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Abstract
The purpose of this paper is to show in regression clustering how to choose the most

relevant solutions, analyze their stability, and provide information about best

combinations of optimal number of groups, restriction factor among the error

variance across groups and level of trimming. The procedure is based on two steps.

First we generalize the information criteria of constrained robust multivariate

clustering to the case of clustering weighted models. Differently from the traditional

approaches which are based on the choice of the best solution found minimizing an

information criterion (i.e. BIC), we concentrate our attention on the so called

optimal stable solutions. In the second step, using the monitoring approach, we

select the best value of the trimming factor. Finally, we validate the solution using a

confirmatory forward search approach. A motivating example based on a novel

dataset concerning the European Union trade of face masks shows the limitations of

the current existing procedures. The suggested approach is initially applied to a set

of well known datasets in the literature of robust regression clustering. Then, we

focus our attention on a set of international trade datasets and we provide a novel

informative way of updating the subset in the random start approach. The Sup-

plementary material, in the spirit of the Special Issue, deepens the analysis of trade

data and compares the suggested approach with the existing ones available in the

literature.
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1 Motivations and contributions

The purpose of this paper is to provide the user with a set of semiautomatic tools in

the context of regression clustering which can help to select the optimal number of

groups (or more generally to find a set of relevant solutions), give insights about the

optimal restriction factors among the variances of the estimated residual variances

and finally enable to estimate the optimal trimming level keeping into account that it

can depend on the chosen solution.

The above issues are of paramount importance in the context of international

trade data because in this case particular groups can be associated with potential

illegal behaviour. The detection of fraudulent behaviour in economic activities is

more and more central in the political priorities of governments. In the EU, the

European Commission (EC) has taken strong commitments in this regard (von der

Leyen 2019), stressing the importance of the fight against tax fraud, money

laundering and customs fraud. In relation to the last priority, the EC intends to

‘‘reinforce customs risk management and support effective controls by the Member

States’’. This requires a harmonized (if not unified) approach to the problem but,

before anything else, it is necessary to dispose of analytic instruments appropriate to

the variety and amount of data collected by the administrations. One of these data

sources are the declarations made at the Customs by the importers of goods in the

EU, which are transferred to the EC every day. We have a long tradition in

analyzing these and derived data with instruments developed in support to the work

of Customs and EC law enforcement services. For example, in Perrotta and Torti

(2010) we approached the problem of detecting price outliers in regression on

monthly aggregates of traded values and quantities, in Riani et al. (2018) we

addressed a related price estimation problem complicated by potential small sample

size issues, while in Rousseeuw et al. (2019) we also considered the detection of

anomalies in time series of such trade flows. Perhaps the most important limitation

of these and other works is that they assume rather homogeneous trade flows, with a

dominant population possibly affected by a certain amount of contamination, while

for many commodities the data show a variety of possible sub-populations

characterized by different prices or weights per unit. For example, the three types of

filtering facepiece (FFP) mask for respiratory protection and other classical surgical

masks that have become famous during the COVID-19 crisis, currently fall in the

Combined Nomenclature under code 6307.90.98 together with other products, but

these products clearly differ for both price and specific weight (the grammage for

the FFP masks is at least 200 g=m2
while the surgical masks have lower weight).

Currently the Customs are supposed to check their import/export carefully and a

data-driven instrument to promptly distinguish their declarations would help them a

lot.

We naturally address these heterogeneity problems from a clusterwise linear
regression perspective, in a robust setting to account for the ubiquitous contam-

ination problem. Differently from the traditional approaches in which the choice of

the optimal number of groups is associated with the minimization of an information

criterion based on a unconstrained likelihood (e.g. Fraley and Raftery 2002), in this
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paper we focus our attention on the so called optimal stable solutions, that is

solutions which do not depend on a specific choice of a constraining parameter. In

the context of international trade this is of paramount importance, because it is

essential to show that a particular classification can still be found in presence of

minor changes of the input parameters.

The structure of the paper is as follows. In Sect. 2 we introduce the notation and

illustrate the methodological problems we are trying to address. In Sect. 3 we

describe our procedure. The approach is semi-automatic because, although the best

solutions are identified in an automatic way by comparing a set of different

parameter combinations, a proper inferential test to assess the different solutions is

not yet available.

In Sect. 4 we introduce a motivating example about the European Union trade of

face masks which shows that the application of traditional approaches completely

fails to extract the most relevant features.

In Sect. 5 we show the practical applications of the new tools for the choice of

the level of trimming, restriction factor and number of groups. The suggested

approach is initially applied to a set of well known real and contaminated datasets

taken from the specialized literature on regression clustering and, in the

Supplementary Material, to datasets that mimic the typical shape of international

trade data, with different levels of overlap and amount of contamination. Section 6

concludes and provides food for thought for additional research. The paper contains

an appendix where we prove a theorem about the optimal updating in the forward

search applied to international trade data.

The results in this work can be easily replicated using functions and data that we

have integrated in our Flexible Statistics for Data Analysis software package, the

FSDA toolbox for MATLAB, which is available as ‘‘Add-On’’ inside MATLAB or

in github (for interested contributors or experimenters: https://github.com/

UniprJRC/FSDA). The extensive documentation, available at http://rosa.unipr.it/

FSDA.html, simplifies the replication of the results in this paper and the extension to

other datasets and problems.

2 Methodology

In this section we describe the methodological problem we are trying to address,

introduce the notation and the relevant references. Let the vector of covariates X
(which might be univariate or multivariate) and the response variable Y be defined

on X with values in X � Y � Rp�1 � R. Then, fxi; yig, i ¼ 1; 2; . . .; n, represents a
i.i.d. random sample of size n drawn from (X, Y). If we suppose that X can be

partitioned into k groups, say X1, X2, . . ., Xk, the general formulation of the

regression clustering mixture model has a density which can be written as

pðx; y; hÞ ¼
Xk

g¼1

pðyjx; hy;gÞpðx; hx;gÞpg; ð1Þ

where pðyjx; hy;gÞ is the conditional density of Y given x in Xg which depends on the
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vector of parameters hy;g, pðx; hx;gÞ is the marginal density of X in Xg which depends

on the vector of parameters hx;g, and pg reflects the importance of Xg in the mixture

with the usual constraints pg [ 0 and
Pk

g¼1 pg ¼ 1. Vector h denotes the full set of

parameters h ¼ ðhTy;g h
T
x;gÞ

T
. It is customary to assume that in each group g the

conditional relationship between Y and x, pðyjx; hy;gÞ, can be written as

Y ¼ b0;g þ xTbg þ �g; ð2Þ

where �g �Nð0; r2gÞ, and bg and rg are respectively the ðp� 1Þ � 1 vector of

regression parameters (b1;g; b2;g; . . .; bp�1;gÞ
T
and scale parameter referred to com-

ponent g. This formulation was originally proposed by Gershenfeld (1997) and was

developed in the context of media technology, in order to build a digital violin. With

the linearity and normality assumption, the first two conditional moments of Y given

x can be written as EðY jx; b0g; bg; rgÞ ¼ b0;g þ xTbg, varðYjx; b0;g þ bg; rgÞ ¼ r2g .

If, in addition, we also assume that the X distribution is multivariate normal, that is

pðx; hx;gÞ ¼ /p�1ðx; lg;RgÞ; ð3Þ

where /p�1ðx; lg;RgÞ denotes the density of a p� 1-variate Gaussian distribution,

with mean vector lg and covariance Rg, model (1) becomes the so called linear

Gaussian Cluster Weighted Model (CWM) (Gershenfeld et al. 1999) and can be

written as

pðx; y; hÞ ¼
Xk

g¼1

/ðy; b0;g þ bTg x;r
2
gÞ/p�1ðx; lg;RgÞpg: ð4Þ

It is interesting to notice that clustering around regression (DeSarbo and Cron 1988)

can be seen as a special case of equation (4) by setting /p�1ðx; lg;RgÞ ¼ 1, that is

ignoring the distribution of X.
Equation (4) corresponds to a mixture of regressions with weights /p�1ðx; lg;RgÞ

depending not only on pg, but also on the covariate distribution in each component

g. This leads to define the following log-likelihood function to be maximized

(mixture log-likelihood LMixtðhÞ)

LMixtðhÞ ¼
Xn

i¼1

log
Xk

g¼1

/ðyijb0;g; xTi bg; s2gÞ/p�1ðxi;mg; SgÞpg

" #
; ð5Þ

where h ¼ ðp1; :::; pk; b0;1; . . .; b0;k; b1; . . .; bk; s21; . . .; s2k ;m1; :::;mk; S1; :::; SkÞ is the

set of parameters satisfying pg � 0 and
Pk

g¼1 pg ¼ 1, bg 2 Rp�1, b0;g 2 R1, s2g 2 Rþ,

mj 2 Rp�1 and Sj a positive semi-definite symmetric ðp� 1Þ � ðp� 1Þ matrix. The

optimal set of parameters based on this likelihood is

bhMixt ¼ argmax
h

LMixtðhÞ: ð6Þ

Once bhMixt ¼ ðbp1; :::; bpk; bb0;1; . . .; bb0;k; bb1; :::; bbk; bs21; :::; bs
2
k ; bm1; :::; bmk; bS1; :::; bSkÞ is
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obtained, the observations in the sample are divided into k clusters by using pos-

terior probabilities. That is, observation ðxi yiÞ is assigned to cluster g, if

g ¼ argmaxl /ðyijbb0;l; bb
T

l x; bs
2
l Þ/p�1ðxi; bml; bSlÞbpl.

In the so-called classification framework of model based clustering, the

classification log-likelihood (LClaðhÞ) to be maximized is defined as

LClaðhÞ ¼
Xn

i¼1

Xk

g¼1

zigðhÞ log/ðyijb0g; xTi bg; s2gÞ/p�1ðxi;mg; SgÞpg; ð7Þ

where h ¼ ðp1; :::; pk; b0;1; . . .; b0;k; b1; . . .; bk; s21; . . .; s2g;m1; :::;mk; S1; :::; SkÞ and

zigðhÞ ¼ 1 if g¼ argmaxl/ðyijbb0;l; bb
T

l x;bs
2
l Þ/p�1ðxi; bml; bSlÞbpl; l¼ 1;2; . . .;k;

0 otherwise:

(

In this case, the optimal set of parameters is

bhcla ¼ argmax
h

LclaðhÞ ð8Þ

and the observation ðxi yiÞ is now classified into cluster g if zigðbhClas;gÞ ¼ 1.

The target functions (5) and (7) are unbounded when no constraints are imposed

on the scatter parameters. It is necessary therefore to impose constraints on the

maximization on the set of eigenvalues fkrðŜgÞg, r ¼ 1; . . .; ðp� 1Þ, of the scatter

matrices Ŝg by imposing

kl1ðŜg1Þ� cXkl2ðŜg2Þ for every 1� l1 6¼ l2 � p� 1 and 1� g1 6¼ g2 � k

and to the variances ŝ2g of the regression error terms, by requiring

ŝ2g1 � cyŝ
2
g2

for every 1� g1 6¼ g2 � k:

The constants cX � 1 and cy � 1 are real numbers (not necessarily equal) which

guarantee that we are avoiding the cases jŜgj ! 0 and s2g ! 0. Following (Cerioli

et al. 2018), we consider the following values of the restriction parameters

20; 21; . . .; 27 because it enables us to consider a sharp grid of values close to 1.

As suggested by one of the referees, beyond the constraints on the scatter

parameters, it is sometimes useful to impose on the vector of regression coefficients

a homogeneous slope. In other words, instead of assuming that all regression

parameters are class dependent, we can consider a mixture model whose

components only differ in the intercept term i.e. ðb0;1; b1;d; . . .; bp�1;dÞ
T . . .

ðb0;k; b1;d; . . .; bp�1;dÞT . In Sect. 5.2 we test this option.

In the literature of robust regression it is widely known the effect of both vertical

outliers in Y and outliers in X. Robustness can be achieved by discarding in each

step of the maximization procedure a proportion of units equal to a, associated with

the smallest contributions to the target likelihood. More precisely, for example in

the mixture modeling context, the Trimmed Cluster Weighted Model (TCWM)
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parameter estimates are based on the maximization of the following trimmed

likelihood function LMixtðhja; cy; cXÞ (Garcı́a-Escudero et al. 2017)

LMixtðhja; cy; cXÞ ¼
Xn

i¼1

z	ðxi; yiÞ log
Xk

g¼1

/ðyijb0;g; bTg x; s2gÞ/p�1ðxi;mg; SgÞpg

" #
;

ð9Þ

where z	ð�; �Þ is a 0-1 trimming indicator function which tells us whether observa-

tion ðxi yiÞ is trimmed off (z	ðxi yiÞ ¼ 0) or not ðz	ðxi yiÞ ¼ 1). A fixed fraction a of

observations can be unassigned by setting
Pn

i¼1 zðxi yiÞ ¼ ½nð1� aÞ
. TCLUST-
REG (Garcı́a-Escudero et al. 2010b) can be considered as a particular case of

TCWRM in which the contribution to the likelihood of /p�1ðxi;mg; SgÞ is set equal
to 1.

However, if the component /p�1ðxi;mg; SgÞ is discarded, a just protects against

vertical outliers in Y, since these data points have small /ðyijb0;g; bTg x; s2gÞpg values,
but it has no effect in diminishing the effect of outliers in the X space. Therefore, if

we adopt a TCLUST-REG approach, it is necessary to consider (as done by Garcı́a-

Escudero et al. 2010b) a second trimming step, which discards a proportion aX of

the units, after taking into account their degree of remoteness in the X space, among

the observations which have survived the first trimming operation. The original

solution in TCLUST-REG was to fix aX in advance, although there is no established

indication of the link between this proportion and the breakdown properties of the

methodology. Torti et al. (2018) have proposed to select aX adaptively from the data

using a multivariate outlier detection procedure in the space of the explanatory

variables. The observations surviving to the two trimming steps are then used for

updating the regression coefficients, weights and scatter matrices. This modification

of the algorithm is usually referred in the literature as adaptive TCLUST-REG.
Torti et al. (2018) have also assessed how the performances of TCWM change in

presence of possible misspecification of the distribution of the explanatory

variables. Their experience is that the superior performance of TCWM can

degenerate if the explanatory variable distribution is miss-specified and in this case

the TCLUST-REG solution is preferable. On the other hand, Barabesi et al. (2016)

have shown that the Tweedie distribution is a flexible model for describing the

traded quantities in international trade data, but their work has also highlighted the

complexity of developing efficient algorithms for estimating the Tweedie param-

eters with international trade data. In particular, the estimation method is not

sufficiently flexible to address the thousands of different cases that the anti-fraud

context described in this paper can potentially cover. For this reason, this work starts

to describe the general context of TCWM as the appropriate framework of our anti-

fraud context, while addressing the model choice issues in the simplified TCLUST-

REG case.

An additional alternative approach to deal with contamination is the use of

weighted likelihood estimation as done in Greco et al. (2020). In this approach it is

necessary to select a smoothing parameter which controls the trade-off between
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efficiency and robustness. In this paper, for one of the datasets, we compare our

results with those based on this approach.

3 The suggested procedure

In this section we describe our two-step procedure for finding:

1. the optimal number of groups k;
2. the amount of first trimming level a;
3. the optimal restriction factor cy, among the variance of the error components or

the scatter matrices of the covariates.

First we estimate one or more reasonable set of combinations of values of cy and k,

given a large value of cX if TCWM is used (Sect. 3.1) and then we find the optimal

trimming level (Sect. 3.2) through a monitoring approach (Riani et al. 2014; Cerioli

et al. 2017 and more recently Torti et al. 2021). The choice of the best number of

groups and/or the validation of a particular k can also be supported by a

confirmatory forward search approach (Sect. 3.3).

3.1 Preliminary estimate of restriction factor and number of groups

The choice of the optimal number of groups k can be done using an information

criterion. Extending what has been done for multivariate analysis in the paper

(Cerioli et al. 2018), we have 3 possibilities.

MIX-MIX : koptðcy; cXjaÞ ¼ argmin
k

�2LMixt;kðbhMixt;kja; cy; cXÞ þ v
cy;cX
k

n o

:¼ argmin
k

FMMðk; cy; cX jaÞ

MIX-CLA : koptðcy; cXjaÞ ¼ argmin
k

�2LCla;kðbhMixt;kja; cy; cXÞ þ v
cy;cX
k

n o

:¼ argmin
k

FMCðk; cy; cX jaÞ

CLA-CLA : koptðcy; cXjaÞ ¼ argmin
k

�2LCla;kðbhCla;kja; cy; cXÞ þ v
cy;cX
k

n o

:¼ argmin
k

FCCðk; cy; cXjaÞ

where v
cy;cX
k is a penalty term defined as

v
cy;cX
k ¼ pk þ ðk � 1Þ

þ ðk � 1Þð1� 1=cyÞ þ 1þ 0:5p1ðp1 � 1Þk þ ðp1k � 1Þð1� 1=cXÞ þ 1:

where p1 ¼ p� 1. In our notation, ‘‘MIX-MIX’’ corresponds to the use of the

Bayesian Information Criterion (BIC) (see, e.g., Fraley and Raftery 2002), while

‘‘MIX-CLA’’ corresponds to the use of the Integrated Complete Likelihood (ICL)

method proposed by Biernacki et al. (2000). If cy ! 1 the ratio of the variances of
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the residuals becomes unconstrained. The same things happens to the the RX scatter

matrices when cX ! 1.

Remark With the constraint of common slopes it is necessary to replace the first

term in the sum pk (number of regression parameters) of the different Information

Criteria with k þ p1.

The plot which shows the values of the Information Criterion (IC) as function of

k, that we call elbow plot, is generally used to find the appropriate number of groups.

In most cases however this trajectory is a monotonic function of k (an example of

this situation is shown in Sect. 4). In the context of constrained TCWM the situation

is complicated by the fact that there are different trajectories, each associated with a

combination of values of the restriction factors. In some simple cases all the

trajectories follow the same pattern and therefore the best solution, independently

from the restriction factor values, is easy to identify: this scenario is well

represented in the case study of Sect. 5.1. In more complex cases, different

trajectories may follow different paths, an example of this case is presented in

Sect. 5.2. In addition, the elbow plot does not provide any information about the

stability of the solutions as function of cy (cX) or k.
It is important to remark that, differently from the traditional approach which is

based on the minimization of a particular unconstrained information criterion, in

this paper we focus our attention on the so called optimal stable solutions, that is the

solutions which do not depend on a specific choice of a constraining parameter. In

this paper we extend the graphical tool known as car-bike plot introduced by Cerioli

et al. (2018) to the context of regression clustering and to the case of trimmed

likelihood in order to select and visualize a ranked list of ‘‘optimal’’ choices for the

pair ðk; cyÞ. The procedure first detects a list with L ‘‘plausible’’ partitions. Such

‘‘plausible’’ partitions may include some solutions that are essentially the same as

others already detected, because spurious clusters made up with few almost

collinear or very concentrated data points are found. In a second step, the partitions

including repetitive solutions are discarded and we end up with a (typically very)

reduced and ranked list with T ‘‘optimal’’ (non repetitive) partitions.

More formally, given a triple ðk; cy; cXÞ, let Pðk; cy; cXÞ denote the partition into k
subsets which is obtained by solving the problem (5) or (7), with the given k, cX and

cy. Let us consider the sequence k ¼ 1; :::;K, where K is the maximal number of

clusters, and a sequence c ¼ c1; :::; cC of C possible constraint values. For instance,

the sequence of powers of 2, c1 ¼ 20; c2 ¼ 21; :::; cC ¼ 2C�1 is recommended

because it enables us to consider a sharp grid of values close to 1 (in this paper

C ¼ 8).

In the context of TCWM in order to prevent the presence of spurious solutions in

the X space we suggest to fix cX to the a finite large value (in this paper

maxðcXÞ ¼ 128). Once all the other parameters have been estimated it is possible to

refine this value using the monitoring approach and the information criteria (MIX-

MIX, MIX-CLA, CLA-CLA), given at the beginning of this section. If on the other

hand, the data are highly non normal (as in the case of international trade data) we

suggest to use TCLUST-REG with flexible second level of trimming as described in
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Torti et al. (2018). In what follows in order to avoid a cumbersome notation with

symbol c we denote cy (with cX fixed at 128 in case of TCWM). Let ARIðA;BÞ
denote the adjusted ARI index between partitions A and B. We consider that two

partitions A and B are ‘‘essentially the same’’ when ARIðA;BÞ� e, for a fixed

threshold e (in this paper e ¼ 0:7). Clearly, the higher the value of the threshold the

greater is the number of tentative different solutions which are considered.

By using this notation, the proposed automated procedure may be described as

follows:

1 Obtain the list of ‘‘plausible’’ solutions:

1:1 Initialize: Start with K � C possible (k, c) pairs to be explored. Let

E0 ¼ fðk; cÞ : k ¼ 1; :::;K and c ¼ c1; :::; cCg.
1:2 Iterate: If El�1 is the set of pairs (k, c) not already explored at stage l� 1,

then:

1:2:1 Obtain ðkl	; cl	Þ ¼ argminðk;cÞ2El�1
Fmðk; c; cXÞ: where (m ¼ MM,

MC or CC.) For each ‘‘optimal’’ pair ðktopt; ctoptÞ, we analyze the

so-called ‘‘best interval’’ Bt that is the set of consecutive values of c
adjacent to ctopt (say c	) for which the solution remains optimal.

That is:

Bt ¼fc	 : Fmðktopt; c	Þ�Fmðk1; c1Þg
where ¼ðk1; c1Þ 2 ðEl�1 \ k1 6¼ koptÞ:

ð10Þ

and the so-called ‘‘stable interval’’ defined as

St ¼ fc : ARIðPðktopt; cÞ;Pðktopt; ctoptÞÞ� eg: ð11Þ

A large interval Bt means that the number of clusters ktopt is

‘‘optimal’’ in the sense of (10) for a wide range of c values. A large

interval St means that the solution is ‘‘stable’’ in the sense of (11)

because the change when moving c in that interval is irrelevant.

1:2:2 Remove all cluster partitions ðk; cÞ 2 Bt [ St (set of similar

partitions). Take El as the set El�1 after removing the pairs

yielding ‘‘similar’’ partitions found at step l.

1:3 Finalize: The iterative procedure ends when EL ¼ ; (or when L is a

positive prefixed integer number) and it returns

fðk1	; c1	Þ; ðk2	; c2	Þ; :::; ðkL	 ; cL	Þg as a list with L ‘‘feasible’’ parameters

combinations.

2. Obtain the list of ‘‘optimal’’ (non repetitive) solutions:

2:1 Initialize: Start from I 0 ¼ f1; :::; Lg and the L� L matrix ðdr;sÞr;s¼1;:::;L,

where
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dr;s ¼ ARIðPðkr	; cr	Þ;Pðks	; cs	Þ:Þ;

2:2 Iterate: Given I t�1 the non discarded ‘‘plausible’’ solutions at stage

t � 1:

2:2:1 Take ðktopt; ctoptÞ ¼ ðklt	 ; clt	Þ where lt is the t-th element of I t�1

(where the indexes in I t�1 are sorted from lowest to highest).

2:2:2 Discard ‘‘repetitive’’ solutions (i.e., those that are similar to the

already detected ‘‘optimal’’ ones): I t ¼ I t�1 n fr : r 2 I t�1;
r[ lt and dr;lt � eg:

2:3 Finalize: The iterative procedure ends when IT ¼ ;. It returns

fðk1opt; c1optÞ; ðk2opt; c2optÞ; :::; ðkTopt; cToptÞg

as the ‘‘optimal’’ pairs.

The results of the procedure can be visualized in an informative plot known as

car-bike plot (for an example see Fig. 14). In the car-bike plot the optimal

pairs are shown with circles (‘‘bikes’’). In the circle we write two integers that

rank the solution’s quality. More precisely, the first integer indicates the rank

of the solution among the optimal non-repetitive ones, while the second integer

indicates the rank of the solution among all others. For each optimal pairs, the

sets are Bt and St are shown respectively with boxes and lines (‘‘cars’’). The

height of the rectangle is proportional to the goodness of the solution, in terms

of Information Criterion: the best solution has height larger than the second

best solution, which in turn has height larger than the third best and so on. This

means that a rule of thumb for choosing the best combination could be to look
for the rectangle of largest area.
Note that, in our approach among all the possible solutions, the best ones are

those which are stable along the widest interval of c values, and not the

solution which maximizes an Information Criterion just for a specific

combination of k and c. It can also happen that rectangles can range through

all values of c for different values of k. In this case, following Occam’s Razor,

our preferred solution would be the one associated to the rectangle with

smallest k, as in the case study presented in Sect. 5.1. It may also happen that

the car-bike plot (as in the example of Sect. 4) reveals the presence of more

than one solution. In this case we suggest to find the best value of the trimming

factor for each of the tentative solutions. The above procedure in the case of

TCWM had kept cX ¼ 128. For each tentative solution it is possible to

investigate the different values of cX in order to monitor the stability of the
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results and/or choose the optimal constraint among the scatter matrices in the

space of the explanatory variables.

3.2 Estimate of the optimal level of trimming

With the estimated k and c, we apply TCLUST-REG on the same dataset many

times, for different trimming levels a. This produces a set of plots for monitoring the

change of a series of statistics among two consecutive values of a values, as Figs. 8,

9, 10 and 11 and 18, 19, 20 and 21 show:

• the change in Adjusted Rand Index,

• the change in the regression coefficients. The formula which is used is

jjb̂ar � b̂as jj
2=jjb̂ar jj

2;

where b̂ar ¼ vecðb̂1;ar ; b̂2;ar . . .; b̂k;ar Þ is the column vector of length p � k
containing the estimates of the all the regression coefficients for the k groups

using a trimming level ar, b̂j;ar ¼ ðb̂0;j;ar ; b̂1;j;ar ; . . .; b̂p�1;j;arÞ
0
and symbol vec

denotes the vec operator, while ar and as denote two consecutive levels of

trimming (ar [ as) and p is the number of explanatory variables including the

intercept. Using squared norm, the computation becomes easier.

Remark given that for each value of the trimming factor the labels of the groups are

assigned randomly, we make sure that the labels used were consistent for all values

of the trimming factor. More precisely, once the labelling is fixed for the largest

value of the trimming factor supplied, we change label j into label i if:

Xp

q¼1

b̂i;q;ar � b̂j;q;as

b̂i;q;ar

 !2

\min
l 6¼j

Xp

q¼1

b̂i;q;ar � b̂l;q;as

b̂i;q;ar

 !2

:

Groups are successively relabelled in the order of the smallest distance. Note that it

may also happen that sometimes the a unique relabelling is not possible in the sense

that the new k groups are relabelled into u� k � 2 groups. In this case our routine

produces a warning.1

• the change in the error variance.

jjŝ2ar � ŝ2as jj
2=jjŝ2ar jj

2;

where s2ar ¼ vecðŝ21;ar ; ŝ
2
2;ar

; . . .; ŝ2k;arÞ, is the column vector of length k containing

the estimate of the error variance for the k groups of size n1; . . .; nk using a

trimming level a. More precisely: ŝ2j;ar ¼
Pnj

i¼1ðyi � x0ib̂j;arÞ
2=nj, j ¼ 1; 2; . . .; k.

1 Additional details can be found directly from the help file of the routine at the web address http://rosa.

unipr.it/FSDA/clusterrelabel.html.
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In order to appreciate abrupt change in the estimated error variance, we monitor for

each group the values of ŝ2j uncorrected and corrected for truncation as Figs. 9 and

19 show. The correction for truncation keeps into account that the deletion of the

n� h most remote observations (where h ¼
Pk

j¼1 nj) yields a too small estimates of

r2j , because it is based on the central h observations. The variance of the truncated

normal distribution containing the central h/n portion of the full distribution is:

r2ðhÞ ¼ 1� 2n

h
U�1 nþ h

2n

� �
/ U�1 nþ h

2n

� �� �
; ð12Þ

where /ð:Þ and Uð:Þ are respectively the standard normal density and c.d.f. See, for

example, (Johnson et al. 1994, pp. 156-162). Therefore, assuming that the groups

are subject to the the same level of truncation, the (asymptotically) corrected ŝ2c are
computed as:

ŝ2cj ¼ ŝ2j =r
2ðhÞ:

In order to have an idea of the units which are at boundary among groups and their

order of entry into the subset we monitor (see Fig. 20 and the other examples in the

Supplementary Material):

• the units which at least once changed allocation or have been trimmed through

ad hoc plot (first panel). To simplify the interpretation of the plot, we replaced

the group number with card symbols, such as club-suit, diamond-suit, heart-suit,

spade-suit; if more groups are needed, then we use other symbols such as circles,

bullets, and so on. The changes are permuted in a way that allows to appreciate

the relevant groupings, as the clusters of card symbols and unit numbers in

purple show;

• the posterior probabilities of each observation with respect to a reference group

(second panel).

In order to have an idea of the stability of the fitted values we show (using a

colormap) the fitted hyperplanes for each value of a as exemplified by the third

panel.

Finally, in order to appreciate the units which are trimmed and the allocation we

use a series of subplots which monitor the classification for each value of a. The
type of plot which is used to monitor the stability of the classification depends on

the value of p:

1. for p ¼ 1, we use stacked bars (FSDA function histFS is called);

2. for p ¼ 2, we use the scatterplot of y against the explanatory variable;

3. for p[ 2, we use partial least square regression and use the scatterplot of

y against the predictor scores, that is, the first PLS component that is linear

combination of the variables in X. Note that in this way we implicitly can

monitor the importance of the various explanatory variables for the

classification.
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Figure 21 gives an example of the monitoring for a dataset affected by outliers. As

the value of a is larger or equal to that of the actual contamination percentage, the

classification benefits from trimming, while when the outliers join the subset used

for fitting, the statistics show a visible change. More precisely in correspondence of

the actual contamination percentage, there is a clear peak in the monitoring of

changes of Adjusted Rand Index, regression coefficients and error variances.

Similarly, a sudden shift shows up in the monitoring of the error variances for each

group or on the fitted regression lines (hyperplanes) of the different groups. Finally,

there is a switch of observations from one group to another and a shift in the

monitoring of posterior probabilities of each observation. These patterns are

discussed in detail in the case study of Sect. 5.2. On the contrary, as the case study

of Sect. 5.1 illustrates, peaks, shifts and switches do not appear when data are not

affected by outliers.

3.3 Confirmatory forward search

An additional contribution of the paper consists in validating the number of groups k
estimated in Sect. 3.1. This is done by running the FS (Atkinson and Riani 2004)

many times, starting from R initial subsets of m0 units randomly chosen, and by

monitoring the R trajectories of the so called Minimum Deletion Residual (MDR)

statistic. Each trajectory is obtained with an iterative progression that computes the

regression estimator on m units and takes at the next step the mþ 1 units with

smallest squared residuals; the square root of the smallest squared studentized

residual among the units not part of this subset is the MDR value. The full MDR

trajectory is obtained by iterating from the initial m ¼ m0 to the final m ¼ n� 1

units. Now, if the dataset contains more groups, the R trajectories have the following

characteristics:

• Trajectories starting from the same group have similar shape and at some point

start to coincide.

• When the units of a group are all included into the subset and the FS progression

starts to include the units of a second group, then the MDR suddenly increases

forming a peak in the trajectory. With the inclusion of more units of the new

group, the MDR slowly decreases, until units from a further group are included

producing another upper jump, and so on until all the observations have entered

the subset.

Given the above, the MDR trajectories originating from subsets with units in

different clusters should be quite separated; in this case the number of groups can be

estimated by counting the groups of unique trajectories which are visible in the

central part of the plot (see for example Fig. 6).

After discovering the number of groups, it is of interest to verify the quality of

the classification. We have developed an approach that alternates (hopefully

k times) the identification of an homogeneous sub-group using the random start

approach and its subsequent elimination, following an idea initially explored in

Torti (2011) and Cerioli et al. (2019). This approach replaces the original
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k population (robust) estimation problem with k distinct one-population steps, which

take advantage of the good breakdown properties of trimmed estimators when the

trimming level exceeds the usual bound of 0.5. More precisely, the approach

consists in:

(a) At step i (i ¼ 1; . . .; k), generate the MDR plot of the reduced dataset cleaned

from the observations belonging to groups identified in previous steps.

(b) Brush the first peak in the trajectories laying outside the bands.

(c) The group of units associated to the brushed trajectories is automatically

identified and removed from the dataset.

Generally, this approach works well in all cases in which the degree of overlapping

between the groups is not very high. In the context of international trade, we often

have to face with a large proportion of observations falling in a small region near the

origin of the axes. The effect of this high-density region can be so strong to override

the benefits of trimming and other robust devices, bringing robust techniques, as the

random start forward search, to failure (Cerioli and Perrotta 2014).

In this paper, in order to cope with the high density regions, we extend the FS

algorithm changing the criterion to select the units which will form the subset at step

mþ 1 changes from those which have the smallest squared residuals

ðyi � xTi b̂mÞ
2 i ¼ 1; 2; . . .; n

where b̂m is the OLS estimated vector of regression coefficients based on the

observations belonging to the subset at step m, to those which have the smallest

weighted residuals:

ðyi � xTi b̂mÞ
2wi i ¼ 1; 2; . . .; n ð13Þ

This criterion leads us to the following theorem which is proven in the Appendix.

Theorem 1 In the context of international trade where we regress value (V) again

quantity (Q) if wi is given by 1=Q2
i , given an estimated price based on m

observations, the update criterion of Eq. 13 has the interpretation of selecting the
mþ 1 transactions which have the closest price to the estimated one.

The new updating scheme increases the probability for high-leverage observa-

tions (that is transaction associated with large quantities) to remain in the subset. In

other words, this implies that a set of transactions which approximately are located

along a particular line, if they are characterized by transactions with large volume

and value, will stand out in the random start approach. Next sections will show the

benefit of this option.

4 A motivating example

The European Commission’s report (Perrotta et al. 2020) has shown how important

is to understand the fine-graned structure of the data in the Customs Surveillance

system, which centralises all European Union import and export declarations
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collected from the national customs authorities. For example, during the COVID-19

pandemic that exploded in 2020, the authorities had to study the composition of the

EU trade in order to refine the definition of the commodity codes used to import

protective equipments (e.g. face masks) from the third countries that can produce

them in massive quantities. Thanks to the introduction of the new codes in October

2020, the authorities can now ensure in the EU the supply of protective equipments

and other critical commodities. As mentioned in their report, the methods in this

article have contributed to this goal.

The data in Fig. 1 is a sample of 352 import flows extracted in a day of

November 2020 from one of the new codes (6307.90.98.10) specific for FFP2 and

FFP3 masks. Before this policy decision, a more general product code was covering

also other types of face masks (e.g. FFP1) or similar products. For each import flow,

we have represented the traded value (vertical axis), weight (‘‘W’’, horizontal axis-

left panel) and number of units, technically called ‘‘Supplementary Units’’ (‘‘SU’’,

horizontal axis-right panel).

In this example it is not clear at all how many groups are present, and/or if there

are outliers. For example, a transaction is characterized by a combination of

quantity and value (17,000–1,468,380) which seems to be very far from the rest. On

the other hand, this transaction shows a combination of value and supplementary

unit which is much more in agreement with the rest of the population. This

transaction has been highlighted with an arrow in the left panel of Fig. 1.

We have analyzed this dataset using the Flexible Mixture Modeling [R package

flexmix (Gruen and Leisch 2007)] and the Flexible Cluster-Weighted Modeling [R

package flexCWM (Mazza et al. 2018)]. The results are represented in Figs. 2 and 3

respectively.

The BIC curve of Fig. 2 decreases monotonically; this would indicate that the

best number of groups should be as large as possible. We selected as best number of

Fig. 1 352 imports of FFP2 and FFP3 masks (product 6307909810) into the European Union extracted in
a day of November. Vertical axes: traded value, horizontal axes: traded weight (W) and number of units
(SU). The point highlighted with an arrow in the left panel is a typical case of a unit which is far from
each possible group
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groups 4, where the curve slope starts to be smaller; despite this choice, the Flexible

Mixture Modeling identifies only three groups, of which the two on the bottom (red

circles and blue crosses) completely overlap. The BIC of Fig. 3 (which is based on

the R package flexCWM) shows a local minimum when k ¼ 4 and for a number of

groups larger than 5 it decreases monotonically. This would indicate that the best

number of groups should be as large as possible. We therefore selected as best

number of groups k ¼ 4 (value of the local minimum). The plot on the right panel

(which contains the associated classification) shows that three of which (red circles,

blue crosses and black asterisks) considerably overlap. Moreover, the group of

circles is mainly associated with big values of the quantity. It is clear that the

complex international trade datasets cannot be analyzed with standard methods, but

there is a compelling need of using the tools described in this paper. We will come

back to the analysis of this dataset at the end of this paper; in the following sections

we show the steps of the suggested procedure using some well known data sets in

the regression clustering literature.

Fig. 2 FFP3 and FFP4 imports in November 2020: Flexible Mixture Modeling BIC (left panel) and
classification based on k ¼ 4 (right panel)

Fig. 3 FFP3 and FFP4 imports in November 2020: flexible cluster-weighted modeling BIC (left panel)
and classification (right panel)
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5 Analysis of selected datasets

In this section we apply our semiautomatic robust regression clustering tool to a

set of real and simulated datasets. In Sects. 5.1 and 5.2 we analyse two well known

datasets in the literature. In Sect. 5.3 we analyze the face mask data, while in

Sect. 5.4 we concentrate on the analysis of real and simulated international trade

data. For all the cases we have applied our procedure using both the TCWM

approach and the TCLUST-REG with an adaptive second level trimming. For the

datasets in Sects. 5.1 and 5.2 the results remain virtually unchanged. For the

international trade datasets the non normality of the data coupled with the fact that

in this context high leverage points are highly informative about the characteristics

of the different levels of price, much better results are obtained using TCLUST-

Fig. 4 Dataset X: scatterplot

Fig. 5 Dataset X: identification of the best number of groups k and restriction factor c with the elbow plot
(on the horizontal axis k) and the car-bike plot (on the vertical axis k)

123

Semiautomatic robust regression clustering... 879



REG and setting to zero the second level trimming (or a very extreme threshold for

adaptive second level trimming). In what follows, for lack of space, we just show

the results of the application of TCLUST-REG when we do not apply second

trimming level and we use as Information Criterion the Penalized Mixture

Likelihood MIX–MIX. The choice of the last information criterion is due to the

considerable degree of overlap among the components.

5.1 X data

The X dataset, shown in Fig. 4, was simulated by Alfonso Gordaliza, Luis Angel

Garcı́a-Escudero and Agustin Mayo-Iscar during the Workshop ‘‘Advances in

robust data analysis and clustering’’ held in Ispra on October 21st-25th 2013. It is is

a bivariate dataset of 200 observations, with two parallel components without

contamination2. Figures 5, 6 and 7 study the choice of k and c with the elbow plot,

the minimum deletion residual plot and the car-bike plot. The elbow plot (Fig. 5,

left panel) shows for some combinations of k and c the mixture likelihood applied

on a mixture model, which is equivalent to the Bayesian Information Criterion

(BIC). At the top of the plot we show the best value of c for each k. For example, in

this case the plot clearly suggests as best combination k ¼ 2 and c ¼ 1. The car-bike

plot (Fig. 5, right panel) shows that there are just two different solutions one with

k ¼ 2 which is stable and best for all values of c and the other with k ¼ 4. The first

Fig. 6 Dataset X: step 1 of iterative FS-based random start approach (the three panels represent
respectively steps a/b/c of the iterative approach)

Fig. 7 Dataset X: step 2 of iterative FS-based random start approach (the three panels 1/2/3 represent
respectively step a/b/c of the iterative approach)

2 All the datasets in this paper are included in the FSDA toolbox in the section clustering datasets.
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solution is to be preferred in terms of BIC, stability and higher rectangle area. The

minimum deletion residual plot (Fig. 6, left panel) shows that, independently from

where the search starts, all the trajectories collapse in two main ones, indicating

therefore the presence of two groups. With the iterative procedure described in

Sect. 3.3, by brushing the first peak outside the envelopes, as shown in

correspondence of the yellow rectangle in the central panel of Fig. 6, we identify

Fig. 8 Dataset X: estimation of the best trimming level a (given k ¼ 2 and c ¼ 1, identified in Figs. 4, 5,
6 and 7). For 11 values of the trimming level a ranging in the interval [0, 0.1], monitoring of changes in:

(i) Adjusted Rand Index, (ii) regression coefficients b̂ (iii) biased variance (ŝ2), (iv) unbiased error

variance (ŝ2c)

Fig. 9 Dataset X: estimation of the best trimming level a (for k ¼ 2 and c ¼ 1, identified in Figs. 4, 5, 6
and 7). For 11 values of the trimming level a ranging in the interval [0, 0.1], monitoring for each group (i)

error variances (ŝ2j ), (ii) unbiased error variances (ŝ2cj)
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the first group. The trajectory based on the remaining observations (7), which form

only one group, lies inside the envelopes; by brushing it anywhere on the right of the

point of convergence, we identify the second group.

Figures 8, 9, 10 and 11 study the choice of the trimming level a of TCLUST,

with a number of visualization instruments. Following the results above, the

analysis has been conducted for k ¼ 2 groups and c ¼ 1 restriction factor. All the

resulting plots brings to the conclusion that the trimming level a does not have any

influence on the final classification. In Fig. 8, the changes in Adjusted Rand index,

the regression coefficient, and errors variance have very small values (10�3, 10�3

and 10�4 respectively). The peaks that show up are therefore irrelevant. In Fig. 9 the

variances and unbiased variances of the different groups coincide (given that in this

case the best restriction factor c is equal to 1) and increase gently as the trimming

Fig. 10 Dataset X: estimation of the best trimming level a (given k ¼ 2 and c ¼ 1, identified in Figs. 4, 5,
6 and 7). For 11 values of the trimming level a ranging in the interval [0, 0.1], monitoring: 1st panel: units
changing classification; 2nd panel: posterior probabilities of each unit; 3rd panel: scatter of the k groups
with the 11� k regression lines

Fig. 11 Dataset X: estimation of the best trimming level a (given k ¼ 2 and c ¼ 1, identified in Figs. 4, 5,
6 and 7). For 11 values of the trimming level a ranging in the interval [0, 0.1], monitoring the scatter of y
vs X with allocation for each of the 11 values of a
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Fig. 13 Pinus dataset: elbow plot (on the horizontal axis k) obtained for a ¼ 0 and a ¼ 0:1 respectively

Fig. 14 Pinus dataset: car-bike plot (on the vertical axis k) obtained for a ¼ 0 and a ¼ 0:1 respectively

Fig. 12 Pinus dataset: height (y axis, in meters) and diameter (x axis, in millimeters) of 362 Pinus nigra
trees located in the north of Palencia (Spain)
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level a decreases (as expected) without sudden peaks. The clear separation between

the symbols associated with the two groups in the left panel of Fig. 10 indicates that

there is no interchange of observations from one group to another when the values

of a change: the trimming level does not have any influence on the final

classification. The posterior probabilities of each observation for different trimming

levels (central panel of Fig. 10) are divided into two well separated groups and there

are no trajectories of units that change assignment for different a levels. The right

panel of Fig. 10 shows that for each group the regression lines obtained with

different levels of a almost overlap. Finally, Fig. 11 shows that the level of a does

not have any influence on the scatters which show the allocation to the two groups.

Fig. 17 Pinus dataset: cluster identified by brushing the minimum deletion residual plot computed on all
observations after having excluded the clusters identified in Figs. 15 and 16

Fig. 15 Pinus dataset: cluster identified by brushing the minimum deletion residual plot computed on all
observations

Fig. 16 Pinus dataset: cluster identified by brushing the minimum deletion residual plot computed on all
observations after having excluded the cluster identified in Fig. 15
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Fig. 19 Pinus dataset: estimation of the best trimming level a (given k ¼ 3 and c ¼ 8, identified in
Figs. 13, 14, 15, 16 and 17). For 11 values of the trimming level a ranging in the interval [0, 0.1],

monitoring for each group (i) error variances (ŝ2j ), (ii) unbiased error variances (ŝ2cj)

Fig. 18 Pinus dataset: estimation of the best trimming level a (given k ¼ 3 and c ¼ 8, identified in
Figs. 13, 14, 15, 16 and 17). For 11 values of the trimming level a ranging in the interval [0, 0.1],

monitoring of the changes in (i) Adjusted Rand Index , (ii) regression coefficients b̂, (iii) error variance
(ŝ2), (iv) corrected error variance (ŝ2c)
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5.2 Pinus data

The pinus dataset, represented in Fig. 12, was introduced by Garcı́a-Escudero et al.

(2010a) and further discussed by Dotto et al. (2017) and Greco et al. (2020). It

Fig. 21 Pinus dataset: estimation of the best trimming level a (given k ¼ 3 and c ¼ 8 identified in
Figs. 13, 14, 15, 16 and 17). For 11 values of the trimming level a ranging in the interval [0, 0.1],
monitoring of the scatter of y against X with allocation for the 11 values of a ranging in the interval
[0, 0.1]

Table 1 Pinus data: estimated

coefficients, when a ¼ 0:04 and

k ¼ 3

Common slope

b̂0;a¼0:04 3.687 7.3802 10.5371

b̂1;a¼0:04 0.0151

Different slopes

b̂0;a¼0:04 3.9336 7.4278 10.3572

b̂1;a¼0:04 0.0138 0.0148 0.016

Fig. 20 Pinus dataset: estimation of the best trimming level a (given k ¼ 3 and c ¼ 8 identified in
Figs. 13, 14, 15, 16 and 17). For 11 values of the trimming level a ranging in the interval [0, 0.1],
monitoring of the: 1st panel: units changing classification; 2nd panel: posterior probabilities of each unit.
3rd panel: scatter of the k groups with the 11 � k regression lines
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consists of the heights and diameters of a sample of 362 pinus nigra trees, located in

the north of Palencia (Spain). The scatterplot of this bivariate dataset clearly shows

the presence of three linear groups apart from a small group of trees forming its own

cluster on the top right corner and one isolated point on the bottom right corner.

Figures 13, 14, 15, 16 and 17 study the choice of k and c with the elbow plot, the

car-bike plot and the minimum deletion residual plot. In the previous example the

results of using a ¼ 0 were equal to those with a ¼ 0:10. On the other hand, in this

case, the choice of the optimal values of k and c depend on the level of trimming

which is used. In particular for the no-trimming case (left panel of Fig. 13),

suggested solution is ½k ¼ 3; c ¼ 32
 or ½k ¼ 4; c ¼ 64
; when a ¼ 0:1, on the other

hand (right panel of Fig. 13) a possible solution could be ½k ¼ 3; c ¼ 64
. The two

car-bike plots (14) seem to indicate that the best solution is k ¼ 3 with a positive

first level trimming. The minimum deletion residual plot does not clearly show the k

Fig. 22 Face masks data: elbow plot (k on the horizontal axis) and car-bike plot (k on the vertical axis)

Fig. 23 Face masks data: monitoring of error variances when k ¼ 3 (top panel) and k ¼ 4 (bottom panel)
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trajectories. However the iterative random start approach, described in Sect. 3.3,

allows to identify three groups (Figs. 15, 16 and 17). In summary, the joint analysis

coming from the different tools seems to indicate the presence of 3 groups, c ¼ 64

and the need of trimming.

Fig. 25 Face mask data: final
classification based on k ¼ 4;
the 3% trimmed units (denoted
in the legend with symbol ‘?’ -1
in faint grey) are not shown

Table 2 Adjusted R2 inside

each group in non decreasing

order

3 Groups 4 Groups flexmix flexCWM

0.9999 0.9999 0.936 0.9425

0.9933 0.9909 0.7962 0.6698

0.5376 0.7849 0.3914 0.3813

0.5074 – 0.0296

First two columns: our final classification based on 3 and 4 groups.

Third and fourth column: classification from flexmix and flexCWM

Fig. 24 Face mask data: final
classification based on k ¼ 3;
the 4% trimmed units (denoted
in the legend with symbol ‘?’ -1
in faint grey) are not shown
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Figures 18, 19, 20 and 21 study the choice of a. All the plots in these

figures bring to the conclusion that the estimates are stable up to trimming level

a� 0:04. This is evident in the monitoring of the changes in ARI index, regression

coefficient, and global error variance (Fig. 18) or in the monitoring of the variances

ŝ2j of the three groups (Fig. 19). The clear separation among the symbols associated

to the three groups for a� 0:04 and their shuffling for a\0:04 in the first panel of

Fig. 20 indicates that a ¼ 0:04 is the minimum trimming level for having

stable solutions. The same conclusion can be drawn by analysing the posterior

probabilities of units changing groups, represented by red trajectories, in the second

panel: the main modifications in the trajectories appear in correspondence of

a\0:04. The right panel shows that for group number 1 the regression lines

obtained with different levels of a almost overlap; but this is not the case for group

numbers 2 and 3 which are affected by the outliers when the trimming level is too

small. Finally the scatter of y against X for each value of a in Fig. 21 shows that the

Fig. 26 Real trade data. First panel: 153 imports of girdles and panty girdles (product code
6212.20.00.00 in the combined international nomenclature) from a given third country to a specific
Member State. Second panel: 1702 imports of toothed wheels, chain sprockets and other transmission
elements (product code 8483.90.89.90 in the combined international nomenclature) from a given third
country to a specific Member State

Fig. 27 Simulated trade like data where the X variable is simulated from a Uniform (1st panel) and from
a Tweedie (2nd panel)
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outliers are correctly trimmed when a� 0:04. All the plots in this case show that the

optimal level of trimming is a ¼ 0:04.
The results above are stable if we impose the constraint of common slope. More

specifically, with this constraint the value of the common slope we obtain

b̂1;a¼0:04 ¼ 0:0151 which is exactly equal to the value obtained by Greco et al.

(2020). The complete set of coefficients is shown in Table 1.

5.3 Analysis of face masks data

In this Section we present the analysis of imports of FFP3 and FFP4 face masks

introduced in Sect. 4. The left panel of Fig. 22 (elbow plot) shows that the best

solution suggested by the information criterion is in correspondence of c ¼ 128 and

k ¼ 5. On the other hand, the car-bike plot in the right panel of Fig. 22, indicates

that this solution is very local, being valid just for this (c, k) combination. The plot

also shows two solutions for k ¼ 3 and k ¼ 4 which deserve particular attention.

The monitoring of each group error variance ŝ2j for k ¼ 3 shows a clear increase

when a ¼ 0:03. On the other hand, when k ¼ 4 the big increase takes place when

a ¼ 0:02. Therefore, the optimal levels of trimming are 0.04 and 0.03 respectively.

Figures 24 and 25 report the final TCLUST classifications of the good units (the

untrimmed ones are not shown) together with the estimated regression coefficients

and the associated group sizes. In both cases, the data appear partitioned in very

sensible groups, which capture the fine grained structure of this (only apparently

simple) dataset. The slope (b̂1;l) coefficients, which represent the estimated prices

per Kg, can be compared to those found by Perrotta et al. (2020) for 5 groups using

the data that were available before the definition of the new codes:

2.77, 26.21, 40.77, 93.11, 169.18 euro per Kg.

We conclude the analysis of this example comparing the degree of internal

cohesion inside each group in the final classification between the suggested

approach and the output from flexmix and flexCWM (as described in Sect. 4).

Table 2 contains the value of adjusted R2 (in non decreasing order) inside each

group for the different methods. The different degree of homogeneity inside each

group is very evident.

From the comparison of the two sets of regression coefficients, we conclude that

the introduction of the new code has changed the structure of the data declared by

traders in relation to FFP2 and FFP3 face masks. In fact, with the new more specific

codes, the cheapest group (2.77 euro per Kg) disappears and a new highly priced

group appears (233 euro per Kg). This indicates that, as expected, the FFP2 and

FFP3 masks are the most expensive category of masks, but also that the prices have

increased from the beginning of the COVID crisis.

5.4 Simulated trade-like data

In this Section we focus our attention to additional international trade data, that the

Joint Research Centre of the European Commission routinely analyzes in order to

estimate fair prices and detect potential fraudulent behaviour. These datasets are
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very different one to the other and they always have structures with high level of

complexity: in particular they can be characterized by extreme collinearity on one

hand or extreme dispersion on the other hand. In the first panel of Fig. 26, there is an

example of trade data with 3 extremely collinear groups. On the vertical and

horizontal axes there are respectively the traded value and weight of 153 imports of

a textile products from a given third country to a specific Member State. The second

panel gives an example of trade data with 3 extremely disperse groups. It contains

1702 import flows of mechanical parts from a given third country to a specific

Member State. In international trade data, in general we do not have a test set with

the real classification. Therefore in order to study the performances of our

techniques we simulate trade like data containing the typical trade data patterns. For

example the two simulated data represented in Fig. 27 mimic the two trade data in

Fig. 26. They were simulated using MIXSIM (Maitra and Melnykov 2010; Riani

et al. 2015), with the independent variable distributed as Uniform and Tweedie

respectively. The motivation for the use of the Tweedie distribution is discussed in

Barabesi et al. (2016). The analysis of all these data, together with a comparison

with existing methods, is available in the Supplementary Material.

6 Conclusions

The detection of fraudulent behavior in economic activities has recently assumed a

key role in the political priorities of the European Commission. In this paper we

have illustrated a series of methods for the semiautomatic classifications of the

observations. More in detail, while it is by now well accepted that unsupervised

classification problems have to be addressed using a robust approach, it is not clear

how to automatically choose the number of components, the optimal level of

restriction factor to impose among the residual variances across the groups and the

optimal level of trimming. For example, imposing a level of trimming smaller than

optimal can lead to masking problems, while overtrimming has the drawback of

obtaining estimates which are not efficient. In this paper we have given a series of

guidelines for the semiautomatic choice of the number of regression hyperplanes,

optimal level of trimming and restriction factor. We have also proposed a new way

of selecting units during the progression of the random starts forward search which,

in the context of international trade data, has a sound motivation and interpretation.

The results have been shown using simulated and real datasets which have different

level of contamination, different degree of heavy tails and different variability

across groups. All the results obtained are easily reproducible because they use

downloadable code coming from a public repository in github.

Clearly not all trimmed units are associated with ‘‘fraudulent behaviour’’ .

Sometimes, for example in the context of international trade the different strips can

be attributed to external ‘‘normal ‘‘factors which cannot be captured by the simple

analysis of quantity (Q), values (V) and supplementary units. It will be of paramount

importance in the future the setting up of an integrated system which, not only

analyzes the quantitative data referred to traded weight, value and number of units,

but also pays attention to the plethora of qualitative information which is present in
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the original single administrative documents which characterize all the imports. A

frequent suggestion that we receive from reviewers is to analyse data after applying

a log transformation. This option sometimes simplifies the estimation of the number

of groups but, when the number of observations in each clusters is very unbalanced,

the introduction of the additional parameter of the intercept (necessary for the log

transformation) makes the estimation very unstable. On the other hand, if the model

is forced to pass through the origin, components with few observations are more

easily identified. In addition, if the estimated slope in a log transformed model is

significantly different than p=2, the interpretation of the results in term of price is

not trivial. Given that the ultimate beneficiary of this type of trade data analysis is

the anti-fraud investigator, it is important to grant the maximum interpretability and

avoid introducing complications that are difficult to bring in front of a Court.

Appendix

In this appendix we prove Theorem 1. In the context of international trade data we

regress Vi ¼ pi � Qi on Qi. The estimate of the price p̂m given a subset Sm of size

m� n is given by

p̂m ¼
P

i2Sm piQiP
i2Sm Q

2
i

The residuals for all the observations weighted with the inverse of the quantity:

ðVi � p̂mQiÞ2
1

Q2
i

i ¼ 1; 2; . . .; n

can be rewritten as:

Vi

Qi
� p̂m

� �2

i ¼ 1; 2; . . .; n

or

ðpi � p̂mÞ2 i ¼ 1; 2; . . .; n:

Selecting as next subsets the units with the smallest mþ 1 squared residuals

therefore, is equivalent to select the mþ 1 transactions which have the minimum

distance with p̂m.
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