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Abstract
Verification of programs using floating-point arithmetic is challenging on several accounts.
One of the difficulties of reasoning about such programs is due to the peculiarities of
floating-point arithmetic: rounding errors, infinities, non-numeric objects (NaNs), signed
zeroes, denormal numbers, different rounding modes, etc. One possibility to reason about
floating-point arithmetic is to model a program computation path by means of a set of
ternary constraints of the form and use constraint propagation techniques to
infer new information on the variables’ possible values. In this setting, we define and prove
the correctness of algorithms to precisely bound the value of one of the variables x, y or z,
starting from the bounds known for the other two. We do this for each of the operations and
for each rounding mode defined by the IEEE 754 binary floating-point standard, even in the
case the rounding mode in effect is only partially known. This is the first time that such so-
called filtering algorithms are defined and their correctness is formally proved. This is an
important slab for paving the way to formal verification of programs that use floating-point
arithmetics.
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1 Introduction

Programs using floating-point numbers are notoriously difficult to reason about [33]. Many
factors complicate the task:

1. compilers may transform the code in a way that does not preserve the semantics of
floating-point computations;

2. floating-point formats are an implementation-defined aspect of most programming
languages;

3. there are different, incompatible implementations of the operations for the same
floating-point format;

4. mathematical libraries often come with little or no guarantee about what is actually
computed;

5. programmers have a hard time predicting and avoiding phenomena caused by the lim-
ited range and precision of floating-point numbers (overflow, absorption, cancellation,
underflow, etc.); moreover, devices that modern floating-point formats possess in order
to support better handling of such phenomena (infinities, signed zeroes, denormal
numbers, non-numeric objects a.k.a. NaNs) come with their share of issues;

6. rounding is a source of confusion in itself; moreover, there are several possible rounding
modes and programs can change the rounding mode any time.

As a result of these difficulties, the verification of floating-point programs in industry relies,
almost exclusively, on informal methods, mainly testing, or on the evaluation of the numer-
ical accuracy of computations, which only allows to determine conservative (but often too
loose) bounds on the propagated error [19].

The satisfactory formal treatment of programs engaging in floating-point computations
requires an equally satisfactory solution to the difficulties summarized in the above enu-
meration. Progress has been made, but more remains to be done. Let us review each
point:

1. Some compilers provide options to refrain from rearranging floating-point computa-
tions. When these are not available or cannot be used, the only possibility is to verify
the generated machine code or some intermediate code whose semantics is guaranteed
to be preserved by the compiler back-end.

2. Even though the used floating-point formats are implementation-defined aspects of,
say, C and C++1 the wide adoption of the IEEE 754 standard for binary floating-point
arithmetic [24] has improved things considerably.

3. The IEEE 754 standard does provide some strong guarantees, e.g., that the results of
individual additions, subtractions, multiplications, divisions and square roots are cor-
rectly rounded, that is, it is as if the results were computed in the reals and then rounded
as per the rounding mode in effect. But it does not provide guarantees on the results of
other operations and on other aspects, such as, e.g., when the underflow exception is
signaled [17].2

1This is not relevant if one analyzes machine or sufficiently low-level intermediate code.
2The indeterminacy described in [17] is present also in the 2008 edition of IEEE 754 [24].
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4. A pragmatic, yet effective approach to support formal reasoning on commonly used
implementation of mathematical functions has been recently proposed in [6]. The
proposed techniques exploit the fact that the floating-point implementation of math-
ematical functions preserve, not completely but to a great extent, the piecewise
monotonicity nature of the approximated functions over the reals.

5. A static analysis for detecting floating-point exceptions based on abstract interpretation
has been presented in [32]. A few attempts at this task have been made using other
techniques [7, 38] but, as we argue in Sections 1.4 and 5, they present precision and
soundness issues.

6. Most verification approaches in the literature assume the round-to-nearest rounding
mode [10], or over-approximate by always considering worst-case rounding modes
[32]. Analyses based on SMT solvers [13] can treat each rounding mode precisely, but
only if the rounding mode in use is known exactly. As we show in Section 5, some SMT
solvers also suffer from soundness issues.

The contribution of this paper is in areas 5 and 6. In particular, concerning point 5,
by defining and formally proving the correctness of constraint propagation algorithms for
IEEE 754 arithmetic constraints, we enable the use of formal methods for a broad range of
programs. Such methods, i.e., abstract interpretation and symbolic model checking, allow
for proving that a number of generally unwanted phenomena (e.g., generation of NaNs and
infinities, absorption, cancellation, instability, etc.) do not happen or, in case they do happen,
allow the generation of a test vector to reproduce the issue. Regarding point 6, handling of
all IEEE 754 rounding modes, and being resilient to uncertainty about the rounding mode
in effect, is another original contribution of this paper.

While the round-to-nearest rounding mode is, by far, the most frequently used one, it
must be taken into account that:

– the possibility of programmatically changing the rounding mode is granted by
IEEE 754 and is offered by most of its implementations (e.g., in the C programming
language, via the fesetround() standard function);

– such possibility is exploited by interval libraries and by numerical calculus algorithms
(see, e.g., [35, 36]);

– setting the rounding mode to something different from round-to-nearest can be done
by third parties in a way that was not anticipated by programmers: this may cause
unwanted non-determinism in video games [20] and there is nothing preventing the
abuse of this feature for more malicious ends, denial-of-service being only the least
dangerous in the range of possibilities. Leaving malware aside, there are graphic and
printer drivers and sound libraries that are known to change the rounding mode and
may fail to set it back [37].

As a possible way of tackling the difficulties described until now, and enabling sound
formal verification of floating-point computations, this paper introduces new algorithms
for the propagation of arithmetic constraints over floating-point numbers. These algorithms
are called filtering algorithms as their purpose is to prune the domains of possible variable
values by filtering out those values that cannot be part of the solution of a system of con-
straints. Algorithms of this kind must be employed in constraint solvers that are required in
several different areas, such as automated test-case generation, exception detection or the
detection of subnormal computations. In this paper we propose fully detailed, provably cor-
rect filtering algorithms for floating-point constraints. Such algorithms handle all values,
including symbolic values (NaNs, infinities and signed zeros), and rounding modes defined
by IEEE 754. Note that filtering techniques used in solvers over the reals do not preserve
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all solutions of constraints over floating-point numbers [30, 31], and therefore they cannot
be used to prune floating-point variable domains reliably. This leads to the need of filtering
algorithms such as those we hereby introduce.

The choice of the IEEE 754 Standard for floating-point numbers as the target represen-
tation for our algorithms is due to their ubiquity in modern computing platforms. Indeed,
although some programming languages leave the floating-point format as an implemen-
tation-defined aspect, all widely-used hardware platforms —e.g., x86 [25] and ARM
[3]—only implement the IEEE 754 Standard, while older formats are considered legacy.

Before defining our filtering algorithms in a detailed and formal way, we provide a more
comprehensive context on the propagation of floating-point constraints and its practical
applications (Sections 1.1 and 1.2), and justify their use in formal program analysis and
verification (Section 1.3). We also give a more in-depth view of related work in Section 1.4,
and clarify our contribution in Section 1.5.

1.1 From programs to floating-point constraints

Independently from the application, program analysis starts with parsing, the generation of
an abstract syntax tree and the generation of various kinds of intermediate program repre-
sentations. An important intermediate representation is called three-address code (TAC). In
this representation, complex arithmetic expressions and assignments are decomposed into
sequences of assignment instructions of the form

result := operand1 operator operand2.

A further refinement is the computation of the static single assignment form (SSA) [2]
whereby, labeling each assigned variable with a fresh name, assignments can be consid-
ered as if they were equality constraints. For example, the TAC form of the floating-point
assignment z := z ∗ z + z is t := z ∗ z; z := t + z, which in an SSA form becomes
t1 := z1 ∗ z1; z2 := t1 + z1. These, in turn, can be regarded as the conjunction of the
constraints t1 = z1 � z1 and z2 = t1 � z1, where by � and � we denote the multiplication
and addition operations on floating-point numbers, respectively. The Boolean comparison
expressions that appear in the guards of if statements and loops can be translated into con-
straints similarly. This way, a C/C++ program translated into an SSA-based intermediate
representation can be represented as a set of constraints on its variables. In particular, a con-
straint set arises form each execution path in the program. For this reason, this approach to
program modeling can be viewed as symbolic execution [15, 26]. Constraints can be added
or removed from such a set in order to obtain a constraint system that describes a particular
behavior of the program (e.g., the execution of a certain instruction, the occurrence of an
overflow in a computation, etc.). Once such a constraint system has been solved, the vari-
able domains only contain values that cause the desired behavior. If one of the domains is
empty, then that behavior can be ruled out. For more details on the symbolic execution of
floating-point computations, we refer the reader to [4, 10].

1.2 Constraint propagation

Once constraints have been generated, they are amenable to constraint propagation: under
this name goes any technique that entails considering a subset of the constraints at a time,
explicitly removing elements from the set of values that are candidate to be assigned to
the constrained variables. The values that can be removed are those that cannot possi-
bly participate in a solution for the selected set of constraints. For instance, if a set of
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floating-point constraints contains the constraint x � x = x, then any value outside the set
{NaN,+0, 1,+∞} can be removed from further consideration. The degree up to which this
removal can actually take place depends on the data-structure used to record the possible
values for x, intervals and multi-intervals being typical choices for numerical constraints.
For the example above, if intervals are used, the removal can only be partial (negative
floating-point numbers are removed from the domain of x). With multi-intervals more pre-
cision is possible, but any approach based on multi-intervals must take measures to avoid
combinatorial explosion.

In this paper, we only focus on interval-based constraint propagation: the algorithms we
present for intervals can be rather easily generalized to the case of multi-intervals. We make
the further assumption that the floating-point formats available to the analyzed program are
also available to the analyzer: this is indeed quite common due to the wide adoption of the
IEEE 754 formats.

Interval-based floating-point constraint propagation consists of iteratively narrowing the
intervals associated to each variable: this process is called filtering. A projection is a func-
tion that, given a constraint and the intervals associated to two of the variables occurring
in it, computes a possibly refined interval for the third variable (the projection is said to be
over the third variable). Taking z2 = t1 � z1 as an example, the projection over z2 is called
direct projection (it goes in the same sense of the TAC assignment it comes from), while the
projections over t1 and z1 are called indirect projections.

1.3 Applications of constraint propagation to program analysis

When integrated in a complete program verification framework, the constraint propagation
techniques presented in this paper enable activities such as abstract interpretation, automatic
test-input generation and symbolic model checking. In particular, symbolic model checking
means exhaustively proving that a certain property, called specification, is satisfied by the
system in exam, which in this case is a computer program. A model checker can either prove
that the given specification is satisfied, or provide a useful counterexample whenever it is
not.

For programs involving floating-point computations, some of the most significant prop-
erties that can be checked consist of ruling out certain undesired exceptional behaviors such
as overflows, underflows and the generation of NaNs, and numerical pitfalls such as absorp-
tion and cancellation. In more detail, we call a numeric-to-NaN transition a floating-point
arithmetic computation that returns a NaN despite its operands being non-NaN. We call a
finite-to-infinite transition the event of a floating-point operation returning an infinity when
executed on finite operands, which occurs if the operation overflows. An underflow occurs
when the output of a computation is too small to be represented in the machine floating-
point format without a significant loss in accuracy. Specifically, we divide underflows into
three categories, depending on their severity:

Gradual underflow: an operation performed on normalized numbers results in a subnor-
mal number. In other words, a subnormal has been generated out of normalized numbers:
enabling gradual underflow is indeed the very reason for the existence of subnormals in
IEEE 754. However, as subnormals come with their share of problems, generating them
is better avoided.

Hard underflow: an operation performed on normalized numbers results in a zero,
whereas the result computed on the reals is nonzero. This is called hard because
the relative error is 100%, gradual overflow does not help (the output is zero, not a
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subnormal), and, as neither input is a subnormal, this operation may constitute a problem
per se.

Soft underflow: an operation with at least one subnormal operand results in a zero, whereas
the result computed on the reals is nonzero. The relative error is still 100% but, as one of
the operands is a subnormal, this operation may not be the root cause of the problem.

Absorption occurs when the result of an arithmetic operation is equal to one of the
operands, even if the other one is not the neutral element of that operation. For example,
absorption occurs when summing a number with another one that has a relatively very small
exponent. If the precision of the floating-point format in use is not enough to represent them,
the additional digits that would appear in the mantissa of the result are rounded out.

Definition 1 (Absorption) Let x, y, z ∈ F with y, z ∈ R, let be any IEEE 754 floating-
point operator, and let . Then gives rise to absorption if

– and either x = y and z �= 0, or x = z and y �= 0;
– and either x = y and z �= 0, or x = −z and y �= 0;
– and either x = ±y and z �= ±1, or x = ±z and y �= ±1;
– , x = ±y and z �= ±1.

In this section, we show how symbolic model checking can be used to either rule out or
pinpoint the presence of these run-time anomalies in a software program by means of a sim-
ple but meaningful practical example. Floating-point constraint propagation has been fully
implemented with the techniques presented in this paper in the commercial tool ECLAIR,3

developed and commercialized by BUGSENG. ECLAIR is a generic platform for the for-
mal verification of C/C++ and Java source code, as well as Java bytecode. The filtering
algorithms described in the present paper are used in the C/C++ modules of ECLAIR that
are responsible for semantic analysis based on abstract interpretation [16], automatic gen-
eration of test-cases, and symbolic model checking. The latter two are based on symbolic
execution and constraint satisfaction problems [22, 23], whose solution is based on multi-
interval refinement and is driven by labeling and backtracking search. Indeed, the choice
of ECLAIR as our target verification platform is mainly due to its use of constraint prop-
agation for solving constraints generated by symbolic execution, which makes it easier to
integrate the algorithms presented in this paper. However, such techniques are general, and
could be used to solve the constraints generated by any symbolic execution engine.

Constraints arising from the use of mathematical functions provided by C/C++ stan-
dard libraries are also supported. Unfortunately, most implementations of such libraries are
not correctly rounded, which makes the realization of filtering algorithms for them rather
challenging. In ECLAIR, propagation for such constraints is performed by exploiting the
piecewise monotonicity properties of those functions, which are partially retained by all
implementations we know of [6].

To demonstrate the capabilities of the techniques presented in this paper, we applied
them to the C code excerpt of Fig. 1. It is part of the implementation of the Bessel func-
tions in the GNU Scientific Library,4 a widely adopted library for numerical computations.
In particular, it computes the scaled regular modified cylindrical Bessel function of first
order, exp(−|x|)I1(x), where x is a purely imaginary argument. The function stores the

3https://bugseng.com/eclair, last accessed on October 28th, 2021.
4https://www.gnu.org/software/gsl/, last accessed on October 28th, 2021.

https://bugseng.com/eclair
https://www.gnu.org/software/gsl/
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Fig. 1 Function extracted from the GNU Scientific Library (GSL), version 2.5. The possible numerical
exceptions detected by ECLAIR are marked by the raised letters next to the operators causing them. h, s
and g stand for hard, soft and gradual underflow, respectively; a for absorption; i for finite-to-infinity; n for
numeric-to-NaN

computed result in the val field of the data structure result, together with an estimate of
the absolute error (result->err). Additionally, the function returns an int status code,
which reports to the user the occurrence of certain exceptional conditions, such as overflows
and underflows. In particular, this function only reports an underflow when the argument
is smaller than a constant. We analyzed this program fragment with ECLAIR’s symbolic
model checking engine, setting it up to detect overflow (finite-to-infinite transitions), under-
flow and absorption events, and NaN generation (numeric-to-NaN transitions). Thus, we
found out the underflow guarded against by the if statement of line 12 is by far not the only
numerical anomaly affecting this function. In total, we found a numeric-to-NaN transition,
two possible finite-to-infinite transitions, two hard underflows, 5 gradual underflows and 6
soft underflows. The code locations in which they occur are all reported in Fig. 1.

For each one of these events, ECLAIR yields an input value causing it. Also, it option-
ally produces an instrumented version of the original code, and runs it on every input it
reports, checking whether it actually triggers the expected behavior or not. Hence, the pro-
duced input values are validated automatically. For example, the hard underflow of line 17
is triggered by the input x = -0x1.8p-1021 ≈ −6.6752 × 10−308. If the function is
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executed with x = -0x1p+1023 ≈ −8.9885 × 10307, the multiplication of line 29 yields
a negative infinity. Since ax = |x|, we know x = 0x1p+1023 would also cause the over-
flow. The same value of x causes an overflow in line 30 as well. The division in the same
line produces a NaN if the function is executed with x = −∞.

The context in which the events we found occur determines whether they could cause
significant issues. For example, even in the event of absorption, the output of the overall
computation could be correctly rounded. Whether or not this is acceptable must be assessed
depending on the application. Indeed, the capability of ECLAIR of detecting absorption can
be a valuable tool to decide if a floating-point format with a higher precision is needed.
Nevertheless, some of such events are certainly problematic. The structure of the function
suggests that no underflow should occur if control flow reaches past the if guard of line 12.
On the contrary, several underflows may occur afterwards, some of which are even hard.
Moreover, the generation of infinities or NaNs should certainly either be avoided, or sig-
naled by returning a suitable error code (and not GSL SUCCESS). The input values reported
by ECLAIR could be helpful for the developer in fixing the problems detected in the func-
tion of Fig. 1. Furthermore, the algorithms presented in this paper are provably correct. For
this reason, it is possible to state that this code excerpt presents no other issues besides
those we reported above. Notice, however, that due to the way the standard C mathematical
library functions are treated, the results above only hold with respect to the implementation
of the exp function in use. In particular, the machine we used for the analysis is equipped
with the x86 64 version of EGLIBC 2.19, running on Ubuntu 14.04.1.

1.4 Related work

1.4.1 Filtering algorithms

In [30] C. Michel proposed a framework for filtering constraints over floating-point num-
bers. He considered monotonic functions over one argument and devised exact direct and
correct indirect projections for each possible rounding mode. Extending this approach to
binary arithmetic operators is not an easy task. In [10], the authors extended the approach
of [30] by proposing filtering algorithms for the four basic binary arithmetic operators
when only the round-to-nearest tails-to-even rounding mode is available. They also pro-
vided tables for indirect function projections when zeros and infinities are considered with
this rounding mode. In our approach, we generalize the initial work of [10] by providing
extended interval reasoning. The algorithms and tables we present in this paper consider all
rounding modes, and contain all details and special cases, allowing the interested reader to
write an implementation of interval-based filtering code.

Recently, [21] presented optimal inverse projections for addition under the round-to-
nearest rounding mode. The proposed algorithms combine classical filtering based on the
properties of addition with filtering based on the properties of subtraction constraints on
floating-points as introduced by Marre and Michel [29]. The authors are able to prove the
optimality of the lower bounds computed by their algorithms. However, [21] only cov-
ers addition in the round-to-nearest rounding mode, leaving other arithmetic operations
(subtraction, multiplication and division) and rounding modes to future work. Special val-
ues (infinities and NaNs) are also not handled. Conversely, this paper presents filtering
algorithms covering all such cases.

It is worth noting that the filtering algorithms on intervals presented in [29] have been
corrected for addition/subtraction constraints and extended to multiplication and division
under the round-to-nearest rounding mode by some of these authors (see [4, 5]). In this
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paper we discuss the cases in which the filtering algorithms in [4, 5, 29] should be used in
combination with our filters for arithmetic constraints. However, the main aim of this paper
is to provide an exhaustive and provably correct treatment of filtering algorithms supporting
all special cases for all arithmetic constraints under all rounding modes.

1.4.2 SMT solvers

Satisfiability Modulo Theories (SMT) is the problem of deciding satisfiability of first-order
logic formulas containing terms from different, pre-defined theories. Examples of such the-
ories are integer or real arithmetic, bit-vectors, arrays and uninterpreted functions. Recently,
SMT solvers have been widely employed as backends for different software verification
techniques, such as model checking and symbolic execution [9]. The need for verifying
floating-point programs lead to the introduction of a floating-point theory [13] in SMT-LIB,
a library defining a common input language for SMT solvers. Since then, the theory has
been implemented in different ways into several solvers. CVC4 [8, 12], MathSAT [14] and
Z3 [18] use bit-blasting, i.e., they convert floating-point constraints to bit-vector formulae,
which are then solved as Boolean SAT problems. Some tools, instead, use methods based
on interval reasoning. MathSAT also supports Abstract Conflict Driven Learning (ACDL)
for solving floating-point constraints based on interval domains [11]. Colibri [28] uses con-
straint programming techniques, with filtering algorithms such as those in [5, 10] and those
presented in this paper. However, [28] does not report such filters in detail, nor proves
their correctness. This leads to serious soundness issues, as we shall see in Section 5.2. An
experimental comparison of such tools can be found in [12].

Note that SMT-LIB, the input language of all such tools, only allows to specify one
single rounding mode for each floating-point operation. Thus, the only way of dealing with
uncertainty of the rounding mode in use is to solve the same constraint system with all
possible rounding mode combinations, which is quite unpractical. Our filtering algorithms
are instead capable of working with a set of possible rounding modes, and retain soundness
by always choosing the worst-case one.

1.4.3 Floating-point program verification

Several program analyses for automatic detection of floating-point exceptions were pro-
posed in the literature.

Relational abstract domains for the analysis of floating-point computations through
abstract interpretation have been presented in [32] and implemented in the tool Astrée.5

Such domains, however, over-approximate rounding operations by always assuming worst
cases, namely rounding toward plus and minus infinity, which may cause precision issues
(i.e., false positives) if only round-to-nearest is used. Also, [32] does not offer a treatment
of symbolic values (e.g., infinities) as exhaustive as the one we offer in this paper.

In [7] the authors proposed a symbolic execution system for detecting floating-
point exceptions. It is based on the following steps: each numerical program is trans-
formed to directly check each exception-triggering condition, the transformed program is
symbolically-executed in real arithmetic to find a (real) candidate input that triggers the
exception, the real candidate is converted into a floating-point number, which is finally
tested against the original program. Since approximating floating-point arithmetic with
real arithmetic does not preserve the feasibility of execution paths and outputs in any

5https://www.absint.com/astree/index.htm, last accessed on October 28th, 2021.

https://www.absint.com/astree/index.htm
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sense, they cannot guarantee that once a real candidate has been selected, a floating-point
number raising the same exception can be found. Even more importantly, even if the trans-
formed program over the reals is exception-free, the original program using floating-point
arithmetic may not be actually exception-free.

Symbolic execution is also the basis of the analysis proposed in [38], that aims at detect-
ing floating-point exceptions by combining it with value range analysis. The value range
of each variable is updated with the appropriate path conditions by leveraging interval
constraint-propagation techniques. Since the projections used in that paper have not been
proved to yield correct approximations, it can be the case that the obtained value ranges do
not contain all possible floating-point values for each variable. Indeed, valid values may be
removed from value ranges, which leads to false negatives. In Section 6, the tool for floating-
point exception detection presented in [38] is compared with the same analysis based on our
propagation algorithms. As expected, no false positives were detected among the results of
our analysis.

1.5 Contribution

This paper improves the state of the art in several directions:

1. all rounding modes are treated and there is no assumption that the rounding mode in
effect is known and unchangeable (increased generality);

2. utilization, to a large extent, of machine floating-point arithmetic in the analyzer with
few rounding mode changes (increased performance);

3. accurate treatment of round half to even —the default rounding mode of IEEE 754—
(increased precision);

4. explicit and complete treatment of intervals containing symbolic values (i.e., infinities
and signed zeros);

5. application of floating-point constraint propagation techniques to enable detection of
program anomalies such as overflows, underflows, absorption, generation of NaNs.

1.6 Plan of the paper

The rest of the paper is structured as follows: Section 2 recalls the required notions and
introduces the notation used throughout the paper; Section 3 presents some results on the
treatment of uncertainty on the rounding mode in effect and on the quantification of the
rounding errors committed in floating-point arithmetic operations; Section 4 contains the
complete treatment of addition and division constraints on intervals, by showing detailed
special values tables and the refinement algorithms; Section 5 reports the results of experi-
ments aimed at evaluating the soundness of existing tools. Section 6 concludes the main part
of the paper. Appendix A contains the complete treatment of subtraction and multiplication
constraints. The proofs of results not reported in the main text of the paper can be found in
Appendix B.

2 Preliminaries

We will denote by R+ and R− the sets of strictly positive and strictly negative real numbers,
respectively. The set of affinely extended reals, R ∪ {−∞,+∞}, is denoted by R.

Definition 2 (IEEE 754 binary floating-point numbers) A set of IEEE 754 binary
floating-point numbers [24] is uniquely identified by: p ∈ N, the number of
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significant digits (precision); emax ∈ N, the maximum exponent, the minimum exponent

being emin
def= 1− emax. The set of binary floating-point numbers F(p, emax, emin) includes:

– all signed zero and non-zero numbers of the form (−1)s · 2e · m, where

– s is the sign bit;
– the exponent e is any integer such that emin ≤ e ≤ emax;
– the mantissa m, with 0 ≤ m < 2, is a number represented by a string of p

binary digits with a “binary point” after the first digit:

m = (d0 . d1d2 . . . dp−1)2 =
p−1∑

i=0

di2
−i;

– the infinities +∞ and −∞; the NaNs: qNaN (quiet NaN) and sNaN (signaling NaN).

Numbers such that d0 = 1 are called normal. The smallest positive normal floating-point

number is f nor
min

def= 2emin and the largest is fmax
def= 2emax(2 − 21−p). The non-zero floating-

point numbers such that d0 = 0 are called subnormal: their absolute value is less than 2emin ,
and they always have fewer than p significant digits. Every finite floating-point number is

an integral multiple of the smallest subnormal magnitude fmin
def= 2emin+1−p. Note that the

signed zeroes +0 and −0 are distinct floating-point numbers. For a non-zero number x, we
will write even(x) (resp., odd(x)) to signify that the least significant digit of x’s mantissa,
dp−1, is 0 (resp., 1).

In the sequel we will only be concerned with IEEE 754 binary floating-point numbers
and we will write simply F for F(p, emax, emin) when there is no risk of confusion.

Definition 3 (Floating-point symbolic order) Let F be any IEEE 754 floating-point format.
The relation ≺⊆ F×F is such that, for each x, y ∈ F, x ≺ y if and only if both x and y are
not NaNs and either: x = −∞ and y �= −∞, or x �= +∞ and y = +∞, or x = −0 and
y ∈ {+0} ∪ R+, or x ∈ R− ∪ {−0} and y = +0, or x, y ∈ R and x < y. The partial order
�⊆ F × F is such that, for each x, y ∈ F, x � y if and only if both x and y are not NaNs
and either x ≺ y or x = y.

Note that F without the NaNs is linearly ordered with respect to ‘≺’.
For x ∈ F that is not a NaN, we will often abuse the notation by interchangeably using

the floating-point number or the extended real number it represents. The floats −0 and +0
both correspond to the real number 0. Thus, when we write, e.g., x < y we mean that x is
numerically less than y (for example, we have −0 ≺ +0 though −0 ≮ +0, but note that
x � y implies x ≤ y). Numerical equivalence will be denoted by ‘≡’ so that x ≡ 0, x ≡ +0
and x ≡ −0 all denote (x = +0) ∨ (x = −0).

Definition 4 (Floating-point predecessors and successors) The partial function F � F is
such that, for each x ∈ F,

succ(x)
def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞, if x = fmax;
min{ y ∈ F | y > x }, if − fmax ≤ x < −fmin

or fmin ≤ x < fmax;
fmin, if x ≡ 0;
−0, if x = −fmin;
−fmax, if x = −∞;
undefined, otherwise.
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The partial function F � F is defined by reversing the ordering, so that, for each x ∈ F,
pred(x) = −succ(−x) whenever succ(x) is defined.

Let ◦ ∈ {+, −, ·, /} denote the usual arithmetic operations over the reals. Let R
def= {↓,

0,↑, n} denote the set of IEEE 754 rounding modes (rounding-direction attributes): round
towards minus infinity (roundTowardNegative, ↓), round towards zero (roundTowardZero,
0), round towards plus infinity (roundTowardPositive, ↑), and round to nearest (roundTies-
ToEven, n). We will use the notation , where and r ∈ R, to denote an
IEEE 754 floating-point operation with rounding r .

The rounding functions are defined as follows. Note that they are not defined for 0: the
IEEE 754 standard, in fact, for operations whose exact result is 0, bases the choice between
+0 and −0 on the operation itself and on the sign of the arguments [24, Section 6.3].

Definition 5 (Rounding functions) The rounding functions defined by IEEE 754, [·]↑ :
R\{0} → F, [·]↓ : R\{0} → F, [·]0 : R\{0} → F and [·]n : R\{0} → F, are such that, for
each x ∈ R \ {0},

[x]↑ def=
⎧
⎨

⎩

+∞, if x > fmax;
min{ z ∈ F | z ≥ x }, if x ≤ −fmin or 0 < x ≤ fmax;
−0, if − fmin < x < 0;

(1)

[x]↓ def=
⎧
⎨

⎩

max{ z ∈ F | z ≤ x }, if − fmax ≤ x < 0 or fmin ≤ x;
+0, if 0 < x < fmin;
−∞, if x < −fmax;

(2)

[x]0 def=
{ [x]↓, if x > 0;

[x]↑, if x < 0; (3)

[x]n def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[x]↓, if − fmax ≤ x ≤ fmax and either∣∣[x]↓ − x
∣∣ <

∣∣[x]↑ − x
∣∣ or∣∣[x]↓ − x

∣∣ = ∣∣[x]↑ − x
∣∣ and even

([x]↓
) ;

[x]↓, if fmax < x < 2emax(2 − 2−p) or x ≤ −2emax(2 − 2−p);
[x]↑, otherwise.

(4)

Note that, when the result of an operation has magnitude lower than f nor
min, it is rounded to

a subnormal number, by adjusting it to the form (−1)s ·2emin ·m, and truncating its mantissa
m, which now starts with at least one 0, to the first p digits. This phenomenon is called
gradual underflow, and while it is preferred to hard underflow, which truncates a number
to 0, it still may cause precision issues due to the reduced number of significant digits of
subnormal numbers.

The rounding modes ↓ and ↑ are the most “extreme”, while n and 0 are always contained
between them. We formalize this observation as follows:

Proposition 1 (Properties of rounding functions) Let x ∈ R \ {0}. Then
[x]↓ ≤ x ≤ [x]↑, (5)

[x]↓ ≤ [x]0 ≤ [x]↑, (6)

[x]↓ ≤ [x]n ≤ [x]↑. (7)

Moreover,

[x]↓ = −[−x]↑. (8)

In this paper, we use intervals of floating-point numbers in F that are not NaNs.
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Definition 6 (Floating-point intervals) Let F be any IEEE 754 floating-point format. The
set IF of floating-point intervals with boundaries in F is given by

IF

def= {∅} ∪ { [�, u] ∣∣ �, u ∈ F, � � u
}
.

By [�, u] we denote the set { x ∈ F | � � x � u }. The set IF is a bounded meet-
semilattice with least element ∅, greatest element [−∞, +∞], and the meet operation,
which is induced by set-intersection, will be simply denoted by ∩.

Floating-point intervals with boundaries in F allow to capture the extended numbers in
F: NaNs should be tracked separately.

3 Roundingmodes and rounding errors

The IEEE 754 standard for floating-point arithmetic introduces different rounding opera-
tors, among which the user can choose on compliant platforms. The rounding mode in use
affects the results of the floating-point computations performed, and it must be therefore
taken into account during constraint propagation. In this section, we present some abstrac-
tions aimed at facilitating the treatment of rounding modes in our constraint projection
algorithms.

3.1 Dealing with uncertainty on the roundingmode in effect

Even if programs that change the rounding mode in effect are quite rare, whenever this
happens, the rounding mode in effect at each program point cannot be known precisely.
So, for a completely general treatment of the problem, such as the one we are proposing,
our choice is to consider a set of possible rounding modes. To this aim, in this section we
define two auxilliary functions that, given a set of rounding modes possibly in effect, select
a worst-case rounding mode that ensures soundness of interval propagation. Soundness is
guaranteed even if the rounding mode used in the actual computation differs from the one
selected, as far as the former is contained in the set. Of course, if a program never changes
the rounding mode, the set of possible rounding modes boils down to be a singleton.

The functions presented in the first definition select the rounding modes that can be used
to compute the lower (function r�) and upper (function ru) bounds of an operation in case
of direct projections.

Definition 7 (Rounding mode selectors for direct projections) Let F be any IEEE 754
floating-point format and S ⊆ R be a set of rounding modes. Let also y, z ∈ F and

be such that either .
Then
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The following functions select the rounding modes that will be used for the lower (func-
tions r̄ r

� and r̄�
� ) and upper (functions r̄ r

u and r̄�
u) bounds of an operation when computing

inverse projections. Note that there are different functions depending on which one of the
two operands is being projected: r̄ r

� and r̄ r
u for the right one, r̄�

� and r̄�
u for the left one.

Definition 8 (Rounding mode selectors for inverse projections) Let F be any IEEE 754
floating-point format and S ⊆ R be a set of rounding modes. Let also a, b ∈ F and

First, we define

Secondly, we define the following selectors:

The usefulness in interval propagation of the functions presented above will be clearer
after considering Proposition 2. Moreover, it is worth noting that, if the set of possible
rounding modes is composed by a unique rounding mode, then all the previously defined
functions return such rounding mode itself. In that case, the claims of Proposition 2 trivially
hold.

Proposition 2 Let F, S, y, z and ‘ ’ be as in Definition 7. Let also and
. Then, for each r ∈ S

(9)

Moreover, there exist r ′, r ′′ ∈ S such that

(10)

Now, consider with x, z ∈ F and r ∈ S. Let and

, according to Definition 8. Moreover, let ŷ′ be the minimum y′ ∈ F

such that , and let ỹ′′ be the maximum y′′ ∈ F such that . Then, the following
inequalities hold:

ŷ′ � y � ỹ′′.
The same result holds if , with and .
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Proof Here we only prove the claims for direct projections (namely, (9) and (10)), leaving
those concerning indirect projections, which are analogous, to Appendix B.2.

First, we observe that, for each x, y, z ∈ F, we have [y◦z]n = [y◦z]↓, or [y◦z]n = [y◦z]↑
or both. Then we prove that, for each x, y, z ∈ F, we have We
distinguish between the following cases, depending on y ◦ z:

y ◦ z = +∞ ∨ y ◦ z = −∞ : in this case we have and thus
holds.

y ◦ z ≤ −fmin ∨ y ◦ z ≥ fmin : in this case we have, by Proposition 1, y �↓ z =
[y ◦ z]↓ ≤ [y ◦ z]n = y �n z ≤ [y ◦ z]↑ = y �↑ z; as y �↓ z �= 0, y �n z �= 0

and , the numerical order is reflected into the symbolic order to give
.

−fmin < y ◦ z < 0 : in this case we have by
Definition 5; since either [y ◦ z]n = −fmin or [y ◦ z]n = −0, we have [y ◦ z]n �= +0,
thus .

0 < y ◦ z < fmin : in this case we have
by Definition 5; again, since either [y ◦ z]n = +0 or [y ◦ z]n = fmin we know that
[y ◦ z]n �= −0, and thus .

y ◦ z = 0 : in this case, for multiplication and division the result is the same for all round-
ing modes, i.e., +0 or −0 depending on the sign of the arguments [24, Section 6.3]; for
addition or subtraction we have while ; hence, also
in this case, holds.

Note now that, by Definition 5, if y ◦ z > 0 then whereas, if y ◦ z > 0,
then . Therefore we can conclude that:

– if y ◦ z > 0, then while,
– if y ◦ z < 0, then moreover,
– if y ◦ z = 0 and ◦ /∈ {+,−}, then while,
– if y ◦ z = 0 and ◦ ∈ {+,−}, then .

In order to prove inequality (9), it is now sufficient to consider all possible sets S ⊆ R and
use the relations above.

For claim (10), observe that for any combination of rounding modes
in S except for one case: that is when y ◦ z > 0, and 0 ∈ S but ↓/∈ S. In this case,
however, by Definition 5, . Similarly, except for the
case when y ◦ z ≤ 0, 0 ∈ S but ↑/∈ S. First, assume that y ◦ z < 0: in this case, by
Definition 5, . For the remaining case, that is y ◦ z = 0, we observe that for
multiplication and division the result is the same for all rounding modes [24, Section 6.3],
while for addition or subtraction we have .

Thanks to Proposition 2 we need not be concerned with sets of rounding modes, as any
such set S ⊆ R can always be mapped to a pair of “worst-case rounding modes” which,
in addition, are never round-to-zero. Therefore, projection functions can act as if the only
possible rounding mode in effect was the one returned by the selection functions, greatly
simplifying their logic. For example, consider the constraint , meaning “x is
obtained as the result of for some r ∈ S.” Of course, implies
and , which, by Proposition 2, imply and , where

and . The results obtained by projection functions
that only consider r� and ru are consequently valid for any r ∈ S.



Constraints

3.2 Rounding errors

For the precise treatment of all rounding modes it is useful to introduce a notation that
expresses, for each floating-point number x, the maximum error that has been committed
by approximating with x a real number under the different rounding modes (as shown in the
previous section, we need not be concerned with round-to-zero).

Definition 9 (Rounding Error Functions) The partial functions ∇↑ : F � R, ∇↓ : F � R,
∇n−
2 : F � R and ∇n+

2 : F � R are defined as follows, for each x ∈ F that is not a NaN:

∇↓(x) =
{
undefined, if x = +∞;
succ(x) − x, otherwise;

(11)

∇↑(x) =
{
undefined, if x = −∞;
pred(x) − x, otherwise;

(12)

∇n−
2 (x) =

⎧
⎨

⎩

+∞ if x = −∞;
x − succ(x), if x = −fmax;
pred(x) − x, otherwise;

(13)

∇n+
2 (x) =

⎧
⎨

⎩

−∞, if x = +∞;
x − pred(x), if x = fmax;
succ(x) − x, otherwise.

(14)

An interesting observation is that the values of the functions introduced in Definition 9
are always representable in F and thus their computation does not require extra-precision,
something that, as we shall see, is exploited in the implementation. This is the reason why,
for round-to-nearest, ∇n−

2 and ∇n+
2 have been defined as twice the approximation error

bounds: the absolute value of the bounds themselves, being fmin/2, is not representable in
F for each x ∈ F such that |x| ≤ f nor

min.
When the round-to-nearest rounding mode is in effect, Proposition 3 relates the bounds of

a floating-point interval [x�, xu] with those of the corresponding interval of R it represents.

Proposition 3 Let x�, xu ∈ F ∩ R. Then

min
x�≤x≤xu

(
x + ∇n−

2 (x)/2
) = x� + ∇n−

2 (x�)/2, (15)

max
x�≤x≤xu

(
x + ∇n+

2 (x)/2
) = xu + ∇n+

2 (xu)/2. (16)

Proof (sketch) To prove (15), we separately consider the two cases defined by (13).
If x� = −fmax, we prove that x� + ∇n−

2 (x�)/2 = −2emax(2 − 2−p), while for all x� <

x ≤ xu we have x+∇n−
2 (x)/2 = (x+pred(x))/2. By monotonicity of ‘pred’, the minimum

value of (x + pred(x))/2 occurs when x = succ(−fmax), and

(succ(−fmax) − fmax)/2 = −2emax(2 − 2−p) = x� + ∇n−
2 (x�)/2,

which proves (15) in this case.
If, instead, x� > −fmax, applying monotonicity of ‘pred’ suffices.
The full proof is in Appendix B.2, together with the one of (16), which is symmetric.
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3.3 Real approximations of floating-point constraints

In this section we show how inequalities of the form and , with
r ∈ {↓,↑, n} can be reflected on the reals. Indeed, it is possible to algebraically manipulate
constraints on the reals so as to numerically bound the values of floating-point quantities.
The results of this and of the next section will be useful in designing inverse projections.

Proposition 4 The following implications hold, for each x, y, z ∈ F such that all
the involved expressions do not evaluate to NaN, for each floating-point operation

and the corresponding extended real operation ◦ ∈ {+,−, ·, /}, where
the entailed inequalities are to be interpreted over R:

(17)

moreover, if x �= −∞,

conversely,

(20)

moreover, if x �= +∞,

The proof of Proposition 4 is carried out by applying the inequalities of Proposition 1
to each rounded operation, resulting in a quite long case analysis. It can be found in
Appendix B.2.

3.4 Floating-point approximations of constraints on the reals

In this section, we show how possibly complex constraints involving floating-point opera-
tions can be approximated directly using floating-point computations, without necessarily
using infinite-precision arithmetic.

Without being too formal, let us consider the domain EF of abstract syntax trees with
leafs labelled by constants in F and internal nodes labeled with a symbol in {+,−, ·, /}
denoting an operation on the reals. While developing propagation algorithms, it is often
necessary to deal with inequalities between real numbers and expressions described by such
syntax trees. In order to successfully approximate them using the available floating-point
arithmetic, we need two functions: [[·]]↓ : EF → F and [[·]]↑ : EF → F. These functions
provide an abstraction of evaluation algorithms that: (a) respect the indicated approximation
direction; and (b) are as precise as practical. Point (a) can always be achieved by substi-
tuting the real operations with the corresponding floating-point operations rounded in the
right direction. For point (b), maximum precision can trivially be achieved whenever the
expression involves only one operation; generally speaking, the possibility of efficiently
computing a maximally precise (i.e., correctly rounded) result depends on the form of the
expression (see, e.g., [27]).
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Definition 10 (Evaluation functions) The two partial functions [[·]]↓ : EFF and [[·]]↑ : EFF

are such that, for each e ∈ F that evaluates on R to a nonzero value,

[[e]]↓ � [e]↓, (23)

[[e]]↑ � [e]↑. (24)

Proposition 5 Let x ∈ F be a non-NaN floating point number and e ∈ EF an expression
that evaluates on R to a nonzero value. The following implications hold:

x ≥ e =⇒ x � [[e]]↓; (25)

if [[e]]↓ �= +∞, x > e =⇒ x � succ
([[e]]↓

) ; (26)

x ≤ e =⇒ x � [[e]]↑; (27)

if [[e]]↓ �= −∞, x < e =⇒ x � pred
([[e]]↑

)
. (28)

In addition, if pred
([[e]]↑

)
< e (or, equivalently, [[e]]↑ = [e]↑) we also have

x ≥ e =⇒ x � [[e]]↑; (29)

likewise, if succ ([[e]]) > e (or, equivalently, [[e]]↓ = [e]↓) we have
x ≤ e =⇒ x � [[e]]↓. (30)

The implications of Proposition 5 can be derived from Definition 10 and Proposition 1.
Their proof is postponed to Appendix B.2.

4 Propagation for simple arithmetic constraints

In this section we present our propagation procedure for the solution of floating-point
constraints obtained from the analysis of programs engaging in IEEE 754 computations.

The general propagation algorithm, which we already introduced in Section 1.2, consists
in an iterative procedure that applies the direct and inverse filtering algorithms associated
with each constraint, narrowing down the intervals associated with each variable. The pro-
cess stops when fixed point is reached, i.e., when a further application of any filtering
algorithm does not change the domain of any variable.

4.1 Propagation algorithms: definitions

Constraint propagation is a process that prunes the domains of program variables by deleting
values that do not satisfy any of the constraints involving those variables. In this section, we
will state these ideas more formally.

Let and S ⊆ R. Consider a constraint
with x ∈ X = [x�, xu], y ∈ Y = [y�, yu] and z ∈ Z = [z�, zu].

Direct propagation aims at inferring a narrower interval for variable x, by considering
the domains of y and z. It amounts to computing a possibly refined interval for x, X′ =
[x′

�, x
′
u] ⊆ X, such that

(31)

Property (31) is known as the direct propagation correctness property.
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Of course it is always possible to take X′ = X, but the objective of constraint propaga-
tion is to compute a “small”, possibly the smallest X′ enjoying (31), compatibly with the
available information. The smallest X′ that satisfies (31) is called optimal and is such that

(32)

Property (32) is called the direct propagation optimality property.
Inverse propagation, on the other hand, uses the domain of the result x to deduct new

domains for the operands, y or z. For the same constraint, , it means computing
a possibly refined interval for y, Y ′ = [y′

�, y
′
u] ⊆ Y , such that

(33)

Property (33) is known as the inverse propagation correctness property. Again, taking
Y ′ = Y is always possible and sometimes unavoidable. The best we can hope for is to be
able to determine the smallest such set, i.e., satisfying

(34)

Property (34) is called the inverse propagation optimality property. Satisfying this last
property can be very difficult.

4.2 The Boolean domain for NaN

From now on, we will consider floating-point intervals with boundaries in F. They allow for
capturing the extended numbers in F only: NaNs (quiet NaNs and signaling NaNs) should

be tracked separately. To this purpose, a Boolean domain N
def= {�, ⊥}, where � stands for

“may be NaN” and ⊥ means “cannot be NaN”, can be used and coupled with the arithmetic
filtering algorithms.

Let be an arithmetic constraint over floating-point numbers, and (X,NaNx),
(Y,NaNy) and (Z,NaNz) be the variable domains of x, y and z respectively. In practice,
the propagation process for such a constraint reaches a fixed point when the combination of
refining domains (X′,NaN′

x), (Y
′,NaN′

y) and (Z′,NaN′
z) remains the same obtained in the

previous iteration. For each iteration of the algorithm we analyze the NaN domain of all the
constraint variables in order to define the next propagator action.

The IEEE 754 Standard [24, Section 7.2] lists all combinations of operand values that
yield a NaN result. For the arithmetic operations considered in this paper, NaN is returned if
any of the operands is NaN. Moreover, addition and subtraction return NaN when infinities
are subtracted (e.g., +∞�−∞ or +∞�+∞), and also ,

, and
Thus, direct projections are such that if NaNy = � or NaNz = �, then also NaN′

x = �;
indirect projections yield NaN′

y = NaN′
z = � if NaNx = �. Moreover, e.g., if , then

the direct projection yields NaN′
x = � also if ±∞ ∈ Y and ∓∞ ∈ Z, and the indirect one

allows for ±∞ in Y ′ and ∓∞ in Z′ only if NaNx = �, and so on for the other operators.

4.3 Filtering algorithms for simple arithmetic constraints

Filtering algorithms for arithmetic constraints are the main focus of this paper. In the next
sections, we will propose algorithms realizing optimal direct projections and correct inverse
projections for the addition (�) and division (�) operations. The reader interested in imple-
menting constraint propagation for all four operations can find the algorithms and results for
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the missing operations in Appendix A. We report the correctness proofs of the projections
for addition in the main text, leaving those for the remaining operations to Appendix B.3.

The filtering algorithms we are about to present are capable of dealing with any set of
rounding modes and are designed to distinguish between all different (special) cases in order
to be as precise as possible, especially when the variable domains contain symbolic values.
Much simpler projections can be designed whenever precision is not of particular concern.
Indeed, the algorithms presented in this paper can be considered as the basis for finding a
good trade-off between efficiency and the required precision.

4.3.1 Addition

Here we deal with constraints of the form x = y �S z with S ⊆ R. Let X = [x�, xu],
Y = [y�, yu] and Z = [z�, zu].

Thanks to Proposition 2, any set of rounding modes S ⊆ R can be mapped to a pair of
“worst-case rounding modes” which, in addition, are never round-to-zero. Therefore, the
projection algorithms use the selectors presented in Definition 7 to choose the appropriate
worst-case rounding mode, and then operate as if it was the only one in effect, yielding
results implicitly valid for the entire set S.

Direct propagation For direct propagation, i.e., the process that infers a new interval for x

starting from the interval for y and z, we propose Algorithm 1 and functions da� and dau,
as defined in Fig. 2. Functions da� and dau yield new bounds for interval X. In particular,
function da� gives the new lower bound, while function dau provides the new upper bound
of the interval. Functions da� and dau handle all rounding modes and, in order to be as
precise as possible, they distinguish between several cases, depending on the values of the
bounds of intervals Y and Z. These cases are infinities (−∞ and +∞), zeroes (−0 and +0),
negative values (R−) and positive values (R+).

It can be proved that Algorithm 1 computes a correct and optimal direct projection, as
stated by its postconditions.

Theorem 1 Algorithm 1 satisfies its contract.

Proof Given the constraint x = y �S z with x ∈ X = [x�, xu], y ∈ Y = [y�, yu] and
z ∈ Z = [z�, zu], Algorithm 1 sets X′ = [x′

�, x
′
u] ∩ X; hence, we have X′ ⊆ X. Moreover,

by Proposition 2, for each y ∈ Y , z ∈ Z and r ∈ S, we have y �r� z � y �r z � y �ru z,
and because a � b implies a ≤ b for any a, b ∈ F according to Definition 3, we know that
y �r� z ≤ y �r z ≤ y �ru z. Thus, by monotonicity of �, we have y� �r� z� ≤ y �r� z ≤
y�r z ≤ y�ru z ≤ yu�ru zu. Therefore, we can focus on finding a lower bound for y��r� z�

and an upper bound for yu �ru zu.
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Fig. 2 Direct projection of addition: the function da� (resp., dau); values for y� (resp., yu) on rows, values
for z� (resp., zu) on columns

Such bounds are given by the functions da� and dau of Fig. 2. Almost all of the cases
reported in the tables can be trivially derived from the definition of the addition operation in
the IEEE 754 Standard [24]; just two cases need further explanation. Concerning the entry
of da� in which y� = −∞ and z� = +∞, note that z� = +∞ implies zu = +∞. Then for
any y > y� = −∞, y � +∞ = +∞. On the other hand, by the IEEE 754 Standard [24],
−∞ � +∞ is an invalid operation. For the symmetric case, i.e., the entry of dau in which
yu = −∞ and zu = +∞, we can reason dually.

We are now left to prove that ∀X′′ ⊂ X′ : ∃r ∈ S, y ∈ Y, z ∈ Z : y �r z �∈ X′′. Let us
focus on the lower bound x′

�, proving that there always exists a r ∈ S such that y��r z� = x′
�.

First, consider the cases in which y� �∈ (R− ∪ R+) or z� �∈ (R− ∪ R+). In these cases, a
case analysis proves that da�(y�, z�, r�) is equal to y��r� z�. Indeed, if either of the operands
(say y�) is −∞ and the other one (say z�) is not +∞, then according to the IEEE 754
Standard we have y� �r z� = −∞ for any r ∈ R. Symmetrically, y� �r z� = +∞ if one
operand is +∞ and the other one is not −∞. If, w.l.o.g., y� = +∞ and z� = −∞, the set
X′ is non-empty only if zu �= −∞, and y� �r zu = +∞ for any r ∈ R.

For the cases in which y� ∈ (R− ∪ R+) and z� ∈ (R− ∪ R+) we have x′
� = y� �r� z�,

by definition of da� of Fig. 2. Remember that, by Proposition 2, there exists r ∈ S such that
y� �r� z� = y� �r z�. Since y� ∈ Y and z� ∈ Z, we can conclude that for any X′′ ⊆ X′,
x′
� �∈ X′′ implies y� �r z� �∈ X′′.
An analogous argument allows us to conclude that there exists an r ∈ S for which the

following holds: for any X′′ ⊆ X′, x′
u �∈ X′′ implies yu �r zu �∈ X′′.

The following example will better illustrate how the tables in Fig. 2 should be used to
compute functions da� and dau. All examples in this section refer to the IEEE 754 binary
single precision format.
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Example 1 Assume Y = [+0, 5], Z = [−0, 8], and that the selected rounding mode is
r� = ru =↓. In order to compute the lower bound x′

� of X′, the new interval for x, function
da�(+0,−0,↓) is called. These arguments fall in case a1, which yields −0 with rounding
mode ↓. Indeed, when the rounding mode is ↓, the sum of−0 and+0 is−0, which is clearly
the lowest result that can be obtained with the current choice of Y and Z. For the upper
bound x′

u, the algorithm calls dau(5, 8,↓). This falls in the case in which both operands are
positive numbers (yu, zu ∈ R+), and therefore xu = yu �ru zu = 13. In conclusion, the new
interval for x is X′ = [−0, 13].

If any other rounding mode was selected (say, r� = ru = n), the new interval computed
by the projection would have been X′′ = [+0, 13].

Inverse propagation For inverse propagation, i.e., the process that infers a new interval for
y (or for z) starting from the interval from x and z (x and y, resp.) we define Algorithm 2
and functions ia� in Fig. 3 and iau in Fig. 4, where ≡ indicates the syntactic substitution of
expressions. Since the inverse operation of addition is subtraction, note that the values of x

and z that minimize y are x� and zu; analogously, the values of x and z that maximize y are
xu and z�.

When the round-to-nearest rounding mode is in effect, addition presents some nice prop-
erties. Indeed, several expressions for lower and upper bounds can be easily computed
without approximations, using floating-point operations. In more detail, it can be shown
(see the proof of Theorem 2) that when x is subnormal ∇n+

2 (x) and ∇n−
2 (x) are negligible.

This allows us to define tight bounds in this case. On the contrary, when the terms ∇n−
2 (x�)

and ∇n+
2 (xu) are non negligible, we need to approximate the values of expressions e� and

eu. This can always be done with reasonable efficiency [27], but we leave this as an imple-
mentation choice, thus accounting for the case when the computation is exact ([[e�]]↓ = [e�]
and [[eu]] = [eu]) as well as when it is not ([[e�]] > [e�] and [[eu]] < [eu]).

The next result assures us that our algorithm computes a correct inverse projection, as
claimed by its postcondition.

Theorem 2 Algorithm 2 satisfies its contract.

Proof Given the constraint x = y �S z with x ∈ X = [x�, xu], y ∈ Y = [y�, yu] and
z ∈ Z = [z�, zu], Algorithm 2 computes a new and refined domain Y ′ for variable y.

First, observe that the newly computed interval [y′
�, y

′
u] is either intersected with the old

domain Y , so that Y ′ = [y′
�, y

′
u] ∩ Y , or set to Y ′ = ∅. Hence, Y ′ ⊆ Y holds.

Proposition 2 and the monotonicity of � allow us to find a lower bound for y by exploit-
ing the constraint y �r̄� zu = x�, and an upper bound for y by exploiting the constraint
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Fig. 3 Inverse projection of addition: function ia�

Fig. 4 Inverse projection of addition: function iau
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y�r̄u z� = xu. We will now prove that the case analyses of functions ia�, described in Fig. 3,
and iau, described in Fig. 4, express such bounds correctly.

Concerning the operand combinations in which ia� takes the value described by the
case analysis a4, remember that, by the IEEE 754 Standard [24], whenever the sum of
two operands with opposite sign is zero, the result of that sum is +0 in all rounding-
direction attributes except roundTowardNegative: in that case the result is −0. Then, since
zu �↓ (−zu) = −0, when r̄� =↓, y� can safely be set to succ(−zu).

As for the case in which ia� takes one of the values determined by a5, the IEEE 754
Standard [24] asserts that +0�↓ +0 = +0, while −0�↓ +0 = −0: the correct lower bound
for y is y′

� = +0, in this case. As we already pointed out, for any other rounding-direction
attribute +0� −0 = +0 holds, which allows us to include −0 in the new domain.

Concerning cases of ia� that give the result described by the case analysis a6, we clearly
must have y = +∞ if r̄� =↓; if r̄� =↑, it should be y + zu > fmax and thus y > fmax − zu

and, by (28) of Proposition 5, y � succ(fmax �↓ zu). If r̄� = n, there are two cases:

zu < ∇n+
2 (fmax)/2. In this case, y must be greater than fmax, since fmax + zu <

fmax + ∇n+
2 (fmax)/2 implies that fmax �n zu = fmax < +∞. Note that in this case

∇n+
2 (fmax)/2�↑ zu ≥ fmin, hence fmax �↑

(∇n+
2 (fmax)/2�↑ zu

) = +∞.
zu ≥ ∇n+

2 (fmax)/2. Since odd(fmax), for x� = +∞ we need y to be greater than or equal
to fmax + ∇n+

2 (fmax)/2 − zu. Note that y ≥ fmax + ∇n+
2 (fmax)/2 − zu together with

[
fmax + ∇n+

2 (fmax)/2 − zu

]
↑ = fmax �↑

(∇n+
2 (fmax)/2�↑ zu

)
(35)

allows us to apply (29) of Proposition 5, concluding y � fmax�↑
(∇n+

2 (fmax)/2�↑ zu

)
.

Equality (35) holds because either the application of ‘�↑’ is exact or the application of
‘�↑’ is exact. In fact, since zu = m ·2e ≥ ∇n+

2 (fmax)/2 = 2emax−p, for some 1 ≤ m < 2,
there are two cases: either e = emax or emax − p ≤ e < emax.

Suppose first that e = emax: we have

∇n+
2 (fmax)/2 − zu = 2emax−p − m · 2emax

= −2emax(m − 2−p),

and thus

∇n+
2 (fmax)/2�↑ zu =

{ −2emax(m − 21−p), if m > 1;
−2emax−1(2 − 21−p), if m = 1.

Since if e = emax the application of ‘�↑’ is not exact, we prove that the application of
‘�↑’ is exact. Hence, if m > 1, we prove that

fmax + (∇n+
2 (fmax)/2�↑ zu) = 2emax(2 − 21−p) − 2emax(m − 21−p)

= 2emax(2 − 21−p − m + 21−p)

= 2emax(2 − m)

= 2emax−k
(
2k(2 − m)

)

where k
def= −⌊

log2(2 − m)
⌋
. It is worth noting that 2k(2 − m) can be represented by a

normalized mantissa; moreover, since 1 ≤ k ≤ p − 1, emin ≤ emax − k ≤ emax, hence,
fmax + (∇n+

2 (fmax)/2�↑ zu) ∈ F. If, instead, m = 1,

fmax + (∇n+
2 (fmax)/2�↑ zu) = 2emax(2 − 21−p) − 2emax−1(2 − 21−p)

= (2emax − 2emax−1)(2 − 21−p)

= 2emax−1(2 − 21−p)
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and, also in this case, fmax + (∇n+
2 (fmax)/2�↑ zu) ∈ F.

Suppose now that emax−p ≤ e < emax and let h
def= e−emax+p so that 0 ≤ h ≤ p−1.

In this case we show that the application of ‘�↑’ is exact. Indeed, we have

∇n+
2 (fmax)/2 − zu = 2emax−p − m · 2e

= −2emax−p(m · 2h − 1)

= −2emax−p+h(m − 2−h).

If e = emax − p and m = 1, then h = 0, m − 2−h = 0 and thus ∇n+
2 (fmax)/2 − zu = 0.

Otherwise, let k
def= −⌊

log2(m − 2−h)
⌋
. We have

∇n+
2 (fmax)/2 − zu = −2emax−p+h−k

(
2k(m − 2−h)

)
,

which is an element of F.

Dual arguments w.r.t. the ones used to justify cases of ia� that give the result described
by a4, a6 and a5 can be used to justify the cases of iau described by a9, a10 and a7.

We now tackle the entries of ia� described by a3, and those of iau described by a8.
Exploiting x � y � z and x � y � z, by Proposition 4, we have

y + z

⎧
⎪⎪⎨

⎪⎪⎩

≥ x, if r̄� =↓;
> x + ∇↑(x) = pred(x), if r̄� =↑;
≥ x + ∇n−(x)/2, if r̄� = n and even(x);
> x + ∇n−

2 (x)/2, if r̄� = n and odd(x).

y + z

⎧
⎪⎪⎨

⎪⎪⎩

< x + ∇↓(x) = succ(x), if r̄u =↓;
≤ x, if r̄u =↑;
≤ x + ∇n+

2 (x)/2, if r̄u = n and even(x);
< x + ∇n+

2 (x)/2, if r̄u = n and odd(x).

The same case analysis gives us

y

⎧
⎪⎪⎨

⎪⎪⎩

≥ x − z, if r̄� =↓;
> pred(x) − z, if r̄� =↑
≥ x + ∇n−

2 (x)/2 − z, if r̄� = n and even(x);
> x + ∇n−

2 (x)/2 − z, if r̄� = n and odd(x);

y

⎧
⎪⎪⎨

⎪⎪⎩

< succ(x) − z, if r̄u =↓;
≤ x − z, if r̄u =↑;
≤ x + ∇n+

2 (x)/2 − z, if; r̄u = n and even(x);
< x + ∇n+

2 (x)/2 − z, if r̄u = n and odd(x).

We can now exploit the fact that x ∈ [x�, xu] and z ∈ [z�, zu] with x�, xu, z�, zu ∈ F to
obtain, using Proposition 3 and the monotonicity of ‘pred’ and ‘succ’:

y

⎧
⎪⎪⎨

⎪⎪⎩

≥ x� − zu, if r̄� =↓;
> pred(x�) − zu, if r̄� =↑;
≥ x� + ∇n−

2 (x�)/2 − zu, if r̄� = n and even(x�);
> x� + ∇n−

2 (x�)/2 − zu, if r̄� = n and odd(x�).

(36)

y

⎧
⎪⎪⎨

⎪⎪⎩

< succ(xu) − z�, if r̄u =↓;
≤ xu − z�, if r̄u =↑;
≤ xu + ∇n+

2 (xu)/2 − z�, if r̄u = n and even(xu);
< xu + ∇n+

2 (xu)/2 − z�, if r̄u = n and odd(xu).

(37)
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We can now exploit Proposition 5 and obtain

y′
�

def=
⎧
⎨

⎩

−0, if r̄� =↓ and x� = zu;
x� �↑ zu, if r̄� =↓ and x� �= zu;
succ

(
pred(x�) �↓ zu

)
, if r̄� =↑;

(38)

y′
u

def=
⎧
⎨

⎩

pred
(
succ(xu) �↑ z�

)
, if r̄u =↓;

+0, if r̄u =↑ and xu = z�;
xu �↓ z�, if r̄u =↑ and xu �= z�.

(39)

In fact, if x� = zu, then, according to IEEE 754 [24, Section 6.3], for each non-NaN,
nonzero and finite w ∈ F, −0 is the least value for y that satisfies w = y �↓ w. If x� �= zu,
then case (29) of Proposition 5 applies and we have y � x� �↑ zu. Suppose now that
pred(x�) = zu, then pred(x�)�↓ zu ≡ 0 and succ

(
pred(x�) �↓ zu

) = fmin, coherently with
the fact that, for each non-NaN, nonzero and finite w ∈ F, fmin is the least value for y that
satisfies w = y �↑ pred(w). If pred(x�) �= zu, then case (26) of Proposition 5 applies and
we have y � succ

(
pred(x�) �↓ zu

)
. A symmetric argument justifies (39).

For the remaining cases, we first show that when ∇n+
2 (x) = fmin,

[
xu + ∇n+

2 (xu)/2 − z�

] = [xu − z�]. (40)

The previous equality has the following main consequences: we can perform the compu-
tation in F, that is, we do not need to compute ∇n+

2 (x)/2 and, since [xu − z�] = [[xu − z�]],
we can apply (30) of Proposition 5, obtaining a tight bound for y′

u.
Let us prove (40). Suppose ∇n+

2 (xu) = fmin, and assume xu �= z�. There are two cases:

[xu − z�]↓ = xu − z� : then we have y ≤ [xu − z�]↓ = xu − z� since the addition of
∇n+
2 (xu)/2 = fmin/2 is insufficient to reach succ(xu − z�), whose distance from xu − z�

is at least fmin.
[xu − z�]↓ < xu − z� < [xu − z�]↑ : since by Definition 2 every finite floating-point

number is an integral multiple of fmin, so are xu − z� and [xu − z�]↑. Therefore, again,
y ≤ [xu − z�]↓, since the addition of ∇n+

2 (xu)/2 = fmin/2 xu − z� is insufficient to
reach [xu − z�]↑, whose distance from xu − z� is at least fmin.

In the case where xu = z� we have [xu + ∇n+
2 (xu)/2 − z�]↓ = [0 + fmin/2]↓ = +0,

hence (40) holds. As we have already pointed out, this allows us to apply (30) of
Proposition 5 to the case ∇n+

2 (xu) = fmin, obtaining the bound y � [xu − z�]↓.
Similar arguments can be applied to ∇n−

2 (x�) whenever ∇n−
2 (x�) = −fmin to prove that

[x� + ∇n−
2 (x�)/2 − zu]↑ = [x� − zu]↑. Then, by (29) of Proposition 5, we obtain y �

[x� − zu]↑.
When the terms ∇n−

2 (x�) and ∇n+
2 (xu) are non-negligible, we need to approximate the

values of the expressions e�
def= x�+∇n−

2 (x�)/2−zu and eu
def= xu+∇n+

2 (xu)/2−z�. Hence,
we have the cases [[e�]]↑ = [e�]↑ and [[eu]]↓ = [eu]↓ as well as [[e�]]↑ > [e�]↑ and [[eu]]↓ <

[eu]↓. Thus, when [[eu]]↓ < [eu]↓ by (37) and (27) of Proposition 5 we obtain y � [[eu]]↓,
while, when [[e�]]↓ > [e�]↓ by (37) and (25) of Proposition 5 we obtain y � [[e�]]. Finally,
when odd(xu), by (37) and (28) of Proposition 5, we obtain y � pred

([[eu]]↑
)
. Dually, when

odd(x�) by (36) and (26) of Proposition 5, we obtain y � succ ([[e�]]).
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Thus, for the case r̄� = n we have

y′
�

def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−0, if ∇n−
2 (x�) = fmin and x� = zu;

x� �↑ zu, if ∇n−
2 (x�) = fmin and x� �= zu;

[[e�]]↓, if even(x�),∇n−
2 (x�) �= fmin and [[e�]]↑ = [e�]↑;

[[e�]]↑, if even(x�),∇n−
2 (x�) �= fmin and [[e�]]↑ > [e�]↑;

succ
([[e�]]↓

)
, otherwise.

(41)

whereas, for the case where r̄u = n, we have

y′
u
def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+0, if ∇n+
2 (xu) = fmin and xu = z�;

xu �↓ z�, if ∇n+
2 (xu) = fmin and xu �= z�;

[[eu]], if even(xu),∇n+
2 (xu) �= fmin and [[eu]]↓ = [eu]↓;

[[eu]]↑, if even(xu),∇n−
2 (xu) �= fmin and [[eu]]↑ < [eu]↑;

pred
([[eu]]↑

)
, otherwise.

(42)

Example 2 Let X = [+0,+∞] and Z = [−∞, +∞]. Regardless of the rounding mode,
the calls to functions ia�(+0, +∞, r̄�) and iau(+∞,−∞, r̄u) yield Y ′ = [−fmax,+∞].
Note that −fmax is the lowest value that variable y could take, since there is no value for
z ∈ Z that summed with −∞ gives a value in X. Indeed, if we take z = +fmax, then we
have −fmax �r +fmax = +0 ∈ X for any r ∈ R. On the other hand, +∞ is clearly the
highest value y could take, since +∞ �r z = +∞ ∈ X for any value of z ∈ Z\{−∞}.
In this case, our projections yield a more refined result than the competing tool FPSE [10],
which computes the wider interval Y ′ = [−∞,+∞].

Example 3 Consider also X = [1.0, 2.0] and Z = [−1.0 × 230, 1.0 × 230] and S = {n}.
With our inverse projection we obtain Y = [−1.1 · · · 1 × 229, 1.0 × 230] which is correct
but not optimal. For example, pick y = 1.0 × 230: for z = −1.0 × 230 we have y �S z = 0
and y �S z+ = 64. By monotonicity of �S , for no z ∈ [−1.0× 230, 1.0× 230] we can have
y �S z ∈ [1.0, 2.0].

One of the reasons the inverse projection for addition is not optimal is because floating
point numbers present some peculiar properties that are not related in any way to those of
real numbers. For interval-based consistency approaches, [29] identified a property of the
representation of floating-point numbers and proposed to exploit it in filtering algorithms
for addition and subtraction constraints. In [4, 5] some of these authors revised and corrected
the Michel and Marre filtering algorithm on intervals for addition/subtraction constraints
under the round to nearest rounding mode. A generalization of such algorithm to the all
rounding modes should be used to enhance the precision of the classical inverse projection
of addition. Indeed, classical and maximum ULP filtering [5] for addition are orthogonal:
both should be applied in order to obtain optimal results. Therefore, inverse projections for
addition, as the one proposed above, have to be intersected with a filter based on the Michel
and Marre property in order to obtain more precise results.

Example 4 Assume, again, X = [1.0, 2.0] and Z = [−1.0 × 230, 1.0 × 230] and S = {n}.
By applying maximum ULP filtering [5, 29], we obtain the much tighter intervals Y,Z =
[−1.1 · · · 1× 224, 1.0× 225]. These are actually optimal as −1.1 · · · 1× 224�S 1.0× 225 =
1.0 × 225 �S −1.1 · · · 1 × 224 = 2.0. This example shows that filtering by maximum ULP
can be stronger than our interval-consistency based filtering. However, the opposite phe-
nomenon is also possible. Consider again X = [1.0, 2.0] and Z = [1.0, 5.0]. Filtering by
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maximum ULP projection gives Z = [−1.1 · · · 1 × 224, 1.0 × 225]; in contrast, our inverse
projection exploits the available information on Z to obtain Y = [−4, 1.0 · · · 01]. As we
already stated, our filtering and maximum ULP filtering should both be applied in order to
obtain precise results.

Exploiting the commutative property of addition, the refinement Z′ of Z can be defined
analogously.

4.3.2 Division

In this section we deal with constraints of the form x = y �S z with S ⊆ R.

Direct propagation For direct propagation, interval Z is partitioned into the sign-

homogeneous intervals Z−
def= Z ∩ [−∞, −0] and Z+

def= Z ∩ [+0, +∞]. This is needed
because the sign of operand z determines the monotonicity with respect to y, and therefore
the interval bounds to be used for propagation depend on it. Hence, once Z has been parti-
tioned into sign-homogeneous intervals, we use the interval Y and W = Z−, to obtain the
new interval [x−

� , x−
u ], and Y and W = Z+, to obtain [x+

� , x+
u ]. The appropriate bounds

for interval propagation are chosen by function τ of Fig. 5. Note that the sign of z is, by
construction, constant over interval W . The selected values are then taken as arguments by
functions dd� and ddu of Fig. 6, which return the correct bounds for the aforementioned new
intervals for X. The intervals X ∩ [x−

� , x−
u ] and X ∩ [x+

� , x+
u ] are eventually joined using

convex union, denoted by
⊎
, to obtain the refining interval X′.
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Fig. 5 Direct projection of division: the function τ ; assumes sgn(w�) = sgn(wu)

It can be proved that Algorithm 3 computes a correct and optimal direct projection, as
ensured by its postconditions.

Theorem 3 Algorithm 3 satisfies its contract.

Example 5 Consider Y = [−0, 42], Z = [−3, 6] and any value of S. First, Z is split
into Z− = [−3, −0] and Z+ = [+0, 6]. For the negative interval, the third case of
τ(−0, 42,−3,−0) applies, yielding (yL, yU ,wL,wU) = (42,−0,−0, −0). Then, the pro-
jection functions are invoked, and we have dd�(42,−0, r�) = −∞ and ddu(−0,−0, ru) =
+0, i.e., [x−

� , x−
u ] = [−∞, +0]. For the positive part, we have τ(−0, 42,+0, 6) =

(−0, 42,+0, +0) (sixth case). From the projections we obtain dd�(−0,+0, r�) = −0 and
ddu(42,+0, ru) = +∞, and [x+

� , x+
u ] = [−0, +∞]. Finally, X′ = [x−

� , x−
u ] ⊎[x+

� , x+
u ] =

[−∞, +∞].

Inverse propagation first projection The inverse projections of division must be handled
separately for each operand. The projection on y is the first inverse projection. This case

requires, as explained for Algorithm 3, to splitZ into the sign-homogeneous intervalsZ−
def=

Z∩[−∞, −0] andZ+
def= Z∩[+0, +∞]. Then, in order to select the extrema that determine

the appropriate lower and upper bound for y, function σ of Fig. 7 is applied. Finally, the
functions defined in Figs. 8 and 9 are applied to such extrema.

Fig. 6 Case analyses for direct propagation of division
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Fig. 7 First inverse projection of division: the function σ ; assumes sgn(z�) = sgn(zu)

Example 6 Suppose X = [−42,+0], Z = [−1.0 × 2100,−0] and S = {n}. In this case,
Z− = Z, and Z+ = ∅. We obtain σ(−1.0 × 2100,−0, −42,+0) = (−1.0 × 2100,−1.0 ×
2100,+0, −42) from the sixth case of σ . Then, idf

� (+0, −1.0×2100, n) = (fmin�↑ (−1.0×
2100))/2 = −1.0 × 2−50, because the lowest value of y� is obtained when a division by
−1.0× 2100 underflows. Moreover, idf

u (−42,−1.0× 2100, n) = 1.0101× 2105. Therefore,
the projected interval is Y ′ = [−1.0 × 2−50, 1.0101 × 2105].
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Fig. 8 First inverse projection of division: function idf
�

The following result assures us that Algorithm 4 computes a correct first inverse
projection, as ensured by its postcondition.

Theorem 4 Algorithm 4 satisfies its contract.

Once again, in order to obtain more precise results in some cases, the first inverse pro-
jection for division has to be intersected with a filter based on an extension of the Michel
and Marre property originally proposed in [29] and extended to multiplication and division
in [5]. Indeed, when interval X does not contain zeroes and interval Z contains zeros and
infinities, the proposed filtering by maximum ULP algorithm is able to derive more precise
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Fig. 9 First inverse projection of division: function idf
u

bounds than the ones obtained with the inverse projection we are proposing. Thus, for divi-
sion (and for multiplication as well), the indirect projection and filtering by maximum ULP
are mutually exclusive: one applies when the other cannot derive anything useful [5].

Example 7 Consider the IEEE 754 single-precision constraint x = y �S z with initial inter-
vals X = [−1.0×2−110,−1.0×2−121] and Y = Z = [−∞, +∞]. When S = {n}, filtering
by maximumULP results in the possible refinement Y ′ = [−1.1 · · · 1×217, t1.1 · · · 1×217],
while Algorithm 4 would return the less precise Y ′ = [−fmax, fmax], with any rounding
mode.

Inverse propagation second projection The second inverse projection for division com-
putes a new interval for operand z. For this projection, we need to partition interval X into
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sign-homogeneous intervals X−
def= X ∩[−∞, −0] and X+

def= X ∩[+0, +∞] since, in this
case, it is the sign of X that matters for deriving correct bounds for Z. Once X has been
partitioned, we use intervals X− and Y to obtain the interval [z−

� , z−
u ]; intervals X+ and Y

to obtain [z+
� , z+

u ]. The new bounds for z are computed by functions ids
� of Fig. 10 and ids

u

of Fig. 11, after the appropriate interval extrema of Y and V = X− (or V = X+) have been
selected by function τ . The intervals Z ∩[z−

� , z−
u ] and Z ∩[z+

� , z+
u ] will be then joined with

convex union to obtain Z′.

Our algorithm computes a correct second inverse projection.

Theorem 5 Algorithm 5 satisfies its contract.

Example 8 Consider X = [6, +∞], Y = [+0, 42] and S = {n}. In this case, we only have
X+ = X, and X− = ∅. With this input, τ(+0, 42, 6,+∞) = (+0, 42,+∞, 6) (case 5).
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Fig. 10 Second inverse projection of division: function ids
�

Therefore, we obtain ids
�(+0,+∞, n) = +0, because any number in Y except +0 yields

+∞ when divided by +0. If we compute intermediate values exactly, ids
u(42, 6) = 7 and

the refined interval is Z′ = [+0, 7]. If not, then z′
u = 1.110 · · · 01 × 22 = succ(7).

In order to obtain more precise results, the result of our second inverse projection can
also be intersected with the interval obtained by the maximum ULP filter proposed in [5].
Indeed, when interval X does not contain zeros and interval Y contains zeros and infinities,
the proposed filtering by maximum ULP algorithm is able to derive tighter bounds than
those obtained with the inverse projection presented in this work.

Example 9 Consider the IEEE 754 single-precision division constraint x = y �S z with
initial intervals x ∈ [1.0 · · · 010×2110, 1.0×2121] and Y = Z = [−∞, +∞]. When S = {},
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Fig. 11 Second inverse projection of division: function ids
u

filtering by maximum ULP results in the possible refinement Z′ = [−1.0× 218, 1.0× 218],
while Algorithm 5 would compute Z′ = [−fmax, fmax], regardless of the rounding mode.

5 Experimental evaluation

The main aim of this section is to motivate the need of provably correct filtering algorithms,
by highlighting the issues caused by the unsoundness of most available implementations of
similar methods.
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Table 1 Number of exceptions found by ECLAIR and seVR-fpe on the self-developed benchmarks of [38]

Exception type ECLAIR seVR-fpe Difference

total 135 66 69

overflow 55 26 29

underflow 30 13 17

invalid 47 8 39

divbyzero 3 3 0

false positives 0 15 −15

5.1 Software verification

As we reported in Section 1.3, we implemented our work in the commercial tool ECLAIR.
While the initial results on a wide range of self-developed tests looked very promising, we
wanted to compare them with the competing tools presented in the literature, in order to bet-
ter assess the strength of our approach with respect to the state of the art. Unfortunately, most
of these tools were either unavailable, or not sufficiently equipped to analyze real-world
C/C++ programs. We could, however, do a comparison with the results obtained in [38]. It
presents a tool called seVR-fpe, for floating-point exception detection based on symbolic
execution and value-range analysis. The same task can be carried out by the constraint-based
symbolic model checker we included in ECLAIR. The authors of seVR-fpe tested their
tool both on a self-developed benchmark suite and on real-world programs. Upon contact-
ing them, they were unfortunately unable to provide us with more detailed data regarding
their analysis of real world programs. This prevents us from doing an in-depth comparison
of the tools, since we only know the total number of bugs found, but not their exact nature
and location. Data with this level of detail was instead available for (most of) their self-
developed benchmarks. The results obtained by running ECLAIR on them are reported in
Table 1. ECLAIR could find a number of possible bugs significantly higher than seVR-fpe.
As expected, due to the provable correctness of the algorithms employed in ECLAIR, no
false positives were detected among the inputs it generated. This confirms the solid results
obtainable by means of the algorithms presented in this paper.

5.2 SMT solvers

We compare ECLAIR with several SMT solvers that support floating-point arithmetic
by executing them on a benchmark suite devised to test their floating-point theory for
soundness. Since our aim is to evaluate filtering algorithms for floating-point addition,
subtraction, multiplication and division, we only included tests that do not rely on other
theories, such as arrays, bit-vectors and uninterpreted functions, as well as those containing
quantifiers. Such features are typical of SMT, and are tackled by techniques which are out
of the scope of this paper. The suite is made of a total of 151,432 tests, of which:

– 10,380 are randomly generated tests by Florian Schanda. (random directory from the
benchmark suite6 used in [12]).

6https://github.com/florianschanda/smtlib schanda, last accessed on October 28th, 2021.

https://github.com/florianschanda/smtlib_schanda


Constraints

Table 2 Results of the evaluation of SMT-solvers

Solver Version Solved Errors Unsound Time (h:m:s)

Colibri 2176 148,766 0 67 01:02:42.03

CVC4 1.8 148,833 0 0 00:09:32.11

ECLAIR — 148,833 0 0 01:59:28.80

MathSAT ACDL 5.6.5 147,958 0 875 00:07:05.89

z3 4.8.10 148,833 0 0 00:08:38.33

– 11,544 are randomly generated tests by Christoph M. Wintersteiger.
(QF FP/wintersteiger directory from the SMT-LIB benchmark repository.7)

– 126,909 tests were generated from the IBM Test Suite for IEEE 754R Compliance8

created with FPgen [1].

The experiments were carried out on a high-end laptop with an x86 64 CPU (6 cores
@2.20GHz) and 16 GB of RAM, running Ubuntu 20.04. Each solver’s version is reported
in the table. MathSAT has been executed with the option -theory.fp.mode=2, which
enables the ACDL-based solver for the floating-point theory.

Results are reported in Table 2. The main observation we can make is that ECLAIR is
the only tool based on interval reasoning to be completely sound. On the contrary, Colibri
and MathSAT are unsound on numerous tests, even though they did not explicitly report
any error. This hinders their use for program verification. On the other hand, bit-blasting
based tools CVC4 and Z3 do not present such issues, because their bit-vector encodings for
floating-point arithmetic are derived from solid and formally verified circuit designs such as
[34]. This demonstrates that the provably-correct filters presented in this paper are needed
to achieve reliable implementations of interval-based constraint solving methods.

The execution times seem to be mainly determined by implementation details such as the
programming language used. In fact, Colibri and ECLAIR, the slowest tools, were written
respectively in ECLiPSe Prolog9 and SWI Prolog,10 while other tools were written in C++.

6 Discussion and conclusion

With the increasing use of floating-point computations in mission- and safety-critical set-
tings, the issue of reliably verifying their correctness has risen to a point in which testing or
other informal techniques are not acceptable any more. Indeed, this phenomenon has been
fostered by the wide adoption of the IEEE 754 floating-point format, which has significantly
simplified the use of floating-point numbers, by providing a precise, sound, and reasonably
cross-platform specification of floating-point representations, operations and their seman-
tics. The approach we propose in this paper exploits these solid foundations to enable a

7https://smtlib.cs.uiowa.edu/benchmarks.shtml, last accessed on October 28th, 2021.
8https://www.research.ibm.com/haifa/projects/verification/fpgen/test suite download.shtml, last accessed on
October 28th, 2021.
9https://eclipseclp.org/, last accessed on October 28th, 2021.
10https://www.swi-prolog.org/, last accessed on October 28th, 2021.

https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://www.research.ibm.com/haifa/projects/verification/fpgen/test_suite_download.shtml
https://eclipseclp.org/
https://www.swi-prolog.org/
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wide range of floating-point program verification techniques. It is based on the solution of
constraint satisfaction problems by means of interval-based constraint propagation, which
is enabled by the filtering algorithms we presented. These algorithms cover the whole range
of possible floating-point values, including symbolic values, with respect to interval-based
reasoning. Moreover, they not only support all IEEE 754 available rounding-modes, but
they also allow to take care of uncertainty on the rounding-mode in use. Some important
implementation aspects are also taken into account, by allowing both the use of machine
floating-point arithmetic for all computations (for increased performance), and of extended-
precision arithmetic (for better precision with the round-to-nearest rounding mode). In both
cases, correctness is guaranteed, so that no valid solutions can erroneously be removed
from the constraint system. This is supported by the extensive correctness proofs of all
algorithms and tables, which allow us to claim that neither false positives, nor false nega-
tives may be produced. The experimental evaluation of Section 5 shows that soundness is,
indeed, a widespread issue in several floating-point verification tools. Our work provides
solid foundations to soundly develop such kind of tools.

Several aspects of the constraint-based verification of floating-point programs remain,
however, open problems, both from a theoretical and a practical perspective. As we showed
throughout the paper, the filtering algorithms we presented are not optimal, i.e., they may
not yield the tightest possible intervals containing all solutions to the constraint system.
They must be interleaved with the filtering algorithms of [5], and they may require multiple
passes before reaching the maximum degree of variable-domain pruning they are capable
of. Therefore, the next possible advance in this direction would be conceiving optimal fil-
tering algorithms, that reduce variable domains to intervals as tight as possible with a single
application. This has been achieved in [21], but only for addition.

However, filtering algorithms only represent a significant, but to some extent limited,
part of the constraint solving process. Indeed, even an optimally pruned interval may con-
tain values that are not solutions to the constraint system, due to the possible non-linearity
thereof. If the framework in use supports multi-intervals, this issue is dealt with by means of
labeling techniques: when a constraint-solving process reaches quiescence, i.e., the appli-
cation of filtering algorithms fails to prune variable domains any further, such intervals
are split into two or more sub-intervals, and the process continues on each partition sepa-
rately. In this context, the main issues are where to split intervals, and in how many parts.
These issues are currently addressed with heuristic labeling strategies. Indeed, significant
improvements to the constraint-propagation process could be achieved by investigating bet-
ter labeling strategies. To this end, possible advancements would include the identification
of objective criteria for the evaluation of labeling strategies on floating point-numbers, and
the conception of labeling strategies tailored to the properties of constraint systems most
commonly generated by numeric programs.

In conclusion, we believe the work presented in this paper can be an extensive reference
for the readers interested in realizing applications for formal reasoning on floating-point
computations, as well as a solid foundation for further improvements in the state of the art.
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