorized
as analog voltage V (wi,j), hence this memory can potentially
store multi-bit weights. Additionally, IGZO transistors can be
monolithically stacked in the back end of line (BEOL) on the
peripheral circuit, minimizing the accelerator floorplan [18].
The memories for AiMC in Table I can be roughly categorized
per summation approach: current source-like (CS) and resistive
(R) cells. The former type exploits the memorized weight
to control a transistor in saturation regime. R-cells store the
weights in programmable resistance values. The levels of
current/resistance of the memory cells during the computation
(Ion and Ron in Table I) impact the linearity of the MVM
operation in equation (1). The linearity should be maximized
since it directly affects the DNN accuracy performance. In-
deed, partial deviations from the ideal transfer curve can be
compensated in training, but with additional modelling effort.
Large deviations can drastically worsen the DNN accuracy
or prevent the network to be trained [19] [20]. For example,
in RRAM cells where RLRS is low [13], the result of the
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Fig. 3: CS cells: (a) Computation scheme with additional current
source - SRAM device for AiMC in [14]. (b) Computation scheme
with 2T0C IGZO DRAM - IGZO device cross-section in [4].

analog computation is significantly degraded by the voltage
drops (IR-drop) on the parasitic resistances of summation
and activation lines [21]. Together with other device non-
idealities, this can cause significant losses in DNN accuracy
[3]. Conversely, AiMC arrays with high resistive R-cells, like
SOT MRAM, and with CS-cells, exploiting the large output
impedance of the current source, are more robust against this
non-ideality [14], [22]. IR-drop decreases with the number of
memory cells of rows and columns, hence RRAM-based arrays
in literature are usually smaller, compared to arrays including
the other devices of Table I [23]. Taking into account that
a size of 1000 cells per column matches well with typical
convolutional layers and it balances well array and ADC
power consumptions, this size-linearity trade-off favourites
energy and area efficiencies of array with SRAM, DRAM,
and SOT MRAM [24]. The values of Ion and Ron concur
to set, with the cell capacitance Cc, the computation time tc
of the MAC operation. This latency should be small for high
accelerator throughput. For computation schemes where the
summation lines are precharged and then discharged by the
MACs (precharge-discharge schemes), tc ∝ Cc/Ion with CS-
cells, whereas tc is related to τc = RonCc with R-cells. These
considerations set for scaled technology nodes the reasonable
specifications Ion < 1 µA and Ron > 1 MΩ [20]. In case the
summation line is clamped to a reference voltage, tc must be
compatible with the bandwidths of the downstream circuits.
The DNN accuracy can be penalized also by weight writing
errors, fabrication defects, and process and mismatch varia-
tions. At the current state of maturity, emerging memories
for multi-bit weights, like RRAM and IGZO DRAM, require
circuits to compensate non-idealities and improve the DNN
accuracy performance, with additional costs [25],[3]. Memory
cells with large ON/OFF ratios, like SRAM and IGZO DRAM
in Table I, provide Y (j) signals with large SNR and swing
VY S . Computing with these devices allows a much easier

design of the output ADC, with respect to memories with poor
ON/OFF ratio like SOT MRAM [5],[22]. Finally, given the
huge number of weights in DNNs, to store a full network in the
memory array at affordable costs, the area of the ideal memory
device is minimal. However, an array with one DAC/ADC per
compute cell does not benefit of a small memory device, if
the peripheral circuits do not scale accordingly. To circumvent
this bottleneck, accelerators embedding small memory cells
share the peripheral circuits on multiple cells. Strategies used
in literature, like time multiplexing or multi-column summing,
are discussed in Section III.

Computation Schemes for AiMC

The performance of the AiMC memory cells is tightly
related to the implementation of the DAC converting the input
activations ai. Fig. 2(a) shows a computation scheme for R-
cells in Table I, common in literature for RRAM memo-
ries [26], [9]. The R-cell stores the weights as conductance
Ron = 1/wi,j . The activations ai are encoded as discrete
voltage levels Va,i, in a pulse-amplitude modulation (PAM). In
this scheme, the summation line is clamped to a fixed voltage,
to provide the exact MVM result. Each cell on SL contributes
with Ic ∝ Va,i/Ron ∝ ai · wi,j . This straightforward imple-
mentation has relevant downsides. Together with the additional
area, energy, and latency of the clamp, the input DAC must
drive a significant amount of current during the computation.
Moreover, when computing with low-resistance R-cells, the
previously mentioned IR-drop negatively affects the linearity,
with errors in the analog transfer function.
Fig. 2(b) shows an improved computation scheme for resistive
cells. Here, the SL is precharged at a given voltage and
discharged by the MAC computation (precharge-discharge
scheme). In the DAC, ai is encoded in the pulse-width tP of a
voltage pulse at full amplitude (pulse-width encoding PWE),
and applied to the gate terminal of a FET switch. Each cell
subtracts charges from SL:

Qc ∝ tP,i/Ron ∝ ai · wi,j (2)

tP can be propagated along the rows by simple digital buffers.
Compared with the previous scheme, the effect of the IR-drop
on the activation line is neglected, and the high current in
the DAC drastically reduced. This approach can be fruitfully
exploited with SOT MRAM [5]. The large resistance values of
the SOT allow good linearity and low error in the computation,
avoiding the expensive clamp circuit. The computation scheme
in Fig. 3(a) exploits an SRAM-based CS-cell in a precharge-
discharge scheme. The binary weight memorized in the SRAM
is applied to the gate of the switch S1, used to enable a current
source. The cell current is set to Ib, regulated by the bias
voltage Vb. The PWE DAC operates on the source of S1, and
the amount of charge displaced from the summation line is:

Qc ∝ tP,i · Ib ∝ ai · wi,j (3)

This scheme, proposed in [14], includes a long transistor as
current source, with large increase of the cell area. However,
Vb is common for all the cells and it can be tuned for the best
Ib value. A similar approach is shown in Fig. 3(b) for IGZO
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DRAM cell, still in a precharge-discharge scheme. Here, the
PWE activations are applied at the source of the readout IGZO
FET T2. In this memory, the weight is stored as analog voltage
V(wi,j) in the internal node capacitance COX and it directly
sets Ic. This compute memory avoids the long FET of the
SRAM-based cell, and the generation and propagation of Vb,
with a significant reduction of the occupied area.

III. OUTPUT PERIPHERAL INTERFACES

In every mixed-signal AiMC accelerator, the A/D con-
verter quantizes the analog MAC results for the digital post-
processing, required by DNN algorithm. For memory arrays
with single-bit output precision, complex ADC topologies are
replaced by a simple latch comparator or a sense amplifier
[27], [28]. With low-resolution operands and results, the
DNN accuracy performance improves, and AiMC accelerators
promise to be more energy efficient than fully-digital imple-
mentations [2]. However, with multi-bit output precision, the
integration of the output ADCs in the memory accelerator
becomes non-trivial, and several design constraints must be
taken into account, as highlighted in Fig. 4. In literature,
three ADC topologies have been mainly used for mixed-
signal accelerators: Flash, Successive-Approximation (SAR),
and Integrating-Sequential (IS) converters. Their single-ended
schematic views are shown in Fig. 5. Indeed, considering the
low-resolution requirement, these ADCs guarantee sampling
speeds, energy consumptions, and silicon areas suitable for
the AiMC implementations.
The result of the MAC can be either a voltage or a current
signal, depending on the computation scheme. In the case of
current sensing, a closed-loop integrator, acting as summation
line clamp, can be introduced at the ADC input to perform the
current-to-voltage conversion [9], [29], as discussed in Section
II. Alternatively, the signal on summation line can be converted
from current to charge, with a sampling capacitor or through
the parasitic column capacitance [1], to improve energy and
area efficiency. To benefit of the scaling of the memory cells
and avoid waste of silicon area, the layout width of the ADC,
and possibly of the integrator, should be within the memory-
cell pitch. Taking into account the pitch size of emerging
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Fig. 5: ADC for AiMC accelerators: Flash (a), SAR (b), and IS (c).

compute cells in literature, already below a micrometer [23],
this additional constraint severely impacts the ADC design. If
the width of the analog interface cannot be shrinked down to
the memory pitch, the latter is automatically increased. For
example, it is possible to argue that the column pitch in the
RRAM-based accelerator in [9] (≈ 20 µm) is dictated by the
integrator and the ADC.
As previously mentioned, the DNN accuracy during infer-
ence is related to the operands resolution, and this algorithm
specification impacts the ADC design. In Flash converters,
where the MVM output is simultaneously compared to 2n-1
references, the area depends exponentially on the number of
output bits n, Fig 5(a). This relationship holds also for the area
of capacitive DAC in C-SAR converters, shown in Fig 5(b),
where the bottom plates of n-1 binary-scaled capacitors in the
embedded DAC, after VY sampling, are successively rebased
following a binary-search algorithm. This procedure halves the
conversion range at every step and assures the convergence of
the algorithm.
Other design specifications affect the ADC area occupation
in the accelerator. Indeed, area-expensive capacitors, are used
also in Flash ADCs to implement the offset sampling and
subtraction in each comparator of the converter, to improve
the non-linearity error (INL) [11]. Alternative solutions in
literature to avoid this additional area are: correlated double
sampling technique, made by flipping the comparator inputs,
but halving the conversion speed [1], and foreground offset
calibration, where the body biasing of the input devices of
each comparator is trimmed at the power-on [30].
The area and pitch constraints can be overcome also by
sharing among several columns a single ADC, with time
multiplexing approach [30]. However, to leave the memory
throughput unaffected, the sampling speed rises above 1 GS/s,
just sharing the converter among few tens of columns. From
these considerations, the Flash architecture is the only suitable
candidate for this design option.
Another design technique, relaxing the ADC-width constraint,

is proposed in [10], where the Bw-bit weights (Bw=4) are
distributed over Bw successive columns. The ADC width can
be Bw-times larger than the memory pitch, but a computing
circuit, to combine the MAC results in the involved columns,
is necessary before the conversion. A binary adder, made with
binary-scaled Bw capacitors, can be used for these purposes.
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Fig. 6: From (a) to (d): Maximum LSB size vs N, PDF of VRBL,
over-range error compared to 0.5σqMAC vs. FS/σMAC , and ADC
ENOB vs. Bw. If unspecified: Ba=8, Bw=2, N=1024, VY S=1-V.

Differently from the other two converters, in the IS ADCs of
Fig 5(c), the area is not related with the output resolution,
and it is drastically reduced with a charge sharing operation
based on a unit capacitor CREF and a sampling capacitor
CS [1]. At the first conversion step, the MSB is obtained by
comparing VRBL with the mid-range reference voltage, VC .
Then, a constant voltage step, corresponding to the converter
LSB, is successively added or subtracted to the input sampled
voltage VIN , until it reaches the mid-range voltage. The
conversion of the IS ADC depends on the distance of VY from
the mid-range. If the accelerator requires the synchronized
output of all the converters, the throughput is limited by the
ADC with the longest time to complete the conversion. The
probability density function (PDF) of the summation signal
VY affects also the throughput of this accelerator. Indeed, in
DNN algorithms, the PDF of the MAC output often exhibits
the shape of a normal distribution [31]. In case of low-
energy summation signals with narrow Gaussian distribution,
the IS ADC is well-suited for AiMC since it achieves higher
conversion speed than SAR-ADCs, with additional advantages
in terms of area and energy. However, in case of VY with
large standard deviation, the A/D conversion requires many
steps, and this sequential ADC can become the main speed-
bottleneck of the accelerator.
The PDF of the output signal is also tightly related with

the conversion range and the data resolutions, critical specifi-
cations for the ADC in mixed-signal accelerators. Assuming
for the first DNN layer, w(i, j) and a(i) uncorrelated random
variables, uniformly distributed (UD) over 0-to-1 range, the
distribution of the MAC result Y (j) is centered at µMAC=1/4,
with variance σ2

MAC=7/(144·N). Here, N is the number of
rows in the array and Y (j) is normalized to the 0-to-1 range.
The variance of the quantization error, σ2

qMAC , due to the
limited resolution of weights (Bw bits) and activations (Ba

bits), is approximated by the following equation:

σ2
qMAC ≈ 1

36N
·
(
2−2Ba + 2−2Bw

)
(4)

The effect of the ADC quantization error can be neglected
if the converter LSB is lower than σqMAC /2. As matter of
example, with N=1024, Ba=8, Bw=2, and an Y (j) swing

VY S =1-V, the LSB must be within approximately 0.7 mV.
As shown in the graph in Fig. 6(a), a large N value leads to a
severe constraint on the maximum INL and input thermal noise
of the ADC. However, the conversion range FS can be tailored
on the PDF of VRBL, shown in Fig. 6(b), with a variance
scaling with 1/N. A convenient FS is obtained by identifying
the crossing point of the rms value of the over-range errors
to σqMAC /2, as shown in Fig. 6(c). From the previous array
specifications, the FS is only 4σMAC , i.e. 41 mV, and centered
on the VY mean value. In the considered case, an effective
number of bits (ENOB) of 5-b is obtained, sizing the ADC
for the required LSB. From this analysis, a Flash converter
with reference voltages only located in the confined range is
an attractive option. This solution significantly reduces the
number of comparators needed, with remarkable benefits in
terms of occupied silicon area and energy consumption [11],
[32]. Considering the VY distribution, a convenient alternative
is the IS topology. On the contrary, in C-SAR ADCs, an FS
lower than the supply voltage requires an additional voltage
references generator with enough driving capability, leading
to increased area and power consumption.
Signal amplification, before the A/D conversion, is an alter-
native option in literature to deal with confined-FS [9], [29].
For the C-SAR topology, expanding the converter FS relaxes
the INL and thermal noise requirements, with a simplification
of the design. The plot in Fig. 6(d) provides the minimum
ADC resolution vs. the weight precision, for 8-bit inputs and
N=1024. This results, obtained from (4), can be useful for
converter sizing. However, we highlight that, in DNNs, the
distribution of the trained weights is approximately Gaussian
with a lower variance than the UD case [33], [34]. Moreover,
in the inner DNN layers, also the input activations, obtained
by the digital processing of a previous layer MAC results, have
gaussian-shaped or clipped gaussian-shape distributions [31],
[35]. Therefore, even the variance of the accumulated MAC
is lower. Nonetheless, the quantization error affecting the dot-
product can still be estimated with (4). In this perspective, the
maximum LSB in Fig. 6(a) is suitable for the design of the
ADCs, also of the inner layers, whereas the ENOB estimation
in Fig. 6(d) is a conservative design specification. Further ADC
optimizations are possible for specific DNN implementations,
starting from known MAC results distributions.
In some reported accelerators, the MAC signal is given by the
differential voltage of two accumulation columns [1], [22].
This array design choice requires a differential-input ADC
with several benefits. In particular, the weights can be ternary-
quantized, providing an additional MAC resolution of 0.5 bit
with respect to binary weights. This leads to better DNN
accuracy performance, at the cost of slightly larger area, in
case of small compute memory cells [5]. Other benefits are
the increase of the MAC variance, leading to a larger LSB
for the ADC, a zero-centered conversion range, and a lower
memory cell activity per line, resulting in energy saving.
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