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Networks of trophic interactions provide a lot of information on the functioning of marine
ecosystems. Beyond feeding habits, three additional traits (mobility, size, and habitat)
of various organisms can complement this trophic view. The combination of traits and
food web positions are studied here on a large food web database. The aim is a better
description and understanding of ecological roles of organisms and the identification of
the most important keystone species. This may contribute to develop better ecological
indicators (e.g., keystoneness) and help in the interpretation of food web models. We
use food web data from the Ecopath with Ecosim (EwE) database for 92 aquatic
ecosystems. We quantify the network position of organisms by 18 topological indices
(measuring centrality, hierarchy, and redundancy) and consider their three, categorical
traits (e.g., for mobility: sessile, drifter, limited mobility, and mobile). Relationships are
revealed by multivariate analysis. We found that topological indices belong to six different
categories and some of them nicely separate various trait categories. For example,
benthic organisms are richly connected and mobile organisms occupy higher food
web positions.

Keywords: food web, traits, network position, centrality, keystones, Ecopath with Ecosim

INTRODUCTION

In order to sustain the proper functioning of ecosystems, we need to better understand the simple
question of Lawton (1994): What species do in ecosystems? Since ecological roles and food web
positions are not independent (Luczkovich et al., 2003), we address the question what kind of
species occupy certain kinds of network positions.

Since the very first attempts to identify keystone species (Paine, 1966, 1969), there has been an
interest in their place in food webs (Mills et al., 1993; Power et al., 1996). First they were suggested
to have been top predators, then also plants, herbivores, and parasites (Bond, 1994; Marcogliese
and Cone, 1997). For both community ecology and conservation biology, it would be very useful
to know where are they in complex trophic networks.

While it is clear that the relative importance of organisms varies with time and space, looking
at a large database may provide some general insight into the problem. If certain types of
organisms occupy certain types of network positions, results can increase the predictability
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of food web modeling. Comparisons of centrality indices
with each other (the similarity of DC and CC: Jordán et al.,
2007; K predicts KSI better than s: Endrédi et al., 2018b)
and centrality indices with trophic level (most high-centrality
species at medium trophic levels: Scotti and Jordán, 2010) were

done to better understand critically important positions
of organisms in food webs. Extending this interest by
adding trait data to trophic groups helps the biological
interpretation of the results. Relationships between centrality
indices have been studied for other network types as

TABLE 1 | List of topological indices.

Index name Description

Degree centrality (DC) Number of other nodes connected directly to the considered node (Wasserman and Faust, 1994).

Weighted degree centrality (wDC) Sum of weights of links adjacent to the considered node (Wasserman and Faust, 1994).

Betweenness centrality (BC) Frequency of the considered node on the shortest paths connecting all pairs of other nodes (Wasserman and Faust, 1994).

BCi =
2

∑
j < k

gjk (i)
gjk

(N − 1) (N − 2)
,i 6= j, k

gjk is the number of equally shortest paths between nodes j and k,
gjk (i) is the number of these shortest paths to which node i is incident in the length of the shortest path between nodes i and
j in the network.

Closeness centrality (CC) Quantifies how short are the minimal paths from a given node to all others.

CCi =
N − 1∑N
j = 1 dij

,i 6= j

dij is the length of the shortest path between nodes i and j in the network (Wasserman and Faust, 1994).

Topological importance (TI3)
Weighted importance (WI3)
Topological overlap (TO)
Weighted overlap (WO)

The topological importance of species i when effects “up to” n steps are considered is the sum of effects originated from
species i up to n steps averaged over by the maximum number of steps considered (i.e., n):

TIni =
∑n

m = 1 σm,i

n
=

∑n
m = 1

∑N
j = 1 am,ji

n

am,ji is the effect of j on i when i can be reached from j in n steps (Jordán et al., 2003). We analyzed indirect effects of
maximum three steps (n = 3). WIi n is the same but with weighted links.
We can assess the overlap in the neighbors of two nodes quantifying the uniqueness or redundancy of nodes (Jordán et al.,
2009; Lai et al., 2015), as a function of a t threshold for the TIn and the WIn matrices, providing TO and WO, respectively.

Status (s), contra-status (s′) and net
status (1s)

In a directed strong hierarchy, the status is the sum of ij distances from node i to every other node j. Reversing the hierarchy
(reverting the direction of the links), the same calculation will give the contrastatus of each node (s′i ) (Harary, 1959):

1si = si − s′ i

1si is called the net status of node i.

Keystone index and its components (K,
Kbu, Ktd , Kdir , and Kindir )

The keystone index of a species i is defined as (Jordán et al., 1999):

Ki = Kbu,i + Ktd,i = Kdir,i + Kindir,i =

=

n∑
c = 1

1
dc

(1 + Kbc) +

m∑
e = 1

1
fe

(1 + Kte)

n is the number of predators eating species i,
dc is the number of prey species of its c-th predator,
Kbc is the bottom-up keystone index of the c-th predator,
m is the number of prey eaten by species i,
fe is the number of predators of its e-th prey,
Kte is the top-down keystone index of the e-th prey,
Kbu,i is the bottom-up keystone index,
Ktd,i is the top-down keystone index,
Kdir,i represents the direct effects for node i,
Kindir,i represents the indirect effects for node i.
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well, including habitat networks (Baranyi et al., 2011;
Pereira et al., 2017).

With large databases and new statistical analyses, these
questions can be re-investigated and our knowledge can be
updated. In this article, we consider a large database of trophic
networks, described by standard methodology for both data
collection and network construction, making them comparable.
We (1) characterize the network position of each trophic
component by a variety of topological indices, quantifying
centrality, hierarchy, redundancy, keystoneness, and trophic
level, (2) characterize each trophic component by three traits, and
(3) use multivariate methods for comparisons between various
topological indices and between topological indices and traits.

MATERIALS AND METHODS

Data from 92 Ecopath with Ecosim (EwE) aquatic food web
models were compiled using the EcoBase online database
repository (Colléter et al., 2013) and previously published sources
(Heymans et al., 2014). These networks have varying number
of nodes (ranging from 8 to 63) but were assembled using
comparable methodology of the EwE framework (Christensen
and Walters, 2004; Heymans et al., 2016). For models of
the same ecosystem described in different years, we used
the most recent one (considering the year of publication).
The compiled data represent five global regions with diverse
ecosystems: 14 models from Africa, 14 from Australasia, 29 from
Europe, 27 from North America, and 8 from South America
(Supplementary Material A).

The network position of each trophic component in each
trophic network was characterized by 18 topological indices (see
Table 1 for description of computed indices). Centrality was
quantified by six indices (four binary and two weighted), we used
eight indices for hierarchy (i.e., centrality in DAGs), two indices
for redundancy (topological overlap), one for keystoneness (KSI,
Libralato et al., 2006) and also the measure of trophic level as it is
used in EwE. The last two indices were retrieved from previous
publications (see Heymans et al., 2014 and the references in
Supplementary Material A). All other topological indices were
computed using programs UCINET (Borgatti et al., 2002) and
CoSBiLab (Valentini and Jordán, 2010).

In order to be able to use a wide range of topological
indices, some of them with specific requirements, it was necessary
to pre-process the database in a few steps. This ensured the
applicability of indices and the comparability of the results. Since
we focus on the interactions among living organisms, we deleted
(1) non-living network components (e.g., DOM) and (2) living
components that became isolated nodes after deleting the non-
living ones (e.g., holothuroids in the Kuosheng Bay network).
From an energetic point of view, detritus and cycling are clearly
crucial to ecosystem dynamics, however, topological indices (who
interacts with whom) may provide biased results and artifacts
if non-living components are not deleted (e.g., detritus can
simply be connected to each living component). We double-
checked if this data processing had a major effect on the KSI
and TL index values and found the difference only minimal and

TABLE 2 | List of categorical traits (mobility, habitat, and size), categories used,
definitions, and data coverage of the data set (n = 2210).

Trait Category Definition Coverage

Mobility Sessile Attached 2203 (99.7%)

Drifter Passive moving

Limited mobility Slow active moving
(burrowers and
crawlers)

Mobile Fast active moving
(swimmers)

Habitat Benthic Benthic and demersal
organisms

2165 (98%)

Water column Pelagic groups

Body size (cm) 10−4 <0.001 cm 2056 (93%)

10−3 0.001–0.01 cm

10−2 0.011–0.1 cm

10−1 0.11–1.0 cm

100 1.01–10 cm

101 10.01–100 cm

102 100.01–1000 cm

103 >1000 cm

Note that the size category trait was converted to cm (from Sieburth et al., 1978).

safely negligible (TL was changed highly consistently across the
networks, as almost the same trophic groups were removed from
almost the same positions, while KSI-values still quantify nodes
in the original networks but their re-calculation is not possible
for the modified networks – from a comparative perspective,
neither makes real difference). This process rendered one small
network (Maspalomas Lagoon) without primary producers,
thus not usable for our study. Altogether this resulted in the
deletion of 150 network components (127 non-living and 23
living) (Supplementary Material A). On average, this means
1.63 node (6%) per network. One additional node, Stellar Sea
Lion pup (“SSL pup”) from the Aleutian Islands model was
an outlier (due to asymmetric connections of only having one
predator and no prey) and was omitted. Before computing non-
hierarchical indices, networks were symmetrized by summing the
interactions’ strengths. All loops were eliminated from 57 food
webs to be able to compute hierarchical indices (detailed methods
can be found in Supplementary Material B).

Functional groups were assigned to three categorical traits
(i.e., feeding habitat, mobility, and size category, Table 2) and
one continuous trait (maximum body size). In general, the trait
for the foraging adult form was considered, unless age (e.g.,
juvenile) or size (e.g., small) was specifically noted. Species-
level habitat preference and maximum length measurements
(in cm) were extracted from the FishBase (FishBase, 2020) and
SeaLifeBase (SeaLifeBase, 2020) online databases and assigned to
larger functional groups.

Generalizations are inevitable where species are not listed
or are aggregated into functional groups (common practice in
food web studies). Below we describe the generalizations we
encountered and the methods used for trait assignments. First
it is noted that we needed to work with a small number of
relatively large categories in order to keep the cross-ecosystem
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FIGURE 1 | Matrix plot of Spearman rank correlations among the 18 topological indices (left) and the UPGMA dendrogram based on Euclidean distances for
standardized data. Negative correlations (e.g., between s′ and s) are shown in blue, while positive correlations (e.g., between DC and CC) are shown in red. The
larger and darker the circle, the stronger the correlation. For the dendrogram, red vertical line denotes Euclidean distance at the level of 50, creating six clusters of
indices ranking network nodes similarly in each cluster.

analysis feasible (more detailed classifications would reduce
comparability). Several traits can be defined only for a smaller
range of organisms, like “pigments” for phytoplankton (Weithoff
and Beisner, 2019) or “dive duration” for the megafauna (Tavares
et al., 2019). We tried to maintain the coverage of trait data for
the possibly largest set of trophic groups (Kremer et al., 2017).
For the habitat preference trait, benthic organisms included all
of those associated with the benthos (infauna and epifauna)
as well as demersal species (e.g., flatfish and rays) or those
otherwise described living near the bottom (e.g., sandy or
muddy surfaces) – all available in FishBase’s species environment
and biology descriptions. For other, non-specified fishes and
sharks, we defaulted to the water column habitat. Phytoplankton,
zooplankton, jellyfish, sea birds, sea turtles, and cetaceans were
also assigned to the water column habitat. Other important
categories (mesopelagic) were not considered for maintaining
comparability and wide coverage among different ecosystem
models, even if their importance is clear (Agnetta et al., 2019).
The mobility trait was organized into four categories: sessile
(attached), drifter (passive movers), limited mobility (slow active
movers, including burrowers, and crawlers), and mobile (fast
active movers and swimmers) (Costello et al., 2015). Sessile

(e.g., macrophytes and barnacles) and drifter (e.g., plankton,
bacteria, and fish larvae) organisms are biologically well-defined.
Limited mobility organisms were mainly macroinvertebrates
(e.g., echinoderms, gastropods, and annelids) and juvenile fish,
whereas vertebrates capable of swimming (e.g., adult fish, turtles,
birds, and marine mammals) were mobile. For non-species-
specific size data (e.g., microzooplankton), we used Sieburth
et al. (1978) plankton size fractions to extract maximum length
(cm). Our data range from bacteria (0.0002 cm) to blue whales
(3300 cm). Based on Sieburth’s size fractions, functional groups
were assigned to one of eight size categories (each category
increasing by a factor of 10) (see Table 2).

Data coverage was relatively even (>93%) for the three
categorical traits (Table 2). The continuous trait, maximum
length, had the lowest data coverage (71%) and was not analyzed
separately in this study, however, it was used to assign the
nodes to body size classes. Distinction into trait categories
was not always clear-cut due to ontogenetic shift in diet and
habitat preferences (e.g., bathypelagic species) or food web
aggregation problems (mixed groups or broad categories). For
these functional groups, we made a case-by-case evaluation based
on the detailed metadata (description based on original EwE
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FIGURE 2 | Nonmetric Multidimensional Scaling ordination of the 18 topological indices (stress = 0.08) with the six-group classification of Figure 1 superimposed.
Although the ordination is nonmetric, the correspondence between the two results is remarkable, except for the positions of K-related indices.

publications) or left the trait blank (“NA”). If available from
the metadata description, one representative was selected and
categorized accordingly. Overall, our data sets are comparable
in the sense that they have low resolution at the bottom (e.g.,
phytoplankton as a single group) and higher resolution at the top
(e.g., fish species listed).

First, the relationship between topological indices was
investigated using Spearman’s rank correlation and multivariate
analyses [Principal Component Analysis (PCA), hierarchical
clustering, and Nonmetric Multidimensional Scaling (NMDS)].
PCA and hierarchical clustering were used as metric exploratory
methods to reveal groups and correlations amongst the 18
indices. The results were compared with those obtained via
ordinal methods (Spearman rank correlation and NMDS).
PCA works well for linearly correlated data and requires few
assumptions (e.g., accepts negative index values such as in s’ or
KS). Standardized PCA was applied to ensure commensurability
of indices. Data for hierarchical clustering were standardized
by the standard deviation of variables and then the indices
were classified using Euclidean distance and the unweighted
pair group method with arithmetic mean (UPGMA or group
average method). While other clustering methods do exist,
UPGMA was selected based on the highest cophenetic correlation
value, which measures how closely the original distances are
reproduced by distances in the dendrogram (Sokal and Rohlf,
1962). These methods are able to maintain much of the original
metric information in the data, i.e., differences between the

scores. Ordinal methods operate by reducing data to ranks
thereby disregarding metric properties. From the Spearman’s
rank correlation coefficients (ρ), a dissimilarity semi-matrix was
calculated according to the formula d = 1 − ρ, effectively
converting the correlations to the interval [0,2]. Thus, d = 0
means complete similarity corresponding to identical rank
orders, and d = 2 reflects complete dissimilarity, i.e., reverse rank
orders. The matrix thus obtained was used as input to NMDS.
Spearman’s correlations were visualized by a matrix plot, while
the dissimilarity values were subjected to NMDS to provide an
ordination of indices. Analyses were computed and results were
displayed using R software [R Core Team, 2020; packages: “stat”
and “ggcorrplot ” (Kassambara, 2019)], and the SYNTAX-2000
package (Podani, 2001).

Second, for testing the independence of the three categorical
traits, Pearson’s Chi-squared test and Fisher’s exact tests were
performed with simulated p-values, using the “stat” package in
R (R Core Team, 2020).

Finally, the relationship between topological indices and
functional traits was visualized in R (“ggpubr” package, see
Kassambara, 2020) and analyzed using linear mixed-effects
models, with the traits as fix effects and the networks as
random effects (thereby accounting for network variability in
the models). Before building the models, ten indices required
transformation due to their positively skewed distribution
(square-root transformation for moderate skew: BC, TO, Kbu,
WO, and Ktd; and log transformation for greater skew: wDC,
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FIGURE 3 | The food web of Bay of Calvi (Pinnegar and Polunin, 2004) showing the relationship between the topological position of nodes (node color, see values in
the inset) for logWI3 (A) and sqrtKtd (B) and their mobility values (node shape, see categories in the inset). The abbreviations for the n = 26 trophic groups are:
Phyto, phytoplankton; MacroAlga, macroalgae; Proto, pelagic protozoa; Crus, Crustacea; PelBact, pelagic bacteria; Echino, Echinoderms; Amph, Amphipods;
HerbFish, herbivorous fish; Zoopl, zooplankton; SuspFeed, suspension feeders; Polych, polychaetes; Mugil, Mugilidae; Gastropod, gastropods; Blenny, omnivorous
blennies; Decapod, decapods; Dpunt, Diplodus puntazzo; Macropl, macroplankton; PlFish, planktivorous fish; Cephalopod, cephalopods; Mcarni, macrocarnivorous
fish; Pisc, piscivorous fish; Bird, seabirds; InvFeed1 through InvFeed4, benthic invertebrate feeders (groups 1–4).

WI3, K, Kdir , and Kindir), and all indices were studentized within
their network. The latter means that all index values were
subtracted from the sample mean (mean value of the index
in its network) and divided by the standard deviation of the
sample. The transformations did not change the trends of the

relationships between the indices and the traits but helped meet
the model assumptions and make the values more independent
from the network features. Mixed-effect models were built in
R, using “lme4” (Bates et al., 2015) and “lmerTest” (Kuznetsova
et al., 2017) packages.
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FIGURE 4 | The distribution of index values for trait categories. One representative index (DC, KSI, logK, logwDC, sqrtKtd , and s) is used for each of the six clusters
in the dendrogram on Figure 1. Traits are mobility (A), habitat (B), and size (C). * indicates significant difference between habitat categories. For each of the 18
indices, separately, see the same information in Supplementary Material D.

RESULTS

In the dendrogram resulting from the hierarchical classification
of indices, six clusters are recognized at the level of 50 (Figure 1,
right). Centrality indices (DC, CC, BC, TI3, and TO) are grouped
into the first cluster. The keystone index (KSI) is a singleton. The
indirect component of the K index (Kindir) and K are the closest

pair and comprise group three together with Kdir , Kbu, and WI3.
These two latter indices are related by both emphasizing bottom-
up groups. The fourth cluster is somewhat mixed, containing
two hierarchical indices (s and 1s) and a weighted index (WO).
Weighted degree centrality (wDC) was found separately in group
five. The sixth group is made up of three classical top-down
indices (s′, TL, and Ktd). The discussion of indices and traits will
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FIGURE 5 | The relevance of each topological index for separating each possible pair of trait values. Significant differences between the topological positions of
nodes with different trait categories are marked by colors. For example, the first row shows that DC is different for sessile and drifter organisms but does not
separate them.

be based on the groups classified in this dendrogram (Figure 1),
since it had a high cophenetic correlation (r = 0.8267) indicating
minimum distortion compared to the input Euclidean distances.

The NMDS ordination (Figure 2), even though an ordinal
approach, identified largely the same clusters (stress = 0.08).
The major difference is that Kbu and WI3 fall away from the
other three K components (K, Kdir , and Kindir) with which they
formed a cluster in metric analysis, showing the inconsistent
behavior of these K components. This pattern can also be
observed on the matrix plot of Spearman rank correlations
(Figure 1, left). In this diagram, rank correlations are contrasted
with metric clustering, showing that the cluster membership of
Kdir is the most ambiguous. The results of PCA can be found
in Supplementary Material C. All four methods agree on the

correlation of these indices, except for the above-mentioned K
components (which are emphasized differently in metric versus
ordinal approaches).

Next, we assessed the relationships of three common
categorical traits (mobility, habitat, and size) with the 18 indices.
We were interested in finding out which trait has predictive
power in these aquatic ecosystems and which is negligible. We
ran mixed-effects models on the combination of these traits to
predict the importance of specific trophic groups in the networks
(see Supplementary Material E). An example network for the
food web of Bay of Calvi is shown for visualizing the relationships
of the mobility trait with the indices WI3 (Figure 3A) and Ktd
(Figure 3B). The former emphasizes bottom-up groups (e.g.,
sessile and drifters) and the latter brings attention to mobile
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groups at the top of the food web. Figure 4 shows the relationship
of the three traits with one representative index per dendrogram
group, while Figure 5 summarizes the results of all pair-wise
comparisons based on the mixed-effect models.

For mobility, pairwise comparisons are almost always
significant, especially for weighted (wDC and WI3) and top-down
indices (TL, ss′, and Ktd) (Figure 5). Weighted indices emphasize
drifter organisms, while top-down indices draw attention to
mobile organisms. This is nicely visible in Figure 4A and
in the violin plots of Supplementary Material D. Centrality
indices highlight limited mobility animals. All other groups
suggest the importance of drifters. Therefore, depending on
what index we utilize, we can predict different groups with the
mobility trait. Naturally, a balanced description of a network
using one-two indices from each of the six groups is the best.
For the mobility trait, groups 3, 4, and 5 are very similar and
could be combined in the functional sense (see violin plots in
Supplementary Material D).

The habitat trait only had two categories and is less useful in
predicting the difference between groups (Figure 4B). Centrality
indices were significantly larger values in the benthic than
in the water column habitat (Figure 5). The TL, K, and
Kbu indices were the opposite (benthic < water column). All
other indices had no significant difference between habitat
preference of the organisms (Figure 5 and Supplementary
Material D). It is somewhat difficult to interpret the biological
meaning of these results. With too few, or too many
categories, it becomes difficult to interpret the results. Simple
traits, such as this one could be useful combined with
other studies.

The third categorical trait, size had the opposite problem (with
having many, eight categories). This trait behaved in a similar
manner as the mobility trait (Figure 4C). Weighted indices
along with the third and fourth index clusters highlight small
organisms (0.001–0.1 cm), most likely a reiteration of the drifter
mobility category. The keystoneness index (KSI) is not significant
in relation to differences in size categories. The centrality cluster
seems to favor medium-sized categories (1–10 cm) and top-down
indices points out the large-sized groups (>10 cm) (Figure 4C
and Supplementary Material D).

To summarize, mobility was the most reliable trait (>80%
pairwise comparisons showing significant differences) and
worked best combined with top-down (TL and Ktd) or
weighted indices (wDC). The size trait showed significant
differences between 70% of pairs. Finally, habitat trait was
only significant about 50% of the time (although works
well for all centrality indices) (Figure 5). Regarding the
relationships between the analyzed traits, all trait-combinations
were significantly dependent (Chi-squared test and Fisher’s exact
test, p < 0.001).

CONCLUSION

The major component of sustainability is proper ecosystem
functioning and different organisms play their distinct roles in
ecosystems. Ecological roles and positions are interdependent,

so studying food web position can help to assess functional
importance. We addressed the question what kind of organisms
(in terms of various traits) occupy what kinds of food web
positions (in terms of various centrality indices).

Earlier work on the relationships between food web properties
and ecosystem types provided valuable information on the use of
indicators at the system level (Heymans et al., 2014). Here, we
elaborated this kind of approach at the local level of organisms
(trophic groups). The combination of a rich description of
network position and the parallel analysis of multiple traits
offers a way to improve ecological indication and predictive
food web modeling.

For our analysis, it was crucial to set high standards for
comparability. The EwE food web database is based on a constant
and rigorous modeling approach (similar trophic components
across food webs), the way of aggregation is also consistent
(stronger at lower levels, e.g., phytoplankton) and mixed-effect
models showed that networks (as random effects in the models)
had zero or negligible explanatory power due to variance being
around zero in most cases (n = 13 indices). The variance due to
random effects (networks) was largest for five indices (BC, TO,
WO, wDC, and Kindir), but still of minor importance (<0.30).

Our findings agree with the suggestions of Costello et al.
(2015) that mobility and size should be included in describing
aquatic systems. Some of the results are thus quite intuitive
(e.g., more mobile organisms at the top of the food web): these
are only confirmed and quantified by the present, large-scale
statistical analysis. Other results may be more surprising, like
the importance of benthic organisms in the food webs. These
species or groups of species are fundamental for transferring
matter and energy from the sea bottom to the water column
through trophic flows contrasting the natural gravity-related
flows and thus contributing to the cycling of energy and
matter. Quantification and statistical significance are the ways for
robust predictions.

Our study connects theoretical, network-based indicators
of ecological role (i.e., topological position) and practical,
ecologically meaningful categorizations (i.e., traits). Exploring
this bridge is essential for giving the appropriate value to
theoretical works also in supporting practical applications
(Longo et al., 2015). Notably, the importance of such bridge
is testified by the large discussions going on for finding the
appropriate measures (Tam et al., 2017) to use in evaluating good
environmental status for descriptor D4 (food webs) in the Marine
Strategy Framework Directive (EU MSFD, 2008).

Certain pairs of centrality indices are consistently similar
in different studies. For example, the weighted indices tend to
provide similar node ranks (Jordán et al., 2006; Lai et al., 2015)
with only a few exceptions (see Jordán et al., 2007). Closeness
centrality is less predictable: it can be quite close (Jordán et al.,
2006) or quite far (Lai et al., 2015) from degree. The classification
depends also on whether it is based on ranks or distributions
(Bauer et al., 2010).

It remains important to investigate what other traits are of
potential significance in aquatic ecosystems (e.g., diet) and if
the index-trait relationships vary by ecosystems (e.g., estuary
versus reef). Research in trait-based aquatic food webs is ongoing
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(Boukal, 2014) and effort should be made that trait databases
are standardized (Kremer et al., 2017) and comparable across
environments like freshwater to marine plankton (Weithoff and
Beisner, 2019) and scales like megafauna (Tavares et al., 2019).
The identification of relevant traits is an ongoing process. Simple,
yet descriptive traits (as demonstrated here) can successfully
supplement food web research. The choice and the relevance of
traits largely depend on the resolution of the food web: for more
resoluted networks, a number of traits can be used that make
no sense or cannot be obtained for highly aggregated trophic
networks. Yet, aggregation and using only the most basic traits
make cross-system comparison feasible. Very sophisticated traits
cannot be defined for a large number of species, only for a smaller
taxonomic neighborhood.

With large databases, both biological information on
organisms (e.g., size) and their characterization in a system
context (e.g., centrality) can be richly described. Novel algorithms
(e.g., machine learning) can further help in the future to provide
quantitative analyses and to reveal hidden patterns. This way,
trait-based analyses have a chance to offer more than just re-
discovering biological knowledge in silico (Endrédi et al., 2018a).
Combinations of traits, as a major future task, can be more
informative than looking at them separately.

Contributing to the predictive power of food web modeling,
by combining biological information and systems analysis, may
help to understand and support the management of invasive
species. Their trophic and other properties are partly known
and but can also be adapted to some extent during invasion.
The rules and their limits can be better understood by the
present research.

Although the database we used is the largest one in
community ecology, described by the highest standards for
comparability, it is still loaded by the traditional problems
of food web research. Aggregation (defining the nodes) and
weighting (defining the links) are always problematic. It will
be a interesting question for future research, whether and how
omics data can provide larger, more reliable information (Lima-
Mendez et al., 2015; Guidi et al., 2016; D’Alelio et al., 2019)
and whether this can completely replace or only complement the
information we have today.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

FJ, AE, and KP designed and evaluated the results, and
wrote the manuscript. SL, AE, and KP managed the database.
AE performed network analysis. KP and JP performed the
statistical analysis. JP and SL provided comments on the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

Research of AE and FJ was supported by the National
Research, Development and Innovation Office – NKFIH, grant
GINOP-2.3.2-15-2016-00057. FJ and SL acknowledge funding
received from the European Union’s Horizon 2020 Research and
Innovation Program as part of the AtlantECO project under grant
agreement no. 862923.

ACKNOWLEDGMENTS

We thank Imre Sándor Piross for valuable comments related to
the data analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2021.636042/full#supplementary-material

REFERENCES
Agnetta, D., Badalamenti, F., Colloca, F., D’Anna, G., Di Lorenzo, M.,

Fiorentino, F., et al. (2019). Benthic-pelagic coupling mediates interactions in
mediterranean mixed fisheries: an ecosystem modeling approach. PLoS One
14:e0210659. doi: 10.1371/journal.pone.0210659

Baranyi, G., Saura, S., Podani, J., and Jordán, F. (2011). Contribution of
habitat patches to network connectivity: redundancy and uniqueness of
topological indices. Ecol. Indic. 11, 1301–1310. doi: 10.1016/j.ecolind.2011.
02.003

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-
effects models using lme4. J. Statist. Soft. 67, 1–48. doi: 10.18637/jss.v067.
i01

Bauer, B., Jordán, F., and Podani, J. (2010). Node centrality indices in food webs:
rank orders versus distributions. Ecol. Compl. 7, 471–477. doi: 10.1016/j.
ecocom.2009.11.006

Bond, W. J. (1994). “Keystone species,” in Biodiversity and Ecosystem Function, eds
E. D. Schulze and H. A. Mooney (Berlin: Springer).

Borgatti, S. P., Everett, M. G., and Freeman, L. C. (2002). Ucinet for Windows:
Software for Social Network Analysis. Cambridge, MA: Analytic Technologies,
Harvard.

Boukal, D. (2014). Trait- and size-based descriptions of trophic links in freshwater
food webs: current status and perspectives. J. Limnol. 73, 171–185.

Christensen, V., and Walters, C. J. (2004). Ecopath with ecosim: methods,
capabilities andlimitations. Ecol. Mod. 172, 109–139. doi: 10.1016/j.ecolmodel.
2003.09.003

Colléter, M., Valls, A., Guitton, J., Morissette, J., Arreguín-Sánchez, F., Christensen,
V., et al. (2013). EcoBase: a repository solution to gather and communicate
information from EwE models. Fish. Centre Res. Rep. 2013:60.

R Core Team (2020). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Costello, M. J., Claus, S., Dekeyzer, S., Vandepitte, L., Tuama, E. O., Lear, D.,
et al. (2015). Biological and ecological traits of marine species. PeerJ 3:e1201.
doi: 10.7717/peerj.1201

D’Alelio, D., Eveillard, D., Coles, V. J., Caputi, L., Ribera d’Alcalà, M., and Iudicone,
D. (2019). Modelling the complexity of plankton communities exploiting omics

Frontiers in Marine Science | www.frontiersin.org 10 September 2021 | Volume 8 | Article 636042

https://www.frontiersin.org/articles/10.3389/fmars.2021.636042/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2021.636042/full#supplementary-material
https://doi.org/10.1371/journal.pone.0210659
https://doi.org/10.1016/j.ecolind.2011.02.003
https://doi.org/10.1016/j.ecolind.2011.02.003
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.ecocom.2009.11.006
https://doi.org/10.1016/j.ecocom.2009.11.006
https://doi.org/10.1016/j.ecolmodel.2003.09.003
https://doi.org/10.1016/j.ecolmodel.2003.09.003
https://doi.org/10.7717/peerj.1201
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-636042 September 21, 2021 Time: 10:50 # 11

Endrédi et al. Traits in Different Network Positions

potential: from present challenges to an integrative pipeline. Curr. Opin. Syst.
Biol. 19, 68–74. doi: 10.1016/j.coisb.2018.10.003

Endrédi, A., Jordán, F., and Abonyi, A. (2018a). Trait-based paradise - or only
feeding the computer with biology? Commu. Ecol. 19, 319–321. doi: 10.1556/
168.2018.19.3.13

Endrédi, A., Senánszky, V., Libralato, S., and Jordán, F. (2018b). Food web
dynamics in trophic hierarchies. Ecol. Mod. 368, 94–103. doi: 10.1016/j.
ecolmodel.2017.11.015

EU MSFD (2008). Directive 2008/56/EC of the European Parliament and of the
Council of 17 June 2008 Establishing a Framework for Community Action in the
Field of Marine Environmental Policy (Marine Strategy Framework Directive).
Brussels: Official Journal of the European Union.

FishBase (2020). eds R. Froese and D. Pauly. www.fishbase.org.
Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., et al. (2016).

Plankton networks driving carbon export in the oligotrophic ocean. Nature 532,
465–470. doi: 10.1038/nature16942

Harary, F. (1959). Status and contrastatus. Am. Sociol. Assoc. 22, 23–43. doi:
10.2307/2785610

Heymans, J. J., Coll, M., Libralato, S., Morissette, L., and Christensen, V. (2014).
Global patterns in ecological indicators of marine food webs: a modelling
approach. PLoS One 9:e95845. doi: 10.1371/journal.pone.0095845

Heymans, J. J., Coll, M., Link, J. S., Mackinson, S., Steenbeek, J., Walters, C., et al.
(2016). Best practice in Ecopath with Ecosim food-web models for ecosystem-
based management. Ecol. Mod. 331, 173–184. doi: 10.1016/j.ecolmodel.2015.
12.007

Jordán, F., Benedek, Z., and Podani, J. (2007). Quantifying positional importance
in food webs: a comparison of centrality indices. Ecol. Mod. 205, 270–275.
doi: 10.1016/j.ecolmodel.2007.02.032

Jordán, F., Liu, W. C., and Davis, A. J. (2006). Topological keystone species:
measures of positional importance in food webs. Oikos 112, 535–546. doi:
10.1111/j.0030-1299.2006.13724.x

Jordán, F., Liu, W. C., and Mike, Á (2009). Trophic field overlap: a new
approach toquantify keystone species. Ecol. Mod. 220, 2899–2907. doi: 10.1016/
j.ecolmodel.2008.12.003

Jordán, F., Liu, W. C., and van Veen, F. J. F. (2003). Quantifying the importance of
species and their interactions in a host-parasitoid community. Commun. Ecol.
4, 79–88. doi: 10.1556/comec.4.2003.1.12

Jordán, F., Takács-Sánta, A., and Molnár, I. (1999). A reliability theoretical quest
for keystones. Oikos 86, 453–462. doi: 10.2307/3546650

Kassambara, A. (2019). ggcorrplot: Visualization of a Correlation Matrix Using
’ggplot2’. R Package Version 0.1.3.

Kassambara, A. (2020). ggpubr: ’ggplot2’ Based Publication Ready Plots. R Package
Version 0.4.0.

Kremer, C. T., Williams, A. K., Finiguerra, M., Fong, A. A., Kellerman, A., Paver,
S. F., et al. (2017). Realizing the potential of trait-based aquatic ecology: new
tools and collaborative approaches. Limnol. Oceanogr. 62, 253–271. doi: 10.
1002/lno.10392

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest
package: tests in linear mixed effects models. J. Statist. Soft. 82, 1–26.

Lai, S. M., Liu, W. C., and Jordán, F. (2015). A trophic overlap-based measure
for species uniqueness in ecological networks. Ecol. Mod. 299, 95–101. doi:
10.1016/j.ecolmodel.2014.12.014

Lawton, J. H. (1994). What do species do in ecosystems? Oikos 71, 367–374.
doi: 10.2307/3545824

Libralato, S., Christensen, V., and Pauly, D. (2006). A method for identifying
keystonespecies in food web models. Ecol. Mod. 195, 153–171. doi: 10.1016/
j.ecolmodel.2005.11.029

Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F.,
et al. (2015). Determinants of community structure in the global plankton
interactome. Science 348:1262073.

Longo, C., Hornborg, S., Bartolino, V., Tomczak, M. T., Ciannelli, L., Libralato, S.,
et al. (2015). Role of trophic models and indicators in current marine fisheries
management. Mari. Ecol. Prog. Ser. 538, 257–272. doi: 10.3354/meps11502

Luczkovich, J. J., Borgatti, S. P., Johnson, J. C., and Everett, M. G. (2003). Defining
and measuring trophic role similarity in food webs using regular equivalence.
J. Theor. Biol. 220, 303–321. doi: 10.1006/jtbi.2003.3147

Marcogliese, D. J., and Cone, D. K. (1997). Food webs: a plea for parasites. Trends
Ecol. Evolu. 12, 320–325. doi: 10.1016/s0169-5347(97)01080-x

Mills, L. S., Soulé, M. E., and Doak, D. F. (1993). The keystone-species
concept in ecology and conservation. BioScience 43, 219–224. doi: 10.2307/
1312122

Paine, R. T. (1966). Food web complexity and species diversity. Am. Nat. 100,
65–75. doi: 10.1086/282400

Paine, R. T. (1969). The pisaster-tegula interaction: prey patches, predator food
preference, and intertidal community structure. Ecology 50, 950–961. doi:
10.2307/1936888

Pereira, J., Saura, S., and Jordán, F. (2017). Single-node versus multi-node centrality
in landscape graph analysis: key habitat patches and their protection for twenty
birds in NE Spain. Methods Ecol. Evolu. 8, 1458–1467. doi: 10.1111/2041-210X.
12783

Pinnegar, J. K., and Polunin, N. V. C. (2004). Predicting indirect effects of fishing in
Mediterranean rocky littoral communities using a dynamic simulation model.
Ecol. Modell. 172, 249–267. doi: 10.1016/J.ECOLMODEL.2003.09.010

Podani, J. (2001). SYNTAX 2000. Computer Programs for Data Analysis in Ecology
and Systematics. Budapest: Scientia Publishing.

Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., et al.
(1996). Challenges in the quest for keystones: identifying keystone species is
difficultbut essential to understanding how loss of species will affect ecosystems.
BioScience 46, 609–620.

Scotti, M., and Jordán, F. (2010). Relationships between centrality indices and
trophic positions in food webs. Commun. Ecol. 11, 59–67. doi: 10.1556/comec.
11.2010.1.9

SeaLifeBase (2020). eds M. L. D. Palomares and D. Pauly. www.sealifebase.org.
Sieburth, J. McN, Smetacek, V., and Lenz, J. (1978). Pelagic ecosystem structure:

heterotrophic compartments of the plankton and their relationship to plankton
size fractions. Limnol. Oceanogr. 23, 1256–1263. doi: 10.4319/lo.1978.23.6.
1256

Sokal, R. R., and Rohlf, F. J. (1962). The comparison of dendrograms by objective
methods. Taxon 11, 33–40. doi: 10.2307/1217208

Tam, J. C., Link, J. S., Rossberg, A. G., Rogers, S. I., Levin, P. S., Rochet, M. J.,
et al. (2017). Towards ecosystem-based management: identifying operational
food-web indicators for marine ecosystems. ICES J. Mari. Sci. 74, 2040–2052.
doi: 10.1093/icesjms/fsw230

Tavares, D. C., Moura, J. F., Acevedo-Trejos, E., and Merico, A. (2019). Traits
shared by marine megafauna and their relationships with ecosystem functions
and services. Front. Mari. Sci. 6:262.

Valentini, R., and Jordán, F. (2010). CoSBiLab graph: the network analysis module
of CoSBiLab. Environ. Mod. Soft. 25, 886–888. doi: 10.1016/j.envsoft.2010.02.
001

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and
Applications. New York: Cambridge University Press.

Weithoff, G., and Beisner, B. E. (2019). Measures and approaches in trait-based
phytoplankton community ecology–from freshwater to marine ecosystems.
Front. Mari. Sci. 6:40.

Author Disclaimer: This output reflects only the author’s view and the European
Union cannot be held responsible for any use that may be made of the information
contained therein.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Endrédi, Patonai, Podani, Libralato and Jordán. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Marine Science | www.frontiersin.org 11 September 2021 | Volume 8 | Article 636042

https://doi.org/10.1016/j.coisb.2018.10.003
https://doi.org/10.1556/168.2018.19.3.13
https://doi.org/10.1556/168.2018.19.3.13
https://doi.org/10.1016/j.ecolmodel.2017.11.015
https://doi.org/10.1016/j.ecolmodel.2017.11.015
www.fishbase.org
https://doi.org/10.1038/nature16942
https://doi.org/10.2307/2785610
https://doi.org/10.2307/2785610
https://doi.org/10.1371/journal.pone.0095845
https://doi.org/10.1016/j.ecolmodel.2015.12.007
https://doi.org/10.1016/j.ecolmodel.2015.12.007
https://doi.org/10.1016/j.ecolmodel.2007.02.032
https://doi.org/10.1111/j.0030-1299.2006.13724.x
https://doi.org/10.1111/j.0030-1299.2006.13724.x
https://doi.org/10.1016/j.ecolmodel.2008.12.003
https://doi.org/10.1016/j.ecolmodel.2008.12.003
https://doi.org/10.1556/comec.4.2003.1.12
https://doi.org/10.2307/3546650
https://doi.org/10.1002/lno.10392
https://doi.org/10.1002/lno.10392
https://doi.org/10.1016/j.ecolmodel.2014.12.014
https://doi.org/10.1016/j.ecolmodel.2014.12.014
https://doi.org/10.2307/3545824
https://doi.org/10.1016/j.ecolmodel.2005.11.029
https://doi.org/10.1016/j.ecolmodel.2005.11.029
https://doi.org/10.3354/meps11502
https://doi.org/10.1006/jtbi.2003.3147
https://doi.org/10.1016/s0169-5347(97)01080-x
https://doi.org/10.2307/1312122
https://doi.org/10.2307/1312122
https://doi.org/10.1086/282400
https://doi.org/10.2307/1936888
https://doi.org/10.2307/1936888
https://doi.org/10.1111/2041-210X.12783
https://doi.org/10.1111/2041-210X.12783
https://doi.org/10.1016/J.ECOLMODEL.2003.09.010
https://doi.org/10.1556/comec.11.2010.1.9
https://doi.org/10.1556/comec.11.2010.1.9
www.sealifebase.org
https://doi.org/10.4319/lo.1978.23.6.1256
https://doi.org/10.4319/lo.1978.23.6.1256
https://doi.org/10.2307/1217208
https://doi.org/10.1093/icesjms/fsw230
https://doi.org/10.1016/j.envsoft.2010.02.001
https://doi.org/10.1016/j.envsoft.2010.02.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Who Is Where in Marine Food Webs? A Trait-Based Analysis of Network Positions
	Introduction
	Materials and Methods
	Results
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


