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In this paper, we propose a hybrid framework for cross-resolution 3D face recognition which utilizes a Streamed Attention

Network (SAN) that combines hand-crafted features with Convolutional Neural Networks (CNNs). It consists of two main

stages: irst, we process the depth images to extract low-level surface descriptors and derive the corresponding Descriptor

Images (DIs), represented as 4-channel images. To build the DIs, we propose a variation of the 3D Local Binary Pattern

(3DLBP) operator that encodes depth diferences using a sigmoid function. Then, we design a CNN that learns from these DIs.

The peculiarity of our solution consists in processing each channel of the input image separately, and fusing the contribution

of each channel by means of both self- and cross-attention mechanisms. This strategy showed two main advantages over the

direct application of Deep-CNN to depth images of the face; on the one hand, the DIs can reduce the diversity between high-

and low-resolution data by encoding surface properties that are robust to resolution diferences. On the other, it allows a

better exploitation of the richer information provided by low-level features, resulting in improved recognition. We evaluated

the proposed architecture in a challenging cross-dataset, cross-resolution scenario. To this aim, we irst train the network

on scanner-resolution 3D data. Next, we utilize the pre-trained network as feature extractor on low-resolution data, where

the output of the last fully connected layer is used as face descriptor. Other than standard benchmarks, we also perform

experiments on a newly collected dataset of paired high- and low-resolution 3D faces. We use the high-resolution data as

gallery, while low-resolution faces are used as probe, allowing us to assess the real gap existing between these two types of

data. Extensive experiments on low-resolution 3D face benchmarks show promising results with respect to state-of-the-art

methods.
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1 INTRODUCTION

Many works in the literature have demonstrated the potential of applying Deep Convolutional Neural Networks
(DCNNs) for face recognition [Parkhi et al. 2015; Schrof et al. 2015; Yin and Liu 2018], which have reached
astonishing performance even in extremely challenging scenarios. One tendency in recent face recognition
works is to consider more diicult data in terms of resolution, quantity, and source [Al-Obaydy and Suandi 2020;
Ferrari et al. 2018; Singh et al. 2018]. Extending the imaging modes to less conventional ones, including 3D data
represented as depth images is a further research direction that aims at improving face recognition in speciic
scenarios [He et al. 2020; Xiong et al. 2019]. Several low-cost/low-resolution devices can capture RGB-D data
(e.g., Kinect camera) and, spite not being comparable with high-resolution 3D scanners, the depth maps they
capture may provide additional cues that improve recognition in many cases. Compared to standard RGB imagery,
performing recognition with 3D data can be advantageous because of its invariance to image nuisances such as
illumination or pose changes. Another key aspect of using depth data is that it can be viewed as a sort of basic
feature map, where each pixel encodes the distance from the camera, overall representing the 3D structure of the
face. Thus, diferently from RGB images, several other surface properties can be extracted from such data and
used as additional channels when training the network. Some previous works exploited this intuition to enrich
the data representation for diferent tasks by adding, for example, normal orientation maps [Gilani et al. 2017], or
curvature maps [Galteri et al. 2019]. On the other hand, learning from this augmented data can be diicult. In fact,
unlike natural RGB imagery, the information might be signiicantly uncorrelated from one channel to another.
It is also possible that diferent surface properties or features have their discriminative information located at
diferent image regions. Thus, processing the data as a whole with standard convolutional layers could lead to
sub-optimal performance. Finally, the burdensome process of collecting a suicient amount of good quality 3D
faces to efectively train DNNs makes dealing with 3D data diicult, and resorting to low-cost sensors like Kinect
seems the only viable solution in most practical scenarios. However, this poses an additional diiculty in dealing
with the existing diferences between high- and low-resolution 3D scans.

In this work, we address the problem of face recognition across 3D data of diferent resolutions. The founding
idea of our solution is that of encoding hand-crafted, low-level features extracted from the depth data into color
images, and train a CNN with them. First, given an input depth image a variation of the 3D Local Binary Pattern
(3DLBP) [Huang et al. 2006] is computed on it, and encoded into a 4-channel image, referred to as Descriptor Image

(DI). Then, a CNN is designed that learns on top of these DIs. Our novel architecture processes each channel
separately to account for the diferent information encoded in each of them. In addition, self- and cross-attention
mechanisms are applied to each stream so as to efectively fuse the information of the diferent streams. We have
named our architecture as Streamed Attention Network (SAN) since it utilizes diferent streams of data as input
coupled at an attention mechanism.
We will show that using low-level features as input signiicantly reduces the gap between high- and low-

resolution 3D data, making it possible to train a CNN with high-resolution data and successfully apply it to
low-resolution one.

In summary, the main contributions of this work are:

• We propose a hybrid face recognition solution that combines hand-crafted features and the SAN network
architecture speciically designed to learn from the DIs. Our proposed solution aims at generating a
representation that is more robust to resolution diferences. Also, to the best of our knowledge, there are
no previous works explicitly addressing the problem of cross-resolution 3D face recognition;
• We propose a novel solution to deal with uncorrelated input data. Our network architecture processes each
input channel separately, and fuses the data streams using self- and cross-attention layers, so as to maximize
the mutual information from each channel. In this way, we can beneit from a richer data representation;
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• In a comprehensive experimental validation, we demonstrate that the proposed approach can efectively
bridge the gap between high- and low-resolution 3D data. We show that the proposed DIs encode comple-
mentary information, and improve the performance upon that obtained with depth data.

The founding ideas of the method proposed in this paper have been introduced in our previous conference
contribution [Cardia Neto et al. 2019]. We extended our contribution as follows: (i) we added a deepened
discussion about the sigmoid encoding, which allowed us to better identify the optimal shape of the sigmoid; (ii)
we signiicantly modiied the network architecture by adding self- and cross-attention layers to better exploit
the information carried by the DIs; (iii) we experimented using the proposed network as a feature extractor,
so without any prior knowledge of the test data. This is a common setup in real-world scenarios, where the
gallery of known subjects, and more in general the testing data, might not be available for learning; (iv) we
also report a comprehensive evaluation that spans several datasets including low- and high-resolution data. In
particular, the IIIT-D RGB-D and the MICC-3D face dataset have been added to evaluate our method on a large
set of very low-resolution depth images. Overall, we propose and evaluate a novel network architecture that
takes a combination of DIs and depth information as input. The network utilizes an attention mechanism to fuse
and enhance the intermediate features, learned separately from each channel. In an ablation study, we investigate
the efects of combining the input data, and the way the attention mechanism inluences the performance of our
approach. We also analyze the face recognition performance of our method in a cross-resolution scenario, and
compare it with other well-established architectures from the literature.
The rest of the paper is organized as follows: In Section 2, we summarize related works in the literature; In

Section 3, we describe the preprocessing operations applied to the depth images and introduce the computation
of the Descriptor Images from the depth; The network architecture that operates on the DIs is proposed in
Section 4; An extensive experimental evaluation on several datasets is reported in Section 5; Finally, discussion
and conclusions are given in Section 6.

2 RELATED WORK

In this section, we summarize some works in the literature that focused on 3D face recognition and, more
speciically, on low-resolution depth data. Given the lack of methods in the literature that explicitly deal with
cross-resolution 3D face recognition, we reviewmethods that either used hand-crafted features orCNN architectures

for recognition.

3D face recognition based on hand-crafted features. Methods that follow this approach describe surfaces by
speciically capturing geometric properties of the face [Berretti et al. 2010; Drira et al. 2013; Faltemier et al. 2008;
Spreeuwers 2011], and most of them use high-resolution data acquired in controlled environments. Works that
instead utilize Kinect-like devices exploit the temporal redundancy of frames or deformable models to increase the
resolution and remove scanner-induced noise [Bondi et al. 2016; Drosou et al. 2013; Ferrari et al. 2021; Hernandez
et al. 2012]. The main problem of those approaches is the increased demand for computational power, and the
fact that a sequence or additional data is required to build the super-resolved models.

Few methods performed face recognition directly from low-resolution data. In the work by Min et al. [Min et al.
2012], a real-time 3D face identiication system that receives a depth sequence as input is proposed. The face is
detected and segmented utilizing a threshold on depth values. Next, the faces are reduced to common resolutions
and the matching is obtained by registering a probe with several intermediate references in the gallery with the
Expectation Maximization Iterative Closest Point (EM-ICP) algorithm. Despite interesting results were reported
for this method, few subjects were included in the dataset used in the evaluation, and no comparison with other
approaches was reported. Also, the method was evaluated only on low-resolution data, with no test provided on
a cross-resolution scenario. In [Mantecón et al. 2016], Mantecon et al. proposed an algorithm for face recognition
based on an image descriptor called bag of dense derivative depth patterns. Dense spatial derivatives were irst
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computed and quantized in a face-adaptive fashion to encode the 3D local structure. Then, a multi-bag of words
created a compact vector description from the quantized derivatives. One limitation of this approach is the size
of the used descriptor, i.e., a 98304-dimensional vector, whilst our learned feature has a size of 2048. In all the
cases, diferently from our proposal, the gallery set of the testing dataset is used for learning the features to train
the classiier.

CNN-based 3D face recognition. Deep architectures that deal with 3D data had a slower expansion than the
image-based counterpart, mainly because of the data representation problem. The wide variety of modalities
that exist to represent 3D data (e.g., point-clouds, triangular meshes) makes it diicult to work in the same
standardized way without making signiicant modiications to the whole framework. Also, the lack of large-scale
datasets for training contributed signiicantly to this problem. Given the above, a possible workaround to make
use of existing DCNNs for 3D face recognition was proposed in the work by Kim et al. [Kim et al. 2017], where
the authors utilized a pre-trained version of the VGG-Face network and ine-tuned it for depth data. To train such
a deep architecture, a very large amount of data is needed, and several datasets were joined together. To further
increase the amount of data for training, synthetic expressions and occlusions were generated. Still, the approach
struggles when tested on low-resolution data. To address the need for large amounts of data, Gilani et al. [Gilani
and Mian 2018] proposed a synthetic data generation technique that they used to build a dataset of ≈3M scans.
Such data was utilized to train a deep architecture consisting of 13 convolutional layers, 3 fully connected layers,
and a softmax layer. Among other observations, authors concluded that because of the smooth nature of the face
surface, there is the need for larger kernels for the convolutional ilters. A hybrid solution exploiting both the
RGB and depth information was presented in [Jiang et al. 2019]. In that solution, a CNN was trained guided by
the supervision of an additional loss, called łattribute-awarež loss, that attempts to cluster the face images based
on attribute information such as gender or age. Along these lines of investigations, Mu et al. [Mu et al. 2019]
employed a lightweight CNN equipped with a multi-scale feature fusion layer to ill in the gap between high- and
low-resolution depth scans. However, all the aforementioned methods do not really investigate a cross-resolution
scenario, since the gallery set of the testing dataset is always used for training a classiier. Diferently, we explicitly
separate the two and train the network on high-resolution data and perform tests on low-resolution without
any further learning process on such data. Overall, these design and evaluation aspects have no parallel in the
existing literature on 3D face recognition.

3 BUILDING THE DESCRIPTOR IMAGES

Training a DCNN from scratch on depth data is diicult due to the large quantity of acquisition noise, especially
with low-resolution, and the diiculty to acquire large volumes of labeled data due to the limited operating range
of such devices (e.g., few meters for Kinect-like depth cameras). Since, in the case of depth, the Web is not a
viable source of additional instances the most practiced workaround in the literature is that of taking a DCNN
pre-trained on RGB data and ine-tune it with a small set of depth images.

We propose a diferent approach, where the learning tools are applied on top of intermediate images generated
from the original data by applying a low-level feature extractor. In this work, we use the 3DLBP [Huang et al. 2006]
feature because of its computational eiciency and efectiveness in describing depth images of the face [Cardia
Neto and Marana 2018]. The 3DLBP deinition and its modiied version used in this work are introduced in
Section 3.2. Before computing 3DLBP, depth images are enhanced using the operations illustrated below in
Section 3.1.

3.1 Depth image pre-processing

To diminish noise efects, a pre-processing pipeline has been used. This pipeline is the same as proposed in [Cardia
Neto and Marana 2014] for the case of data acquired with the Kinect v1 camera. In the case of high-resolution
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Fig. 1. 3DLBP computation on a depth image of the face. A 3× 3 neighborhood region is shown; First, the diference between
the neighborhood and the central pixel is computed, clockwise, starting from the top-let pixel; Then, each column of four
bits encodes the diference value using the first bit for the sign (0 for negative, 1 for zero or positive values), and the three
subsequent bits for the absolute value.

data, the pipeline is applied without the symmetric illing step. The pre-processing pipeline has three main steps:
(i) Segmentation, (ii) symmetric illing, and (iii) generation of new, i.e., pre-processed, depth maps. Each step of
this pipeline is detailed in the following. We irst segment a circle with radius r = 70mm centered at the nose-tip
and mirror the original face. A point from the original face is selected and its nearest neighbor is found on the
mirrored face. If the Euclidean distance between the point from the mirrored face and the point from the original
face is greater than a threshold δ , the mirrored point is added to the original face. In this work, we set δ = 0.5.
This was originally proposed in [Li et al. 2013]. After the whole procedure, for each face we employ the Iterative
Closest Point (ICP) algorithm [Besl and McKay 1992] to perform ine itting between the set of points. This is
needed to deal with small pose rotations. Finally, new depth maps are generated using a ridge estimator1, to
derive a surface on a 2D grid starting from a sparse set of points. We use the depth maps generated by applying
the above steps for CNN training or to compute the 3DLBP operator or its sigmoid version.

3.2 3DLBP

The 3DLBP is a variation of the traditional LBP proposed by Ojala et al. [Ojala et al. 1996]. Its computation starts
in a 3 × 3 region deined around a center pixel, or more generally a region with radius R in which P points
are sampled. The depth value of the central pixel is subtracted from its neighbors and each of those values is
truncated in the range [−7,+7]. This is motivated by the fact the face is a smooth surface and most of those
diferences fall in that range [Huang et al. 2006].
With the [−7,+7] range, 15 diferent values are encoded, which results in a four-bit representation. Each bit

is regarded as a separate channel: the irst channel encodes the sign of the diference, i.e., 0 if the diference is
negative, 1 otherwise; The other channels encode the absolute value of the diference transformed in a binary
code of three bits. Figure 1 shows the generation of a 3DLBP descriptor in a 3 × 3 region. Each one of the four
bits of the 3DLBP is regarded as a separate channel of the inal Descriptor Image (DI), forming an image with four
channels. We used an RGBA image to this end.

In the DI, each channel behaves diferently. The irst one encodes the sign of the diference and describes if the
local neighborhood is increasing or decreasing with respect to the central point (e.g., a local minimum would be
encoded as 255, that is to say, all the bits are 1). The last three channels encode the absolute depth diference
between each center point and its neighbors. The irst channel encodes the sign of the diference, and changes in
its values appear to occur smoothly. This happens mainly because faces are smooth surfaces and, locally, shifts in
values do not occur abruptly. The second channel receives the encoding of the most signiicant bit of the absolute
depth diference. Thus, values of this channel are 1 for diferences bigger or equal to 4. This does not happen so
frequently on the face because of its smooth surface, but it can occur in the nose and periocular region. The last

1https://www.mathworks.com/matlabcentral/ileexchange/8998-surface-itting-using-gridit
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Fig. 2. The channels of a DI are shown separately for the 3DLBP DI (top) and the Sigmoid DI (botom). The red, green, and
blue channels are shown in the first three columns, respectively, followed by the alpha channel in the fourth column.

two channels, instead, are noisier because they encode less signiicant bits, so that changes occur more frequently.
The third channel (second bit) changes for diferences of two, while the fourth one (least signiicant bit) changes
for depth diferences of one. This generates high frequency information. Figure 2, top row, shows an example of
the four channels resulting from the 3DLBP encoding.

3.3 Sigmoid encoding

A possible limitation of the standard 3DLBP approach is that, within the [−7,+7] interval, negative or positive
diference values share the same binary code, except for the sign bit. This implies that some regions of the
resulting DI might have the same values on three out of four channels, ultimately resulting in redundant and
noisy information. Furthermore, the range of depth diferences needs to be kept ixed to it the 4-bits representation.
One way to account for these limitations is to incorporate a sigmoid function in the computation of the 3DLBP
operator. In this case, instead of truncating the exceeding values in the [−7,+7] range, the sigmoid can be utilized
to map an arbitrary interval [−δ ,+δ] to four bits. To control the range of the encoded values, a parameter A is
used, leading to the following:

f (x ) =
1

1 + exp(−Ax )
, (1)

where x is the depth diference between a point in the neighborhood and its center, and A is a scalar value that
stretches the sigmoid function. To encode the sigmoid values, eight bins are deined in the interval between 0
and 1. Then, each f (x ) is mapped to its closest bin, in a histogram-like fashion. Note that, even though the sign
channel is used to build the four-channel image, f (x ) is computed considering the depth diference along with the
sign, so that same values with opposite sign are put into diferent bins. Figure 3 (a) shows the function encoding
for diferent values ofA. This has the advantage of letting us choose the proper range of depth diferences that are
encoded into each bin. Indeed, from Figure 3 (a), it is possible to observe that the larger the range, the coarser the
encoding resolution. So, it is fundamental to ind the right balance between these parameters. To choose a proper
threshold to truncate the exceeding values, we estimated the distribution of depth diferences from a sample set
of 3D scans. Figure 3 (b) shows that the majority of diferences fall in the range [−4,+4]. We thus chose the value
of A to truncate values exceeding ±4, that is A = 1.31. Among the possible choices of A, we empirically found

ACM Trans. Multimedia Comput. Commun. Appl.
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(a) Sigmoid encoding for diferent values of A in Eq. (1)
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(b) Distribution of 3DLBP diferences

Fig. 3. In (a), the sigmoid functions utilized in the encoding of the depth diferences and obtained for diferent values of the
A parameter in Eq. (1) are reported. In (b), the distribution of the diferences obtained in the 3DLBP computation from a set
of samples from the FRGC dataset is reported.

that this is the best performing one, which is consistent with the depth diferences distribution. The smaller range
with respect to the standard 3DLBP, also allows for a iner encoding of each depth diference value.

3.4 Correlation between channels in the DIs

One main idea in our approach is that of encoding 3D information in 2D images, where each channel encodes
local diferences between depth values rather than photometric information like in standard RGB images. In such
photometric RGB images, the color information carried by the three channels is heavily correlated, allowing us
to process them through convolutions.
However, we expect this correlation to be less signiicant for the DIs due to the diferent nature of the

information encoded in the input channels. Similar investigations were performed in the Computer Vision
literature for several diferent tasks [Abbass et al. 2021; Parchami et al. 2017; Wang et al. 2020a, 2021]. We veriied
this aspect by measuring the correlation between channels in the DIs. In Figure 4, it is possible to note the
diference between the correlation of the red layer and the other layers in the Sigmoid and 3DLBP DIs, compared
to photometric RGB images. As expected, the channels in the DIs show almost no correlation.
CNN architectures normally rely on correlation between channels in the input images to learn meaningful

features through hierarchical sets of convolutions with shared weights. Given the observations above, processing
the DIs as a whole could lead to sub-optimal results. As explained in detail in Section 4, our idea is that of
processing each input channel separately through dedicated branches.

4 NETWORK ARCHITECTURE

Before going into the details of our proposed architecture, we irst motivate the proposed design, and refer to the
process of DIs generation as described in Section 3.2. From Figure 2, it turns out clearly that each channel encodes
information of diferent granularity. On the one hand, this has the advantage of providing richer information.
On the other hand, it gives rise to some issues: depending on the channel, the important information could be
located in diferent image regions. Moreover, as shown in Figure 2, the last channels, i.e., least signiicant bits,
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Fig. 4. Correlation between the red and the other channels in the DIs is shown. The plot is obtained by reporting the value
from a position in the red channel against the value in the same position of another channel. This is performed for the DIs
obtained with Sigmoid, and 3DLBP, and for the RGB image corresponding to the same depth image from which the DIs were
computed.

Fig. 5. Our proposed network architecture. The input is divided into five streams, i.e., four for the DI and one for the
given depth image. First, each stream is processed through a block with diferent kernel and padding sizes; Then, self- and
cross-atention are used to enhance the features; Finally, the enhanced features are concatenated and processed by a block
that learns the resulting feature representation.

contain higher-frequency information with respect to the irst ones. Processing such diferent data with shared
sets of convolutions with ixed kernel size could lead to loss of information. In addition, diferently from RGB
images, the DIs are characterized by a low cross-channel correlation. Hence, processing all the channels together
could result in sub-optimal representations that are learned by the network.

Given the above observations, we designed a multi-branch network architecture, in which each input channel
is processed by separate sets of convolutional layers. The overall architecture is shown in Figure 5. Initially, the
channels of the DI and the pre-processed depth go separately through diferent input stream blocks. These blocks
are composed of a convolutional layer, an instance normalization layer, and a ReLU. Each stream outputs 64

ACM Trans. Multimedia Comput. Commun. Appl.
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feature maps, but the kernel and padding have some variations in order to adapt to the speciic channel. The
stream that receives the red channel has a kernel size of 5 × 5 and a padding of 2, the green stream has a kernel
of 4 × 4 and a padding of 1, the blue stream has a kernel of 3 × 3 and a padding of 1, the alpha stream has a kernel
of 2 × 2 and padding of 1. Finally, following [Gilani et al. 2017], we set the kernel size for the depth stream as
5 × 5, with padding of 2.

The outputs of the above streams need to be fused together for further processing. The simplest choice consists
in concatenating the feature maps resulting from the input streams, and feeding them to an additional module,
so to obtain a compact descriptor. We refer to this module as Feature Learning, as shown in Figure 5 (right).
This is composed of three convolutional layers outputting 128, 256, 256 feature maps, with kernel size of 5, 3,
3, respectively. Each convolution is followed by instance normalization and ReLu activation. Finally, a dropout
layer and a fully connected layer of size 2048 are stacked to obtain the face descriptor.
We observe though that processing the input channels independently, then concatenating the outputs could

still lead to inconsistency in the data and so diiculties in processing the concatenated features. We ind a possibly
efective solution to address this issue is using an attention mechanism. So, before concatenating the feature
maps, an Attention Module enhances the features by means of self- and cross-attention layers, before sending
them to the feature learning module. The structure of this part is illustrated in Figure 6 and described in detail in
Section 4.1.
To summarize, our proposed framework, that we refer to as Streamed Attention Network (SAN) is composed

of three main modules: (i) the input streams that process each input channel independently; (ii) the attention
module that fuses the feature maps together, and (iii) a feature learning module that inally produces the face
descriptor. The code of our approach is available at https://github.com/jbcnrlz/san.

4.1 Self- and Cross-Atention Mechanism

Attention mechanisms as originally proposed in [Vaswani et al. 2017] have been recently utilized in a variety of
tasks, including face recognition among them [Liao et al. 2020; Wang et al. 2020b]. Such interest can be explained
by the fact that attention maps highlight important and discriminative facial regions within the image [Wang et al.
2020b], and several works started to include such mechanism in their framework. An attention function is deined
as a mapping between an input composed of query and a set composed of key and value, to an output [Vaswani
et al. 2017]. One possible way to implement an attention mechanism is to utilize the concept of self-attention,
which builds a representation for a sequence combining diferent weighted positions from it [Vaswani et al. 2017].
For example, in [Liao et al. 2020] a generative adversarial architecture was used to generate realistic frontal face
images from faces with diferent poses. This generative adversarial architecture has an attention mechanism
integrated into it, being named Attention Selective Network (ASN). The role of attention, in the original work, is
to increase the quality of the segmentation of the face from the background. In [Wang et al. 2020b], a Hierarchical
Pyramid Diverse Attention (HPDA) is used to account for hierarchical multi-scale local features in the face
recognition process. With this approach, it is possible to learn a multi-scale diverse local representation in an
automatic and adaptive way, taking into consideration the diversity in the data. In the end, the authors used
information from several levels on the proposed model.

From the aforementioned works, since diferent face areas might impact diferently on recognition, it appears
appropriate to apply this approach for such a task. We believe such a mechanism can be useful also in our context,
making our architecture focus on relevant information from the input channels. As a result, the learned features
would include richer information. This hypothesis derives from how hand-crafted features are built. Both the
DIs we examined describe low-level shape features that should help in maintaining the identity information
despite other nuisances such as resolution diferences. Nonetheless, given that the input of our network lacks
correlation, we believe that processing the streams separately and learning how to fuse the information from the
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Fig. 6. The atention module used in our approach, inspired by [Yu et al. 2020]. For each data stream, the atention module
combines the self-atention maps with cross-atention from the other data streams. The streams are the red, green, blue, and
alpha channels from the DI, and the pre-processed depth data.

streams in a collaborative way, would lead to even more robust features. To this aim, we further identiied the
cross-attention mechanism proposed by [Yu et al. 2020] as a way to increase the collaboration from diferent
data in the feature learning process. It was designed to be used into a Siamese architecture, more speciically to
combine inter-dependencies in an image between context and object template for visual object tracking. The
attention module proposed by [Yu et al. 2020], which combines self- and cross-attention, inspired the attention
module utilized in this work. Diferently from the original one, we do not employ deformable convolutions, and
we combine several cross-attention maps with one self-attention map to enhance the learned features. For each
stream, this combination is performed by summing its self-attention map with the cross-attention from the other
streams.
As proposed in the original work, the self-attention is the combination of spatial self-attention and channel

self-attention. A block diagram with our attention mechanism is shown in Figure 6.
Given the inputs Sr , Sд , Sb , Sa , Sd ∈ R

C×H×W , with Sr being the red stream, Sд the green stream, Sb the blue
stream, Sa the alpha stream, Sd the depth stream, C the channels, H the height, andW the width for the feature
maps, the idea is to enhance each input stream with its self- and cross-attention. To this end, we initially calculate
the self-attention for one of those inputs, and the cross-attention for the others.
For the self-attention, the spatial self-attention and channel self-attention are computed. To generate the

Query, Q , and Set, S , we irst reduce the input feature maps using 1 × 1 convolution. This operation results

in Q, S ∈ RC
′
×H×W , with C ′ = C

8 . Next, both are lattened in the width and height dimensions, resulting in

Q, S ∈ RC
′
×N with N = H ×W . To generate the spatial self-attention As

s , we compute the softmax with Q and S
as follows:

As
s = so f tmax (Q

T
S ) ∈ RN×N . (2)
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For the Value V , the input stream goes trough a 1 × 1 convolution without reducing the number of channels
so that V ∈ RC×H×W . Similarly to query and key features, V is lattened in the height and width dimensions,

resulting in V ∈ RC×N . After this, the spatial self-attention X s
s feature can be computed as:

X s
s = αVAs

s + I ∈ R
C×N

, (3)

with I being the input to the self-attention and α a scalar parameter.
Once this operation is computed, X s

s is reshaped back to its original shape. After computing the spatial self-
attention, the channel self-attention X s

x is evaluated in a similar manner. Initially, the input I is reshaped to

I ∈ RC×N , then As
c is computed as:

As
c = I I

T
∈ R

C×C
. (4)

Finally, X s
c is calculated with the column softmax of the diference between the maximum value of As

c and it
original values:

X s
c = so f tmax (As

c −max(As
c )) ∈ R

C×C
. (5)

Once X s
c is calculated, we perform matrix multiplication with I and reshape the result to the original shape of the

input. With both X s
c and X s

s being calculated and having the same shape, it is possible to deine the value of X sa

as the output of the self-attention X sa
= X s

s + X
s
c .

For the cross-attention part of the approach, our idea is to calculate it on diferent inputs than those used
for the self-attention part (e.g., while the Sr is processed for the self-attention, the inputs Sд , Sb , Sa ,andSd are

processed for the cross-attention). In the cross-attention, the input Ic is reshaped, resulting in Ic ∈ R
C×N . The

reshaped input goes trough a matrix multiplication, adding information from the channel self-attention data, as
given by:

Ac
= X s

c Ic ∈ R
C×N

. (6)

The variable Ac is reshaped to the same shape as Ic . Finally, the output from the cross-attention module is given
by:

X ca
= γAc

+ Ic ∈ R
C×H×W

, (7)

with γ being a scalar parameter.
The self- and cross-attention are then combined by summing the outputs from each module. After this, the

data is utilized as an input to a convolutional layer with an output size of 64 and kernel of 3. Our enhanced
feature is the output from this layer.

As said previously, all the channels from the DIs (red, green, blue, and alpha) are used as inputs to the attention
module, plus the pre-processed depth. Every input to the attention module is enhanced with the self-attention
and cross-attention: for example, while the self-attention for the red channel is extracted, the cross-attention for
the other input data (green, blue, alpha, and depth) is also computed. These result of the self- and cross-attention
are then used in the feature enhancing process.

In Figure 7 the input and output from the attention module are displayed. The heatmaps show that the attention
for the depth data mostly focuses on the nose and mouth regions, whilst the other inputs distribute the attention
across the whole face, complementing each other. The high granularity of the DIs describes iner details of lat
face regions that are not captured by the depth maps, thus carrying richer information. The attention module
helps to capture and maximize such complementary information, which we will show improve the recognition
performance.
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Fig. 7. Class Activation Maps (CAM) based on [Zhou et al. 2016] from the output of the atention module. The first line
shows the input data for the atention module, while the second line illustrates the resulting output with both the self- and
cross-atention. For generating the maps we do a matrix multiplication with the weights from the last convolutional layer
from the atention module with the enhanced features, this will generate an image with the shape ofC ×C , withC being the
size of feature maps from the enhance features (on our case, 64). This is then reshaped to the same size as the input stream.

5 EXPERIMENTAL RESULTS

In the following, we report the results of a comprehensive evaluation of our approach. To this end, in Section 5.1,
we irst present the ive face datasets we have used in the experiments, two for training and the remaining three
for test. Then, we report details about the training of our network architecture in Section 5.2. The evaluation is
performed by initially reporting on an ablation study aiming to investigate the contribution of the diferent parts
of the proposed architecture to the inal accuracy and also to investigate the efect of diferent design choices
and parameters (Section 5.3). Results on the three test datasets also in comparison to baseline solutions and
state-of-the-art methods in the literature are inally reported and discussed in Section 5.4.

5.1 Datasets

In this work, we used the following face datasets: (i) The FRGCv2.0 [Phillips et al. 2005] dataset, (ii) the Bospho-
rus [Savran et al. 2008] 3D face database, the (iii) EURECOM Kinect face dataset [Min et al. 2014], the (iv) IIIT-D
RGB-D face database [Goswami et al. 2013], and (v) the newly collected MICC-HR/LR 3D face dataset [Ferrari
et al. 2022]. The high-resolution FRGC and Bosphorus datasets were used to train our network from scratch,
while tests were conducted on the others.

FRGC ś The FRGC dataset includes 4,007 high-resolution scans of 466 diferent individuals acquired in two
separated sessions. About 60% of the scans have neutral expression, while the rest show slight spontaneous
expressions.

Bosphorus ś The Bosphorus 3D face database comprises 4, 666 high-resolution scans of 105 individuals; There
are up to 54 scans per subject, which include expression variations, facial action units activation, rotations and
occlusions. EURECOM ś The EURECOM Kinect face dataset collects RGB-D images of 52 subjects acquired
with a Kinect sensor in two separate sessions (Session 1 and Session 2) with 7 variations each: neutral, smile,
illumination, paper occlusion, mouth occlusion, eyes occlusion and open mouth. This dataset is employed for
evaluating our approach with low-resolution data with three diferent protocols, as deined in [Min et al. 2014].
For each protocol, the gallery is composed of all the seven variations listed above from Session 1, while the probe
set varies as follows:
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(a) High-resolution (b) Low-resolution

Fig. 8. Examples of a high- and a low-resolution face of the same subject from the MICC-HR/LR 3D face dataset.

(i) Probe composed of all the seven variations from Session 2;
(ii) Probe composed of three variations (neutral, smile, illumination) from Session 2;
(iii) Probe composed of one variation (neutral) from Session 2.

IIIT-D RGB-D ś This dataset includes 106 subjects with 4, 605 RGB-D images comprising neutral as well as
spontaneously expressive faces. For data acquisition, the Kinect V1 was used.

MICC-HR/LR 3D face dataset ś For the speciic purpose of face recognition across scans with diferent
resolution, we collected a dataset of paired high- and low-resolution scans of 11 people performing 18 complex
and non-standard expressions, plus the neutral pose. The collection of this data was motivated by the lack of
publicly available datasets explicitly including both high- and low-resolution scans of the same subject. The
dataset has been collected during Summer 2019. The participants were students and staf members with age
ranging from 20 to 50, 10 men and 1 woman. To collect aligned pairs of high- and low-resolution 3D scans,
a KinectV2 sensor was placed in front of a high-resolution 3dMD scanner. The 3dMD scanner provides very
accurate meshes with an average RMS reconstruction error of about 0.2mm or better, depending on the exact
pre-calibration and coniguration of the device. The scans have an average of about 40,000 vertices and 80,000
facets. The Kinect sequences start from a neutral expression and reach a peak expression. The high-resolution
scan is captured at the peak expression. In this work, we use only the peak depth frame from the Kinect sequence.
This is intended to validate our network in the worst case scenario, without considering depth aggregation for
increasing the depth resolution. We did not consider the RGB video as we focus speciically on 3D recognition.
An example of the paired high- and-low resolution face scans is shown in Figure 8.

To perform recognition, we deined some speciic protocols. The gallery set is always composed of the high-
resolution scans, while the Kinect depth frames compose the probe set. Given that one neutral plus 18 expressions
are included in the data of each subject, we deine three diferent experiments:

(1) Probe composed of the neutral sequence only;
(2) Probe composed of the 18 expressive sequences;
(3) Probe composed of all the 19 sequences.

The gallery, instead, can be either composed of the neutral scan only, or all the 19 scans. This provides a total
of 6 diferent protocols. In the following, we will refer to each protocol as Gallery-vs-Probe, where both can be
Neutral (N ), Non-Neutral (NN ), and All (A). We will report identiication results in terms of rank-1 recognition.
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Table 1. EURECOM dataset: rank-1 results using depth data, and the combination between 3DLBP DI and Sigmoid DI. The
gallery is from Session 1, while the probe set is composed of: (i) Session 2, (ii) Session 2 without occlusions, (iii) neutral scans
from Session 2.

Data Type (i) Session 2 (ii) Session 2 w/o occlusion (iii) Session 2 neutral

Pre-processed depth 66.20% 74.51% 73.07%

3DLBP DI 63.19% 73.08% 73.08%
Sigmoid DI 64.56% 73.08% 80.77%

3DLBP DI + Depth 67.31% 76.92% 75.00%
Sigmoid DI + Depth 72.25% 80.29% 84.62%

5.2 Training Details

For training our network, we used together the face scans in the FRGC and Bosphorus datasets. The network was
trained from scratch for 200 epochs. We augmented the training set by applying a 3D rotation around the Y (pitch
angle) and X (yaw angle) axis from −30 to +30 degrees to each training face. The inal number of training images
was 98, 173, of 571 individuals. The images were normalized utilizing their average and standard deviation. We
used the Adam optimizer with a learning rate of 0.0005, and for the moment estimates (β1 and β2) we utilized the
exponential decay rates of 0.9 and 0.999, respectively. Our batch size was 25.

5.3 Ablation study

An ablation study was carried out to determine the best type of data to be used as input and so validate
our proposed Sigmoid DI. To this end, we used the pre-processed depth, the DI originated from the original
3DLBP operator, our proposed sigmoid encoding, and combinations of DIs plus pre-processed depth. The above
experiments were performed on the EURECOM dataset. For evaluation, we used our complete architecture
comprising self-and-cross attention, except when using depth data only as input. In this latter case, there are no
extra channels with which compute the cross-attention. So, only self-attention is applied.
Table 1 shows the results obtained with diferent input data. The training was carried out as described in

Section 5.2, and the matching was performed by computing the cosine similarity between a probe and all the
faces in the gallery. The probe is inally associated with the identity of the most similar face in the gallery. Results
are reported in terms of rank-1 recognition rate. Looking at the table, it is possible to see that the Sigmoid DI
plus the pre-processed depth outperforms all the other data, with a performance increase of about 5% from
the second-best performing input. One key aspect to notice is that, while performance are comparable when
separately using the depth or the Sigmoid DI, combining them results in a noticeable accuracy improvement.
This evidences the potentiality of 3D data over standard RGB imagery, which can be exploited to extract richer
information. In what follows though, we will also be showing that, in order to efectively exploit this additional
information, a careful network design is required.

5.4 Results

In this section, we report results obtained on the EURECOM Kinect face dataset, the IIIT-D RGB-D face database,
and the MICC-HR/LR 3D face dataset, also in comparison to other methods in the literature. Given the very few
approaches that reported results using these datasets with a comparable protocol, i.e., cross-database and cross-
resolution, we mainly compare our proposed architecture against other state-of-the-art network architectures.
The results reported for the ResNet50 [He et al. 2015] and MobileNet V3 [Howard et al. 2019] architectures
were obtained by training the models from scratch with the Sigmoid plus depth data using the same parameters
and augmentation as for our approach. For the VGG approach, we utilized the publicly available code in [Kim
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Table 2. EURECOM dataset: Rank-1 results. The gallery is from Session 1, while the probe set is composed of: (i) Session 2,
(ii) the three variants without occlusions from Session 2, (iii) neutral scans from Session 2. The results marked with * are
from the network published in [Cardia Neto et al. 2019] utilized as feature extractor. PPD stands for pre-processed depth.

Method (i) Session 2 (ii) Session 2 w/o occlusion (iii) Session 2 neutral

Sigmoid* 55.49% 59.13% 63.46%
3DLBP* 57.41% 65.38% 69.23%
Fusion* 58.52% 62.98% 59.62%
VGG [Kim et al. 2017] 13.9% 14.8% 13.5%
ResNet50 58.52% 66.35% 69.23%
Mobilenet v3 59.34% 74.04% 78.85%

SAN - No attention + Sigmoid + PPD 69.78% 78.37% 80.77%
SAN - Self-attention + Sigmoid + PPD 73.63% 81.25% 80.77%
SAN - Cross-attention + Sigmoid + PPD 73.35% 82.21% 86.54%

SAN - Self- and cross-attention + Sigmoid + PPD 72.25% 80.29% 84.62%

et al. 2017] to process the depth images, and pre-trained weights. We also considered the network architecture
described in [Cardia Neto et al. 2019], using it as feature extractor instead of ine-tuning the classiier on the test
dataset as done in [Cardia Neto et al. 2019].

EURECOM dataset. Table 2 shows the results of the experiments performed with the EURECOM dataset, where
the matching is performed between low- and low-resolution data. Remembering that the training is carried
out only with high-resolution data, the fact that our approach is the best performing among several diferent
architectures suggests us that the learned features maintained discriminative information, which is also robust to
changes in resolution. The considerable gap between our results and those obtained with the VGG model [Kim
et al. 2017], which only uses depth as input is a further evidence of the resolution robustness obtained with
our solution, and how the DIs contribute to it. The improved accuracy with respect to other state-of-the-art
architectures, instead, demonstrates the advantage of our architectural choices. On the opposite, the drop in
performance when occluded faces are also considered (experiment (i)) evidences some lacks of our method in
this respect. In the EURECOM dataset, the occlusions are originated by subjects putting a hand or a sheet of
paper in front of the face, making the face surface lat on those regions. Given the fact that our DIs describe
low-level shape information in terms of depth diferences, it is possible to assume that those lat regions afect
the performance of our method. However, this limitation is related to the operator rather than to the network
architecture itself. Another important aspect to consider is that the best performing approaches use the proposed
attention mechanism. The diference between the best performing method with any attention, and the one
without attention can vary from 4% to 6% depending on the protocol. The results point towards the importance
of utilizing any type of attention mechanism, even if it does not combine self- and cross-attention.

IIIT-D dataset. To evaluate our results in a less constrained setting, we have performed experiments on the
IIIT-D dataset. To this end, we followed the protocol described in [Goswami et al. 2013]. In particular, this protocol
used a 5-fold cross validation, where each fold contains 464 faces from the 106 subjects and the results from the
Rank-5 accuracy is utilized. The validation is instead performed on 4,181 face images from diferent subjects. We
underline that the depth images contained in this dataset are highly noisy, and captured at a very low-resolution.
For this reason, most works employing this dataset make use of both RGB and depth data. A very recent work
also analyzed this fact, reporting a detailed discussion regarding the diiculty of using such data [Hu et al.
2019]. In this context, results show that our proposed approach still performs efectively, even using only very
low-resolution depth information. Table 3 reports the results of our method and for the same approaches we used
in the comparison on the EURECOM dataset, plus the method in [Hu et al. 2019]. Our approach with sigmoid
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Table 3. IIIT-D face dataset: rank-5 accuracy. The results marked with * are from the network published in [Cardia Neto
et al. 2019] utilized as feature extractor. PPD stands for pre-processed depth.

Method Rank-5 Accuracy

Sigmoid* 25.02% ± 0.01
3DLBP* 32.83% ± 0.01
Fusion* 37.44% ± 0.01
VGG [Kim et al. 2017] 58.29% ± 0.009
ResNet50 53.05% ± 0.006
Mobilenet v3 31.75% ± 0.01
Hu, Zhao, and Liu [Hu et al. 2019] 26.8%

SAN - No-attention + Sigmoid + PPD 43.77% ± 0.01
SAN - Self-attention + Sigmoid + PPD 45.82% ± 0.006
SAN - Cross-attention + Sigmoid + PPD 45.22% ± 0.01
SAN - Self- and cross-attention + Sigmoid + PPD 59.31% ± 0.01

+ pre-processed depth (PPD in the Table) still outperformed all the other works we are comparing with. Since
the data in this dataset is very noisy, the process of encoding at a coarser-resolution but with a larger range of
variations, which is what the Sigmoid encoding process does, leads to a signiicant robustness. In this experiment,
it is also possible to observe how joining self- and cross-attention signiicantly increases the performance for our
approach. The performance of the full attention mechanism proposed is about 15% better than utilizing only
one of the parts of the mechanism (either self- or cross-attention). Given the quality of data, it is reasonable that
using more information from diferent aspects of the attention mechanism helps the method in reducing the
negative impact of noise.

MICC-HR/LR 3D face dataset. Results obtained on the MICC-HR/LR 3D face dataset are summarized in Table 4.
In these experiments. the network is trained with high-resolution data, and the matching is performed between
high- and low-resolution. This resembles a real-world scenario, where the gallery is collected in a controlled
setting, while the probe comes from surveillance devices. Our approach has shown to be more efective than
other works in comparison, making it suitable for real applications, where a certain degree of robustness to noisy
conditions is required.
Finally, we note that both aspects, i.e., architecture and data, are important. The VGG uses only depth data,

whilst the ResNet and the Mobilenet v3 were trained with the combination of Sigmoid DI + pre-processed depth.
There are some cases where the former is more accurate (see Table 3), while others where using the DIs result
signiicantly better (see Table 2 and Table 4). Overall, our solution comprising the DIs and a dedicated architecture,
reports consistent results across all the datasets, which span a variety of challenging conditions, including very
noisy data, occlusions, expressions and resolution diferences. In these cross-resolution scenarios, the approaches
that utilize our DI as its input data have performed better. This is because our pre-processing stages help to reduce
the gap between resolutions, hence learning a set of features more robust to resolution diferences. Combining
this with a low-level feature representation, which is more robust to acquisition noise, makes the learned features
perform better in such scenarios.

Similar to previous datasets, we observe an increase in performance when utilizing attention in the proposed
architecture. Every time any attention mechanism is used, our proposed method increases its performance and,
in most cases, joining self- and cross-attention increases it even further. This is mostly evident for the protocols
that include more samples in the gallery.
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Table 4. MICC face dataset. Gallery is composed of high-resolution scans, while probe is composed from Kinect sequences.
The results marked with * are from the network published in [Cardia Neto et al. 2019] utilized as feature extractor. PPD
stands for pre-processed depth.

Method N vs N N vs NN N vs A A vs N A vs NN A vs A

Sigmoid* 63.64% 54.87% 55.34% 81.82% 73.85% 74.27%
3DLBP* 63.64% 61.54% 61.65% 63.64% 67.18% 66.99%
Fusion* 81.82% 61.54% 62.62% 72.73% 75.38% 75.24%
VGG [Kim et al. 2017] 18.18% 18.27% 18.26% 18.18% 18.27% 18.26%
ResNet50 81.82% 68.21% 68.23% 63.64% 76.41% 75.73%
Mobilenet v3 72.73% 65.13% 65.53% 81.82% 75.90% 76.21%

SAN - No-attention + Sigmoid + PPD 81.82% 67.69% 68.45% 72.73% 75.38% 75.24%
SAN - Self-attention + Sigmoid + PPD 72.73% 71.79% 71.84% 72.73% 80.00% 79.61%
SAN - Cross-attention + Sigmoid + PPD 81.82% 68.21% 68.96% 72.73% 77.95% 77.67%
SAN - Self- and cross-attention + Sigmoid + PPD 81.82% 70.77% 71.36% 81.82% 86.67% 86.41%

6 CONCLUSIONS

This work proposed a new low-resolution 3D face recognition approach, which proved efective and highly
robust to resolution diferences. Our proposed method develops on the assumption that a łhybridž approach can
be built, composed of a CNN that learns from multi-channel images made up of a combination of DIs, generated
from handcrafted low-level features and depth data. The proposed sigmoid DI revealed more efective than the
standard 3DLBP counterpart in encoding discriminative traits of the face from the depth images, while being
suiciently robust to the acquisition noise. However, we found the visual information in the generated images
being signiicantly uncorrelated, which required processing each channel separately, and a strategy to fuse
the information from each stream. This process resulted decisive to learn robust features. We achieved this by
introducing self- and cross-attention mechanisms in our architecture. Both contributed to help the CNN focus on
relevant parts of the face, generating better results. The cross-attention part of the attention module plays an
important role in the performance of our approach, highlighting the importance of increasing collaboration from
the diferent input streams. Another important aspect shown by our solution is the strong resolution invariance.
The comparison with the deep VGG16 architecture evidences quite well this aspect; in fact, spite its impressive
results on high-resolution datasets that can be found in the literature, when tested on low-resolution, VGG16
performance drops dramatically.
From the reported results, we can also conclude that, while the DIs and the depth resulted in comparable

performance if used separately, joining them in our architecture led to a signiicantly improved accuracy. This
suggests our solution comprising the attention mechanism allows us to efectively exploit all the information
carried by each stream, being the consistently improved results on all the tested datasets a clear evidence of
this. Hence, our solution would likely result efective if additional input data, e.g., normal or curvature maps,
are used. We also concluded that our architecture has yet some limitations that need to be further investigated.
However, the higher performance compared to other solutions based on deep networks suggests us interesting
future perspectives, that can open the way to the development of smaller yet efective networks for 3D face
recognition systems.
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