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Abstract—This work proposes a refined feature extractor for
the LiDAR Odometry and Mapping (LOAM) algorithm often rely
on features extracted from point clouds. This paper proposes a
novel detection algorithm SKIP-3D (SKeleton Interest Point) for
extraction of features namely edges and planner patches from
multi-layer LiDAR scan. SKIP-3D make use of the organization
of LiDAR measurements to search for salient points in each
layer through an iterative bottum-up procedure. In the process
it removes the low curvature points to find edges and classifies the
points from point clouds acquired from different view points are
associated and used for their alignment. Experimental results
showed that Fast LiDAR Odometry and Mapping (F-LOAM)
based on SKIP-3D feature extractor performs at least better
than original F-LOAM feature extractor.

I. INTRODUCTION

Mapping and spacial estimation from sensor data are among
the most important problems of autonomous robots. Sen-
sors like LiDARS or depth cameras acquire an accurate
3D representation of the scene near robot in the form of
point clouds. Their measurements can be aligned to estimate
the robot motion or to be arranged into a consistent map.
In particular, LiDARs can provide high range accurate ge-
ometric measurements with high resolution in quick time.
Such qualities have led to the fast growth of LiDAR robot
applications in autonomous driving as well as in industrial
applications [1]. A single LiDAR scan will result in 3D sparse
representation of the sensor neighborhood, in the form of a
point cloud. However, in order to reduce processing time,
several algorithms detect salient features from point clouds.
Then, these features are used for registration after associating
and matching them. This approach is followed by most of the
state-of-the-art systems for LiDAR scan registration [2], [3],
[4], [5], [6], [7], [8]. The outcome of registration is also used
to correct the odometry and the global pose of the robot w.r.t.
an initial reference frame.

In this paper, we propose a novel detection algorithm SKIP-
3D (SKeleton Interest Point) for the extraction of edges (sharp
regions) and plane (smooth regions) from multi-layer LiDAR
scans. The proposed SKIP-3D feature detector is integrated
with the state-of-the-art Fast LiDAR odometry and mapping
(F-LOAM) [8] system and substitutes the original features.
Figure 1 illustrates an example of the outcome of F-LOAM
with SKIP-3D features. The main characteristic of SKIP-3D

(a)

(b)

(c)

Fig. 1. Overview of F-LOAM with SKIP-3D features: (a) Yellow points
represents an example of SKIP-3D edge points; (b) example of SKIP-3D
surface points shown with green points; (c) the complete map of indoor DIA
dataset estimated using F-LOAM and SKIP-3D.

is the exploitation of the multi-layer structure and uniform
point distributions of LiDAR scans for detecting salient parts.
An important issue of multi-layer LiDARs is the unequal
horizontal and vertical sampling combined with the relatively
large amount of measurements to be processed in real-time.
A scan usually covers a horizontal field-of-view (FoV) of
360 degree which is densely sampled (e.g. standard angular
resolution is about 0.2◦) whereas its vertical FoV is more
limited (few decades of degrees) and sparsely sampled (about
1− 2◦). The scattered and non-uniform point clouds acquired978-1-6654-0976-6/21/$31.00 ©2021 IEEE



from LiDAR scan should be handled accordingly while per-
forming registration between different views and specially
in associating the points. Although registration algorithms
only temporally use features, the huge amount of spatial
information available in point clouds should be refined and
organized so that it cant be constructively recognized.

The original LOAM algorithm [2] as well as the recent
improved variant F-LOAM [8] exploits the roughly semantic
classification of points into edge and planar patches to match
them and perform registration. SKIP-3D is an alternative algo-
rithm designed to exploit the scan organization into layers or
rings. Salient points are obtained through bottom-up removal
of less significant points from the ring. Point significancy
is measured by a metric proportional to the local curvature.
Surface points are found by checking the points between a
pair of salient points. In particular, surface points are the
ones with a limited distance from the segment connecting the
corresponding salient points. The proposed algorithm has been
implemented and integrated with F-LOAM and tested on real
datasets.

The paper is organized as follows. Section II reviews the
state of the art of 3D registration methods. Section III illus-
trates the F-LOAM system. Section IV presents the proposed
SKIP-3D features. Section V reports the experimental results.
Section VI gives the concluding remarks.

II. RELATED WORK

Research about 3D LiDAR registration intersects the general
point cloud registration as well as localization and map-
ping problems have been extensively investigated in the past
decades. Standard approaches to point cloud registration in-
clude Iterative Closest Point (ICP) [9], [10] or Normal Distri-
bution Transform (NDT) [11]. Since point-to-point association
is a difficult task, semantic-like classification has been applied
to improve the estimation [3], [12]. These works extract edges,
planar patches, salient geometries that can be more easily
matched between two point clouds. Such geometric features
are represented either explicitly, e.g. with a parameterized
equation, or implicitly, e.g. labeling points.

Odometry and mapping systems designed for LiDARs adopt
more specialized techniques than simple registration algo-
rithms. LOAM [2] is among the first effective algorithms
using crafted feature extraction for LiDARs or customized
LiDARs obtained with a rolling planar laser scanner. The
original LOAM salient points are dependent on the swinging
motion pattern of the laser scan, but the algorithm has been
adapted to 3D LiDARs. Other registration and mapping tools
integrated features extraction from point clouds with other
sensors. LIO (Lidar Inertial Odometry) [6], [7] and IN2LAMA
(INertial Lidar Localisation And MApping) [5] combines
registration and inertial sensors. An augmented version of
LOAM combines the geometric features with vision keypoint
features [8]. While inertial measurements or vision features
can effectively improve registration through an initial guess to
the estimation, they also increase the constraints on the input
data. The measurements acquired from different sensors must

Fig. 2. LOAM algorithm block diagram.

be calibrated w.r.t. spacial extrinsic and temporal parameters.
Moreover, the system setup is more complicated. In contrast,
F-LOAM (Fast LOAM) [8] only requires 3D LiDAR mea-
surements in the form of organized point clouds. Actually,
F-LOAM does not require points with matrix indices, but it
recover the layer index from each point. Then each ring is
processed to extract high curvature points (edge) and plane
points (surface) used by the odometry module. F-LOAM is the
closest work and is presented in more detail in the following
section.

III. LIDAR ODOMETRY AND MAPPING

F-LOAM [8] is a lightweight system for estimation of
sensor odometry and mapping. Its only input consists of point
clouds acquired by LiDAR 3D sensors and organized in rings.
The system computes the transformation between each current
cloud and the previous ones in order to achieve a corrected
odometry. Moreover, it computes the complete map through
registration and accumulation of previous LIDAR measure-
ments. It does not implement any loop closure procedure
or map correction and the resulting map is the outcome of
effective registration.

F-LOAM consists of three modules illustrated in Figure 2
corresponding to three different nodes in the ROS implemen-
tation. These modules are feature extraction, sensor odometry
and mapping.

Feature extraction operates on the sparse input point cloud
P in order to detect two kind of features, edges and surfaces.
The point cloud Q is partitioned into subsets Pr (r = 1, . . . , k)
corresponding to the rings or layers of the LIDAR 3D. The
number of the layers k depends on the sensor: for example,
Velodyne VLP-16 has k = 16, Velodyne HDL-64 k = 64.
The points belonging to a given layer are acquired by the
same emitter/receiver oriented with a different altitude angle
and samples a 360 deg horizontal FoV. If the point cloud is
organized, then the index r is directly available. Otherwise it
is obtained from the altitude angle of each point. The partition
into rings is exploited by the original feature extractor as well
as by SKIP algorithm described in section IV.

The output of feature extraction block consists of two point
clouds representing respectively the edge and surface regions.
Roughly speaking edge points are the sharp points, i.e. high
curvature points on the ring, whereas surface points are the
low curvature ones. The criterion used by original feature
extraction algorithm is to classify sharp and planar points
based on the smoothness of score. Let R = Pr be a ring
of the point cloud, pr,i be the point i-th of ring r, Nr,i be
the set of adjacent points of pr,i on the ring r. Then, the



smoothness score is defined as

σr,i =
1

|Nr,i|
∑

j∈Nr,i

‖pr,j − pr,i‖ (1)

The value of σr,i is small for flat surface points and large for
the edges points. This ring-oriented processing is motivated by
efficiency and by the unequal resolution of LIDAR scans along
horizontal and vertical directions. Along the rings points are
more dense and reliable whereas vertical sampling does not
allow the same accuracy.

Sensor odometry block exploits the extracted features to
compute the motion of LiDAR sensor and accordingly, of
the robot. The motion is evaluated by comparing the features
corresponding to two successive 3D scans and by finding the
transform that better align them. The registration procedure
is briefly presented in next section III-A. Registration based
on features is more efficient and robust than raw point-based
registration, since it operates on a subset of the input cloud
and associates the points according to a label.

Map block builds a 3D map by merging the feature clouds.
The alignment among the keyframes of the cloud is provided
by the sensor odometry. The odometry block supplies transfor-
mation between two consecutive scans and the transformation
w.r.t. the origin frame obtained through integration of partial
data. The frequency of the transform is crucial for the quality
of the reconstructed path and of the generated map. The global
map consists of two different global maps, one for edges and
one for planar patches. Internally the update is made every
time a new keyframe is initialized.

A. Motion and Pose Estimation

According to LOAM work distortion is improved within a
sweep, which recursively estimate the pose transform between
two successive point clouds (received at two different time
stamps). This process of finding the transformation matrix
(rotational matrix and translation vector) needs to be perform
repetitively which in turn is not effective for large data. On
the other hand in F-LOAM a two stage distortion reparation
is applied in order to speed up the computation process. In
first stage assuming constant velocity (angular, linear) for
short interval hence, anticipating the motion and correcting
the distortion. Secondly, after pose estimation the distortion
is re-computed and the map is updated. The undistorted edge
and planner features are ties up with global map with the
help of pose estimation. The global map consist of edge
and surface features which are updated and kept separately.
Finally, once reliable features are obtained then linked global
features can be found for each feature points from undistorted
edge/plane features. In doing so with this correlation the opti-
mal pose between current frame and global map is estimated
by minimizing the distance between feature points and global
features. The distance between current edge and global feature
is defined as

Fe(pe) = p>n · ((Tk pe − pg
e)× ng

e) (2)

Algorithm 1 Removal of gaps in a point cloud ring
1: function REMOVEGAP(R = {pi}i=1...n, qgap, mgap)
2: Q ← ∅
3: ifirst ← −1, ilast ← −1
4: for pi ∈ 1 . . . n do
5: if pi = nan then
6: continue
7: end if
8: prev(i)← ilast
9: if 0 6 ilast 6 n then

10: next(ilast)← i
11: rcurr ← ‖pi‖, rlast ← ‖pilast‖
12: rmid ← (rcurr + rlast)/2
13: if |rcurr − rlast| < qgap +mgap rmid then
14: score(pilast)← dist(pprev(ilast),pilast ,pi)
15: Q ← push(Q,pilast)
16: else
17: G ← G ∪ {pilast}
18: end if
19: else
20: ifirst ← i
21: end if
22: ilast ← i
23: end for
24: if 0 6 ilast, ifirst 6 n then
25: prev(ifirst)← ilast
26: next(ilast)← ifirst
27: rcurr ← ‖pilast‖, rlast ← ‖pifirst‖
28: if |rcurr − rlast| < qgap +mgap rmid then
29: score(pilast)← dist(pprev(ilast),pilast ,pifirst)
30: Q ← push(Q,pilast)
31: else
32: G ← G ∪ {pilast}
33: end if
34: end if
35: return priority queue Q, gap points G
36: end function

where pe represents edge feature point, Tk is a transformation
matrix represents robot pose at k−th scan (transform between
two consecutive frames) and pn is the unit vector and ng

e

is the eigenvector associated with the largest eigenvalue. The
distance between planner features and global plane is found
by

Fs(ps) = (Tks− pg
s)
> · ng

s (3)

where ng
s is the eigenvector associated with the smallest

eigenvalue.
For further refining the matching process weight functions

are introduced for both features. the optimal pose estimation is
derived by solving non-linear equation through Gauss-Newton
method and finally the Jacobian matrices of residuals are
calculated, which contributes in finding new correspondences
and new odometry.

IV. SKIP FEATURES

The main contribution of this paper lies in the SKIP-3D
features extracted from the point clouds acquired through
3D LiDARs. These point clouds are organized according to
the physical structure of LiDARs, which consist a battery of
impulse emitters that fire each firing impulses in different



Algorithm 2 Detection of SKIP-3D features
1: function DETECTSKIP(R = {pi}i=1...n, dth, qgap, mgap)
2: (Q,G)← RemoveGap(R, (qgap,mgap))
3: while not empty(Q) and score(top(Q) < dth do
4: pi ← pop(Q)
5: // Removal of i: scores of its next and prev are changed
6: if changed(pi) then
7: score(pi)← dist(pprev(i),pi,pnext(i))
8: changed(pi)← false, Q ← push(Q,pi)
9: else

10: next(prev(i))← next(i)
11: prev(next(i))← prev(i)
12: changed(prev(i))← true
13: changed(next(i))← true
14: end if
15: end while
16: // Points still in queue are edges E
17: E ← copy(Q)
18: // Surface points S as flat points between edge or gap points
19: U ← E ∪ G
20: sort U by point index
21: for pij ∈ U do
22: define segment pijpij+1

23: for k = ij + 1 . . . ij+1 − 1 do
24: if dist(pk,pijpij+1) < sth then S ← S ∪ {pk}
25: end if
26: end for
27: end for
28: return edges E , surfaces S
29: end function

vertical directions. The azimuth is the horizontal rotation
angle of the LiDAR w.r.t. its head reference whereas the
altitude is the vertical angle. Each emitter fires a beam with
a specific altitude and acquires the measurements of a layer,
also called ring or channel. Thus, the point cloud collected by
a 3D LiDAR is partitioned into layers that can be processed
independently.

SKIP-3D algorithm exploits the multi-layer structure to
extract interest point. The salient points are obtained through
bottom-up simplification of the polyline according to the
procedure inspired by [13]. The input data consists of a
single laser scan with field-of-view of 360 deg represented
as a curve connecting adjacent points. The curve is split in
correspondence to gaps caused by occlusion, i.e. where the
distance between two consecutive points is above a certain
threshold, and these points are marked as gap points. The
procedure to split the ring into intervals at gap points is
illustrated by Algorithm 1. The exceptions are the gap points,
i.e points in strong range discontinuities due to occlusion
and limitation of the FoV. A layer is not represented by a
closed curve and the points laying on the gaps are removed
from the list of potential points. Lines 3-15 of Algorithm 2
illustrates the procedure for computation of SKIP points from
the ring intervals previously computed. The procedure extracts
intervals from a priority queue according to cornerness score.
The main data structure is the priority queue Q containing the
points pi ordered by increasing score.

The score of SKIP-3D Algorithm measures the cornerness

Fig. 3. Environment where the indoor dataset DIA used in the experiments
have been obtained.
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Fig. 4. Estimated trajectories obtained with F-LOAM original and FLOAM-
SKIP are plotted in red and green color respectively

of each point based on its previous and next neighbors and is
defined as

dist(pp,pc,pn) = ‖pn − pc‖+ ‖pc − pp‖ − ‖pn − pp‖ (4)

in which, Let pi be a generic point of the cloud in a layer
with an index i. Ideally, each pi has a previous point ppvi

and a next pnti in a circularly linked list representing the
layer. Such indices are initialized as pvi = i − 1 (mod n)
and nti = i + 1 (mod n). A score function related to the
curvature in a layer is used to evaluate the significance of
points The saliency score of a point is given by triangular
residual: given dP,i = ‖ppvi

− pi‖, dN,i = ‖pnti − pi‖ and
dC,i = ‖pnxi

− ppvi
‖.

Since the value of the score depends on the previous and
next neighbors, the score must be re-computed when a point
is removed and the neighbor relations change. Flag variable
change(pi) in used to keep track of the point with a non-
updated score.

V. EXPERIMENTS

The experiments presented in this section has been designed
to assess the performance of the registration algorithm with
the proposed features. Tests have been performed on both
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Fig. 5. Robot trajectories estimated using F-LOAM with Original (red), SKIP features (green) and Groundtruth (blue) for the following KITTI sequences:
(a) KITTI-01, (b) KITTI-02, (c) KITTI-05 and (d) KITTI-07. The distances are measured in meters.

Dataset F-LOAM orig F-LOAM skip
ATE [%] ARE [10−2◦/m] ATE [%] ARE [10−2◦/m]

KITTI-01 2.58385 0.669808 2.34034 0.587977
KITTI-02 8.56015 4.11018 5.11825 1.96801
KITTI-05 9.88755 4.11246 63.7162 27.2049
KITTI-07 2.67823 1.73642 9.97879 5.32276

TABLE I
AVERAGE TRANSLATIONAL ERROR (ATE) AND AVERAGE ROTATIONAL

ERROR (ARE) OBTAINED BY F-LOAM WITH FEATURES orig AND skip ON
THE GIVEN SEQUENCES OF KITTI DATASET.

datasets either indoor or outdoor. The indoor dataset UNIPR-
DIA has been acquired by the authors in the main hallway of
the Dipartimento di Ingegneria e Architettura of the University
of Parma, which consists of a long corridor with branches
and tables (see Figure 3). The Pioneer 3DX robot equipped
with the Velodyne VLP-16 sensor has been teleoperated and
collected a dataset of consecutive LIDAR point clouds. During
the teleoperation the operator and other moving people have
been captured in the measurements. The acquired dataset

consists of 384 scan clouds, each containing 29184 points
(including the invalid measurements) organized into 16×1824
matrix.

KITTI dataset [14] has been used for test in outdoor
environments. We only used the data collected by Velodyne
HDL-64, a multi-layer LiDAR with 64 layers. The dataset
also provides accurate groundtruth. Henceafter, the F-LOAM
algorithm using its original feature extractor will be referred
to as orig algorithm and the F-LOAM algorithm using the
SKIP feature extractor as skip. The experiments have used the
implementation of F-LOAM provided by the authors1 and the
implementation of SKIP-3D feature detector.

A. Indoor dataset

These experiments qualitatively compare the trajectory ob-
tained with orig and skip in indoor environments, where we
expect to achieve effective registration due to regularity of
building structures. Figures 1(a) and 1(b) show example of
respectively SKIP-3D edge and surface points obtained in

1https://github.com/wh200720041/floam.

https://github.com/wh200720041/floam


UNIPR-DIA. Edges are often detected on pillar borders or
other sharp structures whereas surfaces lies on concrete and
glass walls. The complete map of UNIPR-DIA obtained with
algorithm skip is displayed in Figure Figure 1(c). There is no
groundtruth to compare the path estimated by orig and skip,
but the two outcomes can be qualitatively compared as shown
in Figure 4. The paths of orig (red line) and skip (green line)
largely overlap and are almost indistinguishable.

B. Outdoor dataset

The performance of F-LOAM with orig and skip has also
been assessed on the outdoor dataset KITTI, a benchmark
largely used by robotic and computer vision community. We
selected the sequences 01, 02, 05 and 07 and used only the
data related to point clouds acquired by the LiDAR sensor.
The point clouds have been published with rate 10 Hz
comparable to the acquisition rate to simulate the online
execution of simultaneous odometry and mapping tasks. As
for indoor datasets, we compared F-LOAM orig and skip in
two consecutive trials for each sequence.

The paths obtained on KITTI sequences are illustrated
in Figure 5. In particular, each subfigure displays the path
estimated with orig (red line) and skip (green line) as well
as the groundtruth (blue line), which is provided with KITTI
dataset. In these experiments, the robot travels longer paths
(magnituge order of unit kilometers) than indoor datasets
and F-LOAM only estimates using registration without loop
closure. A slight rotation error at some point of the trajectory
results in irretrievable propagation of the error to all the next
poses. Hence, the drift among orig, skip and groundtruth can
be readily observed in the latter segments of each path, but
they are still rather consistent for most part of the robot path.
In sequence 07 (Figure 5(d)) the path estimated with orig
prematurely interrupted.

Table I reports the ATE (average transnational error) and
ARE (average rotational error) [8] obtained from orig and skip.
The groundtruth and estimated paths are aligned according
to the travelled distance from initial frame instead of the
unavailable sampling time. ATE and ARE are computed on
path slices of lengths 100, 200, . . . , 800 m sampled with steps
of 10 m. We observe that ATE and ARE are singificantly
smaller with skip than with orig. The only exception refers
to sequence 05. We have investigated the reasons for such
large ATE and ARE, which seem inconsistent with the paths
in Figure 5(c). It seems that the possible divergence is due to
failed alignment of subpaths based on distances, but further
analysis is required.

VI. CONCLUSION

This paper have presented the novel feature detector SKIP-
3D integrated in sensor odometry system F-LOAM for Li-
DARs. The proposed features effectively estimates points be-
longing to sharp items and planar patches in the scene, which
can substitute the original F-LOAM feature extractor. SKIP-
3D features are processed online and have been integrated with
F-LOAM. The proposed and the original features have been

compared in robot odometry and mapping tasks performed
in indoor and outdoor environments. F-LOAM with SKIP
performs similarly or better than the version with the original
features and achieves generally lower position and rotation
errors. In future works, we expect to apply the proposed
SKIP-3D features with other robot registration and mapping
algorithms or to improve the extraction algorithm.
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