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1 Introduction and summary

Any four-dimensional N = 2 superconformal field theory (SCFT) contains a subsector

isomorphic to a vertex operator algebra (VOA) [1]. This 4d/2d correspondence (see [2–20]

for some further developments) promises to become an organizing principle for the whole

landscape of N = 2 SCFTs. The aspiration is to combine the rigid associativity constraints

of VOAs with additional physical requirements, such as unitary of the 4d theory, in order to

constrain and ideally classify the set of N = 2 SCFTs.1 To make inroads into this program,

it may be fruitful to start with theories that enjoy enhanced supersymmetry. The map

of [1] associates to a generic N = 2 SCFTs a conformal VOA whose Virasoro subalgebra

has central charge c = −12c4d, where c4d is the (Weyl)2 conformal anomaly coefficient. If

the 4d SCFT has N = 3 or N = 4 supersymmetry, the associated VOA is supersymmetric,

containing an N = 2 or (small) N = 4 super Virasoro subalgebra, respectively.

With this broad motivation in mind, we have undertaken a systematic study of the

classes of N = 2 and N = 4 VOAs that arise from 4d SCFTs. In this paper we describe

a uniform construction of all the known examples (and, as we shall see, of additional

examples, some of which are unlikely to have a four-dimensional interpretation). Our aim

here is descriptive rather than taxonomic. The general classification program outlined

above will require different methods, and is left for future work.

A central class of examples are the VOAs associated to the N = 4 super Yang-Mills

(SYM) theories. The N = 4 4d theory SYMg with gauge algebra g descends to an N = 4

VOA χ[SYMg] with central charge c = −3 dim(g). As the 4d theory has a Lagrangian

description, one can apply the methods of [1] to give a description of the associated VOA,

as a subalgebra of dim(g) copies of the βγbc ghost system. The subalgebra is defined by

passing to the cohomology of a certain nilpotent operator QBRST built in terms of the

βγbc ghosts. While giving in principle a complete definition of the VOA, this description

is cumbersome and redundant. The calculation of the requisite BRST cohomology is a

1A complementary approach to the classification problem of N = 2 SCFTs is by studying their Coulomb

branch geometries. See [21–24] for the state of the art of this approach.
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difficult problem that so far has only be solved in examples, by brute force level-by-level

calculation up to some maximum conformal weight. The simplest example is the VOA

associated to N = 4 SYM theory with gauge algebra sl(2). There is strong evidence [1]

that χ[SYMsl(2)] coincides with the small N = 4 superVirasoro algebra with central charge

c = −9. More generally, for a simple Lie algebra g 6= sl(2), χ[SYMg] is an extension

of VirN=4 obtained by introducing additional strong generators. The list of generators

includes one short superprimary of VirN=4 for each Casimir invariant of g.2

A concrete description χ[SYMg] as a W-algebra (i.e., in terms of the singular OPE of

its strong generators), becomes more and more involved as the rank of g increases. We

have found such a W-algebra description for a few low rank cases, see section 4 and 5, but

it seems very difficult to find such an explicit presentation in the general case. Instead, the

main subject of this paper is a proposal for a novel free-field realization of these VOAs,

much simpler and more explicit than the cohomological description of [1]. Our new free-

field realization is in terms rank(g) copies of the βγbc ghost system. There is a heuristic

understanding of these free fields as corresponding to the low-energy degrees of freedom of

the 4d theory at a generic point on its Higgs branch of vacua. This physical picture will be

discussed elsewhere [25]: it appears to be much more general, possibly valid for all VOAs

that arise from N = 2 SCFTs.

Our proposal generalizes to all g a construction of Adamovic [26], who exhibited a

free-field realization of VirN=4 with c = −9 (in our framework, the g = sl(2) case) in terms

of a single βγbc system. The VirN=4 VOA with c = −9 contains a large set of null vectors,

and a remarkable feature of Adamovic’s construction is that they identically vanish when

expressed in terms of the free fields. In other terms, this is a construction of the simple

quotient of the VOA. We find strong evidence that our generalization to χ[SYMg] shares

the same property.

A notable corollary of our proposal is a compelling conjecture for the “R-filtration” of

this class of VOAs. As we review in detail below, any VOA that descends from a 4d N = 2

SCFT inherits a filtration associated to the 4d R-symmetry quantum number — the details

of the cohomological construction of [1] imply that while R is in general not preserved by the

OPE, it can at most decrease. The R-filtration is of paramount importance in extracting

four-dimensional physical information from the VOA, but it is completely hidden in an

abstract W-algebra presentation. By contrast, our free-field realizations come equipped

with a natural filtration, which coincides with the R-filtration in all examples that we have

been able to check.

Curiously, we overshot our initial target, finding a larger set of N = 4 VOAs than

originally expected. We found free-field constructions for N = 4 VOAs WΓ labelled by a

general Coxeter group Γ. So far, we have described the situation when Γ is the Weyl group

Weyl(g) of a simple Lie algebra g, hence both Coxeter and crystallographic.3 Our basic

contention is that WWeyl(g) = χ[SYMg]. However, our construction goes through even if

2Additional generators which are long superprimaries of VirN=4 are needed for some choices of g, as we

shall discuss in detail below. (By a short/long superprimary we mean the superprimary of a short/long

superconformal multiplet).
3A group is called crystallographic if it preserves a lattice [27, 28].

– 2 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
5

Complex reflection groups
<latexit sha1_base64="z2jTI10O+T0ah+c8tJUONAeMaIA=">AAAB+XicbVDLSsNAFJ3UV62vqCtxM1gEF1KSutBloRuXFewD2lAm05t26CQzzEyKJRS/xYUgLnThV/gJ/o3Tmk1bz+pwzn1wTig508bzfpzCxubW9k5xt7S3f3B45B6ftLRIFYUmFVyoTkg0cJZA0zDDoSMVkDjk0A7H9bnfnoDSTCSPZiohiMkwYRGjxFip757VRSw5PGEFEQc6F/FQiVTqvlv2Kt4CeJ34OSmjHI2++90bCJrGkBjKidZd35MmyIgyjHKYlXqpBknomAwhI7HW0zic4cuYmJFe9ebif143NdFdkLFEpgYSakesF6UcG4Hn6fCAKRuCTy0hVDH7GdMRUYQa28HyJQ0JiUFf48GESb3gQbYodFay2f3VpOukVa34NxX/oVqueXkLRXSOLtAV8tEtqqF71EBNRNEzekUf6NPJnBfnzXn/Gy04+c4pWoLz9Qtue5RU</latexit>

Coxeter
groups

<latexit sha1_base64="M0uC3kM33B1ir2iUoYNAHuHhHvQ=">AAACDXicbZC7TsMwFIYdriXcCowsFhUSA1RJGWCs1IWxSPQiNVXluKepVceObKeiivIMDDwLAxJigAHxCLwNbikDLf/06fznov+ECWfaeN6Xs7K6tr6xWdhyt3d29/aLB4dNLVNFoUEll6odEg2cCWgYZji0EwUkDjm0wlFt6rfGoDST4s5MEujGJBJswCgxttQrXgQhRExkFIQBlbs1eQ8WcBDgSMk00W4Aov9r94olr+zNhJfBn0MJzVXvFT+DvqRpbMcpJ1p3fC8x3YwowyiH3A1SDQmhIxJBRmKtJ3GY49OYmKFe9KbF/7xOagbX3YyJJDUgqG2x3iDl2Eg8TYz7TAE1fGKBUMXsZUyHRBFqEy1s0iBIDPoc98cs0TPuZrMn567N7i8mXYZmpexflv3bSqnqzb9QQMfoBJ0hH12hKrpBddRAFD2iZ/SG3p0H58l5cV5/Wlec+cwR+iPn4xuIZZyl</latexit>

Crystallographic
complex reflection groups

<latexit sha1_base64="+cbgbZG2vzJ//3NXit4f6N/htJA=">AAACKXicbVE9T8MwEHX4LOGrwMhiUSExoCqBAUakLrAViX5IJKoc95paOLZlO4go6i9i4HcwMiABAwz8EdxSBgpverp3707vLlGcGRsEr97c/MLi0nJlxV9dW9/YrG5tt43MNYUWlVzqbkIMcCagZZnl0FUaSJZw6CQ3jbHeuQVtmBRXtlAQZyQVbMAosa7Uq15ECaRMlBSEBT3yG7owlnAuU03UkFEcRZjKTHG4wxoGHOjYh1Mtc2X8CET/x9qr1oJ6MAH+S8IpqaEpmr3qY9SXNM+cnXJizHUYKBuXRFtGOYz8KDegCL0hKZQkM6bIkhHez4gdmlltXPxPu87t4DQumVC5BUFdi9MGOcdW4vE1cJ9pl4gXjhCqmduM6ZBoQl2imUkGBMnAHOL+LVNmwuNy8oCR77KHs0n/kvZRPTyuh5dHtbNgeoUK2kV76ACF6ASdoXPURC1E0QN6Ru/ow7v3nrwX7+27dc6benbQL3ifX6VLqOE=</latexit>

Crystallographic
complex reflection

groups
<latexit sha1_base64="9vDFzMwliz230cBk8HJUBa4Kh0E="></latexit>

Weyl
groups

<latexit sha1_base64="0Myex1CifVF+Ok32DdyHqP5b2wE=">AAACCnicbZDLSsNAFIYnXmu8RV26GSyCiJSkLnRZcOOygr1AE8pkcpoOnUzCzKQQQt7Ahc/iQhAXunDjI/g2pjUubP1XP+c7F/7jJ5wpbdtfxsrq2vrGZm3L3N7Z3du3Dg67Kk4lhQ6NeSz7PlHAmYCOZppDP5FAIp9Dz5/czHhvClKxWNzrLAEvIqFgI0aJLktD69z1IWQipyA0yMLsQcax6+JQxmmiTBdE8MuGVt1u2HPhZeNUpo4qtYfWpxvENI3KccqJUgPHTrSXE6kZ5VCYbqogIXRCQshJpFQW+QU+jYgeq0U2K/7HBqkeXXs5E0mqQdCypWSjlGMd41lcHDAJVPOsNIRKVl7GdEwkoWWihU0KBIlAXeBgyhI1914+/3BhltmdxaTLpttsOJcN565Zb9nVF2roGJ2gM+SgK9RCt6iNOoiiR/SM3tC78WA8GS/G60/rilHNHKE/Mj6+ARVem04=</latexit>

Figure 1. Euler-Venn diagram depicting the relations among complex reflection groups, crystallo-

graphic complex reflection groups, Coxeter groups, and Weyl groups.

Γ is not crystallographic, in which case WΓ does not have any obvious four-dimensional

interpretation. Clearly, it cannot descend from a 4d SYM theory. Even if one is willing

to entertain the possibility that the SYM theories do not exhaust the set of 4d N = 4

SCFTs, the conventional wisdom is that none of them can give rise to WΓ if Γ is a non-

crystallographic Coxeter group. Indeed, as we explain below, the moduli space of vacua

of the putative parent 4d theory would be the orbifold R6n/Γ, where n is the rank of

Γ, but general consistency conditions on the low-energy effective theory restrict Γ to be

crystallographic [23, 29].4

This whole circle of ideas admits a natural extension to a class of VOAs WG ⊃ WΓ,

labelled by a general complex reflection group G. These vertex algebras are extensions of the

N = 2 superVirasoro algebra by additional generators, including one short superprimary

for each of the fundamental invariants of G. Their central charge is fixed in terms of the

degrees of the primitive invariants of G, see (1.4). We propose a free-field construction of

the simple quotient of these algebras in terms of rank(G) βγbc ghost systems. If (and only

if) G = Γ is a Coxeter group, its lowest fundamental invariant has degree two, and the

corresponding short generator of the VOA induces an enhancement of the superconformal

algebra from N = 2 to N = 4, so that we recover the construction of WΓ discussed above.

If G is a crystallographic complex reflection group (which is not a Coxeter group), WG

may descend via the map of [1] from an N = 3 4d SCFT (which is not an N = 4 SCFT).

Many examples of N = 2 VOAs associated to N = 3 SCFTs have been described in the

literature [30, 31], and we are able to identify each of them with WG for some choice of G.

An Euler-Venn diagram of complex reflection groups is presented in figure 1.

In summary, we have found a uniform construction for:

(i) All the VOAs that descend from currently known N = 3 and N = 4 4d SCFTs. They

are labelled by Weyl groups in the N = 4 case and by a subset of the crystallographic

complex reflection groups in the N = 3 case.

(ii) Additional VOAs, labelled by the remaining crystallographic complex reflection

groups, which are candidates for 4d uplifts to N = 3 SCFTs, but whose 4d counter-

parts are currently unknown.

4We are grateful to Philip Argyres and Mario Martone for very insightful correspondence about the

moduli space geometry of N = 4 and N = 3 SCFTs.
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(iii) VOAs labelled by non-crystallographic Coxeter and complex reflection groups, which

presumably do not correspond to standard 4d theories.

Perhaps the most interesting open question is whether abstract bootstrap methods

can lead to a rigorous classification of all N ≥ 2 VOAs that descend from N ≥ 3 4d

SCFTs. The bootstrap constraints would have to incorporate intrinsic 4d conditions, such

as 4d unitarity. The simplest conjecture generalizing all available data is that the complete

list of such VOAs coincides with WG with G crystallographic, as well as of the additional

VOAs obtained from the above set by performing discrete quotients (see, e.g., [29, 32]).

We have made some preliminary progress in this direction, which we will report in an

upcoming publication [33]. We preview some our findings in the outlook subsection of this

introduction.

1.1 Main results

In this work we study a class of N = 2 VOAs labelled by complex reflection groups. By

an N = 2 VOA we mean a VOA that contains the N = 2 superconformal algebra (SCA)

as a subalgebra. The N = 2 SCA is generated by the stress tensor, together with an affine

gl(1) current and two supercurrents. The global part of the N = 2 SCA is osp(2|2), and it

is natural to organize the operator content of our VOAs into representations of osp(2|2).

We will discuss osp(2|2) representations in more detail in section 2.1 and in appendix A,

but for the purposes of the present introduction, it suffices to recall they are labelled by

two quantum numbers (h,m), which are the conformal dimension and the gl(1) charge of

the highest weight state in the multiplet. Representations with h = ±m obey a shortening

condition, and are referred to as chiral, anti-chiral, respectively. A representation with

h 6= |m| will be referred to as non-chiral.

The class of VOAs that we analyze in this work are extensions of the N = 2 SCA

obtained by introducing additional strong generators. The additional strong generators, as

well as several other interesting properties of the VOAs under examination, are intimately

related to the theory of invariants of the complex reflection group G. Therefore, before

we proceed, we need to introduce some algebraic structures related to complex reflection

groups.

Let G be a complex reflection group, regarded as a subgroup of GL(VG) with VG ∼=
Crank(G). According to the Chevalley-Shephard-Todd theorem, the ring of invariants C[VG]G

is a freely generated polynomial ring. The generators of the ring C[VG]G are usually referred

to as the fundamental invariants of G. Their number equals the rank of G, and their degrees

are denoted p`, with ` = 1, . . . , rank(G). For example, the rank-one complex reflection

group G = Zp has a unique fundamental invariant of degree p1 = p. If we introduce the

coordinate z on VZp
∼= C, the action of Zp on VZp is simply z 7→ e2πi/p z, and the ring of

invariants C[VZp ]Zp is freely generated by zp.

For our purposes, we need to consider the canonical symplectic variety associated to

the action of G on VG. More precisely, let us define the variety

MG =
VG ⊕ V ∗G

G
, (1.1)

– 4 –
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where V ∗G denotes the dual of the vector space VG. The space VG ⊕ V ∗G admits a canonical

symplectic structure,5 which is preserved by the action of G. We also define the ring

associated to MG,

RG = C[MG] = C[VG ⊕ V ∗G ]G. (1.3)

As opposed to the ring C[VG]G, the ring RG is not freely generated. For instance, in the

case G = Zp, we may parametrize the G action on VG ⊕ V ∗G as (z, z̄) 7→ (e2πi/p z, e−2πi/p z̄).

The ring RG is then generated by the monomials j = z z̄, w = zp, w̄ = z̄p, subject to the

relation w w̄ = jp.

As MG admits a natural GL(1) × GL(1) action, the ring RG can always be given a

presentation in terms of generators and relations, each possessing definite quantum num-

bers (h,m) under the GL(1) × GL(1) action. The generators with h = m are in 1-to-1

correspondence with the fundamental invariants of G. Our normalization of the quantum

numbers h, m is such that h = m = p`/2 for the `-th fundamental invariant of G. For any

complex reflection group G, there is a unique generator with (h,m) = (1, 0).6 In the ex-

ample of G = Zp, the quantum numbers of the generators j, w, w̄ are (1, 0), (p2 ,
p
2), (p2 ,−

p
2),

respectively. We refer the reader to section 2.2 for more information on the general case.

We are now in a position to articulate our main proposal. Given a complex reflection

group G, we claim that there exists an N = 2 VOA, denoted WG, satisfying the properties

(i)–(vii) listed below. Before giving the list of properties, we would like to caution the reader

that we do not have a general existence proof for WG, but we have nonetheless gathered a

considerable amount of evidence in favor of our proposal. In particular, in the case in which

the complex reflection group is the Weyl group of a semisimple Lie algebra, one can resort

to the BRST construction of [1] to demonstrate the existence of WG. Beyond Weyl groups,

we have a fully explicit construction of WG for the infinite series G = I2(p) and G = Zp,
as well as for all rank-three Coxeter groups, and the rank-two complex reflection group

G(3, 1, 2) (whose definition is recalled in section 5.2). We now give the list of properties

enjoyed by WG:

(i) WG is a simpleN = 2 VOA that is strongly generated by a finite number of operators.7

All strong generators of WG are organized in multiplets of osp(2|2).

(ii) Chiral and anti-chiral multiplets of strong generators ofWG come in pairs, which are in

1-to-1 correspondence with the fundamental invariants of G. The quantum numbers

of the chiral/anti-chiral pairs are (h,m) = (p`/2,±p`/2), with ` = 1, . . . , rank(G),

where p` are the degrees of the fundamental invariants of G.

5The symplectic structure ω is defined by

ω(x1 ⊕ ξ1, x2 ⊕ ξ2) = ξ2(x1)− ξ1(x2) , (1.2)

where x1,2 ∈ VG, and ξ1,2 ∈ V ∗G .
6If e`, ` = 1, . . . , rank(G) is a basis of VG, and e` denotes the dual basis of V ∗G , this generator has the form∑rank(G)
`=1 e` e`. Moreover, this generator is the moment map for the GL(1) action with quantum number m.
7This means that any element of WG can be obtained by taking linear combinations of normal ordered

products of derivatives of the strong generators. Furthermore, all null composites constructed in such a

way from the strong generators are modded out in WG. All strong generators are non-null operators.

– 5 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
5

(iii) For each generator of the ring RG with GL(1)×GL(1) quantum numbers (h,m), there

is an osp(2|2) multiplet of strong generators of WG, labelled by the same quantum

numbers.

Because of point (ii), this observation is trivial if h = ±m, but it is non-trivial for

generators of RG with h 6= |m|, which are mapped to non-chiral multiplets of strong

generators of WG.8 The unique generator of RG with (h,m) = (1, 0) is mapped to

the set of generators of the N = 2 SCA.

(iv) The central charge of WG is given by

c = −3

rank(G)∑
`=1

(2 p` − 1) , (1.4)

where p` are the degrees of the fundamental invariants of G.

(v) WG can be realized as a subalgebra of rank(G) copies of a standard βγbc system. We

may write

WG ⊂M(G)
βγbc :=

rank(G)⊗
`=1

M
(p`)
βγbc . (1.5)

The symbol M
(p`)
βγbc denotes a standard βγbc system, endowed with its canonical N = 2

superconformal structure labelled by the quantum number p`. More explicitly, each

tensor factor M
(p`)
βγbc comes with a free-field realization of the N = 2 SCA, in which

the quantum numbers of the free fields in M
(p`)
βγbc are determined by p`, see table (3.4).

For G = Z2, the free-field realization (1.5) of WG coincides with the one given in [26].

Crucially, we claim that the above free-field realization is a realization ofWG regarded

as simple quotient of the span of the strong generators. More explicitly, we propose

that all null states built from the strong generators are automatically identically zero

in the free-field realization. This has been proven for G = Z2 in [26].

(vi) Thanks to the free-field realization of point (v) above, we have a natural way to

associate a Poisson algebra to WG. This is achieved by means of the map

P : WG → M(G)cl
βγ , (1.6)

where M(G)cl
βγ denotes the Poisson algebra of polynomials in the indeterminates β`,

γ`, with ` = 1, . . . , rank(G), with each pair (β`, γ`) regarded as a pair of canonically

conjugate variables. The image of an operator O in WG under the map P is obtained

starting from the free-field realization of O and setting to zero all derivatives and

all factors of b`, c`, ` = 1, . . . , rank(G). More details on the map P are found in

section 3.4. The image of WG under the map P is a Poisson subalgebra P(WG) of

8In all examples we analyzed, the entire set of non-chiral strong generators of WG is obtained in this way

from the ring RG. We do not have conclusive evidence, however, that this is always the case for all choices

of G.
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M(G)cl
βγ . We propose that P(WG) is isomorphic to the ring of invariants RG, regarded

as a Poisson algebra,

P(WG) ∼= RG . (1.7)

(vii) Following the general construction of [34], one can define the vector subspace

C2(WG) ⊂ WG and the commutative Zhu algebra WG/C2(WG). The latter is natu-

rally endowed with the structure of a Poisson algebra. Crucially, WG/C2(WG) needs

not be a reduced ring, i.e. WG/C2(WG) may contain nilpotent elements. One can

mod out nilpotent elements of WG/C2(WG) and obtain a reduced ring, denoted

(WG/C2(WG))red. The latter is still a Poisson algebra. We propose the following

Poisson algebra isomorphism, (
WG/C2(WG)

)
red
∼= RG . (1.8)

In particular, this means that the associated variety to WG, in the sense of [34], is

precisely the variety MG defined in (1.1).

In the case of a complex reflection group that is also a Coxeter group, the structure of

the corresponding VOA is richer. In what follows, we reserve the symbol Γ for a Coxeter

group.

First of all, supersymmetry is enhanced from N = 2 to small N = 4. The small N = 4

SCA is generated by the stress tensor, an sl(2) triplet of affine currents, and two sl(2)

doublets of supercurrents. The explicit embedding of the N = 2 SCA into the small N = 4

SCA is given in (2.8). The global part of the small N = 4 SCA is psl(2|2). Multiplets of

psl(2|2) are labelled by a pair (h, j), where h is the conformal dimension and j is the sl(2)

spin of the highest weight state. Multiplets with h = j obey a shortening condition, and

are referred to as short in what follows. Generic multiplets with h > j are referred to as

long multiplets. We refer the reader to section 2.1 and appendix A for more information.

Recall that Coxeter groups are characterized within complex reflection groups by the

property of possessing exactly one fundamental invariant of degree two. By virtue of point

(ii) above, it follows that the VOA WΓ associated to a Coxeter group Γ has exactly one

chiral/anti-chiral pair of strong generators with h = ±m = 1. This chiral/anti-chiral pair

combines with the set of generators of the N = 2 SCA to give a short multiplet of psl(2|2)

that encompasses all generators of the small N = 4 SCA.

This phenomenon extends to all chiral/anti-chiral pair of multiplets of strong genera-

tors of WΓ. More precisely, each chiral/anti-chiral pair in N = 2 language is paired with

non-chiral N = 2 multiplets to give a short multiplet of psl(2|2). Crucially, not all N = 2

non-chiral multiplets are necessarily paired with chiral/anti-chiral pairs in the enhance-

ment to small N = 4 supersymmetry. As a result, the VOA WΓ generically admits long

multiplets of strong generators.

The supersymmetry enhancement at the level of the VOA is mirrored by an enhance-

ment of the isometry group of the variety MG. Indeed, if G is a Coxeter group Γ, the

variety (1.1) admits an alternative presentation,

MΓ =
C2 ⊗ V R

Γ

Γ
, (1.9)
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where Γ acts trivially on the C2 factor. In the above expression, we have implicitly identified

the Coxeter group Γ with a subgroup of O(V R
Γ ), where V R

Γ
∼= Rrank(Γ) is a real vector space.9

The presentation (1.9) makes it manifest that the GL(1) × GL(1) action is enhanced to

a GL(2) ∼= GL(1) × SL(2) action. It follows that the ring RΓ associated to MΓ admits a

presentation in terms of generators and relations with a definite GL(1) weight h and SL(2)

spin j. The simplest example of Coxeter group is Γ = Z2. In this case, the generators j,

w, w̄ (introduced above for Zp) all have the same weight and form a triplet of SL(2). The

relation w w̄ = j2 is a singlet of SL(2).

Let us summarize how points (i)–(iii) above can be rephrased in the Coxeter case.

(i)′ WΓ is a simple VOA with small N = 4 supersymmetry that is strongly generated by

a finite number of operators. All strong generators of WΓ are organized in multiplets

of psl(2|2).

(ii)′ Short multiplets of strong generators of WΓ are in 1-to-1 correspondence with the

fundamental invariants of Γ. The quantum numbers of the short multiplets of strong

generators are h = j = p`/2, with ` = 1, . . . , rank(G), where p` are the degrees of the

fundamental invariants of Γ. The short multiplet containing the generators of the

small N = 4 SCA is in correspondence with the fundamental invariant of Γ of degree

two.

(iii)′ Upon expressing generators and relations of the ring RΓ in a GL(2) covariant way,

for each GL(2) multiplet of generators of RΓ with quantum numbers (h, j), there

is a psl(2|2) multiplet of strong generators of WΓ, labelled by the same quantum

numbers.

Because of point (ii)′ above, this observation is trivial if h = j, but it is non-trivial

for generators of RΓ with h 6= j, which are mapped to long multiplets of strong

generators of WΓ.

The points (iv) to (vii) in the list of properties in the complex reflection case are

specialized to the Coxeter case with obvious modifications. In particular, we still have a

free-field realization of WΓ, in which all null states are automatically zero.

1.2 Connection with 4d physics

The class of VOAs labelled by complex reflection groups that we have described in the

previous section constitutes a rich and novel set of VOAs, worth studying in its own right.

We now come back to our original motivation for the study of these 2d algebraic structures,

which is rooted in the analysis of 4d SCFTs. We propose that the class of VOAs WG

9If G is a complex reflection group, and g ∈ G, the action of g on VG ⊕ V ∗G is of the form

(z, z̄) 7→ (M z,MT,−1 z̄) , (1.10)

where z ∈ VG, z̄ ∈ V ∗G , and M ∈ GL(VG) ∼= GL(rank(G),C). If G is a Coxeter group Γ, for any g ∈ Γ the

matrix M can be taken to be real and orthogonal, MT,−1 = M , making it manifest that M acts on the

GL(2) doublet (z, z̄).
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associated to complex reflection groups G provides a unified framework to describe VOAs

originating from 4d SCFT with N ≥ 3 via the map of [1].

In a generic 4d N = 2 SCFT, there is no obvious relation between the geometries of

the Coulomb and Higgs branches. If the theory has N ≥ 3 supersymmetry, however, the

geometry of the Higgs branch is modeled after the geometry of the Coulomb branch. This

is a consequence of the fact that both branches are subspaces of the full moduli space of

the theory, which is highly constrained by N ≥ 3 supersymmetry.

Let us explain this point in more detail. The moduli space of a 4d N = 3 theory is

parametrized by the expectation value of scalars in N = 3 vector multiplets, which are

identical to N = 4 vector multiplets. Therefore, the moduli space of a 4d N ≥ 3 has

real dimension 6r, where r is the rank of the SCFT, and is locally flat. Upon selecting an

N = 2 subalgebra of the N ≥ 3 superconformal symmetry, the moduli space geometry is

reformulated in terms of a Coulomb branch and a Higgs branch. Let us assume that the

Coulomb branch can be written globally as a quotient of Cr by a discrete group, Cr/G. The

analysis of [23, 29] then reveals that G must be a crystallographic complex reflection group,

whose rank equals the rank r of the SCFT. Moreover, if the Coulomb branch is Cr/G,

N ≥ 3 supersymmetry implies that the Higgs branch must coincide with the variety (1.1)

(recall VG ∼= Cr).

Let us now consider the VOA associated to the SCFT. According to the conjecture

of [13], the associated variety to the VOA must coincide with the Higgs branch of the 4d

theory, which is the variety (1.1). Moreover, we know from [1] that the 2d central charge

c2d must be given by c2d = −12 c4d, where c4d is the (Weyl)2 trace anomaly coefficient.

On the other hand, in any 4d N ≥ 3 SCFT, the two trace anomaly coefficients are equal,

a4d = c4d [35]. Furthermore, we can use the Shapere-Tachikawa formula [36, 37] to relate

them to the dimensions of the Coulomb branch generators D`, ` = 1, . . . , r,

c4d =
1

4

r∑
`=1

(2D` − 1) . (1.11)

By assumption, the Coulomb branch is Cr/G, which implies that the dimensions of the

Coulomb generators coincide with the degrees of the fundamental invariants of G, D` = p`,

` = 1, . . . , r. It follows that the central charge of the VOA is given by the formula (1.4).

The above considerations provide strong evidence that, if we start with a 4d N ≥ 3

SCFT with Coulomb branch Cr/G, with G a crystallographic complex reflection group of

rank r, the associated VOA is precisely the VOA WG described in section 1.1. Conversely,

it seems natural to expect that, for any crystallographic complex reflection group G, the

VOA WG should originate from a 4d N ≥ 3 SCFT.

In table 1 we list all irreducible crystallographic complex reflection groups.10 If G is

a crystallographic complex reflection group that is also Coxeter, i.e. a Weyl group, the

identification of the parent 4d theory for the VOA WG is straightforward: it is simply

4d N = 4 SYM with the appropriate gauge algebra g, such that G = Weyl(g). If we

10For the character fields of irreducible crystallographic complex reflection groups, we refer the reader to

table 3 of [23].
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Non-Coxeter groups

Group Rank Degrees

G(3, 1, n) n 3, 6, . . . , 3n

G(3, 3, n), n ≥ 3 n 3, 6, . . . , 3(n− 1);n

G(4, 1, n) n 4, 8, . . . , 4n

G(4, 2, n) n 4, 8, . . . , 4(n− 1); 2n

G(4, 4, n), n ≥ 3 n 4, 8, . . . , 4(n− 1);n

G(6, 1, n) n 6, 12, . . . , 6n

G(6, 2, n) n 6, 12, . . . , 6(n−1); 3n

G(6, 3, n) n 6, 12, . . . , 6(n−1); 2n

G(6, 6, n), n ≥ 3 n 6, 12, . . . , 6(n− 1);n

Zk, k ∈ {3, 4, 6} 1 k

G4 2 4, 6

G5 2 6, 12

G8 2 8, 12

G12 2 6, 8

G24 3 4, 6, 14

G25 3 6, 9, 12

G26 3 6, 12, 18

G29 4 4, 8, 12, 20

G31 4 8, 12, 20, 24

G32 4 12, 18, 24, 30

G33 5 4, 6, 10, 12, 18

G34 6 6, 12, 18, 24, 30, 42

Coxeter groups

Group g Rank Degrees

Sn an−1 n− 1 2, 3, . . . , n

G(2, 1, n) bn, cn n 2, 4, . . . , 2n

G(2, 2, n) dn n 2, 4, . . . , 2(n− 1);n

G(6, 6, 2) g2 2 2, 6

G28 f4 4 2, 6, 8, 12

G35 e6 6 2, 5, 6, 8, 9, 12

G36 e7 7 2, 6, 8, 10, 12, 14, 18

G37 e8 8
2, 8, 12, 14,

18, 20, 24, 30

Table 1. Irreducible crystallographic complex reflection groups, partitioned into non-Coxeter and

Coxeter groups. For each group, we give the rank and the degrees of the fundamental invariants.

A crystallographic Coxeter group is a Weyl group: in this case we also include the corresponding

Lie algebra(s). The notations G(m, p, n) and Gn refer to the original list by Shephard and Todd.

The symbol Sn denotes the symmetric group of permutations of n objects. Unless otherwise stated,

it is understood that n ≥ 2. The specifications n ≥ 3 exclude G(3, 3, 2) ∼= Weyl(a2), G(6, 6, 2) ∼=
Weyl(g2), and G(4, 4, 2), which is conjugate in U(2) to Weyl(b2). The shaded entries correspond to

crystallographic complex reflection groups that govern the Coulomb branch geometry of known 4d

N ≥ 3 SCFTs.

consider a crystallographic complex reflection group that is not Coxeter, the putative 4d

parent theory in the sense of [1] should be a genuine N = 3 SCFT. For some of the

entries in table 1 the parent N = 3 theory has been identified in [30, 38, 39].11 It would

be interesting to confirm or rule out the existence of parent N = 3 theories for all other

entries of table 1.

11More precisely, the rank-one cases associated to Zk, k ∈ {3, 4, 6}, have been analyzed in [30], while

the S-fold construction of [38, 39] provides the parent 4d N = 3 theory in the cases G(3, 3, n), G(3, 1, n),

G(4, 4, n), G(4, 1, n), G(6, 6, n) (see table (2.13) in [39]). Additional N = 3 theories have been introduced

in [40], but not enough information about their Coulomb branches is available to establish a clear connection

to this work.
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Any VOA arising from a 4d SCFT via the construction of [1] is equipped with the

so-called “R-filtration” [13], which originates from the sl(2)R symmetry of the parent 4d

N ≥ 2 SCFT. While natural from a 4d perspective, the R-filtration does not seem to

be intrinsic to the VOA in any obvious way. For instance, given an abstract presentation

of the VOA in terms of its strong generators and the singular OPEs among them, it is

not clear in general how to recover the R-filtration. This is a pressing problem, since the

R-filtration is instrumental in achieving a detailed understanding of the map from 4d to

2d operators, which in turn is pivotal in many applications of the VOA technology to 4d

physics.

In this work, we propose a simple solution to the problem of the R-filtration for all

VOAs that admit a 4d origin via the map of [1], and at the same time can be identified with

one of the VOAs WG for some complex reflection group G. In this case we can utilize the

free-field construction to define a filtration of WG, which will be referred to as R-filtration.

This filtration is specified in a simple way by assigning weights to the free field “letters”

β`, γ`, b`, c`, ` = 1, . . . , rank(G), see (6.22). We propose the identification of this novel

R-filtration with the sough-for R-filtration, and we perform several tests of this proposal.

The identification of R-filtration and R-filtration allows us to recover the Macdonald

limit of the superconformal index of the parent 4d theory from the corresponding VOA.

This is achieved with the refinement the vacuum character of the VOA by the R-filtration.

1.3 Outlook

The main goal of this work is to provide a unified description of a large class of supersym-

metric VOAs, which includes all known VOAs originating from 4d SCFTs with N ≥ 3 via

the map of [1]. A full classification of all VOAs with N = 2 or small N = 4 supersym-

metry is a more ambitious task, which would require different tools. One way to address

the classification problem consists in posing and trying to solve suitable supersymmetric

VOA bootstrap problems. We plan to report progress in this direction in an upcoming

paper [33].

A simple example of VOA bootstrap problem is the following. Consider a VOA with

small N = 4 supersymmetry, and suppose it is strongly generated by the generators of the

small N = 4 SCA, together with additional strong generators, organized in a single short

psl(2|2) multiplet with prescribed quantum numbers h = j = p/2.12 We may then ask: for

a given p ≥ 3, for which values of the central charge c does the VOA exist? To address

this question, one tries to determine the singular OPEs of the strong generators in such a

way that all axioms of a bona fide VOA are satisfied. The outcome of this analysis is that

the VOA exists in three cases:

(A) : c = −6(p+ 1) , for any integer p ≥ 3 ;

(B) : c = −6

(
1

2
p+ 1

)
, for even p ≥ 4 ;

(C) : c = 3(p− 2) , for odd p ≥ 3 .

(1.12)

12The highest weight state of this short psl(2|2) multiplet is always assumed to be Grassmann even.
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The interpretation of case (A) is clear: the VOA is the VOA WI2(p) associated to the

Coxeter group I2(p), which is discussed in detail in section 4.2 below. The VOAs of

cases (B) and (C) cannot be identified with any VOA WΓ with Γ Coxeter group. We do

have, however, an interpretation for case (B) in terms of a quotient of the VOA WI2(p/2)

associated to the Coxeter group I2(p/2). More precisely, the VOA WI2(p/2) admits a Z2

automorphism, and we propose the identification of the VOA of case (B) with WI2(p/2)/Z2.

A first trivial check of this proposal is the value of the central charge; more non-trivial

checks can be performed by analyzing null states in the VOA. As far as the VOA of

case (C) is concerned, we restrict ourselves to the simple observation that, since its central

charge is positive, it cannot originate from any unitary 4d SCFT via the map of [1].

Another simple VOA bootstrap problem we can address is the following. Consider a

small N = 4 VOA, which is by assumption strongly generated by the generators of the

small N = 4 SCA, together with additional generators, organized in two short psl(2|2)

multiplets with given quantum numbers h = j = p1/2 and h = j = p2/2.13 Once again,

we imagine to fix p1 ≤ p2, and we investigate if there is any value of c for which the VOA

exists. We find that the VOA exists only in four cases:

(a) : (p1, p2) = (3, 4) , c = −36 ;

(b) : (p1, p2) = (4, 6) , c = −54 ;

(c) : (p1, p2) = (6, 10) , c = −90 ;

(d) : (p1, p2) = (4, 6) , c = −36 .

(1.13)

We can interpret all these four cases in terms of VOAs associated to a Coxeter group. The

VOAs in the cases (a), (b), (c) are the VOAs WA3 , WB3 , WH3 , respectively. The VOA of

case (d) is the quotient WA3/Z2.

As a final comment, we have studied similar VOA bootstrap problems involving more

strong generators. The picture emerging from the bootstrap analysis is compatible with

the expectation that the VOAs labelled by Coxeter groups introduced in this work ex-

haust the complete list of (small) N = 4 W-algebras with certain “good” properties. The

fundamental question of identifying such properties will be addressed in [33].

2 Preliminaries

In the first part of this section, we briefly review some basic features of the N = 2 and

small N = 4 SCAs and of their representation theory. In the second part of this section,

we collect some standard material on Coxeter and complex reflection groups. In particular,

we describe their ring of invariants in the cases of interest for applications in the the rest

of the paper.

Unless otherwise stated, all Lie (super)algebras in this work are understood to be Lie

(super)algebras over the complex numbers.

13Also in this case the highest weight state of these short psl(2|2) multiplets are assumed to be Grassmann

even for any choice of p1, p2.
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2.1 N = 2 and small N = 4 SCAs

The small N = 4 super-Virasoro algebra is generated by affine sl(2) currents J0,±, a stress

tensor T , and four fermionic operators G̃± and G±. The bosonic sub-VOA has OPEs

J0(z1)J0(z2) ∼ 2 k

(z1 − z2)2
, (2.1)

J0(z1)J±(z2) ∼ ±2 J±

(z1 − z2)
, (2.2)

J+(z1)J−(z2) ∼ −k
(z1 − z2)2

+
−J0

(z1 − z2)
, (2.3)

T (z1)T (z2) ∼ c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+

∂T (z2)

(z1 − z2)
, (2.4)

the OPE between T and J express the fact that J0,± are Virasoro primaries of conformal

dimension h = 1, see appendix A. The level and the central charge are related as

c = 6k . (2.5)

The fermionic generators are Virasoro and affine Kac-Moody (AKM) primaries with weights

h = 3
2 and j = 1

2 . Their OPE takes the form

GI(z1) G̃J(z2) ∼ 2 k εIJ

(z1 − z2)3
+

2 JIJ(z2)

(z1 − z2)2
+
εIJT (z2) + ∂JIJ(z2)

z1 − z2
, (2.6)

where ε+− = 1, J±± = J± and J+− = J−+ = 1
2J

0. The remaining OPE among fermionic

generators are regular. The small N = 4 SCA possesses an SL(2) outer automorphism that

rotates G and G̃ as a doublet and acts trivially on the bosonic generators. We denote by14

GL(1)r the corresponding Cartan generator, normalized as r[G] = 1
2 , r[G̃] = −1

2 . In order

to avoid keeping track of sl(2) indices we use a standard index free notation by introducing

the auxiliary variable y and write

J(y) = J+ + J0 y + J− y2, G(y) = G+ +G− y , G̃(y) = G̃+ + G̃− y , (2.7)

where we omitted the explicit z-dependence of the operators. Because of the auxiliary

variable y, we often refer to the sl(2) R-symmetry of the small N = 4 SCA as sl(2)y.

In contrast, the conformal algebra sl(2) on the Riemann sphere with coordinate z will be

referred to as sl(2)z. More details are given in appendix A.

The N = 2 SCA can be defined as the sub-VOA of the small N = 4 SCA generated by

J = J0, G = G−, G̃ = G̃+, T = T . (2.8)

The remaining generators of the small N = 4 SCA, namely (J+, G+) and (J−, G̃−), are

N = 2 chiral and anti-chiral multiplets respectively.

14This r should not to be confused with r = rank(Γ).
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Algebra Quantum numbers of s.c.p. X Shortening conditions Notation

psl(2|2)
h > j − L(h,j)

h = j G↑X = G̃↑X = 0 Sh

osp(2|2)

h > |m| − X(h,m)

h = +m G̃ ·X = 0 Ch

h = −m G ·X = 0 Ch

Table 2. Representations of psl(2|2) and osp(2|2) that appear in this work. We use X to the

denote the superconformal primary, or s.c.p. for short. The symbol G↑X denotes the descendant of

X with weight h+ 1
2 and spin j+ 1

2 obtained by acting once with the supercharge G. The notation

G ·X stands for the descendant of X with weight h+ 1
2 and charge m+ 1

2 obtained by acting once

with the supercharge G. Similar remarks apply to G̃↑X, G̃ ·X. More details on our notation can

be found in appendix A.

The global part of the small N = 4 and N = 2 SCA are psl(2|2) and osp(2|2) respec-

tively.15 The representations of psl(2|2) and osp(2|2) relevant for this work are summarized

in table 2. The bosonic subalgebra of psl(2|2) is sl(2)z ⊕ sl(2)y, and representations are

labelled by the conformal dimension h and the (half-integer) spin j of the superconfor-

mal primary. The bosonic subalgebra of osp(2|2) is sl(2)z ⊕ gl(1), and representations

are labelled by the conformal dimension h and the (half-integer) gl(1) charge m of the

superconformal primary.

Finally we recall the definition of super-Virasoro primary. The operator O is a super-

Virasoro primary if the OPE of any super-Virasoro generator with O does not contain

any pole of order higher than one, with the obvious exception of the order-two pole in the

TO OPE, which encodes the conformal weight. The first order poles in the OPEs of the

super-Virasoro generators with O encode the action of the global part of the SCA. See

appendix A for more details.

Notation. Occasionally we will use the following notation for poles in the OPE:

A(z1)B(z2) =
∑
n

{AB}n(z2)

(z1 − z2)n
. (2.9)

We will also use (AB)n to represent be the completion of {AB}n to a quasiprimary, i.e.

an sl(2)z primary. The object (AB)n is obtained from {AB}n by adding z-derivatives of

higher-order poles in the AB OPE, the explicit formula is given in (A.7). See e.g. [42] for

details. Concerning the sl(2)y structures, we will use the notation (AB)j for the spin j

projection of the relevant product of A with B, see appendix A for more details. Finally,

given a quasiprimary X of sl(2)y with spin j, we introduce the shorthand notation for its

supersymmetric descendant

G↓X = (GX)
j− 1

2
1 . (2.10)

15In fact, the small N = 4 and N = 2 SCAs can be obtained by quantum Drinfeld-Sokolov reduction of

the Lie superalgebras psl(2|2) and osp(2|2), respectively, see [41]. This is consistent with the fact that the

small N = 4 and N = 2 SCAs exist for any value of the central charge c.
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Γ p1, . . . , pr (h, j) quantum numbers of long generators* − c
3

An−1 2, 3, . . . , n − n2 − 1

Bn 2, 4, . . . , 2n − n(2n+ 1)

Dn 2, 4, . . . , 2(n− 1);n
(
n+2

2 , n−4
2

)
, . . . n(2n− 1)

E6 2, 5, 6, 8, 9, 12 (4, 0),
(

9
2 ,

3
2

)
, (6, 3) 78

E7 2, 6, 8, 10, 12, 14, 18 (5, 1), (6, 3), (7, 3), (8, 5) 133

E8 2, 8, 12, 14, 18, 20, 24, 30 (6, 0), (7, 3), (9, 6), (9, 4), (9, 3), (10, 6), (10, 0) 248

F4 2, 6, 8, 12 (4, 0), (6, 3) 52

H3 2, 6, 10 − 33

H4 2, 12, 20, 30 (6, 0), (10, 6), (10, 0) 124

I2(p) 2, p − 2(p+ 1)

Table 3. The notation for Coxeter groups is such that when restricting to Weyl groups one has

the identification A = Weyl(a), B = Weyl(b) and so on. Moreover, the Weyl group G2 appears

as G2 = I2(6). Recall that Weyl(bn) = Weyl(cn). The asterisk * above indicates that only long

generators whose conformal weight h is smaller than the lightest relation are listed. These are the

one that can be extracted unambiguously from the associated Hilbert series but there might be

more generators. The . . . in the Dn series are given explicitly for 4 ≤ n ≤ 9 in equation (B.4). See

appendix B.1 for more details.

This is the quasiprimary in the order-one pole of the OPE of G with X, projected onto

the component with spin j − 1
2 . Similar remarks apply to the operations G↑ and G̃↑,↓.

2.2 Coxeter groups, complex reflection groups, rings of invariants

We will now describe the symplectic varieties (1.9) and (1.1) and the associated ring of

functions in more detail. The case of Coxeter groups is described first, the generalization

to complex reflection groups is presented in the end of this section. Let us start by fixing

a basis of VΓ to be z1, . . . , zr, where r = rank(Γ). The action of the (finite) Coxeter group

Γ on the real vector space VΓ is generated by reflections. This can be taken to be the

definition of Coxeter group. Their full list is given by the Weyl groups of finite dimensional

semisimple Lie algebras ABCDEFG together with I2(p), H3, H4, see table 3 for more

details. The expression for the central charge given in (1.4) can be rewritten as

− c

3
=

rank(Γ)∑
`=1

(2p` − 1) = |ΦΓ|+ rank(Γ)
Weyl
= dim(gΓ) , (2.11)

where |ΦΓ| is the cardinality of the root system associated to Γ.

The main ring of interest in the following is the ring of invariant polynomials in two

sets of variables z±i

RΓ = C[z+
1 , . . . , z

+
r , z

−
1 , . . . , z

−
r ]Γ = C[MΓ] , (2.12)

where the Coxeter group acts independently on z+
i and z−i . This ring carries the action of

GL(2) = SL(2)×GL(1), where z± transform as a doublet under SL(2) and have the same
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GL(1) weight. This ring is thus graded by m, the eigenvalues of the Cartan of SL(2), and

h with m[z±i ] = ±1
2 , h[z±i ] = 1

2 .

The ring RΓ has an alternative description in terms of generators and relations. Let

us present the simplest example of Γ = Weyl(a1) = Z2, whose action is generated by

σ · z±1 = −z±1 . In this case the invariants are j± = z±1 z
±
1 and j0 = 2z+

1 z
−
1 with the obvious

relation j+j− = 1
4j

0j0. For groups Γ of higher rank giving an explicit description of this

type is more involved but in principle straightforward. We do so in the low rank examples

of I2(p), A3, B3, H3 and comment on the general case in appendix B.1. One can develop

an opinion about the set of generators and relations by considering the Hilbert series of

RΓ that we will now review.

Hilbert series. The (refined) Hilbert series of RΓ is defined as

HSΓ(τ, x) = TrRΓ
(τ2hx2m) . (2.13)

In the case of ring of invariants as (2.12) the Hilbert series can be computed by averaging

over Γ the Hilbert series of the freely generated ring C[z+, z−]. This is the content of the

Molien formula

HSΓ(τ, x) = MolienΓ(τ, x) :=
1

|Γ|
∑
g∈Γ

1

detC2⊗VΓ
(1− h⊗ g)

, h = τ

(
x 0

0 x−1

)
, (2.14)

where |Γ| is the order of Γ. The simplest example is given by

MolienZ2(τ, x) =
1− τ4

(1− τ2 x−2)(1− τ2)(1− τ2 x+2)
. (2.15)

In this formula the denominator can be interpreted as the contribution of the generators

j+, j−, j0 defined above and the subtraction of the terms τ4 in the numerator corresponds

to the relation j+j− = 1
4j

0j0. While it is not possible in general to extract the set of

generators and relations, together with their h,m quantum numbers, from the series (2.13)

alone, one can show that certain generators and relations must be present, see e.g. [43].

This can be done efficiently by using the so-called plethystic logarithm. The expressions

are collected in appendix B.1 and the resulting set of generators is given in table 3. For

convenience of the reader we collect the expression for Molien generating functions for all

Coxeter groups in a Mathematica file which can be found as supplementary material. It

should be noticed that the generators of RΓ can be divided in two groups: one consisting of

elements with quantum numbers h = j, which will be referred to as short generators, and

the other with quantum numbers h > j, which will be referred to as long generators. We do

not give a complete list of long generators for general Γ but list generators whose existence

can be shown unambiguously using the Molien series (2.14). The result is collected in

table 3.

Symplectic structure. The ring RΓ possesses the important property of being a Poisson

algebra with Poisson bracket

{zIi , zJj }PB = ηij ε
IJ , i, j = 1, 2, . . . , r , I, J = ± , (2.16)
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where εIJ is antisymmetric and normalized as ε+− = 1 while ηij is symmetric and non-

degenerate. This implies that (1.9) is a symplectic variety. It is straightforward to compute

the Poisson bracket of the generators of RΓ using (2.16). In the simple example of Γ =

Z2 this gives the Lie algebra of SL(2). For higher rank this procedure will produce an

extension of it. A priori, there is no canonical choice for the set of generators, but there

is a distinguished one originating from the associated VOA. We remark that when long

generators are present they can be generated by Poisson brackets of short generators, as

the example of D4 given in section 4.4 illustrates.

Complex reflection groups. The case of complex reflection groups is very similar so

we will be brief. The first important difference is that the GL(1)× SL(2) symmetry of the

Coxeter case is reduced to GL(1) × GL(1). The Molien formula is a slight generalization

of (2.14) to

MolienG(τ, x) =
1

|G|
∑
g∈G

1

detVG(1− τ x g) detV ∗G (1− τ x−1 g)
. (2.17)

Finally the generalization of Poisson brackets (2.16) uses the canonical pairing between VG
and its dual V ∗G .

Remark. One might refer to (2.12) as the Higgs branch chiral rings. It contains a subring

defined as the graded component with h = m. The latter can be referred to as Coulomb

branch chiral ring and is a freely generated polynomial ring. This is the content of a

famous theorem of Chevalley, Shephard and Todd states that the ring of invariants C[V ]G

is a freely generated polynomial ring if and only if G acts as a complex reflection group on

V . These finite groups have been classified by Shephard and Todd, see e.g. [44].

3 Free-field realizations

This section is devoted to our proposal for a free-field realization of the VOAs associated

to Coxeter and complex reflection groups.

3.1 Realization of the N = 2 SCA in terms of βγbc systems

To begin with, we present a free-field realization of the N = 2 SCA. According to our

proposal, the relevant free fields consist of r = rank(G) copies of a free βγbc system. The

relevant non-trivial OPEs are simply

β`1(z1) γ`2(z2) = −δ`1`2
z12

+ reg. , b`1(z1) c`2(z2) =
δ`1`2
z12

+ reg. , (3.1)

where `1, `2 run from 1 to r and δ`1`2 denotes the Kronecker delta. The generators of the

N = 2 SCA take a simple expression in terms of the free fields, consisting of a direct sum
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of terms, one for each copy of the βγbc system. More precisely,

J =
r∑

`=1

[
p` β` γ` + (p` − 1) b` c`

]
,

G =

r∑
`=1

b` γ` , G̃ =

r∑
`=1

[
p` β` ∂c` + (p` − 1) ∂β` c`

]
,

T =

r∑
`=1

[
− 1

2
p` β` ∂γ` +

(
1− 1

2
p`

)
∂β` γ` −

1

2
(p` + 1) b` ∂c` +

1

2
(1− p`) ∂b` c`

]
. (3.2)

The quantities p` are the degrees of the invariants of the Coxeter group. The central charge

of the N = 2 SCA is given by

c = −3

r∑
`=1

(2 p` − 1) , (3.3)

compare to (1.4). The conformal weights h, the gl(1) charges m and the gl(1)r charge

r defined below (2.6) of the free fields are summarized in table (3.4). The charge m is

normalized in such a way that h = m for chiral primary operators. Notice that, although

the combined βγbc system contains states of negative conformal dimension, all states have

a non-negative “twist” h−m. Furthermore, the space of states with given twist and charge

is finite-dimensional.

h m h−m h+m r

β`
1
2 p`

1
2 p` 0 p` 0

b`
1
2(p` + 1) 1

2(p` − 1) 1 p` +1
2

c` −1
2(p` − 1) −1

2(p` − 1) 0 1− p` −1
2

γ` 1− 1
2 p` −1

2 p` 1 1− p` 0

∂ 1 0 1 1 0

(3.4)

A comment on normal-ordered products in the βγbc system is in order. In all equations

in (3.2), the juxtaposition of free fields is understood as their {· ·}0 normal-ordered product,

see (2.9). More generally, let X1, . . . , Xn stand for any of the free fields β, γ, b, c, or any

z-derivative thereof. A natural object is the nested normal-ordered product

:X1X2 . . . Xn : = {X1{X2{. . . {Xn−1Xn}0 . . . }0}0 . (3.5)

Since we are considering a free theory, and since the Xi are (derivatives of) free fields, in

the normal-ordered product :X1X2 . . . Xn : we are free to permute the factors Xi, up to

Grassmann signs, exactly as we would do in a supercommutative algebra. For instance

:β ∂β γ γ γ : = {β {∂β {γ {γ γ}0}0}0}0 = {γ {∂β {γ {γ β}0}0}0}0 = :γ ∂β γ γ β : . (3.6)

This allows to write compactly :β ∂β γ3 : without ambiguities. Notice that such manipula-

tions are not allowed in a generic VOA. For the sake of brevity, we omit the colons from

the normal-ordered products in the rest of this work.
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3.2 Realization of the remaining generators in the N = 4 case

Let us first discuss the case of the N = 4 VOA WΓ associated to a Coxeter group Γ.

As outlined in section 1.1, the set of strong generators of this VOA includes elements

transforming in short representations S p`
2

of the global conformal algebra psl(2|2), see

table 2. Among these, there is a distinguished invariant of degree two which corresponds

to the generators of the small N = 4 super-Virasoro VOA. This will be labelled by ` = 1

so that p1 = 2. The remaining short generators are denoted as16 W`. A notable feature of

the proposed free-field realization is that the highest weight states of the short generators

are identified with βs, see (3.1), more precisely

J+ = β1 , G+ := {G− J+}1 = b1 , (3.7a)

W`
h.w. = β` , GW`

h.w. := {G−W`
h.w.}1 = b` , (3.7b)

` = 2, . . . , rank(Γ). Two remarks are in order. First notice that the (h,m) weights assign-

ment of these object is consistent by construction, see table (3.4). The N = 2 subalgebra,

embedded as specified by (2.8), is realized as in (3.2). The second remark is that each pair

(β`, b`) forms an N = 2 chiral multiplet as (3.7) indicates.

The next generator that needs to be constructed is J−, the ŝl(2) affine Kac-Moody

current with weight m = −1, see section 2.1. Once this operator is constructed one

can build the whole N = 4 super-conformal multiplets to which (3.7) belong by taking

appropriate poles in the OPE with J− and its N = 2 partner G̃−. Next, one takes the OPE

of the generators obtained in this way. If WΓ does not have long generators, see table 3,

the latter OPE needs to close on the generators that have already been constructed. If

long generators are present, they will be defined by the failure of these OPE to close on the

short generators. An example of this mechanism, which is already at play at the classical

level when closing the Poisson brackets of the short generators of the ring RΓ, is given for

the example of D4 in section 4.4.

In order to construct J−, we build an Ansatz and impose necessary conditions that

this operator must obey. The construction goes as follows:

1. Construct the most general Ansatz for J− in terms of the βγbc free fields. There

is always a finite number of terms in the Ansatz. This is easy to verify by recalling

that J− has weights h = 1, h −m = 2 and by staring at weight assignments of the

constituent free fields given in table (3.4).

2. Impose that the small N = 4 algebra closes, this is equivalent to:

a. Linear constraints: J− is an anti-chiral N = 2 super-Virasoro primary of weight

h = 1 and its OPE with J+ closes on J0.

b. Non-linear constraints: J− has a regular OPE with itself.

3. Impose that the short generators W`
h.w. given in (3.7) must be super-Virasoro pri-

mary, this implies:

{J− β`}n≥2 = 0 , ` = 2, . . . , rank(Γ) . (3.8)
16The notation for their super-descendants is given in (A.41).
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4. Impose that the short generators W` have non-zero norms.

5. Impose that the VOA closes on the strong generators.

It is convenient to write the Ansatz for J− in the form

J− = J−min + J−norms , (3.9)

where

J−min := k ∂γ1 + β1 (γ1)2 + γ1 b1 c1 + γ1 Ĵ − c1 Ĝ . (3.10)

The hat on J and G signals the omission of all terms built with β1, γ1, b1, c1 in (3.2).

For all Γ different from A1 the factor J−norms has to be non-zero. As the name suggests,

it must be there in order for point 4. above to be satisfied. To illustrate this point, let

us explain what happens if we set J−norms = 0 in (3.9). It is easy to verify that in this

case the N = 4 super-Virasoro subalgebra is correctly reproduced. Next, let us construct

Wmin
` (z, y) by summing up the sl(2)y descendants of (3.7b) defined by the action of J−min.

A little computation shows that

Wmin
` (y) = (1 + y γ1)p` β` − (1 + y γ1)p`−1 c1 b` , ` = 2, . . . , rank(Γ) . (3.11)

These operators have obviously regular OPE among themselves, in particular they have

zero norm. This explains the necessity of adding J−norms. By using an Ansatz of the

form (3.9) in the steps above one quickly verifies that J−norms does not include γ1 and c1.

Before describing various examples of this construction in the next section, let us make

a few remarks:

Remark 1. The generators of the N = 2 subalgebra in (3.2) are invariant under the

transformation17

(β`, γ`, b`, c`) 7→ (λ` β`, λ
−1
` γ`, λ` b`, λ

−1
` c`) , λ` ∈ GL(1) , (3.12)

for ` = 2, . . . , rank(Γ). We claim that J− is uniquely determined by the steps above up to

this ambiguity.

Remark 2. For low ranks rank(Γ) = 1, 2, 3 the steps 1.–4. are sufficient to determine J−

up to the action (3.12) and condition 5. holds automatically. For higher ranks condition 5.

needs to be used as well. As the example of D4 illustrates, see section 4.4, there is a subset

of these conditions that is easy to implement and is sufficient to fully determine J−.

Remark 3. It is natural to ask what happens if one applies the procedure presented

above to a set of weights p1 = 2, p2, . . . , pr that do not correspond to a Coxeter group. We

observed experimentally, by looking at rank 3 examples with 2 ≤ p2 ≤ p3 ≤ 10, that the

norms mentioned above are non-zero if and only if the weights are the one associated to a

Coxeter group, which in rank 3 are A3, B3, H3, see table 3.

17Notice that if there are two generators with the same weight, like D4 for which (p1, p2, p3, p4) =

(2, 4, 4, 6), the corresponding GL(1)×GL(1) is enhanced to GL(2).
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3.3 Realization of the remaining generators in the N = 2 case

The realization of the N = 2 VOA associated to a complex reflection group G is qual-

itatively similar. The generators of the N = 2 SCA algebra are given in (3.2) and the

additional chiral generators have the form

W` = β` , GW`
:= {GW`}1 = b` , ` = 1, . . . , rank(G) . (3.13)

As outlined in section 1.1 the complete set of generators can be found from the set of

generators of the ring RG. This include in particular anti-chiral operators with conformal

weights p`
2 , which will be denoted as W `. Concerning the construction of the remaining

generators we propose the following strategy:

1. Make an Ansatz for the remaining generators in terms of free fields and impose that

they are N = 2 super-Virasoro primary with the correct (h,m) weights. As in the

N = 4 case there is a finite number of terms in the Ansatz.

2. Impose that the VOA closes on the strong generators. This gives both linear and

non-linear conditions on the coefficients of the Ansatz. It is practically convenient to

first solve the linear constraints.

We will present all rank 1 examples as well as a rank 2 example of this procedure in

section 5.

3.4 Free-field realization and classical Poisson structure

We will now show how the Poisson algebra (2.12), (2.16) can be obtained starting from

the free-field realization of WΓ. Let M(Γ)
βγbc denote the free βγbc system associated to Γ,

consisting of r copies of a single βγbc system. Let M(Γ)cl
βγ denote the classical Poisson algebra

comprised by all polynomials in the variables β`, γ`, ` = 1, . . . , r, with Poisson bracket

{f, g}PB =

r∑
`=1

[
∂γ`f ∂β`g − ∂β`f ∂γ`g

]
. (3.14)

We can define a linear map

P : M(Γ)
βγbc → M(Γ)cl

βγ , (3.15)

according to the following prescription. Any element of M(Γ)
βγbc can be cast as a linear combi-

nation of nested normal ordered products of derivatives of free fields. The image under P of

such an object is simply obtained by dropping all terms with derivatives and/or fermionic

free fields b`, c`, and by replacing all normal-ordered products with regular products in

the algebra of polynomials in the variables β`, γ`. One may verify that P is well-defined.

Furthermore, the map P satisfies

P({X1X2}0) = P(X1)P(X2) ,

P({X1X2}1) = {P(X1),P(X2)}PB . (3.16)
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On the right hand side of the first relation, the product is the commutative and associative

product in the algebra of polynomials in β`, γ`. Since the VOA WΓ associated to a given

Coxeter group Γ is realized as a subalgebra of M(Γ)
βγbc, we can apply the map P to any element

of WΓ, thus defining the Poisson algebra P(WΓ). We claim the following isomorphism of

Poisson algebras,

P(WΓ) ' RΓ , (3.17)

where RΓ is defined in (2.12) and its symplectic structure is given in (2.16). The explicit

form of the isomorphism (3.17) will be given in some examples in section 4. The case of

complex reflection groups is identical.

In close analogy to the above discussion about the map P, we can also define the map

P ′ : M(Γ)
βγbc → M(Γ)cl

βγbc . (3.18)

In the above expression, M(Γ)cl
βγbc denotes the Poisson superalgebra of functions of the classical

Grassmann even variables β`, γ` and Grassmann odd variables b`, c`. The usual properties

of the Poisson bracket in a Poisson algebra hold, up to the obvious modifications due to

Grassmann signs. In particular, the Poisson bracket on M(Γ)cl
βγbc is entirely specified by

{β`1 , γ`2}PB = −δ`1`2 , {b`1 , c`2}PB = δ`1`2 . (3.19)

The map P ′ is defined as follows. Given any object in the VOA M(Γ)
βγbc, presented as a

polynomial of normal orders of derivatives of the free fields, its image under P ′ is obtained

by setting to zero all z-derivatives and by replacing the normal ordered product of the

VOA with the associative, supercommutative product in the Poisson superalgebra M(Γ)cl
βγbc .

The map P ′ will be useful in section 6.4 in relation to the discussion of the Hall-Littlewood

ring.

4 Examples of N = 4 VOA WΓ

In this section we present the proposed free-field construction of WΓ in some examples.

We start by reviewing the rank one case Γ = A1 following [26]. Next we present all rank

two and three cases, namely I2(p), A3, B3, H3, and some aspects of the interesting example

of D4. All algebraic manipulations were performed on a laptop using the Mathematica

package introduced in [42]. The analysis of higher rank Coxeter groups along the lines of

this paper will require the use of more computational power and/or packages that deal

more efficiently wit βγbc free fields.

4.1 Rank 1: Γ = A1

The VOA associated to the Coxeter group Γ = A1 is simply the small N = 4 SCA with

central charge c = −9. Our proposed free-field realization reduces in this case to the free-

field realization studied in [26]. All generators of the small N = 4 SCA are expressed in

terms of a single βγbc system. In this simple case, the object J−min introduced in (3.10)

is actually sufficient to obtain the desired free-field realization of all the generators of the
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small N = 4 SCA. For the convenience of the reader, we summarize here all the relevant

formulae,

J+ = β ,

J0 = b c+ 2β γ ,

J− = β γ γ + γ b c− 3

2
∂γ ,

G+ = b ,

G− = b γ ,

G̃+ = c ∂β + 2 ∂c β ,

G̃− = −b ∂c c+ 2β γ ∂c+ ∂β γ c− 3

2
∂2c ,

T = −3

2
b ∂c− β ∂γ − 1

2
∂b c . (4.1)

The ring RA1 defined in (2.12) is generated by the SL(2) triplet

j(y) = j+ + y j0 + y2 j− = z1(y) z1(y) , z1(y) = z+
1 + y z−1 , (4.2)

subject to the relation

j+ j− − 1

4
(j0)2 = 0 . (4.3)

The corresponding composite operator in the small N = 4 SCA is the psl(2|2) primary

operator

L2,0 = (JJ)0
0 +

1

3
T =

2

3
{J+ J−}0 −

1

6
{J0 J0}0 +

1

3
∂zJ

0 +
1

3
T , (4.4)

where (JJ)0
0 denotes the quasiprimary completion of the normal ordered product of two

J ’s, projected onto the spin-0 component, see appendix A for more details on the notation.

It is straightforward to check that the composite operator L2,0 is identically zero in the

free-field realization (4.1). This comes as no surprise, since it has been proven in [26]

that (4.1) is a free-field realization of the simple quotient of the small N = 4 SCA at

c = −9, implying that all super-Virasoro descendants of the identity operator that are null

for c = −9 are automatically zero in the free-field realization.

It is worth recalling that in [26] it is also proven that the simple quotient of the small

N = 4 SCA at c = −9 can be characterized as the kernel of a suitable screening operator

S acting on the free βγbc system. In order to write down the screening operator, we first

have to express β and γ in terms of chiral bosons χ, φ,

β = eχ+φ , γ = ∂χ e−χ−φ. (4.5)

The chiral bosons non-trivial OPEs are

χ(z1)χ(z2) = + log z12 + reg. , φ(z1)φ(z2) = − log z12 + reg. . (4.6)

Using this notation, the screening operator and the screening current read

S =

∫
dz J(z) , J = b e−

1
2

(χ+φ). (4.7)
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The screening current J has conformal dimension 1 and J0-eigenvalue 0. It acts on the

βγbc system via the order-one pole in the OPE,

X 7→ S ·X = {JX}1 , (4.8)

where X is any operator in the βγbc system. It is also worth pointing out that J can be

written as a supersymmetry descendant of a chiral operator K with dimension 1/2 and

J0-eigenvalue 1/2,

J = {G− K}1 , K = e
1
2

(χ+φ) . (4.9)

4.2 Rank 2: Γ = I2(p)

This section is devoted to a detailed description of the free-field realization of the N = 4

VOA associated to the Coxeter group I2(p), p ≥ 3.

4.2.1 The Coxeter groups I2(p) and associated rings

The group I2(p) is the symmetry group of the regular p-gon on the plane. As a Coxeter

group, it is the subgroup of O(2,R) generated by two reflections with respect to two lines

forming an angle π/p. Equivalently, we may regard it as generated by a reflection σ and a

rotation ρ by an angle 2π/p,

σ =

(
1 0

0 −1

)
, ρ =

(
cos 2π

p − sin 2π
p

sin 2π
p cos 2π

p

)
. (4.10)

The action on I2(p) on R2 is extended naturally to C2. It is then convenient to perform a

change of basis, and introduce coordinates z1,2 in C2 such that

σ :

(
z1

z2

)
7→

(
z2

z1

)
, ρ :

(
z1

z2

)
7→

(
e+2πi/p z1

e−2πi/p z2

)
. (4.11)

The original space R2 ⊂ C2 is recovered via the reality condition z2 = (z1)∗. In terms of

z1,2 the invariants of I2(p) take the simple form

I2 = z1 z2 , Ip = zp1 + zp2 . (4.12)

The Coxeter group I2(p) has the property of being crystallographic only for p = 3, 4, 6.

This is equivalent to the fact that the plane R2 admits a tessellations by regular p-gons

only for p = 3, 4, 6, i.e. triangles, squares and hexagons. These are also the value for which

it coincides with a Weyl group, namely

I2(3) ∼= Weyl(a2) , I2(4) ∼= Weyl(b2) ∼= Weyl(c2) , I2(6) ∼= Weyl(g2) . (4.13)

Let us describe the ring RI2(p) defined in (2.12). The set of generators in this case is

obtained by promoting the generators (4.12) to SL(2) multiplets

j(y) = z1(y)z2(y) , w(y) = z1(y)p + z2(y)p, (4.14)
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where zi(y) = z+
i + y z−i . While (4.12) are algebraically independent the generators j(y)

and w(y) satisfy the following relations

(j w )
∣∣
p
2
−1

= 0 , (ww)
∣∣
p−2m

+ cp,m (j2
∣∣
0
)m jp−2m

∣∣
p−2m

= 0 (4.15)

m = 1, . . . ,
⌊p

2

⌋
and the notation

∣∣
∗ denotes the projection onto the SL(2) spin ∗ component.

Using the same normalization of SL(2) projections as in appendix A, the coefficients cp,m
take the form

cp,m = −
2
(

3
2

)m(
Γ(p+ 1)

)2
Γ
(
m− p− 1

2

)
Γ(2m+ 1)Γ(1− 2m+ p)Γ(1−m+ p)Γ

(
2m− p− 1

2

) . (4.16)

We have obtained an alternative description of the ring RI2(p) given in (2.12) as the ring

generates by the y-components of (4.14) subject to the relations (4.15). As we will show

shortly, these relations are the image of null states in the chiral algebra WI2(p).

Finally, let us comment on the Poisson algebra structure of RI2(p). It is given by (2.16)

with η =
(

0 −1
−1 0

)
. This choice of η ensures

{j(y1) , j(y2)}PB = 2 y12

(
1 +

1

2
y12 ∂y2

)
j(y2) , (4.17)

which is the Poisson counterpart of the JJ OPE, with the same normalization conventions.

4.2.2 Free-field realization of all generators

We will now apply the procedure outlined in section 3 to obtain a free-field realization of

the VOA WI2(p). Since I2(p) has rank 2, we need two copies of the βγbc system, denoted

β1, β2, and so on. We associate the label 1 to the invariant of degree 2,

p1 = 2 , p2 = p . (4.18)

As explained in section 3.2 the only quantity that has to be constructed is J−norms in (3.9).

Following the steps given below (3.7a) one obtains the unique solution

J−norms = Λ (β1)p−2 γ2

(
β1γ2 + (p− 1)b1c2

)
. (4.19)

The normalization Λ could be scaled to one by the transformation (3.12) but it is instructive

to keep it as a parameter. The remaining generators of the small N = 4 SCA take the

form given in (2.8), (3.2) and (3.7a) together with G̃− = {G− J−}1. For convenience of

the reader, we summarize here the expression of all generators of the small N = 4 SCA in
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terms of the two βγbc systems:

J+ = β1 ,

J0 = b1 c1 + 2β1 γ1 + (p− 1) b2 c2 + p β2 γ2 ,

J−= b1 c1 γ1 + β1 γ1 γ1 + (p− 1) γ1 b2 c2 + p γ1 β2 γ2 − c1 b2 γ2 − (p+ 1) ∂γ1

+ Λ (β1)p−1 (γ2)2 + (p− 1) Λ b1 (β1)p−2 c2 γ2 ,

G+ = b1 ,

G−= b1 γ1 + b2 γ2 ,

G̃+ = c1 ∂β1 + 2 ∂c1 β1 + (p− 1) c2 ∂β2 + p ∂c2 β2 ,

G̃−= −b1 ∂c1 c1−c1 b2 ∂c2 + c1 ∂β1 γ1+ c1 ∂β2 γ2 +(p−1) ∂c1 b2 c2 +2 ∂c1β1 γ1+ p ∂c1β2 γ2

+ (p− 1) γ1 c2 ∂β2 + p γ1 ∂c2 β2 − (p+ 1) ∂2c1

− (p− 1) Λ b1 (β1)p−2 ∂c2 c2 + 2 Λ (β1)p−1 ∂c2 γ2 + (p− 1) Λ ∂β1 (β1)p−2 c2 γ2 ,

T = −3

2
b1 ∂c1−

1

2
∂b1 c1−β1 ∂γ1−

p+1

2
b2 ∂c2 −

p−1

2
∂b2 c2 −

p

2
β2 ∂γ2 −

(
p

2
−1

)
∂β2 γ2 .

(4.20)

Given the small N = 4 SCA in terms of free fields as above, we proceed building the

additional short generator W of the VOA associated to I2(p). According to our general

prescription, we simply set

W h.w. = β2 , (4.21)

where h.w. stand for highest weight and refers to the component of W with charges h =

m = p/2. The whole psl(2|2) short supermultiplet W = {W,GW , G̃W , TW }, see appendix A

for our notation, is generated from W h.w.. We have now entirely specified our free-field

realization. We refrain from giving the expressions for the other components of W , since

their complexity grows quickly.

The next step is to verify that the set of strong generators of the VOA WI2(p) is given

by W = {W,GW , G̃W , TW } together with the generators of the small N = 4 super-Virasoro

algebra J = {J,G, G̃, T}. To do so we need to close the OPE on this set of generators. The

J-J and J-W OPEs take the required form by construction. The W-W OPEs are fixed in

terms of the WW OPE. By means of a direct computation we verified that

W ×W ∼ gWW [id] , gWW =
(2p)!

p! p2
Λ , (4.22)

where the notation [id] stands for the small N = 4 super-Virasoro family of the identity

operator. The first few terms are given by

[id] = id− 6p

c

(
J − 1

6
T

)
+

18p(p− 1)

c(c− 6)
(JJ)2

0 −
9p(p+ 1)

c(c+ 9)

(
(JJ)0

0 +
1

3
T

)
+ . . . (4.23)

with c = −6(p + 1). It is worth remarking that the stress tensor T appears as psl(2|2)

descendants of J and as completion of (JJ)0
0 to a psl(2|2) primary. Note that all factors

z12, y12, as well as all ∂z, ∂y operators, are implicit, since they can be unambiguously
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restored exploiting sl(2) covariance. This compact notation for OPEs is described in more

detail in appendix A, and is also utilized below in other examples. The formula (4.22) has

been tested explicitly up to p = 7. As anticipated, the free parameter Λ entering (4.19) is

crucial in order to obtain a viable realization of the full VOA.

4.2.3 Null states

Our proposed free-field realization is conjectured to enjoy the highly non-trivial property

that all null states in the abstract VOA are realized manifestly as zero. In this section

we check that the null states in the VOA WI2(p) associated to the “Higgs Branch” rela-

tions (4.15) are identically zero in the free field realization. We expect that these nulls

generated the maximal ideal ofWI2(p), but at the moment we do not have a complete proof

of this fact.

To begin with, let us consider the long composite operator linear in the extra genera-

tor W ,

L p
2

+1, p
2
−1 = (J W )

p
2
−1

0 +
1

p+ 1
TW . (4.24)

The first term in the expression above is the quasiprimary completion of the normal ordered

product JW projected on the sl(2)y spin p
2 − 1 component. The second term contains the

supersymmetry descendant of W , namely TW = −G↓ G̃↓W , see (2.10) for the notation.

This term is necessary in order for (4.24) to be a psl(2|2) primary. Being linear in the new

generator W , the operator L p
2

+1, p
2
−1 can be defined for any value of the central charge

without any reference to the free field realization and by construction is a N = 4 super-

Virasoro descendant of W itself. If the central charge takes the special value c = −6(p+ 1)

the operator L p
2

+1, p
2
−1 becomes an N = 4 super-Virasoro primary operator. Being a

primary and a descendant at the same time it must be null. In our free-field realization

the operator L p
2

+1, p
2
−1 vanishes identically. We have thus recovered the VOA counterpart

of the first “Higgs Branch” relation in (4.15). Let us turn to the second set of relations

in (4.15). Let us consider the composite operators

LWW
p,j = (W W )j0 + (super-Virasoro primary completion) , j < p , p− j even . (4.25)

In other words, LWW
p,j is defined to be the N = 4 super-Virasoro primary completion of

the normal ordered product WW projected onto the component with sl(2)y spin j. The

requirement that p − j be even stems from Bose symmetry. One can verify that this

definition is well-posed, in the sense that, making only use of the OPEs of the abstract

VOA, one can check that there exists a unique super-Virasoro primary operator starting

with (W W )j0. Having unambiguously defined the composite LWW
p,j in the abstract VOA,

we can resort to our free-field realization and verify, in a few examples, that this object

is indeed identically vanishing. This finding is in perfect agreement with the bootstrap

analysis of [33].
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4.2.4 Classical limit: relation between βγ and z±

Using the map P defined in section 3.4, we can define the classical objects associated to

the generators J and W ,

Jcl := P(J) , Wcl := P(W ) , (4.26)

more explicitly

J+
cl = β1 , J0

cl = 2β1γ1 +pβ2γ2 , J−cl = (β1γ1 +p β2γ2)γ1 +Λ (β1)p−1(γ2)2, (4.27)

and Wcl = β2+descendants. Recall that, as explained in section 3.4, βγ are now commuting

variables. The combinations (4.26) satisfy the same relations (4.15) as (4.14). This implies

that Jcl,Wcl provide a realization of the ring RI2(p) as a subring of C[β1, γ1, β2, γ2]. It is

instructive to determine β1,2, γ1,2 in terms of the quotient variables z±1,2 by equating (4.14)

with (4.26). This gives the remarkably simple expressions

β1 = z+
1 z

+
2 , γ1 =

(z+
1 )p−1 z−1 − (z+

2 )p−1 z−2
(z+

1 )p − (z+
2 )p

,

β2 = (z+
1 )p + (z+

2 )p, γ2 =
1

p

z+
1 z
−
2 − z

+
2 z
−
1

(z+
1 )p − (z+

2 )p
, Λ = p2. (4.28)

Notice that β1,2, γ1,2 are rational functions that are invariant under the action (4.11) of

I2(p). The Poisson brackets (2.16) with η =
(

0 −1
−1 0

)
imply the expected Poisson brackets

{β`1 , γ`2}PB = −δ`1,`2 , {β`1 , β`2}PB = {γ`1 , γ`2}PB = 0 , , `1 , `2 = 1, 2 . (4.29)

The minus sign in the first equation is a consequence of our conventions for the βγ OPEs,

see (3.1).

4.2.5 Comments on the screening operator

It is natural to ask ifWI2(p) can be identified with the kernel of a suitable screening operator

acting on the free field VOA M(I2(p))
βγbc . A simpler version of this problem is obtained using

the map P ′ of section 3.4. More precisely, we aim at identifying P ′(WI2(p)) with the kernel

of a suitable object Jcl in the classical Poisson superalgebra M(I2(p))cl
βγbc . The object Jcl acts

via Poisson bracket.

The object Jcl can be presented as

Jcl = b1 (β1)−
1
2

[
1

2
F (x)− 1

2
p xF ′(x)

]
+ b2 (β1)

1
2
− p

2 F ′(x) = {P ′(G−),Kcl}PB , (4.30)

where in the last step we introduced the auxiliary object

Kcl = (β1)
1
2 F (x) , x := (β1)−

p
2 β2 . (4.31)

The function F (x) is required to be a solution to the differential equation

(p2 x2 − 4 Λ)F ′′(x) + p2 xF ′(x)− F (x) = 0 . (4.32)
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We have checked that, by virtue of the above equation, one has

{Jcl,P ′(X)}PB = 0 for X ∈ {J+, J0, J−, G+, G−, G̃+, G̃−, T,W h.w.} . (4.33)

This is enough to guarantee that P ′(WI2(p)) lies inside the kernel of Jcl acting of the

Poisson superalgebra M(I2(p))cl
βγbc . It seems natural to conjecture that P ′(WI2(p)) is actually

the entirety of the kernel of Jcl, but we do not have a proof of this fact.

In order to promote the results of the previous paragraphs from the level of the Poisson

algebra to the level of the full VOA, we have to be able to make sense of expressions

like (4.31) in the context of the VOA. This is possible by expressing β1, β2 in terms of

chiral bosons and making use of vertex operators. We refrain, however, from pursuing this

direction further.

4.3 Rank 3: Γ = A3, B3,H3

We will now present the free field construction ofWΓ for rank(Γ) = 3. There are only three

examples in this case, namely Γ = A3, B3, H3. The structure of these VOA is analyzed in

less details compared to the rank 2 series discussed in the previous section. A few remarks

are in order. Notice that in all three cases the degrees are (2, 3, 4), (2, 4, 6), (2, 6, 10) so that

p3 = 2p2 − 2. Moreover all super-Virasoro primary operators of the form (W`1W`2 + . . . )L
are null except for (W2W3 + . . . )L

(
p2+p3

2 ,
p2+p3

2 −1)
. Finally, as in the rank two series, the

classical limit of J,W2,W3 obtained by applying the map P defined in section 3.4, gives

a realization of the rings RA3 , RB3 and RH3 as subrings of C[β1, γ1, β2, γ2, β3, γ3]. This

properties is not manifest but has been checked by verifying that all the relations are

satisfied.18

Notation. In order to make the equations easier to read we will label W generators as

well as βγbc by their weight with the gothic suffix p ∈ {3, 4, 5, 6, 7, . . . }.

4.3.1 Example: Γ = A3

Free field realization. By following the steps described in section 3 we find a unique

solution for J−norms up to the rescaling (3.12). Its explicit form is rather long so we present

only its classical limit:

P(J−norms) = Λ2(Λ1β
2
2 − β4)γ2

3 −
16 Λ1

3
β2β3γ3γ4 +

Λ1

12Λ2
(20Λ1Λ2 β

3
2 + 51β2

3 + 28Λ2 β2β4)γ
2
4 ,

(4.34)

where P is defined in section 3.4. Given J−norms we can construct the remaining strong gen-

erators as descendants of β2 and β3. The parameters Λ1,Λ2 are related to the normalization

appearing below as g33 = 85
2 Λ1Λ2, g44 = 595Λ2

1.

Closing the OPE. Let us present the OPE of strong generators in this case:

W3 ×W3 ∼ g33 [id] + λ433 [W4] (4.35a)

W3 ×W4 ∼ λ334 [W3] (4.35b)

W4 ×W4 ∼ g44 [id] + λ444 [W4] + λ
(33)
44 [(W3)

2
S] (4.35c)

18Alternatively one can find the analogues of (4.28) for Γ = A3, B3, H3.
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where

√
g44

g33
λ433 =

1
√
g44

λ334 = −4

√
7

85
,

1
√
g44

λ444 =
11

3

√
5

119
,

g33
g44

λ
(33)
44 =

17

28
, (4.36)

and

(W3)
2
S = (β3)

2 − 8 g33
23
√
g44

√
7

85
β2β4 +

8 g33
4845

(β2)
3 + descendants , (4.37)

is the completion of (β3)
2 to a super-Virasoro primary. Its norm is given by 1344

437 g
2
33. As

usual, [X] denotes the contribution from the N = 4 super-Virasoro family of the primary X.

Notice that there is a null state of type L(3,1) of the schematic form W3W3+JW4+J3 + . . . .

This is a primary operator that, if not null, could appear in the right hand side of (4.35c).

The quantum numbers of the relations among the generators of RA3 are

L(3,1) , L( 7
2
, 3
2

) , L( 7
2
, 1
2

) , L(4,2) , L(4,0) . (4.38)

They all correspond to null operators in the VOA. Notice that all the operators of the

type (Wp1Wp2 + . . . )L are null except for (W3W4 + . . . )L
( 7
2 , 5

2 )
.

4.3.2 Example: Γ = B3

Free field realization. As before, following the recipe given in section 3 we find a unique

solution for J−norms. In the classical limit it reads

P(J−norms) = (u1 β
3
2 + u2 β2β4 + u3 β6)γ

2
4 (4.39a)

+ (u4 β
4
2 + u5 β

2
2β4 + u6 β

2
4 + u7 β2β6)γ4 γ6 (4.39b)

+ (u8 β
5
2 + u9 β

3
2β4 + u10 β2β

2
4 + u11 β

2
2β6 + u12 β4β6)γ

2
6 (4.39c)

The explicit form of the coefficients uk is not very illuminating so we omit it. With this

ingredient we can produce all the strong generators.

Closing the OPE. Let us present the OPE of strong generators in this case, setting the

normalizations to one,

W4 ×W4 ∼ [id] + λ444 [W4] + λ644 [W6] (4.40a)

W4 ×W6 ∼ λ446 [W4] + λ646 [W6] + λ
(44)
46 [(W4)

2
S] (4.40b)

W6 ×W6 ∼ [id] + λ466 [W4] + λ666 [W6] + λ
(44)
66 [(W4)

2
S] + λ

(64)
66 [(W6W4)S] (4.40c)

where

λ444 = − 143

3
√

2415
, λ644 = λ446 =

46

5

√
11

609
, λ

(44)
46 = −12

√
5

7337
, (4.41)

λ646 = λ466 =
65

58

√
35

69
, λ666 = −27

29

√
21

319
, λ

(44)
66 =

285

319
, λ

(64)
44 = 2

√
55

667
, (4.42)

and (W4)
2
S, (W6W4)S are defined in a similar way to (4.37) so that they are N = 4 super-

Virasoro primaries. Notice that there are nulls of type L(4,2) and L(4,0) which are the
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unique super-Virasoro primary completions of (W4)
2
L. These are primary operators that,

if not null, could appear in the right hand side of (4.40b). Similarly, there are nulls of

type L(5,3), L(5,2), L(5,1) relevant for the OPE (4.40c) of the schematic form (W4W6)L. The

quantum numbers of the relations are

L(4,2) , L(4,0) , L(5,3) , L(5,2) , L(5,1) , L(6,4) , L(6,2) , L(6,0) . (4.43)

As in the case of A3 all the super-Virasoro primary operators of the form (Wp1Wp2 + . . . )L
are null except for (W6W4 + . . . )L(5,3)

.

4.3.3 Example: Γ = H3

Free field realization. Also in this case the procedure outlined in section 3 gives a

unique solution for J−norms. In the classical limit it reads

P(J−norms) = (u1 β
5
2 + u2 β

2
2β6 + u3 β10)γ

2
6 (4.44a)

+ (u4 β
7
2 + u5 β

4
2β6 + u6 β2β

2
6 + u7 β

2
2β10)γ6 γ10 (4.44b)

+ (u8 β
9
2 + u9 β

6
2β6 + u10 β

3
2β

2
6 + u11 β

3
6 + u12 β

4
2β10 + u13 β2β6β10)γ

2
10 ,

(4.44c)

where we omit the explicit form of the coefficients uk.

Closing the OPE. Let us present the OPE of strong generators in this case:

W6 ×W6 ∼ [id] + λ666 [W6] + λ1066 [W10] (4.45a)

W6 ×W10 ∼ λ66,10 [W6] + λ106,10 [W10] + λ
(66)
6,10 [(W6)

2
S] (4.45b)

W10 ×W10 ∼ [id] + λ610,10 [W6] + λ1010,10 [W10] + λ
(66)
10,10 [(W6)

2
S] (4.45c)

+ λ
(6,10)
10,10 [(W6W10)S] + λ

(666)
10,10 [(W6)

3
S] ,

where

λ666 =
57

2

√
35

10582
, λ1066 = λ6610 =

37

2

√
4845

551122
, λ106,10 = λ610,10 = −1189

94

√
55

6734
,

(4.46)

λ
(66)
6,10 =

817

2

√
41

11795637
, λ1010,10 =

2747357

1974

√
55

48548838
, λ

(66)
10,10 =

479167

295630
, (4.47)

λ
(6,10)
10,10 = −232

3

√
287

1685091
, λ

(666)
10,10 =

15416

35853

√
286

1295
. (4.48)

In this case the defining relations for the ring RH3 are of type{
L(6,j)

}
j∈{0,2,4} ,

{
L(8,j)

}
j∈{2,3,4,5,6} ,

{
L(10,j)

}
j∈{0,2,4,6,8} . (4.49)

Notice that the super-Virasoro primary operators of the form (W6)
3
L are null as a conse-

quence of (W6)
2
L being null.
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4.4 A rank 4 example: Γ = D4

In this example we will encounter two new features: (1) the ring of invariants RD4 and,

according to our proposal, the VOA WΓ has long generators, (2) the form of J− is not

uniquely determined by the first four steps given in section (3.2) and the fifth condition

needs to be incorporated.

Generators of the ring RD4. The action of the Weyl group of type D4 on R4 is

generated by

s1 : (z1, z2, z3, z4) 7→ (−z1, z2, z3, z4) (4.50)

s2 : (z1, z2, z3, z4) 7→ 1

2
(z+

12 − z
+
34, z

+
12 + z+

34,−z
−
12 + z−34,−z

−
12 − z

−
34) (4.51)

s3 : (z1, z2, z3, z4) 7→ (z1, z2,−z3, z4) (4.52)

s4 : (z1, z2, z3, z4) 7→ (z1, z2, z3,−z4) (4.53)

where z±ij = zi ± zj . In this basis, a choice of generators for the ring of invariants

C[z1, . . . , z4]D4 is given by

I2 =
1

2
(z2

1 + z2
2 + z2

3 + z2
4) , I6 = (z2

1z
2
2 − z2

3z
2
4)(z2

1 + z2
2 − z2

3 − z2
4) (4.54a)

I(1)
4 = (z2

2 − z2
3)(z2

1 − z2
4) , I(2)

4 = (z2
1 − z2

3)(z2
2 − z2

4) . (4.54b)

These generator are algebraically independent. As discussed in section (2.2) we need to

analyze the ring (2.12) in which the Coxeter group acts on two copies of z, called z±. Some

of the generators of this ring are immediately identified starting from (4.54) and promoting

each zi to zi(y) = z+
i + yz−i . These are the so-called short generators. As opposed to all

the examples encountered so far, namely A1, I2(p), A3, B3, H3, this is the first example in

which these are not all the generators of RD4 . The missing generator is given by

w(3,0) := X123 +X134 −X124 −X234 , Xijk := 〈ij〉〈ik〉〈jk〉 , (4.55)

where 〈ij〉 = εIJz
I
i z
J
j . It is rather clear that this invariant cannot be written as a composite

of the short generators. What is less obvious is that there is no additional generator. We

claim that it is the case. This fact can be checked by matching the Hilbert series computed

from the proposed description of RD4 in terms of generators and relations with the Molien

series obtained from the quotient description. Alternatively one can verify that the set of

generators we propose closes under the Poisson bracket (2.16). We followed the second

strategy.

Finally let us explain how the triality automorphism of D4 acts on the space of in-

variants. Its action in terms of the zi=1,...,4 variables can be defined as the group S3 of

permutations of z1, z2, z3. It is a simple exercise to verify that, up to a simple redefini-

tion of I6, the invariants of degree 2 and 6 transform trivially under S3, the invariants

of degree 4 transform in a two dimensional representation19 and the long invariant w(3,0)

transform in the non-trivial one dimensional representation corresponding to the sign of

the permutation.

19In the basis above, this is generated by ( 0 1
1 0 ) and

(
1 −1
0 −1

)
.
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Free field realization. This is the first example in which the first four steps described

in section (3.2) to construct J− do not give a unique result. There is a number or relatively

simple conditions that the free field realization must satisfy that are easy to add. The first

one is the following. Consider the OPE W`1W`2 . The term with next to extremal sl(2)y
spin j = 1

2(p`1 + p`2) − 1 in the singular part of these OPE can appear only in the first

order pole. By a simple quantum number analysis this term must be a short operator. We

require that this object is indeed a composite operator of the short generators that have

been postulated in the free field realization. The second condition is given by focusing on

the first two most singular terms in the WW OPE. Their form is fixed by super-Virasoro

symmetry to be

W`1(z1)W`2(z1) = δ`1,`2

(
id− 6 p`1

c
J

)
+ . . . (4.56)

This form of the OPE is added as an extra requirement. We found experimentally that

these two conditions allow to completely fix the free field realization. It is possible that

in more complicated examples more conditions need to be added, but we expect that the

Ansatz we propose is sufficient.

In this case we obtain20

P(J−norms) = Λ1 β
3
2

(
(γ+

4 )2+ (γ−4 )2
)

+ 4

√
Λ1

3
β2

(
β+
4

(
(γ−4 )2− (γ+

4 )2
)
+ 2β−4 γ

+
4 γ
−
4

)
(4.57a)

+

(
16Λ2

Λ1
β2
(
(β+

4 )2 + (β−4 )2
)

+ Λ2β
5
2

)
γ2
6 + 28

√
Λ2

15
β2
2 (β+

4 γ
+
4 + β−4 γ

−
4 )γ6

(4.57b)

+
1√

15Λ2
β6

(
5Λ1

(
(γ+

4 )2 + (γ−4 )2
)
− 22Λ2β

2
2γ

2
6

)
(4.57c)

+ 16

√
Λ2

5Λ1

((
(β−4 )2 − (β+

4 )2
)
γ+
4 + 2β+

4 β
−
4 γ
−
4

)
γ6 . (4.57d)

The parameters Λ1, Λ2 are related to the norms of the short generators as g44 = 1680Λ1,

g66 = 665280Λ2.

Closing the OPE. The extra generators in this case are W±4 ,W6 and W(3,0) and their

OPEs take the form

W±4 ×W±4 ∼ g44 [id]± λ4+

44 [W+
4 ] + λ644 [W6] (4.58a)

W+
4 ×W−4 ∼ λ

4−

4+4− [W−4 ] + [W(3,0)] (4.58b)

W+
4 ×W6 ∼ λ446 [W+

4 ] + λ
(44)
46 [(W4)

2,+
S ] + . . . (4.58c)

W−4 ×W6 ∼ λ446 [W−4 ] + λ
(44)
46 [(W4)

2,−
S ] + . . . (4.58d)

W6 ×W6 ∼ g66 [id] + λ666 [W6] + λ
(44)C
66 [(W4)

2,0
S ] + . . . (4.58e)

20Recall that D4 has two fundamental invariants of degree 4. We use the suffix ± to distinguish them.

This sign encodes the transformation property of the free fields under a Z2 symmetry of the VOA WD4 .
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where

− 1
√
g44

λ4
+

44 =
1
√
g44

λ4
−

4+4−=
6√
35
,

√
g66

g44
λ6
44 =

√
11

7
,

1
√
g66

λ446 =

√
11

7
, (4.59)√

g44
g66

λ
(44)
46 =

8

3
√

55
,

1
√
g66

λ666 = −2

3

√
7

11
,

g44
g66

λ
(44)
66 =

8

9
(4.60)

and

(W4)
2,+
S = (β−4 )2 − (β+

4 )2 −
2
√
g44

57
√

35
β2
2β

+
4 + desc. (4.61)

(W4)
2,−
S = 2β+

4 β
−
4 −

2
√
g44

57
√

35
β2
2β
−
4 + desc. (4.62)

(W4)
2,0
S = (β+

4 )2 + (β−4 )2 +
1

10

√
11

7

g44√
g66

β2β6 −
g44

28560
β4
2 + desc. (4.63)

Notice that we omitted the OPEs of W(3,0) with the remaining generators as well as its

explicit form in terms of free fields. The . . . in the last three OPEs indicate additional

contributions. For example in the OPEs (4.58c) and (4.58d) operators of type L(4,3), L(4,2)

and L(4,1) of the schematic form W4W4 could appear. Let us also collect the quantum

numbers of the null operators with small conformal weight as read off from the Hilbert

series of RD4 :

L(4,2) , L(4,1) , 2L(4,0) , 2L(5,3) , 2L(5,2) , 2L(5,1) . (4.64)

The corresponding null operators have the schematic form W4W4 and W4W6.

Remark. The OPEs above have an S3 ⊂ O(2) symmetry that acts non-trivially only on

the generators W±4 and is generated by the reflections s1, s2 as(
β+
4

β−4

)
7→ sk

(
β+
4

β−4

)
, s1 =

(
1 0

0 −1

)
, s2 =

1

2

(
−1
√

3√
3 1

)
. (4.65)

Notice that the product s1s2 generates a Z3 subgroup. In order to check this claim it is

convenient to observe that (W4)
2,±
S transform as β±4 under (4.65). The relations (4.64) have

definite transformation properties under S3:

5 Examples of N = 2 VOA WG

5.1 Rank 1: G = Zp

In this section we examine in detail the proposed free-field realization for the N = 2 VOA

WZp associated to the rank-1 complex reflection group Zp, p ≥ 2. These algebras have

been first analyzed by means of direct bootstrap techniques in [30].
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5.1.1 Construction of the generators and OPEs

According to our prescription, we need one copy of a βγbc system. For the sake of simplicity,

we omit the subscript 1 from the free fields in this section. The N = 2 SCA algebra

is realized according to the formulae of section 3.1. In particular, the central charge is

c = −3(2p− 1) and the conformal weight of β is p/2.

Let W , W denote the chiral, antichiral extra generators of the VOA. The only non-

trivial task at hand is the construction of the antichiral generator W , of conformal weight

h = p/2 and charge q = −p/2 using the strategy presented in section 3.3.

Before proceeding, let us stress that, for p = 2, supersymmetry enhances from N = 2

to small N = 4, and the sought-for VOA is nothing but the small N = 4 SCA at central

charge c = −9, with the identification W = J−. In this case the free-field realization

coincides with the one of [26], which has been reviewed in section 4.1.

Let us now discuss the case of generic p. The direct analysis of a few examples reveals

that there exists a unique, up to scaling, chiral N = 2 superVirasoro primary of conformal

weight p
2 that can be constructed using a single βγbc of the type given in table (3.4). For

definiteness, we fix the normalization of the generators W and W as follows,

W = β , W = βp−1 γp + . . . . (5.1)

All omitted terms in W contain at least one derivative or a pair of fermionic free fields.

In terms of the map P of section 3.4, P(W ) = βp−1 γp. We may regard W as the

unique N = 2 super-Virasoro primary completion of the monomial βp−1 γp.

Once the form of the antichiral generator W is fixed, we may check that the OPE

W W is regular, and that the singular part of the W W OPE is expressed entirely in terms

of N = 2 super-Virasoro descendants of the identity, as it must be. In particular, we can

verify that

W ×W = gW W [id] , gWW = (−)p
(2p− 1)!

p! p p−1
, (5.2)

where [id] denotes the contribution for the N = 2 super-Virasoro family of the identity

operator. More explicitly

[id] = id +
3 p

c
J +

p

c
T +

3p(3p− 1)

2c(c− 1)

(
(J J )0 −

2

3
T
)

+ . . . (5.3)

Similarly to the N = 4 case given in (4.23), the contribution of the stress tensor T to this

OPE is split in two parts: the first correspond to the osp(2|2) descendant of J , the second

to the completion of (J J )0 to a osp(2|2) primary whose norm is given by 2
9c(c− 1). The

relation (5.2) has been checked explicitly for p = 2, 3, . . . , 7. For p = 2, 3, 4, 5 we can record
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the entire content of the singular part of the WW OPE in terms of quasiprimary fields

p = 2 : [id] = id− 2

3
J ,

p = 3 : [id] = id− 3

5
J − 3

10
T +

3

20
(J J )0 ,

p = 4 : [id] = id− 4

7
J − 2

7
T +

1

7
(J J )0 −

2

105

(
J (J J )0

)
0

+
2

35
(G G̃)0 +

6

35
(J T )0 ,

p = 5 : [id] = id− 5

9
J − 5

18
T +

5

36
(J J )0 −

5

252

(
J (J J )0

)
0

+
5

126
(G G̃)0 +

10

63
(J T )0 +

25

504
(T T )0 +

5

3024

(
J
(
J (J J )0

)
0

)
0

− 5

126

(
J (J T )0

)
0
− 5

252

(
J (G G̃)0

)
0
− 5

252
(G G̃)−1 +

95

3024
(J J )−2 .

(5.4)

We are using a compact notation in which all z12 factors and z derivatives are omitted,

since they can be straightforwardly recovered from sl(2) covariance. For further details on

the notation, the reader is referred to appendix A. We are only recording quasiprimary

operators that enter the singular part of the OPEs. Clearly, all OPE coefficients on the

r.h.s. of the OPE W W can in principle be recovered from the two-point function coefficient

gWW by exploiting the N = 2 superVirasoro symmetry.

5.1.2 Null states

An essential feature of our proposed free-field realization is that all null states of the

VOA are realized manifestly as zero. First of all, let us verify this claim for the null state

corresponding to the “Higgs branch” relation of the associated variety MZp = (C⊕C∗)/Zp.
To describe this variety we introduce a complex coordinate z and its conjugate z̄, and let

the generator of Zp act on z, z̄ as

z 7→ e2πi/p z , z̄ 7→ e−2πi/p z̄ . (5.5)

The invariants are clearly

w = zp, w̄ = z̄p, j = z z̄ , (5.6)

satisfying one relation,

w w̄ = jp. (5.7)

At the level of the VOA, this invariant motivates us to consider the N = 2 superVirasoro

primary composite operator

XWW
p,0 = (W W )0 + . . . . (5.8)

The dots represent the terms needed to obtain a superVirasoro primary, and are uniquely

determined by the OPEs of the abstract VOA. For example, the full expressions of this
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composite for p = 2, 3, 4 are

p = 2 : XWW
2,0 = (W W )0 −

1

4
(J J )0 +

1

2
T ,

p = 3 : XWW
3,0 = (W W )0 −

1

27

(
J (J J )0

)
0

+
2

9
(G G̃)0 +

4

9
(J T )0 ,

p = 4 : XWW
4,0 = (W W )0 −

1

256

(
J
(
J (J J )0

)
0

)
0
− 3

16
(T T )0 +

9

64

(
J (J T )0

)
0

+
3

32

(
J (G G̃)0

)
0

+
3

32
(G G̃)−1 −

15

128
(J J )−2 . (5.9)

We checked that, in our free-field realization, these composites are indeed identically zero.

Even though the full expression of the operator XWW
p,0 in the VOA becomes increasingly

complex as we increase p, the classical counterpart of XWW
p,0 via the map P of section 3.4

has a very simple structure. Indeed, one verifies that

Wcl := P(W ) = β , W cl := P(W ) = βp−1 γp, Jcl := P(J ) = p β γ ,

(XWW
p,0 )cl := P(XWW

p,0 ) = WclW cl −
1

pp
(Jcl)

p. (5.10)

These expressions show that the operator XWW
p,0 is indeed the null operator associated to

the “Higgs branch” relation (5.7). It is also straightforward to find the map between the

classical Poisson variables z, z̄ and β, γ,

β = zp, γ = z1−p z̄ . (5.11)

Let us now discuss another pair of null states that are expected in the VOA WZp .

They are a pair of non-chiral, N = 2 superVirasoro primary operators linear in Wp and

W p respectively, given by

XGWp
2

+ 3
2
,−1

= (GW )0 −
1

p
(J GW )0 , XG̃Wp

2
+ 3

2
,+1

= (G̃W )0 +
1

p
(J G̃W )0 . (5.12)

The operator GW is the supersymmetry descendant of Wp, defined as {GW}1. A similar

remark applies to G̃W . Let us stress that, in order to verify that XGWp
2

+ 3
2
,−1

, XG̃Wp
2

+ 3
2
,+1

are

superVirasoro primaries, we only need to use the OPEs of the abstract VOA, and not our

specific free-field realization. As already argued in [30], these composite operators must be

null in order for the VOA to exist. In our free-field construction one can indeed verify that

both XGWp
2

+ 3
2
,−1

and XG̃Wp
2

+ 3
2
,+1

vanish identically.

Finally, let us comment on the relation between the “Higgs branch” null state XWW
p,0

and the fermionic null states XGWp
2

+ 3
2
,−1

, XG̃Wp
2

+ 3
2
,+1

. The latter can be obtained from XWW
p,0

by taking a singular OPE with GW , G̃W . For example,

p = 3 : {GW XWW
3,0 }2 =

2

3
XGW3,−1 , {G̃W XWW

3,0 }2 =
4

3
XG̃W3,+1 ,

p = 4 : {GW XWW
4,0 }3 =

3

8
XGW7

2
,−1

, {G̃W XWW
4,0 }3 =

27

8
XG̃W7

2
,+1

. (5.13)
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For general p, XGWp
2

+ 3
2
,−1

enters the order (p − 1) pole of the GW XWW
p,0 OPE, and similarly

XG̃Wp
2

+ 3
2
,−1

enters the order (p− 1) pole of the G̃W XWW
p,0 OPE. In other words, the operators

XGWp
2

+ 3
2
,−1

, XG̃Wp
2

+ 3
2
,−1

belong to the ideal of WZp generated21 by XWW
p,0 . This observation is

consistent with the expectation that the “Higgs branch” null state XWW
p,0 generates all null

states in WZp .

5.1.3 Screening operator

We have a conjectural characterization of the VOAWZp as a subalgebra of the βγbc system

in terms of the kernel of a screening operator S. Our proposal is a natural generalization

of the screening operator discussed in [26] in the case p = 2, i.e. the small N = 4 SCA at

c = −9.

In order to define S, we first have to express β and γ in terms of chiral bosons χ, φ.

The OPEs of the chiral bosons are recorded in (4.6), and the expressions of β, γ in terms

of the chiral bosons are given in (4.5). We may now define the screening current

J = b e(p−1−1)(χ+φ). (5.14)

This operator has conformal dimension 1 and charge 0 under J . We conjecture that the

VOA WZp coincides with the kernel of S =
∫
J acting on the βγbc system. Its action on

any object X is defined as

S ·X = {JX}1 . (5.15)

In the case p = 2, the conjecture is proven in [26]. It is worth pointing out that the operator

J can be expressed as a supersymmetry descendant of an operator K with dimension and

charge 1/2,

J = {G K}1 , K = ep
−1 (χ+φ) . (5.16)

The operator K is a chiral N = 2 super-Virasoro primary.

It is a matter of straightforward computation to verify that all generators of the VOA

WZp are annihilated by the action of S. It is then immediate that WZp is contained in

the kernel of S. We do not have a general argument for the reversed inclusion for p ≥ 3,

but we have checked our claim in a few examples, for some states with low twist h −m.

More precisely, we worked at generic p and considered operators of twist up to 2. A

direct computation of the kernel of S in the βγbc system shows a perfect agreement with

a counting of states in WZp . In order for this match to work, it is essential that in our

free-field construction all null states are (conjecturally) identically zero.

Let us close this section by analyzing a few properties of the classical counterpart of

the screening current J of (5.14). The map P ′ of section 3.4 maps the VOA WZp to the

Poisson superalgebra of functions of the variables β, γ, b, c. The classical counterpart

of (5.14) is simply

Jcl = b β
1
p
−1
. (5.17)

21The ideal is obtained by taking the regular and singular part of the OPE of XWW
p,0 with the element of

the the VOA.
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Its action on the classical variables β, γ, b, c is the following,

{Jcl, b}PB = 0 , {Jcl, β}PB = 0 ,

{Jcl, c}PB = β
1
p
−1
, {Jcl, γ}PB =

(
1− 1

p

)
b β

1
p
−2
. (5.18)

5.2 A rank 2 example: G = G(3, 1, 2)

In this section we discuss the proposed free-field realization for the N = 2 VOA associated

to the rank-2 complex reflection group G(3, 1, 2).

The ring RG for G = G(3, 1, 2). To begin with let us describe the family of complex

reflection groups G(k, 1, r). Recall that r is the rank of G(k, 1, r) and the invariants have

degrees

k, 2k, . . . , rk . (5.19)

The action of G(k, 1, r) on (z1, . . . , zr) ∈ VG ' Cr is generated by permutations σi = pi,i+1

(with an obvious action on the coordinates) together with

τ : (z1, . . . , zr) 7→ (ω z1, z2 . . . , zr) , ωk = 1 . (5.20)

The ring of invariants is freely generated by the elementary symmetric polynomials in

zk1 , . . . , z
k
r . Notice that for k = 2 this group is the Coxeter group Br.

In the following we consider in more details the example of G(3, 1, 2). In this case the

ring RG is generated by

w3 = z3
1 + z3

2 , w6 = z6
1 + z6

2 , O = z4
1 z̄1 + z4

2 z̄2 ,

w3 = z̄3
1 + z̄3

2 , w6 = z̄6
1 + z̄6

2 , O = z1z̄
4
1 + z2z̄

4
2 ,

j = z1z̄1 + z2z̄2 , U = z2
1 z̄

2
1 + z2

2 z̄
2
2 .

(5.21)

The relations of lowest conformal weight, namely h = 4 and h = 4 + 1
2 , take the explicit

form

U2 −Ow3 −Ow3 + j w3w3 +
1

2
j2 U − 1

2
j4 = 0 , (5.22)

(w6 + w3w3)w3 −OU − j2O + 2 j U w3 = 0 . (5.23)

The second equation is accompanied by it conjugate.

Free-field realization. As explained in section 3 the free fields in this case are two

copies of the βγbc system, with weights determined by the degree of the invariants of

C2/G(3, 1, 2),

(p1, p2) = (3, 6) . (5.24)

The small N = 2 algebra with central charge c = −48 is realized according to the formulae

in 3.1, and the chiral generators W3, W6 are simply realized as

W3 = β1 , W6 = β2 . (5.25)
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The remaining generators22 with their quantum numbers are summarized in the following

table

W3 W6 J O U W3 O W6

h 3
2 3 1 5

2 2 3
2

5
2 3

m 3
2 3 0 3

2 0 −3
2 −3

2 −3

h−m 0 0 1 1 2 3 4 6

] − − − 4 8 13 36 104

(5.26)

According to the prescription given in section 3.3, the first step is to construct all N = 2

superVirasoro primary with the appropriate weights. The entry ] denotes the number

of such objects. The symbol − indicates that the corresponding entry has already been

constructed so we do not need an Ansatz for it. After imposing that the algebra closes one

finds the complete list of OPEs to be

W3×W3 ∼ [id] + [U ] , (5.27a)

W6×W6 ∼ [id] +
7

143
[U ]− 268

429
[W3W3] + . . . , (5.27b)

O×O ∼ 13365

59584

(
[id]− 295

627
[U ]− 347

285
[W3W3]

)
, U×U ∼ 99

392
[id]− 45

98
[U ] , (5.27c)

(5.27d)

W3×U ∼
99

392
[W3] + [O] , W3×O ∼ −

135

152
[U ] +

27

76
[W3W3] , (5.27e)

W3×O ∼
27

2128

√
2145

2
[W6] , W6×O ∼

27

1064
[W3W6]+

81

266

√
15

286
[W3W3W3] ,

(5.27f)

W6×O ∼ −
27

2128

√
2145

2
[W3] +

43

133

√
5

858
[O]− 435

266

√
15

286
[W3U ] + . . . , (5.27g)

W3×W6 ∼
3

14

√
165

26
[W3]− 14

3

√
26

165
[O]− 6

√
6

715
[UW3] , (5.27h)

W6×U ∼ −
117

931
[W6] +

27

266

√
165

26
[W3W3] + 4

√
10

429
[W3O] , (5.27i)

O×O ∼ 405

161728

√
2145

2
[W6]− 40095

283024
[W3W3] , (5.27j)

U×O ∼ 13365

59584
[W3]− 885

7448
[O]− 27

56
[UW3] . (5.27k)

while the W-W, W-W OPEs are regular. The . . . above indicate contributions from

super-Virasoro primaries with higher conformal dimensions. They have the same quantum

numbers as the relations (5.22). It is easy to check that the expression of the corresponding

operators in the free-field realization is zero. Notice that the first four OPEs are real, the

remaining nine are complex so they are accompanied by their conjugate.

A few additional remarks are in order. First of all, in order to constrain the form of

the generators in terms of free fields, it is convenient to start by imposing all the linear

22In [31] a close relative of this VOA was constructed by bootstrap methods. In that case the operators

O and O were not included as generators.
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constraints originating form having the right structure of the OPE of the chiral generators

W3,W6 with everything else. Second of all, observe that once W3 is constructed, all

the remaining generators, namely U ,O,O and W6 are generated23 in the OPE. Finally,

let us point out that the procedure given in section 3.3 lives the freedom of redefining

W6 → x(α)W6 +αW3W3. We fix this freedom by imposing that the OPEs are manifestly

Z2 conjugation symmetric.

6 The R-filtration from free fields

This work was largely motivated by the desire to achieve a better understanding of the

VOAs that arise from four-dimensional N = 4 superconformal field theories via the map

introduced in [1]. Applying the construction of [1] to the N = 4 super Yang-Mills theories,

one finds a class of N = 4 VOAs labelled by Weyl groups. In this paper, we have offered

an alternative construction of N = 4 VOAs labelled by Weyl groups, and conjectured that

they are in fact the same as the ones that arise from SYM theories.24

So far, we have studied these algebras in their own right, as novel and interesting exam-

ples of VOAs. In this section we wish to go back to their four-dimensional interpretation.

We propose that the free-field representations that we have introduced allow to solve a

longstanding open problem, the assignment of the “R-filtration” [13]. Let us briefly review

the terms of the problem, for the general case of VOAs that descend from arbitrary N = 2

4d SCFTs.

According to the map of [1], the operators of the VOA are in one-to-one correspon-

dence with the so-called “Schur operators” of the parent N = 2 SCFT. Schur operators

belong to certain (semi)short representations of the sl(4|2) superconformal algebra — as

such, due to the shortening conditions, they are labelled by three out of the five Cartan

quantum numbers25 of sl(4|2). Of these quantum numbers, all except one survive as good

quantum number of the VOA, defining gradings respected by the operator product ex-

pansion. The exception is the the sl(2)R symmetry Cartan, denoted by R. While Schur

operators are all highest weights of sl(2)R, the cohomological construction of [1] involves

the lower components of the sl(2)R multiplet to which a Schur operators belongs, and as

a result R does not descend to a grading of the VOA. It is however easy to argue [13]

that R can only decrease or remain constant in the OPE, and as such it defines a filtration

of the VOA. It follows that any VOA associated to a 4d SCFT by the map of [1] must

admit such an R-filtration. However, the R-filtration does not appear to be intrinsic to

the VOA — at least, not in any obvious way. Given an abstract presentation of the VOA

(say in terms of strong generators and their singular OPEs) it is a priori unclear how to

determine its R-filtration. This is a severe limitation if one’s goal is to use the VOA as a

23The operator O and W6 are generated in the W3 U and W3O respectively which are conjugate to the

OPEs appearing above.
24To our surprise, we have also found N = 4 VOAs associated to non-crystallographic Coxeter groups.

Their four-dimensional interpretation (if any) remains unclear.
25In N = 4 and N = 3 SCFTs, Schur operators are labelled by four out of the six Cartans of the psl(4|4)

and sl(4|3) superconformal algebras, respectively.

– 41 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
5

tool to study the parent 4d theory, because without knowledge of the R quantum number

the identification of 4d Schur representations is ambiguous.26

Our main new observation is that the free-field constructions analyzed in this paper

come equipped with a natural filtration, which we call the “R-filtration”. We conjecture

that for the N = 4 VOAs that arise from N = 4 SYM theories, the R- and R-filtrations

coincide. We have performed several successful checks of this conjecture. We expect this

statement to generalize to the VOAs labelled by complex reflection groups that descend

from 4d N = 3 SCFTs, but we did not perform any check of that more general conjecture.

We begin in the next subsection with a review of the R-filtration for VOAs that arise

from general N = 2 SCFTs, and indicate its obvious extension to the N = 4 case. In

section 6.2 we show that the VOAs studied in this paper admit a natural “R-filtration”,

defined in terms of their free-field realizations. According to the basic dictionary of [1], the

vacuum character of the VOA reproduces the Schur limit of the superconformal index of its

parent 4d SCFT, which is a function of a single superconformal fugacity q. Knowledge of

the R-filtration allows to refine the vacuum character, so that it yields the full Macdonald

index of the 4d SCFT, a function of two superconformal fugacities q and t. The basic check

that we have correctly identified the R-filtration consists in matching the refined vacuum

character computed from our free-field realization with the well-known Madconald index

of an N = 4 SYM theory. In section 6.3, we perform this check in several examples, up to

some order in an expansion in the conformal weight. In the limit q → 0, the Macdonald

index reduces to the so-called Hall-Littlewood index, which is much simpler to compute.

In section 6.4 we collect some further evidence for our proposal, showing that it correctly

reproduces the full Hall-Littlewood index in rank-one and rank-two examples.

6.1 The R-filtration

For the reader’s convenience, we start by reviewing the salient facts of the 4d/2d corre-

spondence introduced in [1].

6.1.1 The 4d/2d map and Schur operators

Given an N = 2 SCFT, the associated VOA is obtained by passing to the cohomology of a

certain nilpotent fermionic generator Q of the N = 2 superconformal algebra sl(4|2). We

denote the Cartan quantum numbers of sl(4|2) by (E, j1, j2, R, r), where E is the conformal

dimension and j1, j2, R, r are eigenvalues with respect to the Cartan generators of sl(2)1⊕
sl(2)2 ⊕ sl(2)R ⊕ gl(1)r, respectively. The nontrivial cohomology classes of local operators

inserted at the origin in R4 ∼= C2 (z = z̄ = w = w̄ = 0) have canonical representatives

which are the Schur operators [45]. These are local operators whose quantum numbers

26In simple special cases, the R-filtration can be assigned by specifying a set of rules designed to reproduce

the known Macdonald index of the parent superconformal field theory [8], but the general story has remained

elusive.
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Multiplet OSchur h r

B̂R Ψ11...1 R 0

DR(0,j2) Q̃1
+̇

Ψ11...1
+̇...+̇

R+ j2 + 1 j2 + 1
2

D̄R(j1,0) Q1
+Ψ11...1

+···+ R+ j1 + 1 −j1 − 1
2

ĈR(j1,j2) Q1
+Q̃1

+̇
Ψ11...1

+···+ +̇...+̇
R+ j1 + j2 + 2 j2 − j1

Table 4. Summary of the appearance of Schur operators in short multiplets of the N = 2 super-

conformal algebra, sl(4|2). The superconformal primary in a supermultiplet is denoted by Ψ. There

is a single conformal primary Schur operator OSchur in each listed superconformal multiplet. The

holomorphic dimension h and gl(1)r charge r of OSchur are given in terms of the quantum numbers

(R, j1, j2) that label the shortened multiplet (left-most column).

satisfy the relations27

E − (j1 + j2)− 2R = 0 ,

r + j1 − j2 = 0 .
(6.1)

Schur operators are always the highest weight states of their respective sl(2)1⊕sl(2)2⊕sl(2)R
modules. The various (unitary) supermultiplets that contain Schur operators and the

positioning of Schur operators within those multiplets is summarized in table 4.

Finite linear combinations of local operators inserted away from the origin cannot

define nontrivial Q -cohomology classes unless w = w̄ = 0. A canonical choice of repre-

sentatives for local operators inserted on the w = w̄ = 0 plane, C[z,z̄], is given by twisted

translated Schur operators,

O(z) ≡ ezL−1+z̄(L−1+R−)OSch(0)e−zL−1−z̄(L−1+R−) , (6.2)

where L−1 and L̄−1 are the generators of holomorphic and antiholomorphic translations

in C[z,z̄], R
− is the lowering operator of su(2)R, and OSch(z, z̄) is a Schur operator. The

OPE of twisted-translated Schur operators, taken at the level of Q -cohomology, is sl(2)z
covariant and sl(2)z̄ invariant, with the holomorphic dimension of the twisted-translated

operator O(z) being determined in terms of the quantum numbers of the corresponding

Schur operator according to

[L0,O(z)] = hO(z) , h =
E + j1 + j2

2
= E −R . (6.3)

This holomorphic OPE endows the vector space of Schur operators with the structure of a

vertex operator algebra.

In this work, we use the notation {AB}n to denote the coefficient of z−n12 in the holomor-

phic OPE A(z1)B(z2), see (2.9). We find it convenient to introduce alternative notations

for the special cases n = 0, 1. More precisely, we define

NO[A,B] := {AB}0 , {{A,B}} := {AB}1 . (6.4)

27The first condition in (6.1) implies the second for representations of sl(4|2) that can appear in unitary

superconformal theories [1].
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We refer to these operations as the normal order product of A and B, and the bracket of

A and B, respectively.

6.1.2 Gradings and filtration

The vector space V of Schur operators has a triple grading by (h,R, r) ∈ 1
2Z+× 1

2Z+× 1
2Z,

V =
⊕
h,R,r

Vh,R,r . (6.5)

The normally-ordered product preserves h and r but not R, making the R grading unnat-

ural from the point of view of the VOA structure. However, the specifics of the twisted

translation construction implies that R-charge violation occurs with a definite sign,

NO(Vh1,R1,r1 ,Vh2,R2,r2) ⊆
⊕
k>0

Vh1+h2,R1+R2−k,r1+r2 . (6.6)

Consequently, there is a filtration by R that is preserved by the normally-ordered product.

That is, if we define,

Fh,R,r =
⊕
k>0

Vh,R−k,r , (6.7)

then we have the following filtered property for normally-ordered multiplication,

NO(Fh1,R1,r1 ,Fh2,R2,r2) ⊆ Fh1+h2,R1+R2,r1+r2 . (6.8)

In addition, the bracket operation {{·, ·}} defined in (6.4) obeys

{{Fh,R,r,Fh′,R′,r′}} ⊆ Fh+h′−1,R+R′−1,r+r′ , (6.9)

so, the bracket is filtered of tri-degree (−1,−1, 0). The associated graded of our filtered

VOA is defined in the usual fashion,

grFV =
⊕
h,R,r

Gh,R,r , Gh,R,r = Fh,R,r/Fh,R−1,r . (6.10)

On this space, which is isomorphic as a vector space to V, one can show that the normally-

ordered product induces a grade-preserving (with respect to all the gradings) commuta-

tive, associative product, and the bracket induces an anti-symmetric bracket of tri-degree

(−1,−1, 0) that obeys the Jacobi identity.

Table 4 makes it clear that knowledge of only the h and r quantum numbers state of

the VOA is not sufficient to characterize uniquely the 4d protected operator from which it

descends — the R quantum number is also needed for a precise uplift.

6.1.3 The superconformal index

The superconformal index of a 4d N = 2 SCFT T (see, e.g., [45, 46]) is defined as

IT (p, q, t) := STrH

(
p

1
2

(E+2j1−2R−r) q
1
2

(E−2j1−2R−r] tR+r
)
, (6.11)
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where STr denotes the supertrace, and H is the Hilbert space of local operators of the

SCFT. The index receives contributions only from the states that lie in short represen-

tations of the superconformal algebra, with the contributions being such that the index

is insensitive to recombinations. Let us also recall the definition of two special limits of

the full superconformal index: the Macdonald index and the Schur index. The Macdonald

index depends on two fugacities only, and is given by

ITMacdonald(q, t) := STrHM
(qE−2R−r tR+r) , (6.12)

where HM denotes the subspace of states in H satisfying E+ 2j1− 2R− r = 0. The Schur

index depends on only one fugacity, and reads

ITSchur(q) := STrH(qE−R) . (6.13)

Notice that, even if the trace is taken over the entire Hilbert space H, only Schur operators

contribute to the Schur limit of the superconformal index.

Under the map of [1], the Schur index of a 4d N = 2 SCFT is mapped to the vacuum

character of the associated VOA,28

V = χ[T ] , χV(q) := STrV(qL0) , χV(q) = ITSchur(q) . (6.14)

In order to reconstruct the Macdonald index (6.12) of the parent 4d theory from VOA

data, we need control over the r grading and the R filtration discussed in section 6.1.2. If

these pieces of data are successfully identified, the Macdonald index can be recovered via

a refinement of the VOA vacuum character,

V = χ[T ] , ITMacdonald(q, t) = χV(q, t) := STrV(qL0−R−r tR+r) . (6.15)

In the definition of χV(q, t), the supertrace is implicitly understood to be taken on the

associated graded algebra (6.10), in which both quantum numbers R and r define gradings.

No simple recipe is known to extract the R-filtration from a presentation of the VOA

in terms of strong generators and their singular OPEs. In this work, we propose an effi-

cient way to identify the R-filtration in the case in which the VOA coincides with WG for

some (crystallographic) complex reflection group G. Our proposal relies on the free-field

realization of the VOA. More precisely, the free-field realization of WG allows us to intro-

duce a filtration on WG, denoted R-filtration and defined in section 6.2. We propose the

identification of this new R-filtration with the sought-for R-filtration. Several checks of

this proposal are discussed in sections 6.3 and 6.4.

28The usual vacuum character of a VOA should includes the additional overall factor q−c/24, where c is

the central charge. This factor is necessary (among other things) to obtain the correct modular properties,

but we are omitting it here since it plays no role in the comparison with the 4d superconformal index. In

the conventions used here, both the 2d character and the 4d superconformal index are normalized to start

with “1” in their q expansion.
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6.1.4 The N = 4 case

Unitary irreducible highest weight representations of the four dimensional N = 4 super-

conformal algebra psu(2, 2|4) are labelled by six quantum numbers {E, (j2, j2), [q1, p, q2]}
where E, (j1, j2) are as in the previous discussion while [q1, p, q2] are su(4)R Dynkin labels,

see [47]. When these quantum numbers satisfy certain relations the corresponding super-

multiplet obeys shortening conditions. One of the properties of the chiral algebra map χ

introduced in [1] specialized to four dimensional N = 4 SCFT is that it acts on irreducible

representations as

χ : Reps of psl(4|4)→ Reps of psl(2|2) . (6.16)

A little inspection shows that, using the notation of [47] for four dimensional multiplets

χ(B[0,p,0]) = Sh= 1
2
p

χ(B[q,p,q]) = L(h,j)=(q+ 1
2
p, 1

2
p)

χ(C[q1,p,q2],(j1,j2)) = L(h,j)=( 1
2

(p+q1+q2)+j1+j2+2, 1
2
p)

χ(D[q1,p,q2],(0,j2)) = L(h,j)=( 1
2

(p+q1+q2)+j2+1, 1
2
p)

χ(D̄[q1,p,q2],(j1,0)) = L(h,j)=( 1
2

(p+q1+q2)+j1+1, 1
2
p)

χ(A) = 0 .

(6.17)

The action (6.17) can be determined by considering the decomposition of N = 4 super-

conformal multiplets in N = 2 superconformal multiplets and the results of table 4. The

N = 2 superconformal algebra is embedded as

psl(4|4) ⊃ sl(4|2)⊕ sl(2)y , (6.18)

with

sl(4)R ⊃ sl(2)R ⊕ sl(2)y ⊕ gl(1)r , [1, 0, 0] 7→
(

1

2
, 0

)
+ 1

2

⊕
(

0,
1

2

)
− 1

2

. (6.19)

The decomposition of the short supermultiplets with respect to the embedding (6.18) is

given by29

B[q,p,q] → B̂R= p
2

+q ⊗
[
p

2

]
+ . . . (6.20a)

C[q1,p,q2],(j1,j2) → ĈR=
p+q1+q2

2
,(j1,j2)

⊗
[
p

2

]
+ . . . (6.20b)

D[q1,p,q2],(0,j2) → DR=
p+q1+q2

2
,(0,j2)

⊗
[
p

2

]
+ . . . (6.20c)

D̄[q1,p,q2],(j1,0) → D̄R=
p+q1+q2

2
,(j1,0)

⊗
[
p

2

]
+ . . . (6.20d)

29A similar decomposition in the N = 3 case is given in equations (2.6)–(2.13) of [31].
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where the . . . indicate terms that are either obtained by acting with the Q, Q̄ generators

in psl(2|2) or that do not contain Schur operators.30 The chiral algebra map (6.17) follows:

h is the same as in the N = 2 case, see table 4 and j = p
2 . To be precise, the image of

the map χ is a representation of pl(2|2), which is the extension of psl(2|2) by the outer

automorphism GL(1)r ⊂ SL(2). The GL(1)r quantum number of the pl(2|2) primary is

obtained combining (6.20) with the content of table 4. Similarly the R quantum number

is found to be

R[B[q,p,q]] = q+
1

2
p , R[C[q1,p,q2],(j1,j2)] =

1

2
(p+q1+q2)+1 , (6.21a)

R[D[q1,p,q2],(0,j2)] =
1

2
(p+q1+q2)+

1

2
, R[D̄[q1,p,q2],(j1,0)] =

1

2
(p+q1+q2)+

1

2
, (6.21b)

where the first formula can be applied to all values of q including q = 0. An important

feature of the map χ is that in general it cannot be inverted since different types of four

dimensional multiplets correspond to the same pl(2|2) multiplet. The pair of maps (χ,R),

on the other hand, can be inverted.

6.2 The R-filtration

According to our free-field construction, WΓ is realized as a subalgebra of the total βγbc

system M(Γ)
βγbc generated by β`, γ`, b`, c`, with ` = 1, . . . , r, where r = rank(Γ). We first

define a filtration R̃ at the level of the βγbc system. To this end, it is sufficient to assign

an additive weight, referred to as R-weight in the following, to the fundamental ‘letters’

β`, γ`, b`, c`, according to the following table,

β` γ` b` c` ∂

R 1
2 p` 1− 1

2 p`
1
2 p` 1− 1

2 p` 0

h−R 0 0 + 1
2 − 1

2 1

(6.22)

For convenience we reported here also the combination h − R. Together with (3.4), we

have thus assigned quantum numbers h, m, r, R to the free fields. Given any monomial in

derivatives of β`, γ`, b`, c`, its R-weight is simply the sum of the R-weights of its letters.

Given a polynomial, we define its R-weight as the maximal R-weight of its monomials.

Given R ∈ 1
2Z, we may then introduce the vector space

ṼR := linear span of states in M(Γ)
βγbc with R-weight R− k, k ∈ Z≥0 . (6.23)

The collection of vector spaces {ṼR}R∈ 1
2
Z defines the filtration R̃ of M(Γ)

βγbc,

M(Γ)
βγbc =

⋃
R∈ 1

2
Z

ṼR . (6.24)

30More precisely, the terms . . . are obtained by acting with the generators of t on the first terms in (6.20),

where psl(4|4) ' sl(4|2)⊕ sl(2)y ⊕ t as a vector space. The Q -cohomology of t is spanned by the fermionic

generators in psl(2|2). These generate Schur operators when acting on the generalized highest weight state.

The elements of t that are not in the Q -cohomology on the other hand do not generate Schur operators.
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To verify the compatibility of the filtration with the VOA structure of M(Γ)
βγbc, we have to

ensure that, in the OPE of two operators of R-weights R1 and R2, only operators with

R-weight ≤ R1 +R2 appear, both in the singular and in the regular part. This property is

easily verified by noticing that OPEs in M(Γ)
βγbc are computed via Wick contractions. Since

the R-weights of a pair β` γ` or b`c` is one, every Wick contraction decreases the R-weight

by one unit. The same observation implies that in the singular OPEs the R-weights are

strictly smaller than R1 +R2.

The filtration R̃ descends to a filtration R of the VOA WΓ, since the latter is a

subalgebra of M(Γ)
βγbc. The filtration R is specified by the collection of vector spaces

VR := ṼR ∩WΓ , R ∈ 1

2
Z . (6.25)

Notice that in M(Γ)
βγbc we can construct operators with arbitrarily low R-weight. In contrast,

all operators in WΓ have R ≥ 0. As a result, we can write

WΓ =
⋃

R∈ 1
2
Z≥0

VR . (6.26)

Given any filtered algebra such as the pair (WΓ,R), there is a standard coset construction

that yields a graded algebra, the associated graded algebra G (WΓ),

G (WΓ) =
⊕

R∈ 1
2
Z≥0

HR , H0 = V0 ' C , V 1
2

= 0 , HR = VR/VR−1 , R ≥ 1 .

(6.27)

Notice that G (WΓ) and WΓ are isomorphic as vector spaces. The graded algebra G (WΓ)

will be useful in the next paragraph for the definition of the refined vacuum character.

It should be noticed that all generators of the small N = 4 algebra have R = 1 and

they actually exhaust the R = 1 component, i.e., V1 ' S1 as psl(2|2) modules. In more

generality one can argue that the action of psl(2|2) does not change the R-weight. A

particular example is given by operators transforming in short representations of psl(2|2).

In this case the weight of the super-multiplet can be determined unambiguously since the

corresponding quasi-primary, due to the h = m condition, is necessarily a function of

{β1, . . . , βr} so its R-weight is equal to its conformal dimension, R = h. As we will see in

the next subsection, this fact has a clear four-dimensional interpretation.

Refined vacuum character. By means of the filtration R, we can refine the vacuum

character of the VOA WΓ. This is achieved in a standard way via the associated graded

algebra G (WΓ) defined in (6.27):

χWΓ
(q, ξ, z) =

∑
h,r,m,R

sdim(Hh,r,m,R) qh ξR+r zm, HR =
⊕
h,r,m

Hh,r,m,R . (6.28)

Some comments are in order. The variables q, ξ, z are fugacities. The quantum numbers

h, m, r were defined in section 2, their characterization is reported here for convenience:

h is the conformal dimension, r is associated to the outer automorphisms of the small
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N = 4 and N = 2 SCA normalized as r[G] = 1/2 and r[G] = 1/2 respectively, finally

m ∈ 1
2Z is the Cartan of the sl(2)y of the small N = 4 SCA or the gl(1) of the N = 2

SCA. The super-dimension sdim(H) is defined as dim(H(bos))− dim(H(ferm)). Notice that

the character (6.28) can be further refined by applying the substitution ξR+r 7→ ξ̂R1 y2r

in (6.28).

On the computation of sdim(Hh,r,m,R). Let us comment briefly on the computation

of the refined character (6.28) level by level. The VOA WΓ is triply graded as

WΓ =
⊕

h≥0,r,m

Vh,r,m , Vh,r,m = V
(bos)
h,r,m ⊕ V

(ferm)
h,r,m , (6.29)

where each V
(bos)
h,r,m and V

(ferm)
h,r,m are finite-dimensional. Given any base of V

(bos)
h,r,m , we can

determine the R-weights of each element of the base using the free-field construction.

Let us select a basis of V
(bos)
h,r,m that is minimal, in the sense that the R-weights of its

elements are the lowest possible. Let R1 < · · · < Rk be the distinct R-weights of the

elements of a minimal basis, occurring with multiplicities n1, . . . , nk. In an analogous

fashion, we can determine a minimal basis of V
(ferm)
h,r,m , in which the distinct R-weights are

R′1 < · · · < R′k′ , occurring with multiplicities n′1, . . . , n
′
k′ . The contribution of Vh,r,m to the

refined character (6.28) is then

k∑
i=1

ni q
h ξRi+r zm −

k′∑
i=1

n′i q
h ξR

′
i+r zm. (6.30)

6.3 Identification of R-filtration and R-filtration

We propose the following identification:31

Suppose WΓ is the VOA associated to a four-dimensional N = 4 SCFT T , WΓ = χ[T ].

Then the R-filtration of WΓ, defined in (6.22), (6.23), (6.25), (6.26), coincides with the

R-filtration canonically attached to WΓ by its definition in terms of four-dimensional CFT

data of T .

This proposed identification implies in particular the equality of the Macdonald index of

T with the refined vacuum character (6.28) of WΓ,

χWΓ
(q, ξ, z) = ITMacdonald(q, ξ, z) , WΓ = χ[T ] , (6.31)

where we have refined the 4d Macdonald index using the sl(2)y flavor fugacity z. To

provide evidence for (6.31), we followed two approaches. Firstly, we performed a direct

match of the Macdonald index of 4d N = 4 SYM with gauge algebra a1, a2, and the

refined vacuum character of WΓ for Γ = A1, A2, working up to and including terms q5, q3

respectively. Secondly, we analyzed the Hall-Littlewood limits of the Macdonald index of

4d N = 4 SYM with gauge algebra g and of the refined vacuum character of WWeyl(g), and

we provided general arguments for their equality, for any simple Lie algebra g.

31We expect that the obvious generalization of this statement to the case of complex reflection groups is

true, but we did not perform any check of this conjecture.
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The Macdonald index of 4d N = 4 SYM. The definition of the Macdonald index

was recalled in (6.12). For 4d N = 4 SYM with gauge group G, the Macdonald index can

be written as an integral over the maximal torus of G as follows

ISYM(g)
Macdonald(q, ξ, z) =

∫
[du] P.E.

[
ξ

1
2 χ

pl(2|2)
S 1

2

(q, ξ, z)χg
Adj(u)

]
. (6.32)

The notation deserves some explanations: g = Lie(G) and [du] is the corresponding normal-

ized Haar measure, the pl(2|2) character of the extra-short representation S 1
2

is given by

χ
pl(2|2)
S 1

2

(q, ξ, z) =
q

1
2

1− q
(
z

1
2 − z−

1
2
)
− q

1− q
(
ξ

1
2 − ξ−

1
2
)
. (6.33)

Finally the plethystic exponential is defined as

P.E.[f(q, ξ, z, u)] = exp

[ ∞∑
m=1

1

m
f(qm, ξm, zm, um)

]
. (6.34)

Match between index and character for Γ = A1. In the case Γ = A1, the VOA WΓ

is (the simple quotient of) the small N = 4 SCA with central charge c = −9. To compute

the refined vacuum character (6.28) up to and including q5 terms, we performed a counting

of states with definite quantum numbers h, j, r, R, up to h = 5. The results are collected

in table 5. Clearly, all states with integer h are bosons, and all states with half-integer h

are fermions. Let us stress that this counting differs from the analogous counting at generic

central charge c, because of the states that become null upon setting c = −9. Fortunately,

the counting of states is facilitated by the fact that, in the free-field realization, all null

states are automatically zero, as proven in [26].

Upon assembling the refined vacuum character from the data of table 5, we found a

perfect match with the Macdonald index of 4d N = 4 SYM with gauge algebra a1, up to

q5 terms. The Macdonald index is computed using (6.32).

The content of table 5 can also be encoded more compactly in the expression

χA1(q, ξ̂, y, z) =

1 + χ
(A1)
S + ξ̂2 L(3,1) + ξ̂3 L(4,2) + ξ̂2 L(4,0) + ξ̂4 L(5,3) + ξ̂3 L(5,2) + (ξ̂3 + ξ̂2)L(5,1) + . . .

(6.35)

The r.h.s. is obtained from (6.28) by means of the further refinement ξR+r 7→ ξ̂R1 y
2r. On

the l.h.s., χ
(A1)
S =

∑∞
R=1 ξ̂

RSR and SR(q, y, z), L(h,j)(q, y, z) denote the pl(2|2) character

of the corresponding representations introduced in table 2.

Match between index and character for Γ = A2. The counting of states up to

h = 3 in the case Γ = A2 is summarized in table 6. In contrast to the case Γ = A1, this

time we have a non-trivial interplay between bosons and fermions with the same weight h.

Once again, it is essential to take into account the states that become null for c = −24,

but luckily this task is efficiently performed with the help of the free-field realization.
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h su(2) multiplets with quantum numbers (j)Rr

0 (0)0
0

1
2 −

1 (1)1
0

3
2

(
1
2

)1
±1/2

2 (2)2
0 + (1)1

0 + (0)1
0

5
2

(
3
2

)2
±1/2

+
(

1
2

)1
±1/2

3 (3)3
0 + (2)2

0 + 2 (1)2
0 + (1)1

0 + (0)1
0

7
2

(
5
2

)3
±1/2

+ 2
(

3
2

)2
±1/2

+
(

1
2

)2
±1/2

+
(

1
2

)1
±1/2

4 (4)4
0 + (3)3

0 + 2 (2)3
0 + 2 (2)2

0 + 4 (1)2
0 + (1)1

0 + 2 (0)2
0 + (0)1

0 + (1)2
±1

9
2

(
7
2

)4
±1/2

+ 2
(

5
2

)3
±1/2

+
(

3
2

)3
±1/2

+ 3
(

3
2

)2
±1/2

+ 3
(

1
2

)2
±1/2

+
(

1
2

)1
±1/2

5 (5)5
0 + (4)4

0 + 2 (3)4
0 + 2 (3)3

0 + 5 (2)3
0 + 2 (2)2

0 + 2 (1)3
0 + 7 (1)2

0 + (1)1
0

+3 (0)2
0 + (0)1

0 + (2)3
±1 + (1)2

±1 + (0)2
±1

Table 5. States in the VOA WΓ with Γ = A1 with h ≤ 5. The notation (j)Rr encodes the spin j

under the sl(2)y symmetry of the small N = 4 SCA, the outer automorphism quantum number r,

and the R-weight. When we write, for instance,
(

1
2

)1
±1/2

, we mean that multiplets with r = 1/2

and r = −1/2 are found with the same multiplicity.

h bosons fermions

0 (0)0
0 −

1
2 − −

1 (1)1
0 −

3
2

(
3
2

)3/2

0

(
1
2

)1
±1/2

2 (2)2
0 + (1)1

0 + (0)2
0 + (0)1

0 (1)
3/2
±1/2

5
2

(
5
2

)5/2

0
+
(

3
2

)5/2

0
+
(

3
2

)3/2

0
+
(

1
2

)3/2

0

(
3
2

)2
±1/2

+
(

1
2

)2
±1/2

+
(

1
2

)1
±1/2

3 2 (3)3
0 + (2)2

0 + (1)3
0 + 3 (1)2

0 + (1)1
0 + 2 (0)2

0 + (0)1
0 + (0)2

±1 2 (2)
5/2
±1/2 + (1)

5/2
±1/2 + (1)

3/2
±1/2

Table 6. States in the VOA WΓ with Γ = A2 with h ≤ 3. The notation (j)Rr encodes the spin j

under the sl(2)y symmetry of the small N = 4 SCA, the outer automorphism quantum number r,

and the R-weight.

Constructing the refined vacuum character (6.28) up to q3 from the data in table 6,

we find a perfect match with the Macdonald index of 4d N = 4 SYM with gauge algebra

a2, as given by (6.32).

We can repackage the content of table 6 in the compact expression

χA2(q, ξ̂, y, z) = 1 + χ
(A2)
S + ξ̂2 L(2,0) + (ξ̂2 + ξ̂3)L(3,1) + ξ̂5/2 L( 5

2
, 3
2

) + . . . (6.36)

where we are using the same notation as is (6.35), and on the r.h.s. χ
(A2)
S = χ

(A1)
S +ξ̂3/2 S 3

2
+

ξ̂5/2 S 5
2

+ ξ̂3 S3 + . . . .
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6.4 The Hall-Littlewood limit

In this section we give additional evidence that the R-filtration, defined in terms of the

4d parent theory SCFT data in section 6, and the R-filtration, defined in terms of the

free-field realization in section 6.2, coincide by focusing on a subsector of operators known

as Hall-Littlewood (HL) chiral ring [45]. This ring is obtained by restricting to operators

satisfying the condition h = R+ r = R+ r. As the Higgs branch chiral ring, the HL chiral

ring carries the structure of a Poisson algebra, see [13]. At the level of the character and

of the Macdonald index, the HL limit corresponds to

χHL
WΓ

(τ, x) = lim
q→0

χWΓ
(q, q−1τ2, x2) ,

ISYM(g)
HL (τ, x) = lim

q→0
ISYM(g)

Macdonald(q, q−1τ2, x2) , (6.37)

where the character χWΓ
is defined in (6.28) and the index in (6.32).

In the following we describe more explicitly the HL chiral ring as obtained from the

free-field description by applying the map P ′ introduced in (3.18) and the four dimensional

HL chiral ring denoted by RHL[SYMg]. As a consistency check of our proposed equality

WWeyl(g) = χ[SYMg] and equivalence of R- and R-filtrations we have

P ′(WΓ) ' RHL[SYMg] , Γ = Weyl(g) , (6.38)

where the right hand side is given in (6.42). We verify this isomorphism explicitly for32

Γ = A1, I2(p) with p = 3, 4, 6.

The HL chiral ring from the free-field description. Restricting to HL operators,

defined by the condition h = R + r, in the free-field description is straightforward. Ac-

cording to the weight assignments given in (3.4), (6.22) all the constituent {β`, γ`, b`, c`}
satisfy the condition h = R+r, while adding a derivative will violate this condition.33 This

implies that the (candidate) HL chiral ring is obtained by setting to zero derivatives in the

the free-field realization of the strong generators of WΓ. This is the definition of the map

P ′ introduced in (3.18) so that the candidate HL chiral ring is P ′(WΓ) with the Poisson

ring structure defined in section 3.4.

Interestingly, this ring (conjecturally) admits an alternative description as the subring

of C[β, γ, b, c] annihilated by a certain set of nilpotent operators which are interpreted as

32In the non-crystallographic cases p 6= 3, 4, 6 the right hand side in the identity (6.38) should be replaced

with R′Γ, see (6.42), (6.43).
33One could also consider the conjugate ring consisting of operators satisfying h = R− r. The two rings

must be isomorphic, but the description of the latter in terms of the given free-field realization is more

complicated. This can be seen by looking at the weight assignment

β` γ` b` c` ∂

h− (R+ r) 0 0 0 0 1

h− (R− r) 0 0 +1 −1 1

(6.39)

as follows from (3.4) and (6.22).
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the image of the screening charges of the VOA under the map P ′. In equation

P ′(WΓ) = Kernel(J
(1)
cl ) ∩ · · · ∩Kernel(J

(r)
cl ) , (6.40)

where J
(`)
cl acts by Poisson brackets {J(`)

cl , ·}PB. Some examples are given in the end of this

section.

The HL chiral ring RHL[SYMg]. Let us recall that the HL chiral ring is a consistent

truncation of the usual N = 1 chiral ring obtained by restricting to Schur operators. The

N = 1 chiral ring RN=1[SYMg] of N = 4 SYM is given by

RN=1[SYMg] = C[M ′′
Γ ] , M ′′

Γ =
C(3|2) ⊗ VΓ

Γ
, (6.41)

with VΓ ' Rrank(Γ), generalizing (1.9) and (2.12), see [48, 49]. By restricting to Schur

operators we conclude that

RHL[SYMg] = R′Γ := C[M ′
Γ] , (6.42)

R′Γ := C[z+
1 , . . . , z

+
r , z

−
1 , . . . , z

−
r , θ1, . . . , θr]

Γ , M ′
Γ =

C(2|1) ⊗ VΓ

Γ
.

(6.43)

As RΓ the Hall-Littlewood chiral ring R′Γ carries the action of GL(2). This is actually

extended to the action of SL(2|1).

It should be remarked that the HL chiral ring admits an alternative description which

involve solving a certain BRST cohomology problem. This is the truncation of the BRST

definition of the VOA χ[SYMg], see [1]. It is a non-trivial fact34 that this definition repro-

duces the HL chiral ring (6.42). Further evidence of this equivalence can be obtained by

matching the corresponding Hilbert series. The Hilbert series of (6.42) can be computed

using the Molien formula35

HS′Γ(τ, x) =
1

|Γ|
∑
g∈Γ

1

sdetC(2|1)⊗VΓ
(1− h⊗ g)

, h =
( τx 0 0

0 τx−1 0
0 0 τ2

)
. (6.45)

The BRST definition of the HL chiral ring on the other hand implies that its Hilbert series

is obtained by taking the HL limit given in (6.37) of the integral (6.32) and gives

ISYM(g)
HL (τ, x) =

∫
[du] P.E.

[(
(x+ x−1) τ − τ2

)
χg

Adj(u)
]
. (6.46)

34In fact this is the main conjecture in [50].
35The super-determinant is defined in the standard way. The basic building block is

1

sdetC(2|1)(1− h)
=

1− τ2

(1− xτ)(1− x−1τ)
. (6.44)

It is possible to further refine (6.45) by keeping track of the gl(1)r quantum number. This is achieved by

taking h = diag(τx, τx−1, zτ2), where z is a gl(1)r fugacity. This refinement of the Hilbert series cannot be

obtained as a specialization of the four dimensional index.
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Since the argument of the plethystic exponential is a Laurant polynomial, the integrand is

a rational function, see (B.14). The equivalence of the two descriptions implies that

ISYM(g)
HL (τ, x) = HS′Γ(τ, x) , Γ = Weyl(g) , (6.47)

See appendix B.2 for more details.

6.4.1 Examples

Rank 1 example: Γ = A1. Let us describe the entries of (6.38) in this example. In this

case the VOA WA1 is isomorphic to the simple quotient of the small N = 4 super-Virasoro

algebra at c = −9. Applying the map P ′ to the free-field realization of the generators of

WA1 gives

j+ = β , j0 = 2βγ + bc , j− = γ(βγ + bc) , g+ = b , g− = bγ , (6.48)

where we used the notation P ′(X) = x when acting on the generators. Above (β, γ, b, c)

are super-commuting variables, they can be thought of as coordinates of C2|2. It should be

noticed that the image of T and G̃± is zero since derivatives are set to zero. It is easy to

verify that the following combinations

NullsA1 =

{
j+j− − 1

4
j0j0 , j±g∓ − 1

2
j0g±, g+g−

}
(6.49)

are identically zero. Recall that the relations g±g± = 0 and g+g− + g−g+ = 0 hold by

definition in a supercommutative ring. We conclude that

P ′(WA1) ' C[j+, j0, j−, g+, g−]

NullsA1 = 0
. (6.50)

The Hilbert series of this ring can be computed by standard methods, the result is given

by (6.52) below. Next let us consider the ring (6.43) with Γ = A1. It is rather clear the it

is generated by

j+ = z+z+, j0 = 2z+z−, j− = z−z−, g+ = z+θ , g− = z−θ . (6.51)

The character of this ring is given by the Molien formula (6.45) and in this case gives

HS′A1
(τ, x) =

1− (x+ x−1)τ3 − τ4 + (x+ x−1)τ5

(1− τ2 x−2)(1− τ2)(1− τ2 x+2)
. (6.52)

This expression is a generalization of (2.15). Similarly to the Higgs branch chiral ring,

the most efficient method to show the equivalence (6.38) is to establish a relation be-

tween the βγbc coordinates and the quotient coordinates by equating the genetators (6.48)

with (6.51). This gives

β = z+z+, γ − 1

2
β−1bc =

z−

z+
, b = z+θ . (6.53)

Notice that the expressions (6.48) are invariant under the transformation γ 7→ γ + ηb, c 7→
c+ 2ηβ where η is a fermionic parameter. For this reason only the invariant combinations

under this transformation, given in (6.53), can be determined. As already anticipated

in (6.40), P ′(WA1) can be identified with the kernel of Jcl = bβ−1/2, which generates the

fermionic symmetry described above, in C[β, γ, b, c].

– 54 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
5

Rank 2 example: Γ = I2(p). Let us start from describing the generators of R′I2(p).

They are given by j(y), w(y) defined in (4.14) together with their sl(2|1) fermionic partners

g(y) = z1(y)θ2 + z2(y)θ1 , gw(y) = p
(
z1(y)p θ1 + z2(y)p θ2

)
. (6.54)

These generators should be compared to the image of the WI2(p) generators, namely (4.20)

and the psl(2|2) descendants of W h.w. = β2, under P ′. The resulting expressions are

rather involved but one can show that they coincide with (4.14), (6.54) upon using the

identification (4.28) and

b1 = z+
1 θ2 + z+

2 θ1 , b2 = p
(
(z+

1 )p−1θ1 + (z+
2 )p−1θ2

)
. (6.55)

This concludes the proof of the isomorphism (6.38) for Γ = I2(p).

As in the case Γ = A1, see (6.53), also in this case the expression of γ1, γ2 can be

determined only up to certain nilpotent quantities. This is due to the fact that P ′(x) with

x ∈ WI2(p) are invariant under the transformations

γ1 7→ γ1 + Λ η βp−2
1 b1 + η̃ b2 ,

γ2 7→ γ2 + η b2 + η̃ b1 ,

c1 7→ c1 + 2 Λ η βp−1
1 + p η̃ β2 ,

c2 7→ c2 +
p

p− 1
η β2 +

2

p− 1
η̃ β1 ,

where η, η̃ are fermionic parameters. These transformations are generated by36 J±cl given

in (4.30) with the suffix ± referring to the two solutions of the differential equation (4.32).
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A Some basic facts on OPEs and VOAs

For the convenience of the reader, in this appendix we collect some standard facts about

OPEs in VOAs, with emphasis on the cases with N = 2 and small N = 4 supersymmetry.

Covariance under sl(2)z. Given the operators A(z), B(z), we adopt the notation

A(z1)B(z2) =
∑
n∈Z

{AB}n(z2)

zn12

, z12 := z1 − z2 . (A.1)

36Notice that η, η̃ have a fixed non-trivial dependence on βγbc.
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An operator O(z) is an sl(2)z primary (or quasi-primary) if it transforms tensorially under

the global part of the conformal group on the Riemann sphere, denoted SL(2)z,

O′(z′) =

(
∂z′

∂z

)−hO
O(z) , (A.2)

where hO is the conformal dimension of O and

z′ =
a z + b

c z + d
,

(
a b

c d

)
∈ SL(2)z . (A.3)

An sl(2)z primary operator O satisfies

{TO}3 = 0 , {TO}2 = hOO , {TO}1 = ∂O , (A.4)

where T is the stress tensor.

The OPE of sl(2)z primary operators O1, O2 with dimensions h1, h2 is constrained by

sl(2)z covariance to take the form

O1(z1)O2(z2) =
∑
O∈Bh

λO1O2
O 1

zh1+h2−h
12

Dh1,h2;h(z12, ∂z2)O(z2) , (A.5)

where Bh is a basis in the space of sl(2)z primary operators with dimension h, λO1O2
O are

OPE coefficients, and the differential operator Dh1,h2;h(z12, ∂z2) is given by

Dh1,h2;h(z12, ∂z2) =

∞∑
k=0

(h+ h1 − h2)k
k! (2h)k

zk12 ∂
k
z2 . (A.6)

The quantity (x)k is the ascending Pochhammer symbol, (x)k =
∏k−1
i=0 (x+ i).

Notice that, if O1, O2 are sl(2)z primaries, the operators {O1O2}n, n ∈ Z are not

necessarily sl(2)z primaries. As a consequence of (A.5), however, {O1O2}n is generically

given as the sum of an sl(2)z primary of weight h1 + h2 − n and derivatives of other sl(2)z
primaries of lowest weight. There is a standard formula for extracting the sl(2)z primary

with h = h1 + h2 − n from {O1O2}n. In our normalization conventions, the formula reads

(O1O2)n(z) =
∑
p≥0

Kh1,h2,n,p ∂
p
z{O1O2}n+p(z) , (A.7)

where

Kh1,h2,n,p =
(−)p (2h1 − n− p)p

p! (2h1 + 2h2 − 2n− p− 1)p
. (A.8)

Our normalization is chosen in such a way that

O1(z1)O2(z2) =
∑
n∈Z

1

zh1+h2−h
12

Dh1,h2;h(z12, ∂z2)(O1O2)n(z2) . (A.9)

– 56 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
5

Covariance under sl(2)y. The operator content of VOAs with small N = 4 supercon-

formal symmetry falls into representations of sl(2) R-symmetry. We find it convenient to

study irreps of sl(2) by means of a standard index-free formalism, based on the introduc-

tion of an auxiliary variable y. The group SL(2) acts on y via Möbius transformations.

We often denote this SL(2) group as SL(2)y, in order to distinguish it from the global part

of the conformal group on the Riemann sphere, which is denoted SL(2)z. An object O(y)

transforms in the irrep of sl(2)y with spin j if it satisfies

O′(y′) =

(
∂y′

∂y

)j
O(y) , (A.10)

where we suppressed the z dependence, and

y′ =
â y + b̂

ĉ y + d̂
,

(
â b̂

ĉ d̂

)
∈ SL(2)y . (A.11)

As a function of y, O is a polynomial of degree 2j.

Consider any objects O1(y), O2(y) transforming under SL(2)y according to (A.10) with

spins j1, j2. Let B denote any bilinear operation. We are mainly interested in the cases

B(·, ·) = {· ·}n or B(·, ·) = (· ·)n in a VOA, but the following considerations also apply if B
is, for instance, the commutative product in a polynomial ring, or the Poisson bracket in a

Poisson algebra. It is useful to have a formula to decompose the product B(O1(y1),O2(y2))

into contributions of definite spin j. Such a formula reads

B
(
O1(y1),O2(y2)

)
=
∑
j

yj1+j2−j
12 D̂j1,j2;j(y12, ∂y2)B(O1,O2)j(y2) . (A.12)

Some comments are in order. The range of the summation over j is determined by the

usual rules for composing angular momenta,

j ∈ {|j1 − j2|, |j1 − j2|+ 1 , . . . , j1 + j2} . (A.13)

The differential operator D̂j1,j2;j(y12, ∂y2) is given by

D̂j1,j2;j(y12, ∂y2) =
∞∑
k=0

(−j − j1 + j2)k
k! (−2j)k

yk12 ∂
k
y2
, (A.14)

and can be thought of as the continuation of the operator (A.6) to h = −j. As usual,

y12 = y1 − y2. Notice that the sum over k always truncates to a finite sum. The object

B(O1,O2)j is the projection onto the part with definite spin j. In order to define it more

precisely, we introduce the notation

O1(y) =

2j1∑
k1=0

O1,k1 y
k1 , O2(y) =

2j2∑
k2=0

O1,k2 y
k2 . (A.15)

We may then write

B(O1,O2)j(y2) =

2j1∑
k1=0

2j2∑
k2=0

Cj1,j2,j,k1,k2 B(O1,k1 ,O2,k2) , (A.16)
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where the coefficients C are given by

Cj1,j2,j,k1,k2 =

j1+j1−j∑
r=0

(−)r (j1 − j2 + j + r)↓r

r! (2j + r + 1)↓r

1

(j1 + j2 − j − r)!

r∑
s=0

(
p

s

)
(k1)↓j1+j2−j−s (k2)↓s .

(A.17)

We have used the descending Pochhammer symbol, (x)↓k =
∏k−1
i=0 (x− i).

A compact notation for OPEs. As discussed above, covariance under sl(2)z and sl(2)y
completely fixes the way the ∂z and ∂y derivative of a sl(2)z, sl(2)y primary operator enter

the OPE of two sl(2)z, sl(2)y primary operators. This allows us to use a compact notation

in which all factors z12, y12 and all terms with ∂z and/or ∂y derivatives are omitted.

If needed, such elements can be easily reconstructed unambiguously with the formulae

recorded above. For example, the non-trivial OPEs of the small N = 4 algebra at level k

in compact notation read

J J = −k id + 2 J , J G = G , J G̃ = G̃ ,

T J = J , T G =
3

2
G , T G̃ =

3

2
G̃ ,

T T = 3 k id + 2T , G G̃ = −2 k id + 2 J − T . (A.18)

To make contact with the OPEs is section 2.1 in the main text, one uses the parametrization

J(y) = J+ + J0 y + J− y2, G(y) = G+ +G− y , G̃(y) = G̃+ + G̃− y . (A.19)

In a completely analogous fashion, the full N = 2 SCA at level k is encoded in the non-

trivial OPEs

J J = 2 k id , J G = −G , J G̃ = G̃ ,

T J = J , T G =
3

2
G , T G̃ =

3

2
G̃ ,

T T = 3 k id + 2 T , G G̃ = −2 k id + J − T . (A.20)

Primary conditions. Let us summarize the different notions of primary operators en-

countered in this work in the case of VOAs with small N = 4 supersymmetry.

• sl(2)z primary of dimension h:

{T O(y)}3 = 0 , {T O(y)}2 = hO(y) , {T O(y)}1 = ∂zO(y) . (A.21)

• Virasoro primary of dimension h:

{T O(y)}n≥3 = 0 , {T O(y)}2 = hO(y) , {T O(y)}1 = ∂zO(y) . (A.22)

• Operator with definite sl(2)y spin j:

{J(y1)O(y2)}1 = 2 j y12 D̂1,j;jO(y2) . (A.23)
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• AKM primary with definite sl(2)y spin j:

{J(y1)O(y2)}n≥2 = 0 , {J(y1)O(y2)}1 = 2 j y12 D̂1,j;jO(y2) . (A.24)

• psl(2|2) primary with quantum numbers (h, j):

{T O(y)}3 = 0 , {T O(y)}2 = hO(y) , {T O(y)}1 = ∂zO(y) , (A.25)

{J(y1)O(y2)}1 = 2 j y12 D̂1,j;jO(y2) , (A.26)

{G(y1)O(y2)}2 = 0 , {G̃(y1)O(y2)}2 = 0 . (A.27)

• small N = 4 super-Virasoro primary with quantum numbers (h, j):

{T O(y)}n≥3 = 0 , {T O(y)}2 = hO(y) , {T O(y)}1 = ∂zO(y) ,

(A.28)

{J(y1)O(y2)}n≥2 = 0 , {J(y1)O(y2)}1 = 2 j y12 D̂1,j;jO(y2) , (A.29)

{G(y1)O(y2)}n≥2 = 0 , {G̃(y1)O(y2)}n≥2 = 0 . (A.30)

The differential operator D̂1,j;j was defined in (A.14) and takes the simple form

D̂1,j;j(y12, ∂y2) = 1 +
1

2 j
y12 ∂y2 . (A.31)

It is useful to notice that the AKM primary condition, combined with the psl(2|2) primary

condition, is equivalent to the super-Virasoro primary condition.

The analogous notions of primary operators in the case with N = 2 supersymmetry

are obtained with minimal modifications. The R-symmetry of the small N = 2 SCA is

gl(1), and therefore we do not need the auxiliary variable y.

• Operator with definite gl(1) charge m:

{J O}1 = 2mO . (A.32)

• AKM primary with definite gl(1) charge m:

{J O}n≥2 = 0 , {J O}1 = 2mO . (A.33)

• osp(2|2) primary with quantum numbers (h,m):

{T O}3 = 0 , {T O}2 = hO , {T O}1 = ∂zO , (A.34)

{J O}1 = 2mO , (A.35)

{G O}2 = 0 , {G̃ O}2 = 0 . (A.36)

• N = 2 super-Virasoro primary with quantum numbers (h,m):

{T O}n≥3 = 0 , {T O}2 = hO , {T O}1 = ∂zO , (A.37)

{J O}n≥2 = 0 , {J O}1 = 2mO , (A.38)

{G O}n≥2 = 0 , {G̃ O}n≥2 = 0 . (A.39)

In analogy with the previous case, the AKM primary condition, combined with the osp(2|2)

primary condition, is equivalent to the N = 2 super-Virasoro primary condition.
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Superconformal multiplets. The action of the fermionic generators of psl(2|2) is en-

coded in the OPE of an operator O with the supersymmetry currents G, G̃. The fermionic

generators of Q type are encoded in the order-one pole of the OPE, while the fermionic

generators of S type are encoded in the order-two pole. We are mainly interested in the

action of generators of Q type. To describe it efficiently, we introduce the notation

G↑O := (GO)
j+ 1

2
1 , G↓O := (GO)

j− 1
2

1 , G̃↑O := (G̃O)
j+ 1

2
1 , G̃↓O := (G̃O)

j− 1
2

1 ,

(A.40)

where O has spin j. Suppose W is a psl(2|2) primary operator with h = j. The corre-

sponding supersymmetry multiplet is a short multiplet, denoted Sh. The content of Sh is

the following

W

GW := G↓W G̃W := G̃↓W

TW := −G↓G̃↓W .

(A.41)

Let us now consider a psl(2|2) primary operator X with generic h > j. In this case, the

relevant supersymmetry multiplet is a long multiplet denoted Lh,j . Its content can be

presented in the following way,

j−1 j− 1
2

j j+ 1
2

j+1

h X

h+ 1
2

G↓X, G̃↓X G↑X, G̃↑X

h+1 G↓G̃↓X G↓G↑X, G̃↓G̃↑X, G↓G̃↑X, G̃↓G↑X G↑G̃↑X

h+ 3
2

G↓G̃↓G̃↑X, G̃↓G↓G↑X G↑G̃↓G̃↑X, G̃↑G↓G↑X

h+2 G↓G̃↓G↑G̃↑X

The cases j = 1/2 and j = 0 deserve special attention. If j = 1/2, the state G↓G̃↓X, which

would have spin −1/2, is identically zero. In the case j = 0, all states that would have

negative spin in the above table are identically zero. Moreover, the spin-0 states G↓G̃↑X

and G̃↓G↑X become linearly dependent because of the identity

G↓G̃↑X = G̃↓G↑X . (A.42)

Similar considerations apply to the case with N = 2 supersymmetry. In that case, we

introduce the notation

G · O = (GO)1 , G̃ · O = (G̃O)1 . (A.43)

If we start with an osp(2|2) primary X with generic h 6= m, the relevant supersymmetry

multiplet is non-chiral and denoted Xh,m. Its content is

X

GX := G ·X G̃X := G̃ ·X
TX := −G · (G̃ ·X) .

(A.44)

In the special cases h = ±m, the primary X is annihilated by the action of G or G̃, and

therefore we obtain a chiral or antichiral multiplet Ch, C̄h, which only contains two states.
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B Hilbert series and indices

B.1 Molien series

Recall the definition of the plethystic logarithm applied to the Hilbert series (2.14):

PLΓ(τ, x) =
∞∑
k=1

µ(k)

k
log
(
MolienΓ(τk, xk)

)
, (B.1)

where µ(k) is the Möbius function. It is convenient to remove the contribution of short

generators from PLΓ and define

XΓ(τ, x) := PLΓ(τ, x)−
r∑

`=1

χ p`
2

(x) τp` , (B.2)

where r = rank(Γ) and the degrees of the invariants {p1, . . . , pr} given in table 3 and χj
are SL(2) characters

χj := χj(x) =
x2j+1 − x−2j−1

x− x−1
. (B.3)

Lets collect the τ expansion of XΓ(τ, x) for all Coxeter groups up to the first relation, i.e.,

the first negative sign in the expansion in GL(1) × SL(2) characters:

A1 : −τ4. (B.4a)

AN−1 : −χN
2
−1τ

N+2 + . . . , (B.4b)

BN/CN : −τ2N+2

bN+1
2 c∑
`=1

χN−2`+1 + . . . , (B.4c)

D4 : τ6 − τ8(χ2 + χ1 + 2) + . . .

D5 : τ7χ1/2 − τ9χ1/2 + . . .

D6 : τ8χ1 − τ12(χ4 + 2χ2 + χ1 + 2) + . . .

D7 : τ9χ3/2 + τ11χ1/2 − τ13(χ3/2 + χ1/2) + . . .

D8 : τ10χ2 + τ12(χ1 + 1)− τ14χ1 + . . .

D9 : τ11χ5/2 + τ13(χ3/2 + χ1/2)− τ17(χ5/2 + χ3/2 + 2χ1/2) + . . .

(B.4d)

E6 : τ8 + τ9 χ 3
2

+ τ12 χ3 − τ11 χ 1
2

+ . . . , (B.4e)

E7 : τ10 χ1 + τ12 χ3 + τ14 χ3 + τ16 χ5 − τ16 χ2 + . . . , (B.4f)

E8 : τ12 + τ14 χ3 + τ18 (χ6 + χ4 + χ3) + τ20 (χ6 + 1)− τ22 χ4 + . . . (B.4g)

F4 : τ8 + τ12 χ3 − τ12 χ2 − τ14 (χ5 + χ4 + χ3 + χ2 + χ1) + . . . (B.4h)

H3 : −τ12 (χ4 + χ2 + 1) + . . . (B.4i)

H4 : τ12 + τ20 (χ6 + 1)− τ24 (χ8 + χ6 + χ4 + χ2 + 1) + . . . (B.4j)

I2(p) : −χ p
2
−1τ

p+2 + . . . , (B.4k)

The Weyl group G2 = I2(6). From the expressions in (B.4) one immediately reads off

the long generators from table 3 as well as the quantum number of the lightest relation
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by identifying terms of the form τ2hχj(x) with quantities with quantum numbers (h, j).

Notice that for E6,7,8, H4 there are short generators with smaller h-weight than the lightest

relation.

The Molien series for all Coxeter groups are recorded in a Mathematica file which can

be found as supplementary material. They are obtained either by direct summation over

the elements of the Coxeter group37 or by summing over conjugacy classes and using the

results of [51]. The second approach is particularly convenient in type E6,7,8 for which the

order of the Weyl group |Γ| =
∏
` p` is very large.

For the classical cases A and B/C the Molien series can be extracted from a simple

generating function in the following way. Let

ZA(p, v1, v2) :=
1∏∞

n,m=0(1− p vn1 vm2 )
= exp

( ∞∑
k=1

pk

k

1

(1− vk1 )(1− vk2 )

)
, (B.5a)

ZB/C(p, v1, v2) := ZA(p, v2
1, v

2
2)ZA(p v1v2, , v

2
1, v

2
2) . (B.5b)

The following relations hold

ZA(p, τx, τx−1) = 1 + zu(1)

∞∑
k=1

pkMolienAk−1
(τ, x) , (B.6a)

ZB/C(p, τx, τx−1) = 1 +

∞∑
k=1

pkMolienB/Ck
(τ, x) , (B.6b)

where zu(1) = (1− x−1τ)−1(1− xτ)−1 and MolienA0 = 1.

The ring RΓ as a finitely generated IΓ-module. It is interesting to observe that

the Hilbert series of RΓ defined in (2.13) can be rewritten as

MolienΓ(τ, x) = ZCB(τx)ZCB(τx−1)
(
PΓ(τ, x) + τ |ΦΓ| PΓ(τ−1, x)

)
, (B.7)

where

ZCB(y) =

r∏
`=1

1

1− yp`
, (B.8)

and |ΦΓ| is the cardinality of the root system associated to Γ. PΓ(τ, x) is a polynomial in

τ and satisfies 2PΓ(1, 1) = |Γ|. For example, for r = 1 one has PA1(τ, x) = 1. In rank two

PI2(p)(τ, x) + τ2p PI2(p)(τ
−1, x) =

1− τ2p+2

1− τ2
+
xp−1 − x1−p

x− x−1
τp. (B.9)

The presentation (B.7) can be interpreted as follows. Let

IΓ := C[z+
1 , . . . , z

+
r ]Γ ⊗ C[z−1 , . . . , z

−
r ]Γ = C[E+

1 , . . . , E
+
r , E−1 , . . . , E

−
r ] , (B.10)

37The Weyl groups of classical types are easy to describe. The Weyl group An−1 consists of permutations

of n variables x1, . . . , xn constrained by
∑
xi = 0. The Weyl group of type Bn/Cn is the semi-direct

product of the symmetric groups Sn with Zn
2 . The Weyl group of type Dn is a subgroup of type Bn/Cn

corresponding to the restriction to {σ1, . . . , σn} ∈ Zn
2 such that

∏
σi = 1.
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where E±` are the Γ-invariants and are algebraically independent. The ring of invari-

ants (2.12) is a finitely generated free IΓ-module. The Hilbert series (B.7) makes this

fact manifest. Let us finally observe that

MolienΓ(τ−1, x) = τ2 rank(Γ) MolienΓ(τ, x) . (B.11)

This can be easily verified from the form (B.7) and (2.11).

B.2 The index in some limits

In this appendix we include some details about the integral representations of the in-

dex (6.32) in two limits.

Coulomb branch index. As a warm up lets consider a limit of the index (6.32) which

reproduced the Hilbert series of C[z1, . . . , zr]
Γ. It is given by

ISYM(g)
CB (t) =

∫
[du] P.E.

[
t χg

Adj(u)
]

=
1

|Γ|
1

(1−t)r

∫
dru

(2πiu)r

∏
α∈ΦΓ

(
1−uα

1−t uα

)
=

r∏
`=1

1

1−tp`

(B.12)

where r = rank(Γ), Γ = Weyl(g) and p` are the degrees of the invariants, see table 3. The

explicit evaluation of the integral (B.12) is non-trivial. The simplest example is

ISYM(su(2))
CB (t) =

1

2

1

(1− t)

∫ 2π

0

dθ

2π

(1− eiθ)(1− e−iθ)
(1− t eiθ)(1− t e−iθ)

=
1

1− t2
. (B.13)

This expression is valid for |t| < 1. The integral above can be computed by summing the

two residues.

Hall-Littlewood index. The HL index given in (6.46) can be massaged to the form

ISYM(g)
HL (τ, x) =

1

|Γ|

(
(1− τ2)

(1− xτ)(1− x−1τ)

)r ∫ dru

(2πiu)r

∏
α∈ΦΓ

(1− uα)(1− τ2uα)

(1− xτ uα)(1− x−1τ uα)
.

(B.14)

In this example one should take |τx|, |τx−1| < 1. We checked in various examples that

the integral (B.14) coincides with the Molien series of R′Γ defined in (6.45). It is likely

that the equality could be proven by showing that the residues in (B.14) are in one to one

correspondence with elements of the Weyl group.

A trained eye might recognize that for g = su(N) the index (B.14) is related to the

Nekrasov instanton partition function, see e.g. equation (14) in [52]. Introduce aN via the

generating function

∞∑
N=0

aN (q1, q2) zN = exp

( ∞∑
N=1

1− qN1 qN2
(1− qN1 )(1− qN2 )

zN

N

)
. (B.15)

The expressions (B.14) can be integrated to

ISYM(su(N))
HL (τ, x) =

(1− x τ)(1− x−1τ)

(1− τ2)
aN (x τ, x−1 τ) . (B.16)
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The relative factor in this equations is interpreted as a ISYM(u(1))
HL (τ, x). Similarly, the

generating series for the Br family reads

1 +

∞∑
r=1

ISYM(br)
HL (τ, x) = exp

( ∞∑
k=1

1 + qk1q
k
2 − qk1qk2 (qk1 + qk2 )

(1− q2k
1 )(1− q2k

2 )

zk

k

)
, (B.17)

with q1 = x+1τ , q2 = x−1τ .
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