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Integrable light-cone lattice

discretizations from

the universal R-matrix

C. Meneghelli and J. Teschner

Our goal is to develop a more general scheme for constructing inte-
grable lattice regularisations of integrable quantum field theories.
Considering the affine Toda theories as examples, we show how
to construct such lattice regularisations using the representation
theory of quantum affine algebras. This requires us to clarify in
particular the relations between the light-cone approach to inte-
grable lattice models and the representation theory of quantum
affine algebras. Both are found to be related in a very natural
way, suggesting a general scheme for the construction of gener-
alised Baxter Q-operators. One of the main difficulties we need to
deal with is coming from the infinite-dimensionality of the relevant
families of representations. It is handled by means of suitable renor-
malisation prescriptions defining what may be called the modular
double of quantum affine algebras. This framework allows us to
give a representation-theoretic proof of finite-difference equations
generalising the Baxter equation.
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1. Introduction and conclusions

1.1. Motivation and background

Integrable quantum field theories offer a unique theoretical laboratory for the
exploration of several non-perturbative phenomena in quantum field theory.
Having full quantitative control about the spectrum or even expectation val-
ues in a quantum field theory paves the way towards detailed investigations
of non-perturbative effects like the existence of dual Lagrangian descriptions
in different regions of the parameter space.
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However, up to now there are only a few examples where this has been
realised. Many two-dimensional quantum field theories of interest are con-
jectured to be integrable, but this has rarely been fully demonstrated. Exact
results have been proposed on some of these quantum field theories, but in
most cases we do not know how to derive these results from first principles.
It would be desirable to have a more systematic framework for constructing
and solving integrable quantum field theories.

Exploiting integrability in a quantum field theoretical context is not
easy. One of the main problems is to regularise the UV-divergencies in such
a way that integrability is preserved. If this is possible, one may indeed hope
that the enhanced control provided by integrability can lead to a precise
understanding of the dependence of physical quantities on the cut-off, and
how to remove it in the end. Lattice regularisations have been used to reach
this goal with some success. Prominent examples are the massive Thirring
/ Sine-Gordon models for which some exact results have been obtained by
using the XXZ or the XYZ spin chains as a lattice regularisation.

Up to now there does not seem to exist a systematic procedure for con-
structing integrable lattice regularisations for a given Lagrangian field the-
ory. A proposal in this direction was made in [RiT]. This proposal was in-
spired by the well-known relations between integrable lattice models and the
representation theory of quantum groups. Possible hopes that relations of
this type may hold even in a quantum field theoretical context are supported
in particular by the works [BaLZ3, BaHK] where beautiful relations between
the integrable structure of conformal field theory and quantum group repre-
sentation theory were found. Starting from a Lagrangian description of the
field theory of interest it was proposed in [RiT] to

• identify the relevant quantum group using the algebra of interaction
terms in the light-cone formulation of the dynamics,

• and construct the main ingredients of integrable lattice regularisations
like Lax-matrices and R-matrices from the representation theory of this
quantum group.

The feasibility of such a program was illustrated by constructing integrable
lattice regularisations of some Lagrangian field theories on the kinematical
level. Taking into account the form of the Lax matrices expressing integra-
bility on the classical level leads to almost unique answers for R- and Lax-
matrices defining the integrable lattice regularisation quantum-mechanically.
A more general approach to identifying the quantum algebraic structures
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behind integrable perturbations of conformal field theories was proposed in
[BuR].

Our goal in this paper is to illustrate how the crucial next steps in this
program can be performed: the definition of an integrable time-evolution
and the construction of Baxter Q-operators.

1.2. Approach

To reach our goals we will use the light-cone approach to integrable lattice
models introduced in [FaV92], and further developed in [BaBR], see in par-
ticular [BaS15] for recent developments of this approach. It has been pointed
out in [RiT] that this approach is particularly well-suited for using quantum
group representation theory to construct integrable lattice regularisations of
more general Lagrangian field theories. A new feature introduced in [RiT] is
the possibility to have a natural relation between light-cone directions and
Borel sub-algebras of the relevant quantum groups. Previous versions of the
light-cone lattice formalism used a slightly different formulation in which
this is not manifest1. This feature is important for the further development
of the formalism as it leads in particular to a very natural relation between
the lattice time-evolution operators and the universal R-matrix.

For simplicity we will focus on the affine Toda theories where the relevant
quantum groups are the quantum affine algebras Uq(ŝlM ), but we expect
the resulting scheme to be of much wider applicability. The integrable field
theories related to quantum affine super-algebras discussed in [RiT], for
example, should be within reach.

For the cases of our interest we will explain how to construct time-
evolution and Baxter Q-operators from the universal R-matrix of the rel-
evant quantum groups. Our main tool will be the product formula for the
universal R-matrix found in [KhT92]. The main difficulties in constructing
time-evolution and Baxter Q-operators from the universal R-matrix are due
to the fact that we need to evaluate the R-matrix in infinite-dimensional
representations. This feature appears to be inevitable if one wants to have
tailor-made lattice discretisations of field theories having non-compact target
space. The product formula represents the R-matrix as an infinite product
over factors which are infinite sums over powers of the generators of the
quantum affine algebra. It is therefore not obvious how to produce well-
defined operators from the product formula for the universal R-matrix if
the representations of interest are infinite-dimensional.

1See Remark 1 in Section 3.2.1 for a comparison.
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Our approach to handle the resulting difficulties is based on two main
elements:

• We will observe that the representations needed to get light-cone Lax
matrices and evolution operators from the universal R-matrix have a
remarkable property: The infinite products resulting from the prod-
uct formulae for the universal R-matrix truncate automatically to
finite products. The use of the light-cone lattice approach therefore
allows us to solve one of the two problems coming from the infinite-
dimensionality of the relevant representations.

• The infinite-dimensional representations that we need for our goals
have the useful feature that the generators of the quantum affine al-
gebras are represented by positive self-adjoint operators. This feature
will allow us to replace the infinite sums over powers of the generators
appearing in the product formula by well-defined operator-functions.
We will demonstrate that this replacement preserves the validity of all
relevant relations satisfied by the universal R-matrix in the represen-
tations of our interest.

Our choice of representations is motivated by the fact that the positive
self-adjoint operators representing the quantum group generators correspond
to positive quantities in the affine Toda theories.

1.3. Conclusions

The main conclusions we’d like to draw from our results are the following:
Combining the light-cone lattice approach with the representation theory
of quantum affine algebras gives us a systematic way to construct inte-
grable lattice discretisations of the affine Toda theories. Non-compactness
of the space in which the fields take values motivates us to consider infinite-
dimensional representations of the relevant quantum affine algebras. How-
ever, we only need to consider the simplest nontrivial representations of
this type. Infinite-dimensionality can be handled by expressing the main ob-
jects (time evolution- and Q-operators) in terms of the non-compact quan-
tum dilogarithm function. One thereby gets a natural renormalisation of the
formal expressions obtained from the universal R-matrix, leading to fairly
simple explicit formulae for the time evolution- and Q-operators. The rele-
vant properties (commutativity, functional relations) all boil down to known
properties of the non-compact quantum dilogarithm. Verifying this in some
detail accounts for a fair amount of the work that went into this paper, but
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once this is understood in these cases it should be possible to generalise our
approach to wider classes of theories without excessive efforts.

1.4. Summary of main results

As our paper is quite long, we will now offer more detailed overviews over
the main results.

As indicated above, one of our main goals is to clarify the relation
between the universal R-matrix of Uq(ŝlM ) and the Baxter Q-operators
from which the evolution operators are recovered by specialising the spec-
tral parameter. It will be obtained by a variant of the scheme proposed in
[BaLZ3]. The necessary modifications are two-fold. The place of the infinite-
dimensional representations of the Borel sub-algebras Uq(b±) of Uq(ŝlM ) of
q-oscillator type employed in [BaLZ3] in auxiliary space will be taken by
representations which are neither of highest nor lowest weight type. This
appears to be inevitable in order to get operators with favourable analytic
properties. In quantum space we will use representations of Uq(ŝlM ) that
can be represented as tensor products of the same type of representations as
used in auxiliary space. The tensor products display a staggered structure
reflecting a factorisation of the monodromy matrix into factors associated
to light-like segments.

Our main results include a derivation of generalised Baxter T-Q-relations.
The Baxter equations are found to follow from the reducibility of certain
tensor products of representation at particular values of their parameters,
in this respect resembling previous derivations of functional equations for
transfer matrices from the representation theory of quantum affine algebras
given in [BaLZ3, AF]. Two features of our derivation appear to be new.
Our derivation on the one hand uses an interesting finite-dimensional repre-
sentation constructed from fermionic oscillators. This allows us to leads to
simplify algebraic aspects of the derivation. We furthermore need to handle
the additional issues originating from the fact that our representations do
not have extremal weight vectors.

We furthermore find fairly simple explicit formulae for the kernels rep-
resenting the Baxter Q-operators. The formulae are simplest when a variant
of the quantum affine algebra Uq(ŝlM ) is used for the construction of inte-
grable lattice models that differs from the standard one by a Drinfeld twist.
The resulting expressions resemble the formulae found in [BaKMS, DJMM]
for the transfer-matrices of generalised Chiral Potts Models. Having explicit
formulae for the kernels of the Q-operators should allow us to determine the
analytic properties of these operators by generalising the results of [ByT1].
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Our results thereby lay the foundations for future analytic studies of the
spectrum of the affine Toda field theories.

1.5. Mathematical aspects

As indicated above, one of our main tasks is to give a sense to the formal
expressions obtained by evaluating the product formula for the universal R-
matrix in the infinite-dimensional representations of our interest. These rep-
resentations are in some respects similar to the representations of q-oscillator
type employed in [BaLZ3, BaHK]. The terminology pre-fundamental rep-
resentations was introduced in [HJ] for a family of representations of the
Borel sub-algebras of quantum affine algebras generalising the represen-
tations of q-oscillator type considered in [BaLZ3, BaHK]. As opposed to
[BaLZ3, BaHK, HJ] we will here be interested in representations of the q-
oscillator algebra that have no extremal weight. This being understood we
will adopt the terminology “pre-fundamental” for the simple representations
of the Borel sub-algebras that will be used as building blocks for the class
of representations of our interest.

What will allow us to regain mathematical control in the absence of ex-
tremal weights is the fact that the generators are represented in terms of
positive self-adjoint operators. This implies that our representations behave
in some respects similar to the representations of the modular double of
Uq(sl2) introduced in [PT99, Fa99]. The terminology modular double refers
to the fact that these representations are simultaneously representations of
the algebra obtained by replacing the deformation parameter q = e−πib

2

by
the parameter q̃ = e−πi/b

2

. Taking tensor products of pre-fundamental rep-
resentations will generate various other representations including evaluation
representations of modular double type.

We will observe that the special features of pre-fundamental representa-
tions of modular double type allow us to define a canonical renormalisation of
the formal expressions obtained by evaluating the universal R-matrix in such
representations. The infinite products representing the universal R-matrix
get automatically truncated to a finite product when evaluated on pre-
fundamental representations. Most of the remaining factors are expressed
in terms of the quantum exponential function. Replacing this function by
the non-compact quantum dilogarithm preserves the relevant algebraic prop-
erties and produces expressions that are well-defined in representations of
modular-double type. The most delicate aspect is to find renormalised ver-
sions of the contributions of the imaginary roots in the product formula.
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This is crucial in particular for giving representation-theoretic proofs of gen-
eralised Baxter equations. We will show that there is an essentially canonical
renormalisation for these contributions as well. In order to see this, it will
be necessary to study some aspects of the behaviour of the product formula
under the action of the co-product that do not seem to be discussed in the
literature.

1.6. Relations to previous work

The affine Toda theories have been extensively studied already. A lot is
known about the affine Toda theories in infinite volume including factorised
S-matrices [AFZ, BCDS, CM1, CM2] and form-factors [Lu97, AL]2. This
can be used to predict the ground-state energy in the finite volume via the
thermodynamic Bethe ansatz [FrKS].

The full finite-volume spectrum is not easily accessible in this way, mo-
tivating the use of lattice regularisations. Lattice Lax-matrices and an inte-
grable lattice dynamics have been proposed in [KaR]. A Lie-theoretic frame-
work for constructing discrete versions of the Toda flow on the classical level
was presented in [HKKR].

The connection to the quantum affine algebra Uq(ŝlM ) implies relations
to spin chains of XXZ-type on the algebraic level. Operators that are sim-
ilar to the Q-operators constructed in our paper have been introduced in
the study of generalised chiral Potts model in [BaKMS, DJMM]. The Q-
operators to be studied in our paper may be seen as non-compact analogs
of those from [BaKMS, DJMM].

1.7. Perspectives

It should be possible to generalise the approach described in this paper to the
models related to quantum affine super-algebras studied in [RiT]. A product
formula for the universal R-matrices of these quantum groups is known
[Ya]. We may furthermore note that the representations defined in [RiT]
are of a similar type as the prefundamental representations studied in this
paper. Renormalised versions of the universal R-matrix have been studied
for representations of modular double type of the quantum super-algebra
Uq(osp(1|2)) in [IpZ]. This work gives a first hint that the renormalisation

2To keep the length of the list of references within reasonable bounds we only
quote literature studying affine Toda theories of higher rank (M > 2) which are the
main objects of interest in our paper.
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of the universal R-matrices can be carried out for quantum affine super-
algebras in a similar way as done in this paper. This gives us hope that
evolution and Q-operators can be constructed for the lattice models defined
in [RiT] by using a generalisation of the techniques developed here.

We have found reasonably simple formulae for the kernel of the Baxter Q-
operator which are natural generalisations of the formulae found in [ByT1].
This should allow us to deduce the analytic properties of the Q-operators
by generalising the arguments from [ByT1]. The information on the analytic
properties of the Baxter Q-operator defines the space of all solutions to the
generalised Baxter equation which can correspond to eigenvalues of this
operator. Baxter equation and analytic properties represent the pieces of
information that completely characterise the spectrum. It should be possible
to translate this description of the spectrum into equivalent formulations
described either in terms of non-linear integral equations or using partial
differential equations, generalising the results known for the Sinh-Gordon
model [Z00, Lu00, ByT1, LuZ].

Our results finally suggest that the representation theory of quantum
affine algebras may have a mathematically rich and interesting extension
to certain categories of infinite-dimensional representations. In the finite-
dimensional case it was observed in [ByT3] that the R-operator of the
modular double of Uq(sl(2,R)) [Fa99] may be seen as a “more universal R-
matrix” in the following sense. The representations of the modular double
of Uq(sl(2,R)) considered in [PT99, Fa99, ByT3] have dual representation
that are realised on certain spaces of distributions. The dual representations
contain highest weight representations as sub-representations. It was veri-
fied in [ByT3] that the action of the R-matrix defined in [Fa99] on tensor
products of the dual representations restricts to the action of the usual uni-
versal R-matrix on tensor products of highest weight representations. The
R-operator of the modular double is therefore “more universal” than the
universal R-matrix in the sense that it unifies the R-matrices defined on
finite- and certain infinite-dimensional representations. It would be interest-
ing to make this point of view more precise, and to extend it to the case of
quantum affine algebras.

1.8. Guide to the paper

The paper is quite long. However, there are some important parts of our
story that can be understood without having digested all of our paper. To
help the reader finding the parts of most immediate interest we will here
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offer a brief overview over the sections. The introduction of each section
contains a slightly more detailed description of its contents.

Section 2 reviews some basic background on the classical theory and
possible approaches to the quantisation of the affine Toda theories.

The following Section 3 develops the light-cone lattice approach intro-
duced in the pioneering papers [FaV92, FaV94, BaBR]. In order to have
manifest locality, we are working with a slightly redundant parameterisa-
tion of the degrees of freedom. A gauge symmetry is introduced allowing us
to identify the physical degrees of freedom as gauge-invariant combinations
of the basic variables.

Section 4 offers a review of the basic background on quantum affine
algebras together with a short summary of the available hints indicating
that the integrability of the affine Toda theories can be understood using
the representation theory of quantum affine algebras.

Section 5 describes first steps towards the definition and calculation of
Lax-matrices and R-operators based on the universal R-matrix of quantum
affine algebras. The main tool for this purpose are the formulae represent-
ing the universal R-matrix as an infinite product going back to Khoroshkin
and Tolstoy. We start explaining how to renormalise the formal expressions
obtained by evaluating the product formula in the infinite-dimensional rep-
resentations of our interest in the case of Uq(ŝl2).

This analysis is generalised in the next Section 6 for the case of Uq(ŝlM ).
We describe how to obtain the fundamental R-operators for the lattice affine
Toda models from the representation theory of Uq(ŝlM ). Different types of
explicit representations for the fundamental R-operators are derived. For a
twisted version of the quantum affine algebras we find a particularly con-
venient representation, leading to useful representations for the generalised
Baxter Q-operators constructed from the fundamental R-operators as inte-
gral operators.

For the derivation of functional relations satisfied by the Q-operators
like generalised Baxter equations it is crucial to analyse the contributions
coming from the factors in the product formula involving imaginary root
generators. Such an analysis is carried out in Section 7 for the case of of
Uq(ŝl2). A uniform prescription is found for renormalising the contributions
associated to imaginary roots for a large family of representations including
the representations relevant for the lattice Sinh-Gordon model. We verify
the consistency of this prescription with taking co-products, and use all this
to give a derivation of the Baxter equation valid for the infinite-dimensional
representations of our interest.
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The generalisation of this analysis to the case of Uq(ŝlM ) is presented
in Section 8. We begin by describing a fairly simple representation-theoretic
proof of generalised Baxter equations which is valid provided the renor-
malisation prescription preserves the relevant properties of the R-operators
under the co-product. The fact that it does is verified afterwards, studying
the fairly intricate mixing between real and imaginary roots under the co-
product. Our results also allow us to derive functional relations of quantum
Wronskian type. Together with the analytic properties of the kernel of the
Q-operators we have thereby obtained all the information necessary to study
the spectrum of the lattice affine Toda theories generalising the case of the
Sinh-Gordon model studied in [ByT1].

Various more technical details are deferred to appendices. Appendix G
in particular contains a detailed comparison with previously known results
on the Sinh-Gordon model and to the Faddeev-Volkov model.

1.9. Acknowledgements

We would like to thank V. Bazhanov, D. Bücher, I. Runkel and F. Smirnov
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2. Background

Our main example in this paper will be the affine slM -Toda theories, which
are classically defined in the Hamiltonian formalism by introducing field
φi(x, t), canonical conjugate momenta Πi(x, t) and Poisson brackets

(2.1) {Πi(x, t), φj(x
′, t)} = πδijδ(x− x′),

{φi(x, t), φj(x′, t)} = 0

{Πi(x, t),Πj(x
′, t)} = 0.

The dynamics is generated by the Hamiltonian

(2.2) H =

∫
d2z

M∑
i=1

(
1

2π

(
Π2
i + (∂xφi)

2
)

+ µe2b(φi−φi+1)

)
.

The resulting equations of motion for ϕi := φi − φi+1 can be represented in
the form

(2.3) (∂2
t − ∂2

x)ϕi = −2πbµ
(
2e2bϕi − e2bϕi+1 − e2bϕi−1

)
.
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As the motion of φ̄(x, t) =
∑M

i=1 φi(x, t) decouples, (∂2
t − ∂2

x)φ̄ = 0, it is pos-
sible to impose the condition that φ̄(x, t) = 0.

2.1. Classical integrability

The starting point is a zero curvature representation of the classical dynam-
ics, taken to be of the form

(2.4) [∂x −Ax(λ), ∂t −At(λ)] = 0.

We may here take Ax(λ) = A+(λ)−A−(λ), At(λ) = A+(λ)−A−(λ), where

(2.5)

A+(λ) =

M∑
i=1

(
−b(∂+φi)Eii +meb(φi−φi+1)Ei,i+1

)
,

A−(λ) =

M∑
i=1

(
+b(∂−φi)Eii −meb(φi−φi+1)Ei+1,i

)
,

using the notations ∂± = 1
2(∂t ± ∂x). The zero curvature condition (2.4) will

reproduce the equation of motion (2.3) provided that m2 = πµb2.
Integrability of the classical dynamics is closely related to the existence

of infinitely many conserved quantities which can be constructed from the
monodromy matrix

(2.6) M(λ) = P exp

(∫ R

0
dx Ax(λ)

)
.

as the trace

(2.7) T (λ) = Tr(M(λ)).

The Poisson structure of the field theory implies Poisson bracket relations
of the form

(2.8) {M(λ)⊗,M(µ)} = [r(λ/µ),M(λ)⊗M(µ)],

with r(λ) being a certain numerical matrix. These relations imply
{T (λ), T (µ)} = 0. As the Hamiltonian H appears in the asymptotic expan-
sion of M(λ) at infinity it follows that T (λ) is conserved for all values of
λ ∈ C.
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2.2. Light-cone representation

It is also possible to take the values of the basic field restricted to the
light-like segments as Cauchy-data. Let us define the “saw-blade” contours
CN =

⋃N
k=1 C

+
k ∪ C

−
k , where C±k are the light-like segments

(2.9)
C+
k =

{
(k∆ + u, t+ u) : 0 6 u 6 ∆/2

}
,

C−k =
{

(k∆ + v, t+ ∆− v) : ∆/2 6 v 6 ∆
} (∆ := R/N).

In the light-cone picture for the classical dynamics, one takes the values
of the field φ on the two light-like segments of C1,

φ+
i (2u) = φi(u, u) and φ−i (2v) = φi(

R
2 − v,

R
2 + v),(2.10)

0 6 u, v 6 R
2 ,

as initial values for the time-evolution from which φi(x, t) can be found for
all x and t by solving the equations of motion. The dynamics may still be
represented in the Hamiltonian form by using the Poisson structure

(2.11)
{φ+

i (u), φ+
j (u′)} =

π

4
δijsgnR(u− u′),

{φ−i (v), φ−j (v′)} =
π

4
δijsgnR(v − v′)

on the light-cone data φ+
i and φ−i defined on segments C+

k and C−k , respec-
tively. The evolution of ∂+φ

+(x+) in the x−-direction can now be repre-
sented in the Hamiltonian form as

(2.12) ∂−(∂+φ
+
i ) =

{
H−, ∂+φ

+
i

}
,

where

(2.13) H− = µ

∫ R

0
dx+

M∑
i=1

e2b(φ+
i −φ

+
i+1).

A very similar equation of motion obtained by exchanging the roles of φ+
i

and φ−i governs the evolution of ∂−φ
−(x−) in the x+-direction.

Vanishing of the curvature of the Lax-connection allows us to deform the
contour in definition of the monodromy matrix, leading to a representation
of M(λ) as an integral over light-like segments. The zero curvature condition

teschner
Sticky Note
Exchange "+" and "-" in the argument
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(2.4) implies that

(2.14) M(λ) = P exp

(∫ R

0
dx Ax(x, t;λ)

)
= P exp

(∫
C
ds

dxα

ds
Aα(λ)

)
,

for any contour C that can be deformed into C0 = {(x, t) : 0 6 x 6 R}, pre-
serving the start and end points. This allows us to rewrite M(λ) as

(2.15) M(λ) = L−N (λ)L+
N (λ) · · ·L−1 (λ)L+

1 (λ),

where

(2.16)

L+
k (λ) := P exp

(∫
C+
k

dx+ A+(λ)

)
,

L−k (λ) := P exp

(∫
C−k
dx− A−(λ)

)
.

When ∆→ 0, N →∞ with R = N∆ finite one expects to be able to approx-
imate the fields by piecewise constant values along C±k . The representation
(2.15) of M(λ) suggests a natural lattice discretisation resembling a stag-
gered spin chain.

2.3. Continuum approaches

A very useful approach to the quantisation of such an integrable system
is provided by the quantum inverse scattering method (QISM). A central
object in this approach is the so-called quantum monodromy matrix M(λ),
the matrix formed from the operators that are obtained by quantising the
matrix elements of the classical monodromy matrix M(λ). If it is possible
to construct a matrix M(λ) out of the quantised degrees of freedom of the
field theory of interest in such a way that the Poisson bracket relations (2.8)
get quantised into quadratic commutation relations of the form

(2.17) R(λ/µ)(M(λ)⊗ I)(I⊗M(µ)) = (I⊗M(µ))(M(λ)⊗ I)R(λ/µ),

one would get the conserved quantities of the quantized field theory from

(2.18) T(λ) = Tr(M(λ)).

However, this dream is hard to realise in practise. In canonical quantisation it
is by no means straightforward to construct an operator-valued matrix M(λ)
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114 C. Meneghelli and J. Teschner

out of the quantised local fields that would satisfy nice quadratic relations of
the form (2.17). It is furthermore not clear which numerical matrices R(λ)
could appear in the relations (2.17). Even though R(λ) is severely restricted
by the Yang-Baxter relation

(2.19) R12(λ/µ)R13(λ/ν)R23(µ/ν) = R23(µ/ν)R13(λ/ν)R12(λ/µ),

following from the consistency of (2.17) with the associativity of operator
products, one still has a large supply of possible choices for R(λ) to consider.

The situation appears to be slightly better in the light-cone represen-
tation. Following [BaLZ4] let us note that the Poisson brackets (2.11) are
those a massless free field. The quantization is therefore standard. Let us
write the expansion of φ±i (x±) into Fourier modes in the form

(2.20) φ±i (x±) = qi +
2π

R
pix± + φ±i,<(x±) + φ±i,>(x±),

where

(2.21) φ±i,<(x±) =
∑
n<0

i

n
a±i,ne

−2πinx±/R, φ±i,>(x±) =
∑
n>0

i

n
a±i,ne

−2πinx±/R.

The modes aεi,n (ε = ±), qi and pi are required to satisfy the canonical
commutation relations

(2.22)
[
qi, pj

]
=
i

4
δij ,

[
aεi,m, a

ε′

i,n

]
=

1

4
mδm+n,0δijδεε′ .

Quantum analogs of the exponential functions e2αiφ
±
i are then constructed

by normal ordering:

(2.23) : e2αiφ
±
i (x±) :≡ exp

(
2αiφ

±
i,<(x±)

)
e2αi(qi+2πpix±/R) exp

(
2αiφ

±
i,>(x±)

)
.

The quantum Hamiltonians H+ and H− corresponding to H+ and H−, re-
spectively, will similarly be defined by normal ordering.The quantum equa-
tion of motion for an observable O± built from ∂±φ

±(x±) can then be rep-
resented in the form

(2.24) − i∂∓O =
[
H∓,O±], H∓ = µ

M∑
i=1

Q±i ,
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where the so-called screening charge operators Qε
i are defined as

(2.25) Qε
i =

∫ R

0
dx Vεi(x), Vεi(x) = : e2b(φεi(x)−φεi+1(x)) : , ε = ±.

If the parameter b = iβ is purely imaginary, it should be possible to
define a natural candidate for the quantum monodromy matrix M(λ) by
following the approach of Bazhanov, Lukyanov and Zamolodchikov. For β
in a certain range of values it would allow us to define quantum monodromy
matrices associated to the segments C±k of the saw-blade contour as series of
ordered integrals over products of normal ordered exponentials of the free
fields.

Such an approach has not been developed in full detail yet. Even if it
were, it could not easily be generalised to the case b ∈ R of our main inter-
est. The UV-problems are more delicate for b ∈ R, causing serious problems
for the definition of the quantum monodromy matrices along the lines of
[BaLZ1, BaLZ3, BaLZ4].

2.4. Lattice regularization

Another method to treat these problems is the lattice discretization. The
initial values φi(x) ≡ φi(x, t)|t=0, Πi(x) ≡ Πi(x, t)|t=0 of the fields at time
t = 0 are replaced by variables φin, Πi

n defined on a one-dimensional lattice
which has N sites labelled by the index n. The variables φin, Πi

n may be
thought of as averages of the initial values,

(2.26) φin =
1

∆

∫ (n+1)∆

n∆
dx φi(x), Πi

n =
1

4π

∫ (n+1)∆

n∆
dx Πi(x).

The quantization of these variables will yield operators which satisfy the
commutation relations

(2.27)
[
φin,Π

j
m

]
=
i

2
δijδn,m.

The space of states of the regularized model may therefore be identified with
as L2(RMN ).

A regularized version MN (λ) of the monodromy matrix M(λ) may be
constructed as a product of local Lax matrices

(2.28) MN (λ) = LN (λ)LN−1(λ) · · · L1(λ),
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116 C. Meneghelli and J. Teschner

where the lattice Lax matrices Ln(λ) are to be constructed from the dis-
cretized variables (ϕin,Π

i
n). It will be shown that the matrices MN (λ) can

be constructed in such a way that they satisfy the algebra

R(λ/µ)(MN (λ)⊗ I)(I⊗MN (µ))(2.29)

= (I⊗MN (µ))(MN (λ)⊗ I)R(λ/µ),

with coefficients R(λ/µ) that are independent of N and ∆. If the continuum
limit N →∞ of MN (λ) exists in a suitable sense, the relations (2.29) will
ensure that the monodromy matrixM(λ) defined by that limit satisfies the
crucial algebraic relations (2.17).

In the case of the Sinh-Gordon model corresponding to M = 2 it was
shown in [ByT1, ByT3] that the lattice discretisation leads to exact results
for the energy spectrum. The excellent agreement with results from the
thermodynamic Bethe ansatz and from the existing relations with Liouville
theory [ByT3] indicates that the lattice approach is indeed suitable for the
construction and solution of the affine Toda theories.

3. Integrable light-cone lattice models — algebraic
framework

The use of the lattice light-cone approach is inspired by previous works
[FaR, FaV92, FaV94, BaBR, KaR] on the lattice light-cone discretisation
of the Sine- and Sinh-Gordon models. In order to maintain manifest local-
ity it will be useful to parameterise the degrees of freedom in a somewhat
redundant way. The physical degrees of freedom can be identified using a
gauge-symmetry. We describe how to define a natural time-evolution for
gauge-invariant quantities.

3.1. Overview on the light-cone lattice approach

It turns out to be very useful to preserve a certain democracy in the treat-
ment of spacial and time-like directions by working on a rhombic space-time
lattice

(3.1) Γ = {(σ, τ)|σ ∈ Z/NZ, τ ∈ Z, σ + τ even}.

This lattice is generated by the vectors v+ = (1, 1) and v− = (−1, 1) which
connect nearest neighbor sites, see Figure 3.1.
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(0, 0) (2, 0) . . . . . . . . . (2N, 0)

v− v+

Figure 1: Light-cone lattice Γ.

A collection of elements {χiσ,τ}i=1,...,M of the quantum algebra of observables
AM,N to be defined below is attached to each vertex (σ, τ) of the dual lattice
Γ∨ defined by the condition σ + τ odd. For each vertex of Γ a relation
between the variables χiσ,τ associated to the neighbouring faces is required
to hold. Such relations are called quantum discrete equations of motion as
they reduce to the equations of motion (2.3) in the classical continuum limit.

Let us describe the dynamics more explicitly. The algebra of observables
AM,N will be generated by invertible elements

(3.2) χi,m, i ∈ Z/MZ,m ∈ Z/2NZ.

satisfying certain relations. The only non-trivial commutation relations are

(3.3)
χi,2a−1χj,2a = q+2cijχj,2aχi,2a−1,

χi,2aχj,2a+1 = q−2cijχj,2a+1χi,2a,

where cij = − (δij − δij+1). In this paper we are mostly interested in the
case |q| = 1. In this case the generators χi,m will be realized as positive
self-adjoint operators.

We will introduce two automorphisms τ± of the algebra AM,N such that
upon defining

(3.4) χiσ±1,τ+1 := τ±
(
χiσ,τ

)
,

with initial conditions χi2a−1,0 := χi,2a−1, χi2a,1 := χi,2a, the following quan-
tum equations of motion are satisfied

(3.5) q2χiσ,τχ
i
σ,τ+1 = χiσ−1,τχ

i
σ+1,τ

1 + q+1κ2χi+1
σ−1,τ

1 + q−1κ2χiσ−1,τ

1 + q+1κ2χi−1
σ+1,τ

1 + q−1κ2χiσ+1,τ

.
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These equations allow to define the values of the variables χiσ,τ on the entire
lattice from the initial values associated to the faces nearest to the bold saw
in Figure 3.1. It is easy to check that the evolution equation (3.5) reproduces
the equation of motion (2.3) if one identifies χiσ,τ with e2bϕi(∆σ,∆τ) and takes

the limit q = e−iπb
2 → 1 and ∆→ 0 with κ = m∆ and χi fixed.

The equations of motion above will be shown to follow from the zero
curvature condition

(3.6) g−σ+1,τ+1(λ)g+
σ+1,τ (λ) = g+

σ,τ+1(λ)g−σ,τ (λ) σ + τeven

for certain operator valued matrixes attached to the edges of the lattice Γ.
This is a quantum discrete analogue of (2.4) encoding quantum integrability
of the time evolution defined above. The relation (3.6) corresponding to each
face in the the lattice Γ, see Figure 3.1, can be depicted as follows

(σ, τ)

(σ+1, τ+1)

(σ, τ+2)

(σ−1, τ+1) =

(σ, τ)

(σ+1, τ+1)

(σ, τ+2)

(σ−1, τ+1)

Notice that the matrices g+
σ,τ (λ) and g−σ,τ (λ) represent parallel transport on

the lattice from (σ − 1, τ) to (σ, τ + 1) and (σ, τ) to (σ − 1, τ + 1) respec-
tively. It follows that

(3.7)
g+
σ,τ (λ) is defined for σ + τ odd,

g−σ,τ (λ) is defined for σ + τ even.

The rule to associate an operator valued matrix to a path on the lat-
tice follows from the basic property of the path ordered exponential Ωγ ,
i. e. Ωγ1+γ2

= Ωγ2
Ωγ1

when the final point of the path γ1 coincides with the
initial point of γ2.
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The explicit form of the Lax operators of discretized affine glM -Toda
theory will be

(3.8)

g+(λ) =

M∑
i=1

(
u+1
i Eii + q−

1

2κλ−1viEii+1

)
,

g−(λ) =

M∑
i=1

(
u−1
i Eii − q−

1

2κλ+1viEi+1i

)
,

where Eij are the matrices having a non-vanishing matrix element equal
to one only in the i-th row and j-th column, κ = m∆ and we suppressed
the explicit dependence of ui, vi on σ and τ . This choice of quantum Lax
operators is motivated by the form of the classical flat connection in light-
cone coordinates, compare to (2.5). We will later see that the matrices g±(λ)
satisfy quadratic relations of the form (2.17) with M(λ) replaced by g±(λ)
relations iff the commutation relations of ui, vi are

(3.9) uiuj = ujui vivj = vjvi uivj = qcijvjui,

where cij = −(δij − δij+1). We further impose
∏
i ui =

∏
i vi = 1 as they are

central. We call WM the algebra generated by ui, vi and their inverses.
In this description, the quantum algebra of observables AM,N emerges

as a quotient of the enlarged algebra A′M,N = (WM )⊗2N , associated to the
saw-blade contour in Figure 3.1, by certain gauge transformations. One may
get rid of gauge redundancies at the price of giving up ultralocality, which
is the requirement that at fixed τ the matrix entries of gε1σ1,τ commute with
the matrix entries of gε2σ2,τ when σ1 6= σ2.

3.2. The monodromy matrices

3.2.1. An alternating spin-chain. The monodromy matrix M(λ) of
the lattice model is constructed as a product of local Lax matrices as

(3.10) M(λ) = LN (λ)LN−1(λ) · · · L1(λ).

In the lightcone representation La(λ) takes the factorized form

(3.11) La(λ) = L̄−2a(q
1

2κ+1λ)L+
2a−1(q

1

2κ−1λ),
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where

(3.12)
L+(q

1

2κ−1λ) := g+(λ),

L̄−(q
1

2κ+1λ) :=
(
1− q−1λM

) (
g−(λ)

)−1
,

with g±(λ) given in (3.8). The scalar factor multiplying (g−(λ))
−1

in (3.12)
can be identified with the quantum determinant q-det(g−(λ)) as defined in
Appendix A. The definition (3.12) may be written more explicitly as

L̄−(λ) =
(
1− q−1λM

) [ M∑
i=1

(
u−1
i Eii − q−1λviEi+1i

) ]−1

,(3.13)

L+(λ) =

M∑
i=1

(
u+1
i Eii + λ−1viEii+1

)
.(3.14)

The monodromy matrix (3.10) is the operator-valued matrix associated to
the bold path in Figure 3.1 upon setting g+

2a−1 := g+
2a−1,0 and g−2a := g−2a,0.

The index m on g±m denotes the embedding of WM in the m-th thensor
factor of (WM )⊗2N . It is thus clear that the matrix entries of quantum Lax
operators associated to different sites of the chain commute.

The algebraWM admits a simple realization in L2(RM ) given as follows

(3.15) ui = e−2πbpi , vi = eπb(qi−qi+1), [pi, qj ] = (2πi)−1δij

with q = e−iπb
2

. The quantum space on which the matrix entries of the
monodromy matrix act may be taken to be H′M,N := L2(RNM ). Alterna-

tively one may impose the constraint
∑M

i=1 pi = 0 for each spin-chain site,
leading to a representation of W in a subspace HM,N of H′M,N isomorphic

to L2(RN(M−1)).
Both Lax matrices L+(λ) and L̄−(λ) satisfy relations of the form

(3.16) R(λ, µ)
(
L (λ)⊗ 1

)(
1⊗L (µ)

)
=
(
1⊗L (µ)

)(
L (λ)⊗ 1

)
R(λ, µ),

with the same auxilliary R-matrix R(λ, µ) given as

R(λ, µ) =

M∑
i=1

Eii ⊗ Eii + ν
∑
i 6=j

Eii ⊗ Ejj +
∑
i 6=j

κ(i−j)MEij ⊗ Eji,(3.17)

ν =
µM − λM

q−1µM − q+1λM
, κ` =

q−1 − q+1

q−1µM − q+1λM
µM−`λ`,
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where (i− j)M denotes (i− j) modulo M . The monodromy matrix con-
structed in (3.10) therefore satisfies the relations (2.29), as desired. This
implies in particular that the one-parameter family of operators T(λ)

(3.18) T(λ) = TrCM (M(λ)),

is mutually commutative

(3.19) [T(λ),T(µ)] = 0.

The family of operators T(λ) will represent conserved quantities for the
time-evolution defined above.

Remark 1. In the case of sl2 one has u1 = u−1
2 = u, v1 = v−1

2 = v and the
definition (3.11) reads

(3.20) L+(λ) =

(
u λ−1v

λ−1v−1 u−1

)
, L̄−(λ) =

(
u λ+1v−1

λ+1v u−1

)
.

Our formulation of the light-cone lattice approach is in this case similar to
the one described in [FaV92, FaV94, BaBR]. An important difference is due
to the fact that L̄−(λ) is taken to be equal to L+(λ) in [FaV92, FaV94, BaBR].
The two formulations are equivalent for even N , as will be discussed in
Section 3.2.2 below. The relations with the representation theory of quantum
affine algebras appear to be more natural in our formulation.

Remark 2. The inverse of the matrix L̄−(λ) given in (3.13) can be written
more explicitly using the following observation: For any matrix of the form
F(a) := 1−

∑M
i=1 aiEi+1i, one has

(3.21) (1− aM · · · a2a1) (F(a))−1 =

1 +
∑
i 6=j

(ai−1ai−2 · · · aj) Ei,j

 .

Norice that in order to derive (3.21) no commutation relation between as
have been used.
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3.2.2. Relation to XXZ-type spin-chains. It will be useful to note
that there is a closely related Lax-matrix which is defined as

(3.22) LXXZ

a (λ) = La(λ)T, T =

M∑
i=1

Ei,i+1.

The Lax matrix LXXZ

a (λ) satisfies the same equation (3.16) that is satisfied
by La(λ), as follows from the fact that R(λ, µ) commutes with T⊗ T. It
furthermore has a dependence on the spectral parameter λ of the form

LXXZ

a (λ) =

M∑
i=1

Eii(Ea,ii + λME ′a,ii)(3.23)

+
∑
i<j

(λM+i−jEijEa,ji + λj−iEjiEa,ij).

It follows from (3.16) together with the form (3.23) that the matrix ele-
ments Eij generate a representation of the quantum group Uq(slM ), as will
be further discussed in Section 6.3.4 below.

Note furthermore that

(3.24) TLXXZ

a (λ)T−1 = Ω−1 · LXXZ

a (λ) · Ω,

where Ω is the automorphism of the algebra of generated by the matrix
elements of LXXZ

a (λ) defined as

(3.25) Ω−1
a · Ea,i,j · Ωa = Ea,i−1,j−1.

The automorphism Ωa allows one to relate the monodromy matrixM(λ) to
the monodromy matrix T−NMXXZ(λ),

(3.26) MXXZ(λ) = LXXZ

N (λ)LXXZ

N−1(λ) · · · LXXZ

1 (λ).

The automorphism Ωa has order M , (Ωa)
M = id. If N is divisible by M ,

the spectral problem for T(λ) therefore becomes equivalent to the spectral
problem for TXXZ(λ) = TrCM (MXXZ(λ)).

The close relation between spin chains of XXZ-type and lattice regular-
isations of the affine Toda theories will make it natural and often useful to
discuss both of them in parallel.
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3.3. Light-cone time-evolution

We will now derive the quantum equations of motion (3.5). The derivation
will be based on an explicit construction of the light-cone evolution operators
U±κ , see (3.4). The latter will later be shown to belong to a large family of
commuting operators constructed as transfer matrices in Section 3.4.

Before proceeding to the derivation an important remark is in order.
The zero curvature condition (3.6) can not specify by itself a unique time
evolution for the variables uiσ,τ , viσ,τ . The reason is that if g±σ,τ satisfy the
zero curvature condition, then also

(3.27)
(
g+
σ,τ

)′
= Dσ,τ+1g

+
σ,τD−1

σ−1,τ ,
(
g−σ,τ

)′
= Dσ−1,τ+1g

−
σ,τD−1

σ,τ ,

do. In (3.27) Dσ,τ are taken to be diagonal matrices in order to preserve
the form of g±σ,τ given in (3.8). We refer to the transformations (3.27) as
gauge transformations. The transformations (3.27) reflect the transforma-
tion properties of the path order exponential Ωγ 7→ DBΩγD−1

A , where γ is a
path connecting the point A to the point B. It will be shown that the zero
curvature condition specifies a unique time evolution for the gauge invariant
sub-algebra of (WM )⊗2N .

3.3.1. Identification of physical observables. We first want to clarify
how the quantum algebra of observables AM,N emerges form the enlarged

algebra (WM )⊗2N generated by the operators ui,r, vi,r, i = 1, . . . ,M , r =
1, . . . , 2N .

Consider the products L̄−2a(µ)L+
2a−1(ν) and L+

2a+1(ν)L̄−2a(µ), which may
be represented as

L̄−2a(µ)L+
2a−1(ν) = (1− q−1µM )

(
1− µ

M∑
i=1

Y−i,2aEi+1,i

)−1

(3.28a)

× Λ(u2au2a−1)

(
1 +

1

ν

M∑
i=1

Y+
i,2a−1Ei,i+1

)

L+
2a+1(ν)L̄−2a(µ) =

(
1 +

1

ν

M∑
i=1

Ỹ+
i,2a+1Ei,i+1

)
Λ(u2a+1u2a)(3.28b)

× (1− q−1µM )

(
1− µ

M∑
i=1

Ỹ−i,2aEi+1,i

)−1
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where Λ(x) :=
∑M

i=1 xiEii and

(3.29)
Y−i,r := ui+1,rvi,r,

Ỹ−i,r := vi,rui,r,

Y+
i,r := u−1

i,r vi,r,

Ỹ+
i,r := vi,ru

−1
i+1,r.

The group of gauge-transformations on a time slice is generated from the
transformations
(3.30)

G2a−1 :

{
L+

2a−1(λ)→ D−1
2a−1L+

2a−1(λ)

L̄−2a(λ)→ L̄−2a(λ)D2a−1

}
G2a :

{
L+

2a−1(λ)→ L+
2a−1(λ)D2a

L̄−2a(λ)→ D−1
2a L̄−2a(λ)

}

Using the factorised expressions (3.28) it is easy to see that Y+
i,r and Y−i,r

are invariant under G2a−1, while Ỹ+
i,r and Ỹ−i,r are invariant under G2a. Note

furthermore that the combinations ui,2au−1
i,2a−1 which are not invariant under

G2a−1 do not appear in the product L−2a(λ)L+
2a−1(λ). A similar statement

holds for the combinations ui,2a+1u−1
i,2a which are not invariant under G2a.

The next step will be to identify operators that implement the gauge
transformations G2a−1 and G2a within the chosen Hilbert space representa-
tion of A′M,N . To this aim let us introduce the operators

(3.31)
ci,2a−1 =

(
ui,2av−1

i,2avi,2a−1ui+1,2a−1

) 1

2 ,

ci,2a =
(
ui+1,2av−1

i,2avi,2a+1ui,2a+1

) 1

2 .

It is easy to see that ci,2a−1 commutes with Y+
i,r and Y−i,r, but it does not

commute with ui,2au−1
i,2a−1. This allows us to identify log ci,2a−1 as an in-

finitesimal generator for G2a−1. By very similar reasoning one may identify
log ci,2a as an infinitesimal generator for G2a. Having related ci,r with the
generators of the gauge symmetry motivates us to define the algebra AM,N

of “physical” observables to be the sub-algebra of A′M,N generated by the
operators commuting with all ci,r, more precisely

AM,N :=
{

O ∈ A′M,N ; (ci,r)
is · O · (ci,r)

−is = O(3.32)

∀ i = 1, . . . ,M, ∀ r = 1, . . . , 2N, ∀ s ∈ R
}
.

It is easy to find an explicit set of generators for AM,N : It is given by the
operators

(3.33)
χi,2a−1 := ui,2avi,2avi,2a−1u−1

i+1,2a−1

χi,2a := vi,2aui+1,2au−1
i,2a+1vi,2a+1.
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One may easily check that the operators χi,r defined in (3.33) commute
with ci,r for all allowed values of i and r, and satisfy the commutation
relations (3.3).

One may note that the operators χi,r and ci,r with r = 2a− ε either odd
(ε = 1) or even (ε = 0) generate commutative subalgebras ofA′M,N . They can
therefore be simultaneously diagonalised, leading to representations where
states are represented by wave-functions ψ′(x, c), with x and c being vectors
with components xi,a and ci,a for i = 1, . . . ,M and a = 1, . . . , N , respec-
tively. The representations are defined such that

(3.34) χi,2a−εψ
′(x, c) = xi,aψ

′(x, c), ci,2a−εψ
′(x, c) = ci,aψ

′(x, c).

Whenever a physical operators O′ can be represented as an integral operator,
one may assume that this representation takes the form

(3.35) (O′ψ′)(x, c) =

∫
dx′ KO′(x, x

′; γc)ψ
′(x, c).

The kernel KO′(x, x
′; γc) may depend on the values γc of the central elements

that the algebra generated by the ci,r has.
One may then define a natural projection sending ψ′(x, c) to ψ(x) =

ψ′(x,1), where 1 has components ci,a = 1 for i = 1, . . . ,M and a = 1, . . . , N .
Physical operators are projected to the operators

(3.36) (Oψ)(x) =

∫
dx′ KO(x, x′)ψ(x), KO(x, x′) ≡ KO′(x, x

′; γ1).

3.3.2. Hamiltonian formalism. In a Hamiltonian framework one may
describe the time evolution of arbitrary observables Oσ,τ by means of opera-
tors U±κ , see (3.4), which generate the light-cone evolution by one time step
in the following sense:

(3.37)
Or+1,τ+1 := (U+

κ )−1 · Or,τ · U+
κ ,

Or−1,τ+1 := (U−κ )−1 · Or,τ · U−κ .

The corresponding discrete time evolution operator Uκ is given as

(3.38) Uκ = U−κ · U+
κ = U+

κ · U−κ .

Notice that this operator shifts the time variable τ by two units. The main
ingredient to construct the light-cone evolution operators will be an operator
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r−̇+
m,n(λ, ν) that satisfies

(3.39) (r−̇+
m,n(λ, ν))−1 · L̄−m(λ)L+

n (ν) · r−̇+
m,n(λ, ν) = L+

n (µ)L̄−m(λ).

The motivation for introducing the notation −̇ will become clear in the
following. Having such an operator we may construct U±κ in the following
form

(3.40)

U+
κ =

[
N∏
a=1

r−̇+
2a,2a−1(µ̄, µ)

]
· C

odd
,

U−κ =

[
N∏
a=1

r−̇+
2a,2a−1(µ̄, µ)

]
· C−1

even
.

where κ2 = µ−1µ̄. The operators Codd and Ceven are defined such that

(3.41)
Codd · O2a+1 = O2a−1 · Codd, Codd · O2a = O2a · Codd,

Ceven · O2a−1 = O2a−1 · Ceven, Ceven · O2a = O2a−2 · Ceven,

for all operators Om which act nontrivially only on the tensor factor with
label m in (WM )⊗2N . It follows that (U−κ )−1U+

κ generates space-shift of two
lattice units, as it should. It is then easy to show that the zero curvature
condition (3.6) will be satisfied in the time evolution generated by U±κ :

L̄−2a+1,τ+1(µ̄)L+
2a,τ+1(µ)

(3.37)
= (U+

κ )−1 · L̄−2a,τ (µ̄)L+
2a−1,τ (µ) · U+

κ

(3.40)
= C−1

odd
· (r−̇+

2a,2a−1(µ̄, µ))−1 · L̄−2a,τ (µ̄)L+
2a−1,τ (µ) · r−̇+

2a,2a−1(µ̄, µ) · C
odd

(3.39)
= C−1

odd
· L+

2a−1,τ (µ)L̄−2a,τ (µ̄) · C
odd

(3.41)
= L+

2a+1,τ (µ)L̄−2a,τ (µ̄).

The fact that T(λ) give in (3.18) generates quantities conserved in this time-
evolution,

(3.42) (U±κ )−1 · T(λ) · U±κ = T(λ),

may now be checked directly using (3.39), (3.41) and the cyclicity ot the
trace.
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3.3.3. Evolution of physical degrees of freedom. We will now derive
the evolution equations (3.5) from the Hamiltonian point of view. To do so
we will use an explicit solution of (3.39):

(3.43) r−̇+
2a,2a−1(µ̄, µ) =

[
M∏
i=1

Jκ(χi,2a−1)

]
qt2a,2a−1 ,

where qt2a,2a−1 is the operator

(3.44) t2a,2a−1 =
1

(πb2)2

M∑
i=1

log(ui,2a) log(ui,2a−1),

while Jκ(x) is a special function satisfying the functional relation

(3.45)
Jκ(q−1x)

Jκ(q+1x)
= 1 + κ2x.

Note that qt2a,2a−1 satisfies

(3.46)
qt2a,2a−1vi,2a−1q

−t2a,2a−1 = ui,2au−1
i+1,2avi,2a−1,

qt2a,2a−1vi,2aq
−t2a,2a−1 = u−1

i+1,2a−1ui,2a−1vi,2a,

and commutes with ui,2a, ui,2a−1. The fact that the operator defined in (3.43)
satisfies (3.39) can be verified by straightforward calculations. As we will see
in Section 5.4 the functional relation (3.45) supplemented by the requirement
that the time evolution is unitary will determine a solution Jκ(x) of (3.45)
almost uniquely.

From the explicit form of r−̇+(µ̄, µ) given in (3.43) it is easy to derive the
quantum discrete equations of motion. Let τ±(z) := (U±κ )

−1 · z · U±κ . Using
the definitions (3.43), (3.46), the algebra (3.3) and the functional relation
(3.45) one obtains

τ+ (χi,2a−1) = τ− (χi,2a+1) = χi,2a,(3.47a)

τ+ (χi,2a) = τ− (χi,2a+2)(3.47b)

= χi,2aχ
−1
i,2a+1χi,2a+2

× 1 + q−cκ2χi+1,2a

1 + q+cκ2χi,2a

1 + q−cκ2χi−1,2a+2

1 + q+cκ2χi,2a+2
,
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which implies the discrete time-evolution (3.5). Note furthermore that

(3.48)
τ+ (ci,2a−1) = τ− (ci,2a+1) = ci,2a,

τ+ (ci,2a) = τ− (ci,2a+2) = ci,2ac−1
i,2a+1ci,2a+2

This means that the evolution of the unphysical degrees of freedom repre-
sented by the operators ci,r decouples completely from the evolution of the
physical observables χi,r.

One may notice that the equation (3.39) does not specify r−+ uniquely,
see Section 6 for more details. This is related to the fact that the zero
curvature condition does not specify a unique time evolution for the enlarged
algebra (WM )⊗2N . However, the ambiguity left by equation (3.39) does not
affect the time-evolution (3.5) of the physical degrees of freedom.

3.4. Fundamental R-matrices and Q-operators

One of the simplest possible ways to make integrability manifest is realised
if the operators U± for the light-cone evolution are obtained from a family
of commuting operators Q±(λ), by specializing the parameter λ to a certain
value, U± = [Q±(λ±∗ )]

∓1
for a certain λ±∗ ∈ C. This is achieved naturally

when the model is defined by an alternating spin chain as the one introduced
in Section 3.2.1, see [FaR, FaV92].

We will later see that the operators Q±(λ) are natural generalizations
of the Baxter Q-operators, as the notation anticipates.

3.4.1. Fundamental R-matrices. A standard tool for the construction
of local lattice Hamiltonians are the so-called fundamental3 R-matrices which
are defined by the commutation relations(

RAB(µ̄, µ; ν̄, ν)
)−1LA(µ̄, µ)LB(ν̄, ν)RAB(µ̄, µ; ν̄, ν)(3.49)

= LB(ν̄, ν)LA(µ̄, µ).

In our case we are dealing with lattice Lax matrices that factorize as

(3.50) LA(µ̄, µ) = L̄−ā (µ̄)L+
a (µ),

3The name fundamental refers to the fact that they play a fundamental role in the
integrability of the model. It should not be confuses with the adjective fundamental
used to attributed to the fundamental representation.
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where µ = q
1

2κ−1λ and µ̄ = q
1

2κ+1λ. This factorized form implies in partic-
ular that the fundamental R-matrices can be constructed as

(3.51) RAB(µ̄, µ; ν̄, ν) = r+−̇
a,b̄

(µ, ν̄)r++
a,b (µ, ν)r−̇−̇

ā,b̄
(µ̄, ν̄)r−̇+

ā,b (µ̄, ν),

provided that be operators rε1,ε2m,n (µ, ν) satisfy the relations

L+
m(µ)L̄−n (ν)r+−̇

m,n(µ, ν) = r+−̇
m,n(µ, ν)L̄−n (ν)L+

m(µ),(3.52a)

L+
m(µ)L+

n (ν)r++
m,n(µ, ν) = r++

m,n(µ, ν)L+
n (ν)L+

m(µ),(3.52b)

L̄−m(µ)L̄−n (ν)r−̇−̇m,n(µ, ν) = r−̇−̇m,n(µ, ν)L̄−n (ν)L̄−m(µ),(3.52c)

L̄−m(µ)L+
n (ν)r−̇+

m,n(µ, ν) = r−̇+
m,n(µ, ν)L+

n (ν)L̄−m(µ).(3.52d)

The regularity property for the fundamental R-operator, i.e. RAB(µ̄, µ; µ̄, µ)
= PAB, which is often used to construct local conserved charges from the
fundamental transfer matrix, will hold if the conditions

(3.53) r++
r,s (µ, µ) = Prs, r−̇−̇r,s (µ̄, µ̄) = Prs, r+−̇

r,s (µ, µ̄)r−̇+
s,r (µ̄, µ) = 1,

are satisfied, where Pij is the operator of permutation of the tensor factors
with labels i and j.

We will later discuss how operators rεε
′

rs (µ, ν) satisfying (3.52) and (3.53)
can be constructed using the representation theory of quantum affine alge-
bras. It will turn out that the dependence on the spectral parameters is of
the form

(3.54) rε1ε2r,s (µ, ν) = rε1ε2r,s (µ−1ν).

In Section 3.2.2 we had introduced the Lax-matrices LXXZ

a (λ). It is easy
to see that the fundamental R-operators

(3.55) RXXZ

AB (µ̄, µ; ν̄, ν) := ΩA · RAB(µ̄, µ; ν̄, ν) · Ω−1
B ,

will satisfy the commutation relations (3.49) with L replaced by LXXZ.
Our next goal is to show that the operators rεε

′

rs (µ, ν) allow us to construct
generalized commuting transfer matrices which are conserved in the time
evolution.
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3.4.2. Q-operators. We may then use the fundamental R-matrices to
define generalised transfer matrices as

(3.56) T (µ̄, µ; ν̄, ν) = TrH−0 ⊗H+
0

(
R0N (µ̄, µ; ν̄, ν) · · ·R01(µ̄, µ; ν̄, ν)

)
.

It follows from (3.51) that (3.56) factorizes into the product of two more
fundamental transfer matrices as

(3.57) T (µ̄, µ; ν̄, ν) = Q+(µ; ν̄, ν) · Q−(µ̄; ν̄, ν),

where

Q−(µ; ν̄, ν) = TrH−̇0

(
r−̇−̇0,2N (µ, ν̄)r−̇+

0,2N−1(µ, ν) · · · r−̇−̇0,2 (µ, ν̄)r−̇+
0,1 (µ, ν)

)
.(3.58)

Q+(µ; ν̄, ν) = TrH+
0

(
r+−̇
0,2N (µ, ν̄)r++

0,2N−1(µ, ν) · · · r+−̇
0,2 (µ, ν̄)r++

0,1 (µ, ν)
)
.(3.59)

Each of the operators Qε(λ; µ̄, µ), ε = ± will generate a mutually com-
mutative family

(3.60) Qε1(λ1; µ̄, µ) · Qε2(λ2; µ̄, µ) = Qε2(λ2; µ̄, µ) · Qε1(λ1; µ̄, µ),

of operators provided that the constituent R-operators rε1ε2 satisfy the Yang-
Baxter equations

rε1ε2m,n(λµ−1)rε1ε3m,p(λν−1)rε2ε3n,p (µν−1)(3.61)

= rε2ε3n,p (µν−1)rε1ε3m,p(λν−1)rε1ε2m,n(λµ−1)

where we have used the so-called difference property (3.54).
Recall that µ̄µ−1 = κ2 is a fixed parameter of the model. It follow from

the explicit definition (3.58) and from the properties (3.53), that the transfer
matrices Qε(λ; µ̄, µ) for special value of the spectral parameter λ satisfy

(3.62) Q+(µ; µ̄, µ) =
(
U+
κ

)−1
, Q−(µ̄; µ̄, µ) = U−κ ,

where U±κ are given in (3.40). It follows from (3.60) that Qε(ν; µ̄, µ) com-
mute with U±κ , and therefore represent conserved quantities for the evolution
generated by them.

We will later see that the operators Q±(λ) ≡ Q±(λ; µ̄, µ), defined in
(3.58) satisfy finite difference equations constraining the λ-dependence which
generalise the Baxter equations. This motivates us to call these operators
(generalised) Baxter Q-operators.
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It is useful to note, however, that multiplying the family of operators
Q±(λ) by an operator that is not λ-dependent will yield another solution of
the generalised Baxter equations. It may, for example, be useful to consider

(3.63) Qµ̄,ν̄,ν(λ) := T (µ̄, λ; ν̄, ν) = Q+(λ; ν̄, ν) · Q−(µ̄; ν̄, ν),

as an alternative definition of (generalised) Baxter Q-operators. The opera-
tors Qµ̄,ν̄,ν(λ) represent another useful family of conserved quantities. Some-
what surprisingly we will find kernels representing the operators Qµ̄,ν̄,ν(λ)
that are simpler than those we could for Q±(λ).

4. Background on quantum affine algebras

This section first reviews the basic background on quantum affine algebras
used in this paper. We then summarise the available hints that this algebraic
structure is the one underlying the integrability of the affine Toda theories.

4.1. Quantum affine algebras

To begin with, let us briefly review the necessary background on quantum
affine Lie-algebras.

Let ĝ be the (untwisted) affine Kac-Moody algebra associated to the
simple Lie algebra g. We let r denote the rank of g and assume, for simplicity,
that all the real roots of ĝ have the same length (this is the only case that
will concern us). The quantum affine algebra Uq

(
ĝ
)

may then be defined
[Dr1, J] as the Hopf algebra generated by the elements 1 (the unit), ei, fi,
ki = qHi (i = 0, 1, . . . , r), and qD, subject to the following relations:

kiej = qAijejki, kifj = q−Aijfjki, eifj − fjei = δij
ki − k−1

i

q − q−1
,(4.1a)

qDei = qδi0eiq
D, kikj = kjki, qDki = kiq

D, qDfi = q−δi0fiq
D,(4.1b)

1−Aij∑
n=0

(−1)n
[
1−Aij
n

]
q

eni eje
1−Aij−n
i(4.1c)

=

1−Aij∑
n=0

(−1)n
[
1−Aij
n

]
q

fni fjf
1−Aij−n
i = 0.
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Here, A is the Cartan matrix of ĝ and we use the standard q-number notation
(4.2)[

m

n

]
q

=
[m]q!

[n]q! [m− n]q!
, [n]q! = [n]q [n− 1]q · · · [1]q , [n]q =

qn − q−n

q − q−1
.

Equation (4.1c) is known as the Serre relations. This is supplemented by a
coproduct ∆ given by

∆ (ei) = ei ⊗ ki + 1⊗ ei, ∆ (ki) = ki ⊗ ki,(4.3a)

∆ (fi) = fi ⊗ 1 + k−1
i ⊗ fi, ∆

(
qD
)

= qD ⊗ qD.(4.3b)

There is also a counit and antipode, though their explicit forms are not
important for us, except in noting that there exist Hopf subalgebras Uq(b+)
and Uq(b−) generated by the ei, ki, q

D and the fi, ki, q
D, respectively. These

are the analogs of Borel subalgebras and we will refer to them as such. The
subalgebras Uq(n+) and Uq(n−) generated by the ei and the fi, respectively,
will be called the nilpotent subalgebras. They are not Hopf subalgebras.

As in the classical case (q = 1) above, we will generally be interested in
level 0 representations. Because of this, we will often denote a quantum affine
algebra by Uq

(
ĝ0

)
, understanding that the linear combination of Cartan

generators giving the level has been set to 0. As the level is dual to the
derivation D under the (extended) Killing form, it is therefore often also
permissible to ignore D in our computations.

The quantum affine algebra Uq(ŝlM ), which will be the main focus of this
paper, is defined as above upon taking the Cartan matrix to be Aij = 2δi,j −
δi+1,j − δi,j+1, where indices are identified modulo M . The finite group ZM
is realized as automorphisms of the Dynkin diagram of ŝlM . We denote
by Ω the corresponding generator. Due to their central role in the following
analysis we report the form of the Serre relations in this special case (M > 2)

e2
i ei±1 − (q + q−1)ei ei±1ei + ei±1e

2
i = 0,(4.4)

eiej = ejei, if i 6= j ± 1,(4.5)

and similarly for fi. Notice that the Serre relations are unchanged under
q → q−1. The quantum affine algebra Uq(ĝlM ) can be defined introducing
the generators {qε̄i}i=1,...,M related to ki in (4.1) as

(4.6) ki = qHi = qε̄i−ε̄i+1 .
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The generator ε̄ :=
∑M

i=1 ε̄i is central. If it is set to zero we recover Uq(ŝlM ).

Notice that the simple roots of ĝlM , see Appendix C.1.1, satisfy Hi(αj) =
Aij . This follows form ε̄i(εj) = δij and justifies the notation.

Finally, we remark that the automorphism Ω of the Dynkin diagram of
ŝlM induces an automorphism of Uq(ŝlM )

(4.7) Ω ◦ (ei, fi, ki) :=
(
eΩ(i), fΩ(i), kΩ(i)

)
,

where Ω(i) = i+ 1.

4.2. Universal R-matrix

The physical relevance of quantum affine algebras stems from the existence
[Dr86a] of the so-called universal R-matrix R. This is a formally invertible
infinite sum of tensor products of algebra elements

(4.8) R =
∑
i

ai ⊗ bi, ai, bi ∈ Uq
(
ĝ
)
,

which must satisfy three properties:

R∆ (x) = ∆op (x) R for all x ∈ Uq
(
ĝ
)
,(4.9a)

(∆⊗ id) (R) = R13R23 and (id⊗∆) (R) = R13R12.(4.9b)

Here, ∆op (x) denotes the “opposite” coproduct of Uq
(
ĝ
)
, defined as ∆op(x)

= σ(∆(x)), where the permutation σ acts as

(4.10) σ(x⊗ y) = y ⊗ x.

We have also used the standard shorthand R12 =
∑

i ai ⊗ bi ⊗ 1, R13 =∑
i ai ⊗ 1⊗ bi and R23 =

∑
i 1⊗ ai ⊗ bi.

Quantum affine algebras have an abstract realisation in terms of a so-
called quantum double [Dr86a] which proves the existence of their universal
R-matrices. This realisation moreover shows that these R-matrices can be
factored so as to isolate the contribution from the Cartan generators:

(4.11) R = qtR̄, t =
∑
i,j

(
Â−1

)
ij
Hi ⊗Hj .

Here, Â denotes the non-degenerate extension of the Cartan matrix to the
entire Cartan subalgebra (including D). This is achieved by identifying
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this matrix with that of the (appropriately normalised) standard invari-
ant bilinear form on the Cartan subalgebra. The so-called reduced R-matrix
R̄ is a formal linear combination of monomials of the form EI ⊗ FJ :=
ei1 · · · eik ⊗ fj1 · · · fj` (I = {i1, . . . , ik}, J = {j1, . . . j`}). It is worth noting
[KhT92] that R is already uniquely defined up to a scalar multiple by (4.9a)
and (4.11).

We note that a second solution to the defining properties (4.9) is given
by [Dr86a]

(4.12) R− = (σ (R))−1 .

This alternative universal R-matrix R− is then of the form

(4.13) R− = R̄−q−t,

in which R̄− is a formal series in monomials of the form FI ⊗EJ . In order
to emphasise the symmetry between the two universal R-matrices we shall
also use the notation R+ := R. R+ and R− may also be related by the
anti-automorphism ζ given by

(4.14) ζ(ei) = fi, ζ(fi) = ei, ζ(Hi) = Hi, ζ(D) = D, ζ(q) = q−1.

This action can be continued to tensor products via ζ(x⊗ y) = ζ(x)⊗ ζ(y).
In terms of ζ, we can represent R− as R− = ζ(R+).

In order to get an idea how property (4.9a) determines the universal
R-matrix let us first note that qt satisfies the equations

qt (fi ⊗ 1) =
(
fi ⊗ k−1

i

)
qt, qt (1⊗ fi) =

(
k−1
i ⊗ fi

)
qt,(4.15)

qt (ei ⊗ 1) =
(
ei ⊗ k+1

i

)
qt, qt (1⊗ ei) =

(
k+1
i ⊗ ei

)
qt,(4.16)

The intertwining property (4.9) implies the following relations for the re-
duced R-matrices R̄±[

R̄+, fi ⊗ 1
]

= (ki ⊗ fi) R̄+ − R̄+
(
k−1
i ⊗ fi

)
,(4.17) [

R̄−, ei ⊗ 1
]

= (ki ⊗ ei) R̄− − R̄−
(
k−1
i ⊗ ei

)
.(4.18)

These equations can be solved recursively in the order of the monomials
EI ⊗ FJ or FI ⊗EJ , the first few terms for R̄− being 4

4 We obtained this expansion for Uq(g(A)), where g(A) is the Kac-Moody algebra
associated to the (symmetrizable) generalized Cartan matrix A. In this case the
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R̄− = 1 +

r∑
i=0

(
q−1
i − qi

)
(fi ⊗ ei) +

r∑
i=0

(q2
i − 1)2

q2
i + 1

e2
i ⊗ f2

i(4.20)

+
∑
i 6=j

(qi − q−1
i )(qj − q−1

j )

q(αi,αj) − q−(αi,αj)

(
q(αi,αj)eiej − ejei

)
⊗ fifj + · · · .

Notice that the quadratic Serre relation eiej = ejei for (αi, αj) = 0 follows
as a necessary condition for the existence of the universal R-matrix.

For the case of Uq(ĝlM ) of our main interest we may note that introducing
the Cartan generators ε̄i simplifies the expression for t entering the universal
R-matrix as

(4.21) t =

M−1∑
i,j=1

(
A−1

)
ij

(Hi ⊗Hj) =

M∑
i=1

ε̄i ⊗ ε̄i −
1

M
ε̄⊗ ε̄.

Note furthermore that in the case of Uq(ĝlM ) the universal R-matrices R±

are ZM -symmetric,

(4.22) (Ω⊗ Ω) ◦R± = R±.

as follows from the uniqueness5 of the universal R-matrix.
It finally follows from the defining properties (4.9) that R+ and R−

satisfy the abstract Yang-Baxter equations

R+
12R

+
13R

+
23 = R+

23R
+
13R

+
12,(4.23a)

R+
12R

−
13R

−
23 = R−23R

−
13R

+
12, R+

23R
−
13R

−
12 = R−12R

−
13R

+
23,(4.23b)

R−12R
+
13R

+
23 = R+

23R
+
13R

−
12, R−23R

+
13R

+
12 = R+

12R
+
13R

−
23,(4.23c)

R−12R
−
13R

−
23 = R−23R

−
13R

−
12.(4.23d)

relation (4.1a) generalizes to

(4.19) kiej = q(αi,αj)ejki, kifj = q−(αi,αj)fjki, eifj − fjei = δij
ki − k−1

i

qi − q−1
i

,

where (αi, αj) = (αj , αi) and the Serre relations take the same form as in (4.1c)

with the Cartan Matrix given by Aij = 2
(αi,αj)
(αi,αi)

.
5The automorphism Ω does not alter the ansatz for the universal R-matrix that

enters the uniqueness theorem in [KhT92].
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The equations (4.23) will imply in particular the crucial relations (3.16)
when evaluated in suitable representations.

4.3. Drinfeld twist

One may modify the defining data of the quantum affine algebras by means
of Drinfeld twists, represented by invertible elements F ∈ Uq

(
ĝ
)
⊗ Uq

(
ĝ
)

(4.24) ∆̃(x) = F−1∆(x)F , ∀ x ∈ A, R̃ = σ(F−1)RF .

We will only consider elements F preserving co-associativity of the co-
product (cocycles). For a very particular choice of F we will later find
useful simplifications in the expressions for the fundamental R-operators.
This choice is F = σ(q−f ), where

(4.25) f = −1

2
Xij ε̄i ⊗ ε̄j , Xij =

2

M
(i− j)mod M .

Useful properties of the coefficients Xij are

(4.26)
Xi+1,j −Xi,j = +

2

M
− 2δi+1,j

Xi,j+1 −Xi,j = − 2

M
+ 2δi,j

Xi,j +Xj,i =
2

M
− 2δi,j .

We may furthermore note that (4.26) implies that

(4.27) qfσ(qf ) = qt.

This identity allows us to write R̃+ and R̃− in the forms

R̃+ = q2f
[
σ(qf )R̄+σ(q−f )

]
,(4.28)

R̃− =
[
qfR̄−q−f

]
σ(q−2f ).(4.29)

These formulae, together with

σ(qf )(ei ⊗ fi)σ(q−f ) = eiq
ε̄i+1− ε̄

M ⊗ qε̄i−
ε̄

M fi,(4.30)

qf (fi ⊗ ei)q−f = fiq
ε̄i− ε̄

M ⊗ qε̄i+1− ε̄

M ei,(4.31)

are useful for computing the Lax- and R-matrices from the twisted universal
R-matrices.
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Remark 3. Parts of the literature use conventions where R+ is factorised
as R+ = R̄+′qt, compare to (4.11). The factor R̄+′ is constructed from the
generators e′i = eik

−1
i and f ′i = kifi. We have

∆̃(e′i) = e′i ⊗ qε̄i−
ε̄

M + q
ε̄

M
−εi ⊗ e′i,(4.32)

∆̃(f ′i) = f ′i ⊗ q
ε̄

M
−εi+1 + qε̄i+1− ε̄

M ⊗ f ′i ,(4.33)

indicating that our choice F = σ(q−f ) is indeed a particularly natural one
to consider.

4.4. Relevance for affine Toda theories

Before we continue with more formal developments let us pause to review
some important hints indicating that the representation theory of quantum
affine algebras will be the proper framework for establishing and exploiting
the quantum integrability of the affine Toda theories.

4.4.1. Continuum approaches. One of the key observations [BoMP]
pointing in this direction is the fact that the screening charges Q±i generate
representations of the the nilpotent sub-algebras Uq(n−), Uq(n+),

(4.34) π+
FF

(fi) :=
q

q2 − 1
Q+
i , π−

FF
(ei) :=

q

q2 − 1
Q−i .

Indeed, it can be verified by direct calculations that the Serre-relations are
satisfied [BoMP, BaLZ3]. This observation relates the interaction terms
in the light-cone Hamiltonians to the representation theory of the quan-
tum affine algebra Uq(ŝlM ). It can be used to construct the local con-
served charges of the affine Toda theories in the light-cone representation
[FeF1, FeF2].

The representations π+
FF

can be extended to representations of the Borel
sub-algebras Uq(b−) Uq(b+) by setting

(4.35) π+
FF

(hi) :=
2i

b
(pi − pi+1), π−

FF
(hi) := −2i

b
(pi − pi+1).

A beautiful observation was made in [BaLZ3] and [BaHK] in the cases M = 2
and M = 3, respectively: It is indeed possible to evaluate the universal R-
matrix in the tensor product of representations πf

λ ⊗ π+
FF

, where π+
FF

is the



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 138 — #39 i
i

i
i

i
i

138 C. Meneghelli and J. Teschner

free-field representation defined above, and πf
λ is defined as

(4.36) πf
λ(ei) = λ−1Ei,i+1, πf

λ(fi) = λEi+1,i, πf
λ(hi) = Ei,i − Ei+1,i+1;

the matrices Eij are the matrix units EijEkl = δjkEil. For a certain range of
imaginary values of the parameter b = iβ, the matrix elements of

(4.37) M+(λ) := (πf
λ ⊗ π+

FF
)(R),

represent well-defined operators on the Fock space underlying the represen-
tation π+

FF
. The matrices M+(λ) represent quantum versions of the mon-

odromy matrices representing the integrable structure of the massless limit
of the affine Toda theories. These results were later generalised to M > 3 in
[Ko].

The massless limit decouples left- and right-moving degrees of freedom.
By a careful analysis of the massless limit it was shown in [RiT] that the mon-
odromy matrices M+(λ) and M−(λ) := (πf

λ ⊗ π−FF
)(R−) describe the decou-

pled integrable structures of the right- and left-moving degrees of freedom,
respectively. This means that there is a correspondence between light-cone
directions and Borel sub-algebras. This observation will be very useful for
us.

For the cases b = iβ it might be possible to define monodromy cases for
the massive theories by considering

(4.38) M(λ) = M−(λ)M+(λ),

as suggested by the representation (2.15) of the classical monodromy matrix
for N = 1. Unfortunately it is not straightforward to generalise (4.37) to the
cases of our interest, b ∈ R. The short-distance singularities are more severe
in these cases. It may nevertheless be possible to define monodromy matrices
M(λ) by using a renormalised version of the right hand side of (4.37). They
key observation that (4.34) defines representations of Uq(n+), Uq(n−) remains
valid, after all. However, this approach has not been developed yet.

4.4.2. Lattice discretisation. In order to gain full control, we will in-
stead employ a lattice regularisation. As will be discussed in more detail
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below, it is then possible to obtain the lattice Lax matrices from the univer-
sal R-matrix in a way that is quite similar to (4.37),

(4.39)

L+(λ) :=
1

θ+(λµ−1)
[(πf

λ ⊗ π+
µ )(R±)]ren,

L̄−(λ) :=
1

θ̄−(λµ−1)
[(πf

λ ⊗ π̄−µ )(R±)]ren,

where the representations π+ and π̄− are defined as

π+
λ (fi) =

λ

q − q−1
u−1
i vi, π+

λ (ki) = uiu
−1
i+1,(4.40)

π̄−λ (ei) =
λ−1

q−1 − q
viui+1, π̄−λ (ki) = u−1

i ui+1.(4.41)

{vi, ui}i=1,...,M generate the algebra W, see (3.9). It is easy to verify that
(4.40) and (4.41) satisfy, respectively, the defining relations of Uq(b+) and
Uq(b−). The notation [. . . ]ren indicates the application of a certain renormal-
isation procedure, which will be necessary to get well-defined results in the
cases where the representations π± are infinite-dimensional. The normalisa-
tion factors (θ+(λµ−1))−1 and (θ̄−(λµ−1))−1 in (4.39) are proportional to
the identity operator and will be fixed later.

We get another strong hint that the representation theory of quantum
affine algebras is well-suited for our purpose by observing that it gives us
a very natural way to obtain the light-cone evolution operator from the
universal R-matrix. We had observed above in order to build an evolution
operator we need to find an operator r+−̇(µ/λ) satisfying

(4.42) (r+−̇(µ/λ))−1 · L+(λ)L̄−(µ) · r+−̇(µ/λ) = L̄−(µ)L+(λ).

A solution to this equation in the sense of formal power series in the param-
eters µ, λ can be obtained from the universal R-matrix,

(4.43) r+−̇(µ/λ) = (π+
λ−1 ⊗ π̄−µ−1)(R−),

as follows by applying πf
1 ⊗ π

+
λ−1 ⊗ π̄−µ−1 to the Yang-Baxter equation (4.23b).

We will later discuss the renormalisation of (π+
λ−1 ⊗ π̄−µ−1)(R−) needed to

turn r+−̇(µ/λ) into a well-defined operator. The definition (4.39) realises
the link between light-cone directions and Borel sub-algebras of Uq(ŝlM ) ob-
served in [RiT] within the lattice discretisation. It is crucial for making the
relation between the evolution operator and the universal R-matrix as direct
as possible.



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 140 — #41 i
i

i
i

i
i

140 C. Meneghelli and J. Teschner

5. R-operators from the universal R-matrix
— case of Uq(ŝl2)

5.1. Overview

We had observed in Section 3 that basic building blocks of the QISM are the
operators rεε

′

rs (µ, ν) which are required to be solutions to the RLL-relations(
rεε
′

rs (µ, ν)
)−1

Lεr(µ)Lε
′

s (ν)rεε
′

rs (µ, ν) = Lε
′

s (ν)Lεr(µ), ε, ε′ = ±.(5.1)

The operators r−̇+
rs (λ, µ) are in particular needed for the construction of an

integrable time-evolution.
The framework of quantum affine algebras will allow us to systematically

obtain solutions of the equations (5.1) from the universal R-matrix of the
quantum affine algebra Uq(ŝlM ). This fact is known in the case of spin chains
of XXZ-type, where it is sufficient to evaluate the universal R-matrices in
finite-dimensional or infinite-dimensional representations of highest or low-
est weight type. The main issue to be addressed in our case originates from
the fact that some of the relevant representations will not have a highest or
a lowest weight. On first sight this causes very serious problems: Evaluating
the universal R-matrices in infinite-dimensional representations will generi-
cally produce infinite series in monomials of the operators representing the
generators of Uq(ŝlM ). These series turn out not to be convergent in the
cases of our interest.

It will nevertheless be found that there exists an essentially canonical
renormalisation of the universal R-matrices. The main tool for establishing
this claim will be the product formulae for R± found by Khoroshkin and
Tolstoy. The product formulae are particularly well-suited for our task: They
disentangle the infinity from the infinite extension of the root system from
the infinite summations over powers of the root generators. We will identify
simple representations such that only finitely many real root generators will
be represented nontrivially. More general representation of our interest can
be constructed by taking tensor products of the simple representations, cur-
ing the first type of problem. The second type of divergence can be dealt with
for representations in which the root generators are represented by positive
self-adjoint operators. Replacing the quantum exponential functions appear-
ing in the product formulae by a special function related to the non-compact
quantum dilogarithm produces well-defined operators which will satisfy all
relevant properties one would naively expect to get from the evaluation of
the universal R-matrices.
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A review of the product formulae will be given in Subsection 5.2 below.
We then start discussing how to renormalise the expressions obtained by
evaluating the the product formulae in the representations of our interest.
In order to disentangle difficulties of algebraic nature from analytic issues we
will begin discussing the necessary renormalisation for the case of Uq(ŝl2).

The cases Uq(ŝlM ) will be discussed in the next section. Some of the factors
obtained by evaluating the product formulae will be proportional to the
identity operator. These contributions, associated to what are called the
imaginary roots, will be discussed later in Sections 7 and 8 below.

5.2. The product formula for the universal R-matrix

In this section we begin by reviewing the explicit formula for the universal R-
matrix obtained by Khoroshkin and Tolstoy. We will follow the conventions
in [KhT2]. A guide to the original literature can be found in Section 5.2.3
below.

5.2.1. Construction of root generators. Recall that ∆+(ĝ) = ∆re
+(ĝ) ∪

∆im
+ (ĝ) where

∆re
+(ĝ) = {γ + kδ|γ ∈ ∆+(g), k ∈ Z≥0}(5.2)

∪ {(δ − γ) + kδ|γ ∈ ∆+(g), k ∈ Z≥0}
∆im

+ (ĝ) = {kδ|k ∈ Z>0}(5.3)

The first step of the procedure is to choose a special ordering in ∆+(ĝ).
We say that an order ≺ on ∆+ (ĝ) is normal (or convex) if it satisfy the
following condition:

(α, β) ∈ (∆+ ×∆+) /
(
∆im

+ ×∆im
+

)
, α ≺ β, α+ β ∈ ∆+(5.4)

⇒ α ≺ α+ β ≺ β

This definition can be applied to any Kac-Moody Lie algebra. For finite di-
mensional Lie algebras there is a one to one correspondence between normal
orders and reduced expressions for the longest element of the Weyl group,
see e.g. [CP]. For untwisted affine Lie algebras a convex order splits the pos-
itive real roots in two parts: those that are greater than δ and those that
are smaller than δ, see [Ito] and appendix C.1.1. Without loss of generality,
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roughly up to the action of the Weyl group of g, we further impose

(5.5) γ + Z≥0δ ≺ Z>0δ ≺ (δ − γ) + Z≥0δ, γ ∈ ∆+(g).

In applications we will as well use the opposite ordering compared to (5.5).
From the definition it is clear that given a convex ordering the opposite
ordering is convex as well. This ordering reflects a triangular decomposition
of Uq(n+) ' U+

q (≺)⊗ U+
q (∼)⊗ U+

q (�) (see e.g. [Lus] 40.2.1), and is manifest
in the the structure of the product formula for the universal R-matrix given
below.

The second step of the procedure is to construct the generators corre-
sponding to the positive roots of ĝ, where imaginary roots are counted with
multiplicities, from the generators corresponding to the simple positive roots
eα0

= eδ−θ and eαi . The procedure goes as follows

1. Let α, β, γ ∈ ∆re(ĝ) with γ = α+ β and α ≺ γ ≺ β be a minimal se-
quence, i.e. there are no other positive roots α′ and β′ between α and
β such that γ = α′ + β′, then we set

(5.6) eγ := [eα, eβ]q−1 := eαeβ − q−(α,β)eβeα.

Notice that when, for a fixed normal order, the minimal sequence is
not unique, the root vector does not depend on the choice of mini-
mal sequence. This is ensured by the Serre relations. In this way one
construct all root vectors eγ , eδ−γ , for γ ∈ ∆+(g).

2. Next, set

e
(i)
δ := [eαi , eδ−αi ]q−1 , i = 1, . . . , rank(g),(5.7a)

eαi+kδ := [(αi, αi)]
−k
q

(
−Adje

(i)
δ

)k · eαi ,(5.7b)

e(δ−αi)+kδ := [(αi, αi)]
−k
q

(
Adje

(i)
δ

)k · eδ−αi ,(5.7c)

e
′(i)
kδ :=

[
eαi+(k−1)δ, eδ−αi

]
q−1 .(5.7d)

In the case in which the Cartan matrix is symmetric one has (αi, αi) :=
asymij = 2.

3. Construct the remaining real root vectors eγ+kδ and e(δ−γ)+kδ for all
γ ∈ ∆+(g), k ≥ 1 using the same procedure as step one.

4. Define the imaginary root vectors e
(i)
kδ from e

′(i)
kδ as follows:

(5.8) Ei(z) = ln
(
1 + E′i(z)

)
,
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where

(5.9)

Ei(z) =
(
q−1 − q+1

) ∞∑
k=1

e
(i)
kδ z
−k,

E′i(z) =
(
q−1 − q+1

) ∞∑
k=1

e
′(i)
kδ z

−k.

The root vectors corresponding to the negative roots are obtained with the
help of Cartan anti-involution (4.14). Notice that once we fix the normal

ordering as in (5.5) the root vectors e
(i)
δ , eαi+kδ, e(δ−αi)+kδ are independent

on the specific choice of root ordering, see [Dam2].
The constructed root vectors satisfy a number of remarkable properties.

Among others, the following property explains the attribute convex associ-
ated to the constructed basis. For α ≺ β, α, β ∈ ∆+(ĝ) one has

(5.10) eαeβ − q−(α,β)eβeα =
∑

α≺γ1≺···≺γ`≺β
cγ(k) (eγ1

)k1 . . . (eγ`)
k`

where cγ(k) are rational function of q non vanishing only for

α+ β =
∑̀
i=1

kiγi.

An other important property of the imaginary root generators, see
[Dam2], is the following

(5.11) ∆(Ei(z))− Ei(z)⊗ 1− 1⊗ Ei(z) ∈ U+(≺)⊗ U0U+(�).

We will discuss the coproduct of imaginary roots in greater details in Sec-
tion 8.3.

For the case of Uq(ĝlM ) a distinguished normal order and the explicit
definition of some relevant root vector are presented in Appendix C.1.2.

5.2.2. Statement of the product formula. The expression for the uni-
versal R-matrix has the form

(5.12) R− = R̄−q−t = R−≺δR
−
∼δR

−
�δq
−t.

The quantity R̄− is an infinite ordered product over the positive roots
∆+(ĝ). The order of factors is the same as the convex order used in the
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definition of root vectors. The infinite product decomposes into three parts
as follows form (5.5) and enphasized in (5.12) by the notation ≺ δ,∼ δ,� δ.
To each real positive root we associate the factor

(5.13) R−γ = expq(γ,γ)

(
(q−1 − q)s−1

γ fγ ⊗ eγ
)

γ ∈ ∆re
+(ĝ),

with expq(x) the quantum exponential

(5.14) expq(x) =

∞∑
n=0

1

(n)q!
xn, (k)q =

qk − 1

q − 1
, (n)q! = (1)q(2)q · · · (n)q.

The quantities sγ in (5.13) are determined by the relation

[eγ , fγ ] = sγ
qhγ − q−hγ
q − q−1

,

where hγ =
∑

i kihi if γ =
∑

i kiαi. In the case g = slM we simply have sγ =
1.

The contribution of positive imaginary roots is given by

(5.15) R−∼δ = exp

(
(q−1 − q+1)

∑
m∈Z+

r∑
i,j=1

um,ijf
(i)
mδ ⊗ e

(j)
mδ

)
,

where r is the rank of the Lie algebra g, and the quantities um,ij , m ∈ Z+,
are the elements of the matrix um inverse to the matrix tm with elements

(5.16) tm,ij = (−1)m(1−δij)m−1[maij ]q,

entering the commutation relations

(5.17) [eαi+mδ, e
(j)
nδ ] = tn,ijeαi+(m+n)δ.

In the case g = slM , the coefficients um,ij appearing in (5.15) can be repre-
sented explicitly as

(5.18) um,ij =
m

[Mm]q
[M −max(i, j)]qm [min(i, j)]qm(−1)m(i−j),

where min(i, j), max(i, j) denotes the minimum and maximum value among
i and j.

While the root generators and their algebra depend on the choice of
convex order, the universal R-matrix is independent of this choice. This is a
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non-trivial fact that follows from the uniqueness (under certain assumptions)
of the universal R-matrix, see e.g. [KhT92].

5.2.3. A guide to the literature on the product formula. In the
following we collect some references that should help the interested reader in
understanding the origin of the product formula for the universal R-matrix.

An explicit formula for the universal R-matrix of Uq(sl2) was presented
by Drinfeld in [Dr86b]. Shortly after it was given for Uq(slM ) in [Ro], for any
finite dimensional simple Lie algebra in [KiR], [LS] and for finite dimensional
Lie super-algebras in [KhT91b] and [Y] . In the affine case, both twisted
and untwisted, an explicit expression for the universal R-matrix has first
been given by Khoroshkin and Tolstoy in [KhT91a], [KhT92] and later in
[LSS] (for Uq(ŝl2)) and [Dam2], [Dam3] using different techniques. Product
formulae for quantum affine super-algebras were presented in [Ya].

Using Drinfeld double construction [Dr86b], the problem of finding ex-
plicit expressions for the universal R-matrix reduces to the determination of
basis of Uq(b∓) which are orthonormal with respect to the standard pairing
between Uq(b+) and Uq(b−). The key idea is to find a convenient basis, with
simple properties under product and coproduct, that simplifies the calcu-
lation of the pairing. In parallel to the q = 1 case, one construct so called
(convex) basis of Poincaré-Birkhoff-Witt (PBW) type as ordered product of
root vectors. Thus, one must first define analogues of root vectors associ-
ated to non-simple roots of g. There is an elegant construction of such root
vectors. If g is finite dimensional all roots are in the trajectory under the
Weyl group of a simple root. As the Weyl group can be be extended to a
braid group action on Uq(ĝ) [Lus] one can construct non-simple root vectors
from simple ones following this observation, see [CP]. In the affine case the
situation is more involved as imaginary roots, by definition [Kac], are not in
the orbit of simple ones under the Weyl group. The construction of imagi-
nary root vectors in this case has been carried over in [Dam1], [LSS], [Be1],
[Be2], [Dam2]. While explicit proofs in the literature concerning properties
of PBW basis use techniques connected to the braid group action, in the
following we will use a different construction.

Convex bases in the affine case have also been constructed in [Tol],
[KhT91a], [KhT93a] [KhT93b]. In these references the braid group action is
not used and explicit proofs are mostly omitted. The construction of root
vectors, referred to as Cartan-Weyl basis, is guided by the authors experi-
ence with so called extremal projectors, see [Tol2]. This construction of root
vectors is convenient when dealing with representations and will be used in
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the following. We remark that the root vectors constructed by this proce-
dure are closely related to the quantum current type generators appearing
in the Drinfeld’s second realization of Uq(ĝ) [Dr87], see [KhT93a] and [Be1].

5.3. Simple representations of Uq(ŝl2)

5.3.1. Evaluation representations. To begin with, let us recall that
there is a well-known way to get representations of the loop algebras Uq(ŝl2)0

from representations of the quantum group Uq(sl2). It is based on the fol-
lowing homomorphism of algebras: Let Uq(sl2) be the algebra generated by
E, F and K±1 with relations

(5.19)
KE = q+1EK,

KF = q−1FK,
[E,F] =

K2 − K−2

q − q−1
,

then

(5.20)
evλ(e1) = λ−1q

1

2 K−1E, evλ(e0) = λ−1q
1

2 K+1F, evλ(k1) = K+2,

evλ(f1) = λ+1q
1

2 K+1F, evλ(f0) = λ+1q
1

2 K−1E, evλ(k0) = K−2.

satisfy the defining relations of Uq(ŝl2)0. This claim can be verified by a
straightforward calculation. The center of Uq(sl2) is generated by the Casimir
C defined as

(5.21) C := FE +
qK2 + q−1K−2 − 2

(q − q−1)2
=
q2x + q−2x − 2

(q − q−1)2
.

The last equality in this equation is a convenient parametrization of the
Casimir C.

There are two types of representations of Uq(sl2) that will be relevant for
us: The usual finite-dimensional representations labelled by j ∈ 1

2Z≥0 and
certain infinite-dimensional representations for which E, F and K are realized
by positive self-adjoint operators. Let us discuss them in more details.

Finite-dimensional evaluation representations. We denote the (2j +
1)-dimensional representation of Uq(sl2) by πf.d.

j where j ∈ 1
2Z≥0. In this case

K has spectrum {q−j , q−j+1, . . . , qj−1, qj} and the parameter j is related to
the Casimir C defined in (5.21) as

(5.22) πf.d.
j (C) =

q2j+1 + q−2j−1 − 2

(q − q−1)2
.
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We further define πf.d.
λ,j = πf.d.

j ◦ evλ. Of particular importance will be the

fundamental representation πf
λ corresponding to πev

λ,j , j = 1/2, where we
may take
(5.23)

πf.d.
1/2 (E) =

(
0 1
0 0

)
, πf.d.

1/2 (F) =

(
0 0
1 0

)
, πf.d.

1/2 (K) =

(
q+ 1

2 0

0 q−
1

2

)
.

The representations πf.d.
λ,j for j > 1/2 can be generated from πf

λ by taking
tensor products and quotients.

Evaluation representations of modular double type. We will also
be interested in infinite-dimensional evaluation representations πm.d.

λ,s , s ∈ R,
of modular double type where E, F and K are realized by positive self-
adjoint operators. A representation Ps of Uq(sl2) can be constructed using
self-adjoint operators p and q satisfying [p, q] = (2πi)−1 as follows,
(5.24)

πm.d.
s (E) = es := e+πbq coshπb(p− s)

sinπb2
e+πbq,

πm.d.
s (F) = fs := e−πbq

coshπb(p + s)

sinπb2
e−πbq,

πm.d.
s (K) = ks := eπbp.

These operators satisfy the relations (5.19) with q = e−πib
2

. The operators
es, fs and ks are unbounded. There is a canonical subspace Ps of L2(R)
representing a maximal domain of definition for Uq(sl2). The terminology
modular double type refers to the fact that positivity of the operators es, fs
and ks allows us to construct operators ẽs, f̃s and k̃s from es, fs and ks which
generate a representation of Uq̃(sl2) with q̃ = e−πi/b

2

, see also Remark 4
below.

The Casimir C of Uq(sl2) defined in (5.21) is now represented as

(5.25) πm.d.
s (C) =

e+2πb(s+ i

2
b−1) + e−2πb(s+ i

2
b−1) − 2

(q − q−1)2
=

(
cosh(πbs)

sin(πb2)

)2

.

The middle equation makes it manifest that for this representation q±2x 7→
−e±2πbs. Notice that πm.d.

λ,s = πm.d.
s ◦ evλ corresponds to positive self-adjoint

operators for λ ∈ R≥0.

5.3.2. Prefundamental representations. For our physical application
we introduce representations π±µ of the Borel-subalgebras Uq(b∓) of Uq(ŝl2)

teschner
Sticky Note
Replace embedded formula and "corresponds to"by "the operators in (5.20) are" 
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such that

(5.26) L±(λ) =

(
u λ∓1v±1

λ∓1v∓1 u−1

)
=

1

θ±(λ)
[(πf

λ ⊗ π±1 )(R±)]ren,

where u, v are operators satisfying uv = q−1vu, and ρ±(λ) is proportional
to the identity operator. The notation [. . . ]ren indicates that the formal ex-
pressions following from the universal R-matrix will require a certain renor-
malization.

It is easy to see that we need to have

π+
λ (f1) =

λ

q − q−1
u−1v, π+

λ (f0) =
λ

q − q−1
uv−1, π+

λ (k1) = u2 = π+
λ (k−1

0 ),

(5.27)

π−λ (e1) =
λ−1

q−1 − q
vu−1, π−λ (e0) =

λ−1

q−1 − q
v−1u, π−λ (ki) = u−2 = π+

λ (k−1
0 ).

(5.28)

In order to see that these definitions are indeed necessary to get a relation of
the form (5.26), let us first consider L−(λ) and remind ourselves that R̄− =
1 +

∑
j

(
q−1 − q

)
(fi ⊗ ei) + · · · up to higher order terms, which implies that

(5.29) (πf
λ ⊗ π−1 )(R−) =

(
1 λv−1u

λvu−1 1

)(
u 0
0 u−1

)
+O(λ2).

The case of L+(λ) is very similar.
The representations π±λ will play a fundamental role for us. They are the

simplest examples of what is called a prefundamental representation in [HJ].
To motivate this terminology let us anticipate that all representations of our
interest will be found within the tensor products of such representations. We
may therefore regard the representations π±λ as elementary building blocks
for the category of representations we are interested in.

One of the most basic and fundamental observations is that the operators
fi := π+

λ (fi), i = 0, 1 satisfy the relations of a q-oscillator algebra,

(5.30) f0f1 − q−2f1f0 =
λ2

q − q−1
.

This implies that the operator representing the imaginary root element f
(1)
δ

is proportional to the identity operator. It follows immediately from the
iterative definition (5.7), that the operators representing the higher real

teschner
Sticky Note
replace "the simplest examples of " 
by " analogs of"
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root generators fαi+kδ vanish identically. This observation will later be very
useful.

Remark 4. For |q| < 1 one may consider representations of highest or low-
est weight type, as done in [BaLZ3]. In this paper we will mainly be inter-
ested in infinite-dimensional representations where u and v are realized by
positive-selfadjoint operators, for example

(5.31) u = eπbx, v = e2πby, [x, y] =
i

2π
.

The positive-selfadjointness of the operators u and v implies a remarkable
duality phenomenon: Using the operators ũ := u

1

b2 , and ṽ := v
1

b2 , and re-
placing q = e−πib

2

by q̃ = e−πib
−2

one may use the formulae above to realise
representations of the Borel subalgebras B̃± of Uq̃(ŝl2) on the same space on
which B± are realised. This has profound consequences, as was first observed
in [PT99, Fa99] for the similar case of Uq(sl2). Representations exhibiting
this duality phenomenon will generally be referred to as representations of
modular double type.

5.4. Evolution operators from the universal R-matrix

In order to build an evolution operator we need to find an operator r+−(µ/λ)
satisfying

(5.32) (r+−(µ/λ))−1 · L+(λ)L−(µ) · r+−(µ/λ) = L−(µ)L+(λ).

A formal solution to this equation is given by (π+
λ−1 ⊗ π−µ−1)(R−). Indeed,

formally applying πf
1 ⊗ π

+
λ−1 ⊗ π−µ−1 to the Yang-Baxter equation (4.23b)

seems to indicate that (π+
λ−1 ⊗ π−µ−1)(R−) solves (5.32). However, it is far

from clear how to make sense out of (π+
λ−1 ⊗ π−µ−1)(R−) due to the infinite

summations over monomials of generators defining the universal R-matrix.
Our main goal in this paper will be to generalise the definition of the univer-
sal R-matrix in such a way that evaluations like (π+

λ−1 ⊗ π−µ−1)(R−) become
well-defined and satisfy all the relevant properties. The product formula will
be very useful for this aim. In this subsection we will describe a first step in
this direction.

We had observed in Section 5.3.2 that π+
µ (fαi+kδ) = 0 for i = 0, 1, k >

0. This implies immediately that the infinite products representing6 (π+
µ ⊗

6To simplify the following formulae we rewrite (π+
λ−1 ⊗ π−

µ−1)(R−) = (π+
µ ⊗

π−
λ )(R−).
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π−λ )(R−≺δ) and (π+
µ ⊗ π−λ )(R−�δ) truncate to a single factor. We furthermore

observed after equation (5.30) that the imaginary roots are represented by
central elements in the representations π+

µ and π−λ . We conclude that the
product formula (5.12) yields a well-defined formal series in powers of µ/λ
of the form

(5.33) r+−
formal

(µ/λ) = ρ(µ/λ)εq(−τ2
q f1 ⊗ e1)εq(−τ2

q f0 ⊗ e0)q−t,

where fi := π+
µ (fi) and ei := π−λ (ei) for i = 0, 1, q−t := (π+

λ ⊗ π
−
µ )(q−t), and

τq = q − q−1. The function εq(w) is related to the quantum exponential as
εq(w) := expq2((q − q−1)−1w) introduced in (5.14). It can be written as

(5.34) εq(w) := exp(θq(w)), θq(w) :=

∞∑
k=1

(−1)k+1

k

wk

qk − q−k
.

The factor ρ(µ/λ) in (5.33) is a central element collecting the contributions
coming from the imaginary roots,

(5.35) ρ(µ/λ) := (π+
µ ⊗ π−λ )(R−∼δ).

By means of a straightforward calculation one may check that the expression
(5.33) will satisfy (5.32) in the sense of formal power series thanks to the
fact that εq(w) satisfies the functional relation

(5.36)
εq(qw)

εq(q−1w)
= 1 + w.

Our ultimate goal, however, is to construct an operator representing
(π+
µ ⊗ π−λ )(R−) on the vector space carrying the representation π+

µ ⊗ π−λ
of Uq(b−)⊗ Uq(b+). One of the main ingredients in the definition of the
product formula is the function εq(x) which is well-defined for |q| 6= 1. We
are here interested in the case q = e−πib

2

, b ∈ R. The function εq(x) can
not be used in this case: The series (5.34) defining εq(x) is clearly singular
for all rational values of b2, and has bad convergence properties otherwise.
However, in order to preserve the most important properties of the universal
R-matrix after renormalisation it will be sufficient to replace the function
εq(x) by a new special function which is well-defined for q = e−πib

2

, b ∈ R,
and which has all the relevant properties εq(x) has.

5.4.1. Canonical solution. We had seen above that the functional equa-
tion (5.36) plays a key role for ensuring that the product formula satisfies
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the defining properties of the universal R-matrix. We therefore need to find
a function Eb2(w) that is well-defined for |q| = 1 and satisfies the functional
equation (5.36). The physical application we have in mind forces us to im-
pose another important requirement: We want that the operator r+−(µ/λ)
is unitary for real µ/λ, which is necessary to get a unitary time evolu-
tion operator. Unitarity will hold if the function Eb2(w) replacing εq(w) in
(5.33) satisfies |Eb2(w)| = 1 for real positive w. We are now going to explain
that unitarity fixes a unique solution to the functional relation (5.36) when
|q| = 1.

It is by now pretty well-known how to find such a function Eb2(w): A
good replacement for εq(w) will be the function Eb2(w) defined as
(5.37)

Eb2(w) = exp
(
Θb2
(

1
2πb log(w)

))
, Θb2(x) :=

∫
R+i0

dt

4t

e−2itx

sinh(bt) sinh(t/b)
.

The function Eb2(w) defined in (5.37) is easily seen to fulfil the requirements
formulated above. It is closely related to the function e(x) := Eb2(e2πbx)
called non-compact quantum dilogarithm in [Fa99]. References containing
useful lists of properties and further references include [FaKV, ByT1, Vo].
The functional relation (5.36) is equivalent to the following finite difference
equation for Θb2(x),

(5.38) DbΘb2(x) := Θb2(x+ ib/2)−Θb2(x− ib/2) = − log(1 + e2πbx),

which has a canonical solution obtained by Fourier-transformation

Θb2(x) = −D−1
b log(1 + e2πbx) =(5.39)

= D−1
b

∫
R+i0

dt

2t

e−2itx

sinh(t/b)
=

∫
R+i0

dt

4t

e−2itx

sinh(bt) sinh(t/b)
.

The second equality in the last equation can be verified by summing over
residues.

We will now argue that replacing εq(w) by Eb2(w) is the essentially unique
choice that not only solves the functional relation (5.36), but is also unitary.

Note that (5.36) is formally equivalent to (εq(u))−1 · v2 · εq(u) = v2 + vuv
for any operators u, v satisfying the Weyl-algebra uv = q−1vu. We are going
to argue that Eb2(w) is essentially the unique function of w which satisfies
|Eb2(w)| = 1 for w ∈ R+ and

(5.40) (Eb2(u))−1 · v2 · Eb2(u) = v2 + vuv,
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for positive self-adjoint operators u, v satisfying the Weyl-algebra uv = q−1vu.
As the function Eb2(u) defined in (7.7) is unitary, it follows from (5.40) that
v2 + vuv is self-adjoint. Working in a representation in which v is diagonal,
one may use Eb2(u) to map v2 + vuv to diagonal form. Uniqueness of the
spectral decomposition of the self-adjoint operator v2 + vuv implies that the
most general operator which satisfies (5.40) is the form D = g(v)Eb2(u). The
only operators depending only on u which do this job are scalar multiples
of Eb2(u).

5.4.2. Minimality of the renormalization. To round off the discus-
sion, we are going to argue that replacing εq(w) by Eb2(w) is in a precise sense
the minimal subtraction of the divergencies εq(w) has when q approaches the
unit circle.

Let us note that Eb2(w) can be analytically continued to complex values
of b, allowing us to define it in the case where |q| < 1. We may then compare
Eb2(w) to εq(w) in this regime. The integral defining Θb2(w) may be evaluated
as a sum over residues in this case, giving

(5.41) Eb2(w) = εq(w)εq̃(w̃), q̃ := e−πi/b
2

, w̃ := w
1

b2 .

This means that Eb2(w) and εq(w) differ by quasi-constants, functions f(w) of
w which satisfy f(q2w) = f(w). Such quasi-constants represent an ambiguity
in the solution of the difference equation (5.36) that needs to be fixed by
additional requirements, in general.

The particular choice of quasi-constants appearing in (5.41) can be seen
as the minimal modification of the function εq(w) which is needed to get a
function well-defined for all q on the unit circle |q| = 1. In order to see this,
let us consider the function θq(w) introduced in (5.34) as function of the
complex parameter q. We will be interested in the behaviour of θq(w) when
q = e−πib

2

, b2 = k/l + iε. The terms with n = rl in the sum defining θq(w)
will be singular for ε→ 0. They behave as

(5.42) − (−1)r(l+k)

π(rl)2ε
wrl.

The terms with n = rk in the series defining θq̃(w̃) will similarly behave for

q̃ = eπib̃
2

, b̃2 = l/k + iε̃ as

(5.43) − (−1)r(l+k)

π(rk)2ε̃
w̃rk.
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The divergent pieces in (5.42) and (5.43) will exactly cancel each other if w̃ =
w

1

b2 and ε̃ = −εl2/k2, as is necessary to have b̃2 = b−2 +O(ε2). We thereby
recognise the factor εq̃(w̃) in (5.41) as a minimal choice of a quasi-constant
that cancels all the divergences that εq(w) develops when q approaches the
unit circle.

Taken together, the observations above motivate us to call Eb2(w) the
canonical renormalisation of the function εq(w) which is defined for |q| = 1.
The considerations above motivate us to regard the operator
(5.44)

r̂+−
rs (λ) = ρren(λ)r+−(λ), r+−(λ) := Eb2(λf+

rs)Eb2(λ/f+
rs)e

2i

πb2
log ur log us ,

where f+
rs := u−1

r vrvsu
−1
s , as a renormalised version of the formal expres-

sion r+−
formal

(λ/µ). The definition of the scalar factor ρren(λ) will be discussed
later. And it is indeed straightforward to check that the evolution opera-
tor constructed from r+−

rs (λ) reduces to the one constructed previously in
Section 3.3.3.

5.5. Building R-operators

We’ve seen that the renormalization of the universal R-matrix provides
us with r+−(λ/µ), the main ingredient for the construction of the time-
evolution operator. In order to build the Q-operators we need a second in-
gredient, the operator r++(λ/µ). There is a fairly easy way to get r++(λ/µ)
from r+−(λ/µ). Note that

(5.45) L−r (µ) = F−1
r · µ−1L+

r (µ)σ1 · Fr,

where σ1 =
(

0 1
1 0

)
, and Fr is the operator of Fourier-transformation which

maps

(5.46) F−1
r · ur · Fr = v−1

r , F−1
r · vr · Fr = ur.

Observing that σ1L
+
r (µ)σ1 = F2

r · L+
r (µ) · F−2

r one may easily check that

(5.47) r̃++
rs (λ/µ) := Fs · r+−

rs (λ/µ)F−2
r · F−1

s ,

will satisfy the defining relations (3.52).
It is furthermore not hard to show that the most general operator sat-

isfying (3.52) can be written in the form r̃++
rs (λ/µ)H(z+

rs), where z+
rs :=

urv
−1
r vsus. The choice of the function H(z) will turn out to be irrelevant
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for our applications to the lattice Sinh-Gordon model, and may therefore be
fixed by the convenient normalisation condition r++

rs (1) = Prs.
In order to get useful explicit formulae for r+−(λ/µ) and r++(λ/µ) we

may start from (5.44). An alternative representation will be particularly
useful:

(5.48) r+−
rs (λ) = Prs · ρλ(f+

rs, g
−
rs) · FrFs,

using the notations g−rs := urvrv
−1
s u−1

s , and

(5.49) ρλ(w, z) :=
ρλ(w)

ρ0(z)
,

ρλ(w) := e−
i

4πb2
(logw)2Eb2(λw)Eb2(λw−1)

ρ0(z) := e−
i

4πb2
(log z)2

.

In order to derive (5.48) one may use the identity

(5.50) e
2i

πb2
log ur log us = e

i

4πb2
((log g−rs)

2−(log f+rs)
2) · Prs · FrFs,

which can be verified by computing the matrix elements.
By combining (5.47) and (7.31) one finds immediately that r̃++

rs (λ) =
Prsρλ(f+

řs, z
+
rs),where f+

řs := Fr · f+
rs · F−1

r = urvrusv
−1
s , noting that z+

rs := Fr ·
g−rs · F−1

r . We may now conclude that

(5.51) r++
rs (λ) := Prsρλ(f+

řs),

is the unique solution of (3.52) which satisfies the normalisation condition
r++
rs (1) = Prs. For the case of Uq(ŝl2) we have thereby completed the calcu-

lation of the main ingredients needed to construct fundamental R-operators
and the corresponding transfer matrices. The development of the theory in
this case is continued in Appendix G where it is shown how to reproduce
the Q-operators for the lattice Sinh-Gordon model previously constructed in
[ByT1] by other methods from our formulae for r+− and r++ found above.
In the main text we shall continue with the generalisation of these results
for the case of Uq(ŝlM ).

6. R-operators from the universal R-matrix
— case of Uq(ŝlM)

We now generalise the discussion of the renormalisation of the real root
contributions to the cases of Uq(ŝlM ). To begin with, we explain how to
obtain the evolution operator from the universal R-matrix. One of the new
issues that arises for M > 2 is due to the fact that we will need to consider
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a slightly larger family of representations. Instead of the representations
π± we will need to consider pairs of mutually conjugate representations
(π+, π+̇) and (π−, π−̇). In Subsection 6.3 we will explain how the factorised
representations for the fundamental R-operators like (3.51) follow from the
representation theory of Uq(ŝlM ).

In the rest of this section we derive useful explicit representations for
the resulting R-operators, including a representation as an integral operator
with an explicit kernel. The kernel becomes simplest when we consider a
variant of the lattice model obtained from the twisted universal R-matrices
R̃± introduced in Section 4.3. The fundamental transfer matrix T is shown
to be a physical observable in the sense defined in Section 3.3.1, and the
projection to the physical degrees of freedom is described precisely as an
integral operator with explicit kernel.

6.1. Representations in quantum space

The connection between the integrable model defined in Section 3 and the
representation theory of Uq(ĝlM ) is encoded in the following relations

(6.1)

L+(λµ−1) =
1

θ+(λµ−1)

[(
πf
λ ⊗ π+

µ

) (
R+
)]

ren

L−̇(λµ−1) =
1

θ−̇(λµ−1)

[(
πf
λ ⊗ π−̇µ

) (
R−
) ]

ren

where L+(λ), L−̇(λ) ≡ L̄−(λ) were defined in Section 3.2.1, R± are two uni-
versal R-matrices given in Section 5.2 and θ+(x), θ−̇(x) are certain scalar
factors. The relevant representations entering (6.1) are defined as follows

(6.2) πf
λ(ei) = λ−1Ei,i+1, πf

λ(fi) = λEi+1,i, πf
λ(hi) = Ei,i − Ei+1,i+1,

where Eij are the matrix units EijEkl = δjkEil and

π+
λ (fi) =

λ

q − q−1
u−1
i vi, π+

λ (ki) = uiu
−1
i+1,(6.3)

π−̇λ (ei) =
λ−1

q−1 − q
viui+1, π−̇λ (ki) = u−1

i ui+1.(6.4)

{vi, ui}i=1,...,M generate the algebra W, see (3.9). It is easy to verify that
(6.3), (6.4) satisfy, respectively, the defining relations of Uq(b−), Uq(b+), see
(4.1). In particular the Serre relations (4.4), (4.5) follow from the exchange
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relations

(6.5)
π+
µ (fifj) = q+(δi+1,j−δj+1,i)π+

µ (fjfi) ,

π−̇µ (eiej) = q−(δi+1,j−δj+1,i)π−̇µ (ejei) .

We postpone to Section 8.2.2 the derivation of (6.1) by applying the
relevant representations to the infinite product formula for the universal R-
matrix given in Section 5.2. A simple way to verify the identification (6.1)
is to notice that

(6.6)
(
πf
λ ⊗ π+

µ

) (
q+t
)

=

M∑
i=1

Eiiui =
(
πf
λ ⊗ π̄−µ

) (
q−t
)

and check that the image of the reduced R-matrix satisfies the relations
(4.17), (4.18). As opposed to the direct evaluation of the product formula
for the universal R-matrix, this procedure does not allow to determine the
scalar factors θ+(x), θ−̇(x).

The relations (3.16) follow from the universal Yang-Baxter equation
(4.23) upon noticing that the matrix R(x, y) is obtained from the univer-
sal R-matrix as explained in Appendix E.5.

6.2. Light-cone evolution operator from the universal R-matrix

After we have identified the relevant representations in quantum space, see
equations (6.3), (6.4), we will show how to obtain the operators rε1ε2 from
the product formula for the universal R-matrix. In order to clarify certain
features of such expression for the infinite dimensional representations we
are considering, we will focus our attention on

(6.7) r+−̇(λµ−1) =
1

ρ+−̇(λµ−1)

[(
π+
λ ⊗ π

−̇
µ

) (
R−
)]

ren
.

As in the previous section, the notation [. . . ]ren indicates the use of a cer-
tain prescription for defining the infinite sums in the definition of R±. The
operator r−̇+ can be obtained in a similar way, or just using the relation
r−̇+σ

(
r+−̇) = 1, where σ exchanges the tensor factors. The case ε1 = ε2 re-

quires further considerations as both tensor factors correspond to the same
Borel half. This case is considered in some details in Section 6.4.
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The expression (6.7) provides us with a formal solution to the relations
(3.52) which characterize the building block for the light-cone evolution op-
erator. The key relation (3.52) follows directly from the special case

R+
12R

−
13R

−
23 = R−23R

−
13R

+
12

of the universal Yang-Baxter equations (4.23) by applying πf ⊗ π+
λ−1 ⊗ π−̇µ−1

to this relation. In order to obtain the generators of the discrete time-
evolution for the lattice models from (6.7), it is crucial that L+ and L̄−

are obtained via (6.1) from R− and R+, respectively. This fact reflects the
respective orientations in the integration over light-like segments defining
the classical counterparts of L+ and L̄−, as was observed in [RiT].

As summarized in Section 5.2, the evaluation of the universal R-matrix
consists of the following three steps: fix a convex order in ∆+(ŝlM ), evaluate
root vectors and finally substitute the root vectors in the product formula
(5.12). This procedure is straightforward upon following the instructions in
Section 5.2.1 and Appendix C.1.2. We proceed performing the first step.

6.2.1. The image of root vectors under π+ and π̄−. A key obser-
vation is that for the representations π+, π̄− most of the root vectors, for
a specific choice of convex order of positive roots, evaluate to zero. In the
case of π+, using the root ordering specified in Appendix C.1.1, the only
non-vanishing root vectors are given by

π+(fεi−εi+1
) =: fi,(6.8)

π+(fδ−(εi−εM )) = (q − q−1)i−1fi−1 · · · f1f0,(6.9)

π+(f
(M−1)
kδ ) =

(−1)k+1

k

1

q − q−1
ck+.(6.10)

where c+ := q−1(q − q−1)M fM · · · f1 = λM is central. For π̄−, using the short-
hand notation ēi = π̄−(ei), one obtains that the non-vanishing root vectors
are given by

π̄−(eεi−εj ) = (q−1 − q)j−i−1ēj−1 · · · ēi, i < j,(6.11)

π̄−(eδ−(ε1−εj)) = (q−1 − q)M−j ēM · · · ēj ,(6.12)

π̄−(e
(1)
kδ ) =

(−1)k+1

k

1

q−1 − q
c̄k−.(6.13)

where c̄− := q(q−1 − q)M ēM · · · ē1 = λ−M is central. Notice that we sup-
pressed the dependence on the spectral parameter from the notation π+, π̄−.
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The equations above immediately follow from the exchange relations
(6.5) and the definition of root vectors given in Section 5.2.1 and Ap-
pendix C.1.2.

6.2.2. The image of the universal R-matrix under π+ ⊗ π̄−. The
representations π+, π̄− posses the remarkable feature that the imaginary
root vectors are central. As a consequence, the contribution from the positive
imaginary root to the universal R-matrix is a scalar factor given by

(6.14) ρ+−̇(λµ−1) :=
[(
π+
λ ⊗ π

−̇
µ

) (
R−∼δ

)]
ren
.

We postpone the discussion about the renormalisation of this expression for
q on the unit circle, which is the case of interest to this paper, to Section 8.

Concerning the contribution of real positive roots γ ∈ ∆re
+(ĝlM ), compare

to (5.13), the results of Section 6.2.1 immediately imply

(6.15)
(
π+
λ ⊗ π̄

−
µ

)
(fγ ⊗ eγ) =

{
fi ⊗ ēi if γ = αi∈{1,...,M}

0 otherwise

Moreover, these operators commute among themselves

(6.16) χ̌iχ̌j = χ̌jχ̌i, χ̌i := −(q − q−1)2fi ⊗ ēi.

It follows that

(6.17)
[(
π+
λ ⊗ π̄

−
µ

) (
R−
)]

ren
= ρ+−̇(λµ−1)(F (χ̌))−1q−T ,

where

(6.18) (F (χ̌))−1 =

M∏
i=1

Eb2(χ̌i), qT := elog u⊗ log u/iπb2 ,

where as in Section 5.4 we took Eb2(ω) = [εq(ω)]ren, with Eb2(ω) given in
(5.37) and εq(ω) = expq2((q − q−1)−1ω). Let us compare this expression with
(3.43). Using the definition (6.7) and the result (6.17) one finds

(6.19) r−+(µλ−1) =
[
σ
(
r+−(λµ−1)

)]−1
= F (χ̌′)qT ,

where

(6.20) χ̌′i := σ
(
qT χ̌iq

−T ) = λµ−1
(
uivi ⊗ viu

−1
i+1

)
.

teschner
Sticky Note
Replace by 
\alpha_i,\quad i\in\{1,\dots,M\}
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The expression (6.19) coincides with (3.43) upon taking Jκ(x)=
[
Eb2(κ2x)

]−1
.

The fact that the renormalized expression (6.17) satisfies the intertwining
relation (3.52) follows from the fact that (3.43) does. Notice that χ̌′i is a
positive self-adjoint operator for λµ−1 positive.

6.3. Fundamental R-operator from the universal R-matrix

After having constructed the evolution operator, the next step is to construct
the fundamental R-operators. Our goal in this section will be to elaborate
on the representation-theoretic meaning of the factorised form (3.51) for
the fundamental R-operators observed in Section 3.4. It will be useful to
first consider RXXZ which turns out to have the most direct relation to the
universal R-matrix. The fundamental R-operator RAT can then be obtained
simply via (3.55).

6.3.1. More Lax-matrices. First, let us note that LXXZ(λ) admits a fac-
torisation similar to (3.11). We shall represent the matrix L+(λ)T appearing
as a factor in LXXZ(λ) in the form

(6.21) L+(λ)T = λ−1FL−(λ)F−1,

where T =
∑

i Ei+1,i, the automorphism F is defined via F−1(ui, vi)F =
(vi−1, ui), and

(6.22) L−(λ) :=

M∑
i=1

(uiEii + λviEi+1i) .

We note that the matrix T is the generator of the automorphism ZM in the
fundamental representation. ΩW := F2 represents the same generator of ZM
on W.

Let us consider, a bit more generally

Lε1,ε2A (µ̄, µ) = Lε1ā (µ̄)Lε2a (µ) ∈ End(CM )⊗W ⊗W,(6.23)

ε1, ε2 ∈ {+, +̇,−, −̇}.

where L+(λ) and L−̇(λ) ≡ L̄−(λ) were defined in (3.14) and (3.13), respec-
tively, while and L−(λ) and L+̇(λ) are introduced as

L+̇(λ) =
(
1− qλ−M

) [ M∑
i=1

(
u−1
i Eii − qλ−1viEi,i+1

) ]−1

.(6.24)
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The Lax operators L−(λ) and L+̇(λ) can be obtained from the universal
R-matrix as

L+̇(λµ−1) =
1

θ+̇(λµ−1)

[(
πf
λ ⊗ π+̇

µ

)
(R+)

]
ren
,(6.25)

L−(λµ−1) =
1

θ−(λµ−1)

[(
πf
λ ⊗ π−µ

)
(R−)

]
ren
,(6.26)

where

π+̇
λ (fi) =

λ

q − q−1
ui+1vi, π+̇

λ (ki) = uiu
−1
i+1,(6.27)

π−λ (ei) =
λ−1

q−1 − q
viu
−1
i , π−λ (ki) = u−1

i ui+1.(6.28)

In order to find a relation between L+̇+
A and L−̇−A let us note that

T−1L−(λ) = λF · L+(λ) · F−1,(6.29)

L−̇(λ)T = −qλ−1Ḟ · L+̇(λ) · Ḟ−1,(6.30)

where F and Ḟ are the automorphisms of W defined as

(6.31)
F · ui · F−1 = vi,

F · vi · F−1 = ui+1,

Ḟ · ui · Ḟ−1 = v−1
i ,

Ḟ · vi · Ḟ−1 = u−1
i+1.

It follows that L+̇+
A (µ̄, µ) and L−̇−A (µ̄, µ) are related by a similarity transfor-

mation,

(6.32) L−̇−A (µ̄, µ) = −qµµ̄−1ḞāFa · L+̇+
A (µ̄, µ) · (ḞāFa)−1.

This implies that RXXZ

AB can be obtained from an operator R′XXZ

AB satisfying

L+̇+
A (µ̄, µ)L−̇−B (ν̄, ν)R′XXZ

AB (µ̄, µ; ν̄, ν)(6.33)

= R′XXZ

AB (µ̄, µ; ν̄, ν)L−̇−B (ν̄, ν)L+̇+
A (µ̄, µ).

simply by applying the similarity transformation FA := ḞāFa.
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6.3.2. Factorisation. As observed previously we may get operatorsR′XXZ

satisfying (6.33) from the universal R-matrix in the following form

R′XXZ(µ̄, µ; ν̄, ν)(6.34)

:=
[
ρXXZ(µ̄, µ; ν̄, ν)

]−1[
(π+
µ−1 ⊗ π+̇

µ̄−1)⊗ (π−ν−1 ⊗ π−̇ν̄−1)
(
R−
) ]

ren
.

The product of Lax-matrices appearing in the factorisation (6.23) repre-

sents the tensor product of representations π−µ ⊗ π−̇µ̄ of the Borel-subalgebra
Uq(b+). It then follows from (∆⊗ id) (R) = R13R23 and (id⊗∆) (R) =
R13R12 that the operator R′XXZ can be factorised as

(6.35) R′XXZ

AB (µ̄, µ; ν̄, ν) = r+−̇
a,b̄

(µ, ν̄)r+−
a,b (µ, ν)r+̇−̇

ā,b̄
(µ̄, ν̄)r+̇−

ā,b (µ̄, ν),

with factors rε1,ε2(µ, ν) all obtained from the universal R-matrix by evalua-
tion in suitable representations as

rε1,ε2(µ, ν) :=
1

ρε1ε2(µ−1ν)

[(
πε1ν ⊗ πε2µ

) (
R−
)]

ren
,(6.36)

ε1 ∈ {+, +̇}, ε2 ∈ {−, −̇}.

The factorised representation (6.35) forR′XXZ

AB implies similar representations
for RXXZ

AB and RAB, as anticipated in (3.51).

Remark 5. The representations π̄− and π− can the considered the conju-
gate of each other in the following sense:

(6.37) π̄±−q−1λ(a) =
(
π±λ (S (a))

)∗
,

where S is the antipode

(6.38) S (ei) = −eik−1
i , S (fi) = −k+1

i fi, S (ki) = k−1
i .

and the involution ∗ is the anti-automorphism of the algebra W defined by
(ui, vi)

∗ = (u−1
i , vi). Notice that in (6.37) we introduced the representation

π̄+ relevant for the following sections. In the case of Uq(ŝl2) one has π̄−λ =
π−λ , π̄+

λ = π+
λ . One may further notice that π+

λ (fi) = π−−q−1λ−1(ei), π
+(ki) =

π−(k−1
i ).
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6.3.3. Decoupling. The representation π−µ ⊗ π−̇µ̄ is reducible, as can be
formally expressed as

(6.39)
(
π−µ−1 ⊗ π−̇µ̄−1

)
∆(a) =

(
πtriv ⊗ πmin

λ,κ

)
∆(a), a ∈ Uq(b+),

where πmin
s,t and πtriv are defined via

πmin
λ,κ (ei) =

λ−1

q−1 − q
V

1

2

i

(
κUi + κ−1U−1

i

)
V

1

2

i , πmin
λ,κ (qε̄i) = U−1

i ,(6.40)

πtriv(ei) = 0, πtriv(qε̄i) = C−1
i ,(6.41)

provided that we define

U2
i = uiv

−1
i ⊗ uivi, Vi = vi ⊗ ui+1 · C−1

i , C2
i = uivi ⊗ uiv

−1
i ,(6.42)

λ := q
1

2 (µµ̄)−
1

2 κ := (µ̄µ−1)
1

2 .(6.43)

Note that the operators Ui, Vi satisfy the commutation relations of the
algebra W, wile C2

i are central in the algebra generated by U2
i , V2

i and C2
i .

The relation (6.39) can be easily verified on the generators ei, q
ε̄i using the

definition of the coproduct and the representations π−̇, π− given in (6.4),
(6.28).

The factorisation (6.39) can alternatively be shown in the language of

Lax matrices as follows. It is straightforward to see that L−̇−A (µ̄, µ) can be
factorised as

(6.44) L−̇−A (µ̄, µ) = Lmin(µ̄, µ)Λ(C),

where

Lmin(µ̄, µ) =
(
1− q−1µ̄M

) [∑
i

(Eii − µ̄UiViEi+1,i)

]−1

(6.45)

×
∑
i

(EiiUi − µViEi+1,i),

using the definitions above. The fact that there exists ρmin
κ (λ) such that

(6.46) Lmin(µ̄, µ) =
1

ρmin
κ (λ)

[(
πf

1 ⊗ πmin
λ,κ

)
(R−)

]
ren

can either be verified directly, or follows more elegantly from the observations
made below in Subsection 6.3.4. Keeping in mind that matrix multiplication
represents the action of the co-product one may deduce (6.39) from (6.44).
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The factorisation (6.39) will be the representation theoretic root of the
decoupling of “unphysical” degrees of freedom observed in Section 6.9.2. It
will imply that the operator R′XXZ

AB constructed in the factorised form (6.35)
admits a similar factorisation into two factors acting nontrivially only in
πmin
λ,κ and πtriv, respectively, as will be verified by explicit calculation below.

6.3.4. Relation to evaluation representation. It is useful to notice
that the representation πmin can be extended to a representation of the full
affine algebra Uq(ĝlM ), as can be seen in the following way. Note that the
spectral parameter dependence of the matrix entries of Lmin(µ̄, µ) takes the
following form

Lmin(µ̄, µ) =

M∑
i=1

Eii
(
Lii + µµ̄M−1L̄ii

)
(6.47)

+ µ̄
M

2

(
µ

µ̄

) 1

2 ∑
i>j

(
µ̄−

M

2 µ̄i−jEijLji + µ̄
M

2 µ̄j−iEjiLij
)
,

where Lii, L̄ii and Lij are operators independent of the spectral parameter
and LiiL̄ii is central. The fact that the representation πmin

s,t extends from

Uq(b+) to a representation of Uq(ĝlM ) follows from the known fact that Lax
matrices satisfying (3.16) which have the form (6.47) with central qγ := LiiL̄ii
one may get a representation of Uq(ĝlM ) by setting

πev
λ (ei) =

λ−1

q−1 − q
Li,i+1L−1

ii , πev
λ (fi) =

λ

q − q−1
L̄−1
ii Li+1,i,(6.48)

πev
λ

(
qε̄i
)

= L−1
ii .(6.49)

The extension of the representation πmin
s,t to all of Uq(ĝlM ) is thereby recog-

nised as a particular representation πev
λ of evaluation type.

Remark 6. By a similar analysis as the one presented in Section 6.3.3 it
is easy to argue that

(6.50)
(
π+
λ1
⊗ · · · ⊗ π+

λM

)
∆(M) =

(
πtriv ⊗ π{λ}m. d. ◦ ev

)
∆,

where πtriv(fi) = 0 and π
{λ}
m. d. denotes a representation of Uq(slM ) on

L2(R
M(M−1)

2 ). If the parameters {λs} are generic, this is an irreducible rep-
resentation.

teschner
Sticky Note
\bar{\mu} ->\mu ??
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6.4. r++ from the universal R-matrix

In order to construct fundamental R-matrices and Q-operators, see Sec-
tion 3.4, we need to determine the other building blocks. We shall start
with

(6.51) r+−(λµ−1) =
1

ρ+−(λµ−1)

[
(π+
λ ⊗ π

−
µ )(R−)

]
ren
,

appearing in the expression (6.35) for the fundamental R-operator
R′XXZ

AB (µ̄, µ; ν̄, ν)
In the following we obtain a regularized version of (π+ ⊗ π−)R− from

the product formula for the universal R-matrix and show explicitly that
r+−(λ) satisfies the intertwining property (3.52).

In the case of π−, using the root ordering specified in Appendix C.1.1,
the only non-vanishing root vectors are given by

π−λ (eεi−εi+1
) =: ei =

q−
1

M λ−1

q−1 − q
y−1
i yi+1,(6.52a)

π−λ (eδ−(εi−εM )) = (q−1 − q)i−1e0e1 · · · ei−1 =
q−

i

M λ−i

q−1 − q
y−1
M yi,(6.52b)

π−λ (e
(M−1)
kδ ) =

(−1)k+1

k

1

q−1 − q
ck−.(6.52c)

where c− = q(q−1 − q)Me1 · · · eM = λ−M is central.
As in Section 6.2.2 the contribution form the positive imaginary root to

the universal R-matrix is a scalar factor given by

(6.53) ρ+−(λµ−1) :=
[(
π+
λ ⊗ π

−
µ

) (
R−∼δ

)]
ren
.

The renormalization prescription and its explicit form are discussed in Sec-
tion 8.

Concerning the contribution of real positive roots γ ∈ ∆re
+(ĝlM ) the re-

sult of Section 6.2.1 together with (6.52) immediately implies(
π+
λ ⊗ π

−
µ

)
(fγ ⊗ eγ)(6.54)

= −τ−2
q


w̌i if γ = αi, i ∈ {1, . . . ,M − 1}
q1−iw̌0 · · · w̌i−1 if γ = δ − (εi − εM ), i ∈ {1, . . . ,M − 1}
0 otherwise
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Where τq = q − q−1 and w̌i := −τ2
q fi ⊗ ei satisfy the abelian current algebra

on the lattice, see e.g. [FaV93]

(6.55) w̌iw̌j = q2(δi+1,j−δi,j+1)w̌jw̌i

It follows that

[(
π+
λ ⊗ π

−
µ

)
(R−)

]
ren

= ρ+−(λµ−1)

M−1factors︷ ︸︸ ︷
Eb2(w̌1) · · · Eb2(w̌M−1)(6.56)

× Eb2(q2−M w̌0 · · · w̌M−2) · · · Eb2(w̌0)︸ ︷︷ ︸
M−1factors

q−T

where qT is given in (6.17) and the renormalization prescription for the
quantum exponential is the same as in (6.17). Notice that w̌i = λµ−1u−1

i vi ⊗
viu
−1
i are positive self adjoint operator for λµ−1 real and positive.

6.5. Intertwining properties and useful expressions for r++

We now consider the operator r++(λ) appearing in the factorised representa-
tion (3.51) for RAB. The case of r−−(λ) is very similar. We first introduce an
operator r′++(λ) related to the operator r+−(λ) constructed in the previous
subsection as

(6.57) r′++(λ) = (1⊗F) · r+−(λ) · (Ω⊗F)−1.

Our next goal will be to verify that our renormalisation prescription for the
universal R-matrix guarantees that the intertwining relations (3.52) are sat-
isfied. To this aim we shall identify conditions that ensure that an operator
r++
ab (λa, λb) represents a solution of

(6.58)
[
r++
ab (λa, λb)

]−1
L+
a (λa)L+

b (λb)r++
ab (λa, λb) = L+

b (λb)L+
a (λa),

where L+(λ) is defined in (3.14). It will then be easy to verify that the
operator r++ given by (6.57), (6.56) satisfies these conditions. It will be
convenient to introduce

(6.59) ř++
ab = Pabr

++
ab .
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We temporarily suppress the dependence on the spectral parameters λa,b in
our notations. The intertwining relation (6.58) implies the following com-
mutation relations[̌

r++
ab , vi+1,avi,b

]
= 0,

[̌
r++
ab , ui,aui,b

]
= 0,(6.60) (

λ−1
a vi,bui+1,a + λ−1

b ui,bvi,a
)

ř++
ab = ř++

ab

(
λ−1
b vi,bui+1,a + λ−1

a ui,bvi,a
)
.(6.61)

In order to solve (6.60) we define

wi := v−1
i,b vi,aui,bu

−1
i+1,a,(6.62)

ηi := vi,bv
−1
i,a ui,bu

−1
i+1,a.(6.63)

One may put extra ab indices on w, η, this will not be done here as no
ambiguity arises. These variables generate the subalgebra of W ⊗W that
commutes with vi+1,avi,b and ui,aui,b, compare to (6.60). They give rise to
two mutually commutative copies of the U(1) current algebra on the lattice,
compare to (6.55), with opposite charge,

wiwj = q−2(δi,j+1−δi+1,j)wjwi,(6.64)

ηiηj = q+2(δi,j+1−δi+1,j)ηjηi,(6.65)

ηiwj = wjηi.(6.66)

Any function of the operators wi, ηi will satisfy (6.60). Turning our attention
to the conditions (6.61), let us note that these equations can be rewritten
as

(6.67) (vi,bui+1,a) ř++
ab (vi,bui+1,a)

−1 = (z + qwi)
−1 ř++

ab (1 + zqwi) ,

where z := λbλ
−1
a . Noting that (vi,bui+1,a) wj (vi,bui+1,a)

−1 = q2(δi,j−δi+1,j)wj
one recognises (6.67) as a difference equation restricting the dependence of
ř++
ab on the operators wi.

6.5.1. First formula for ř++. In this section we will show that any
expression of the form

ř++
ab =

h(zw−1
1 )

θ(w1)

h(zw−1
1 2)

θ(w1 2)
· · ·

h(zw−1
1 (M−1))

θ(w1 (M−1))
(6.68)

× h(zM−1w1 (M−1)) · · ·h(z2w1 2)h(zw1),
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will represent a solution of (6.67) provided that the function h(x) satisfies
the relations

(6.69) h(q+1x) = h(q−1x) (1 + x) , θ(x) := h(x)h(x−1).

In (6.68) we have been using the notations wi j := qi−jwiwi+1 · · ·wj . Notice

that the q power in front of this expression is such that wi j = e
∑j
k=i logwk .

One furthermore has θ(q+1x) = xθ(q−1x). It is manifest that for z = 1 one
has ř++

ab = 1. The fact that (6.68) solves (6.67) for i = 1 is immediately
verified by using the properties (6.69) and observing that the products w1 k

are invariant under the conjugation in the left hand side of (6.67) for 2 ≤ k ≤
M . In order to complete the proof that (6.68) provides the desired solution
it is enough to show that it is cyclic invariant, i.e. it does not change upon
substituting wj with wj+1. In order to do so we find it convenient to rewrite

ř++
ab = Υwh(zw2)h(zw3) · · ·h(zwM )(6.70)

× h(zM−1w1 (M−1)) · · ·h(z2w1 2)h(zw1),

where

(6.71) Υw :=
1

θ(w1)

1

θ(w1 2)
· · · 1

θ(w1 (M−1))
=

1

θ(wM−1)
· · · 1

θ(w2)

1

θ(w1)
.

The quantity Υw is cyclic invariant by itself. This can be shown moving the
the last factor on the right of (6.71) to the left and using basic properties
of the function θ(x). In order to show that the remaining factor in (6.70) is
cyclic one uses the pentagon relation

(6.72) h(y)h(x) = h(x)h(q+1xy)h(y), xy = q−2yx.

Details are left to Appendix F.1. We have thus singled out (6.69) and (6.72)
as the properties of the special function h(x) necessary in order for (6.68) to
solve (6.67). These properties are satisfied by Eb2(x) [Fa99, FaKV, Vo], so we
will set h(x) = Eb2(x). The function eb(x) = Eb2(e2πbx) satisfies the inversion
relation

(6.73) eb(x)eb(−x) = ζbe
iπx2

, ζb = e
iπ

12
(b2+b−2),

which implies that θ(e2πbz) = ζbe
iπz2

.

6.5.2. r++ via the Universal R-matrix: comparison. One should
note, however that equation (6.58) can not determine r++

ab uniquely. Recall
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that the variables η commute with the variables w and satisfy (6.60). They
furthermore commute with vi,bui+1,a. Multiplying a given solution r++

ab of
(6.58) by any function of the operators ηi will therefore give us another
solution of (6.58).

In Section 6.5.1 we demonstrated that the operator r++
ab (λ, µ) defined

using (6.68) in (6.59) is a solution to (6.58). We expect that the operator
r′++(µλ−1) defined by a suitable renormalisation of the formal expression
following from the universal R-matrix in Section 6.4 represents another so-
lution to (6.58). We shall now clarify the relation between the two operators.
It is expressed by the following formula

(6.74) r′++
ab (µλ−1) = r++

ab (λ, µ)Υη,

where Υη takes the same form as Υw, defined in (6.71), with the function
θ(x) replaced by its inverse θ−1(x). It follows immediately from relation
(6.74) that the operator r′++ indeed solves the intertwining relation (6.58),
as expected. The presence of the factor Υη reflects the ambiguity in the
solution of (6.58) noted above.

Proof of (6.74). It follows from (6.57) and (6.56) that

(6.75) Pab r′++
ab (µλ−1) = NabSabF (ŵ)S−1

ab ,

where

F (ŵ) = Eb2(w̌1) · · · Eb2(w̌M−1)Eb2(q2−M w̌0 · · · w̌M−2) · · · Eb2(w̌0)(6.76)

Nab := PabFbq−TabF−1
b Ω−1

a , Sab := ΩaFbq+Tab ,(6.77)

and w̌i = µλ−1u−1
i vi ⊗ viu

−1
i . In order to derive (6.74) from (6.75) we need

to take two simple steps: (i) Study the action of the similarity transform Sab,
and (ii) derive a useful expression for the operator Nab. Concerning point
(i), it is easy to show that

(6.78) Sabw̌iS−1
ab = zwi+1,

where wi is defined in (6.62), while z = µλ−1. For taking the second step
(ii), it is useful to note the following identity

(6.79) Nab = ΥwΥη,

where Υw is defined in (6.71) and Υη takes the same form as Υw with the
function θ(x) replaced by its inverse θ−1(x). This identity can be shown by
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computing the matrix elements of both sides. One may further notice that
Υη,w satisfy the relations

(6.80) ΥwwiΥ
−1
w = w−1

i−1, ΥηηiΥ
−1
η = η−1

i−1.

The relation (6.74) simply follows from (6.75), (6.78), (6.79) and (6.70).
�

6.5.3. r̃++ satisfies the Yang-Baxter equation. We have seen that
the intertwining relation (6.58) does not fix r̃++ uniquely. Here we adress
the natural question of whether the Yang-Baxter equation for r̃++ fixes this
ambiguity. A solution of (6.58) is given by

(6.81) r++
ab (λa, λb) = Pabρz(wab)fz(ηab), z = λ−1

a λb.

Here wab and ηab are defined in (6.62), (6.63), moreover ρz(wab) is defined
by (6.70) and fz(ηab) is any function of η. The Yang-Baxter equation for
r++ can be brought to the braid-type form

fz(η1)ρz(w1)fzw(η2)ρzw(w2)fw(η1)ρw(w1)(6.82)

= fw(η2)ρw(w2)fzw(η1)ρzw(w1)fz(η2)ρz(w2),

where η1 = ηba, w1 = wba, η2 = ηcb, w2 = wcb. The important observation to
be made is that ηα,iwβ,j = wβ,jηα,i, where α, β = 1, 2. For this reason the
braid relation above can be disentangled into two relations

fz(η1)fzw(η2)fw(η1) = fw(η2)fzw(η1)fz(η2),(6.83)

ρz(w1)ρzw(w2)ρw(w1) = ρw(w2)ρzw(w1)ρz(w2).(6.84)

We conclude that a solution to (6.58) of the form (6.81) satisfies the Yang-
Baxter equation provided that fz and ρz satisfy the braid relations (6.83),
(6.84). In the discussion above we took fw(η) to be either 1 or proportional
to Υη, see (6.80). One may observe that Υη1

Υη2
Υη1

= Υη2
Υη1

Υη2
. In Ap-

pendix F.2 we verify (6.84) directly.
The considerations above imply in particular that the normalised R-

operator r++ satisfies the same Yang-Baxter equation as the R-operator
r′++ coming from the universal R-matrix.

6.6. Another useful expression for ř++

We are now going to derive another expression for the operator ř++
ab that

will be very useful for deriving representations as integral operators. The
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operator ř++
ab can be represented as

(6.85) ř++
ab =

∫
ds ρ̃++

z (s)w(s), ds = δ(stot)

M∏
i=1

dsi, w(s) := e
∑M
i=1 si logwi ,

where stot =
∑M

i=1 si, z = e2πbv, q = e−iπb
2

and

(6.86) ρ̃++
z (s) = Nz

M∏
k=1

sb(ibsk,k+1 − v + cb), Nz :=
eπiv

2 M(M−1)

2

sb(cb −Mv)
,

using the notations si,j = si − sj , v = (2πb)−1log z. The special function
sb(x) is a close relative of eb(x) defined as

(6.87) sb(x) = ζ
− 1

2

b e−
iπ

2
x2

eb(x).

In order to derive (6.85), let us introduce the notation xk = (2πb)−1log wk
and x1 k := (2πb)−1log w1 k = x1 + · · ·+ xk. From the exchange relations
(6.64) it follows that

(6.88) [xi, xj ] =
1

2πi
(δi+1,j − δi,j+1),

where the indices are taken modulo M . Consider (6.68) and rewrite each
term using [FaKV]

h(zw−1
1 k)

θ(w1 k)
=
eiπv

2

e−2πivx1 k

eb(x1 k − v)
(6.89)

= ζ−1
0

∫
R
duk e

iπu2
k (eb(v − uk − cb))−1 e−2πiukx1 k ,

h(zkw1 k) = eb(kv + x1 k)(6.90)

= ζ+1
0

∫
R
dvke

−iπv2
k eb(cb + vk)e

−2πivk(kv+x1 k),

where ζ0 = eiπ(1−4c2b)/12. The next step is to group the non-commuting ex-
ponentials (using the relation eAeB = eA+Be

1

2
[A,B] when [A,B] is central) as

follows (
e−2πix1L1 · · · e−2πix1 M−1LM−1

) (
e−2πix1 M−1RM−1 · · · e−2πix1R1

)
(6.91)

= e−2πb
∑M−1
k=1 zisi+1,Mw(s),
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where zi = (Li −Ri)/2 and Li +Ri = ib(si − si+1) with
∑M

i=1 si = 0 and
si,j = si − sj . With this change of variables we rewrite
(6.92)

(6.68) =

∫ M∏
i=1

dsiδ(stot)w(s)

M−1∏
k=1

[
e−2πikv(ak−cb)

∫
R
dz

eb(ak − z)
eb(bk − z)

e−2πizρk

]
,

where

(6.93) ak = cb + i
b

2
sk,k+1, bk = v − i b

2
sk,k+1 − cb, ρk = −ibsk,M − kv.

Notice that the integration has decomposed into the integration over s and
the product of M − 1 integrals over the variable z. These integrals can be
done using [FaKV, ByT1]

(6.94)

∫
R
dy

eb(v − y)

eb(u− y)
e−2πiwy =

sb(v − u− cb)sb(w + cb)

sb(v − u+ w − cb)
e−πiw(u+v).

Note that the term in parenthesis in (6.92) can be simplified by using the
identity

(6.95)

M−1∏
k=1

Sb(bsk,k+1 + iv)Sb(bsM,k + ikv)

Sb(bsM,k+1 + i(k + 1)v)
=

1

Sb(iMv)

M∏
k=1

Sb(bsk,k+1 + iv),

which holds for any function Sb(x). The relation (6.85) immediately follows
upon setting Sb(x) := sb(ix+ cb).

Let us finally note that (6.85) gives us a convenient way to re-prove that
ř++
ab satisfies (6.67). Inserting (6.85) into (6.67) one finds that (6.67) will

hold if Kz(s) := q−
1

2

∑
i,j siÂijsj ρ̃++

z (s) satisfies

(6.96) 0 = Kz(s)(zt2
i − 1) +Kz(s− δi + v0)(1− zq2t2

i−1), ti := qsi−si+1 ,

where v0 = 1
M (1, 1, . . . , 1) and δi is a M -vector with zero everywhere except

at position i. In deriving (6.96) we made use of the following property:
w(s + αv0) = w(s) for an an arbitrary constant α. This will be the case if

(6.97) Kz(s) =

M∏
i=1

fz(t2
i ),

provided that fz(x) satisfies fz(q
−2x) = (1− zx)fz(x), as is clearly the case

when fz(x) is chosen as fz(t2
i ) =

(
Eb2(−qzt2

i )
)−1

.
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6.7. The twisted story

We had previously observed the possibility to modify the universal R-
matrices by using Drinfeld twists. It is natural to ask what is the integrable
lattice model constructed from the twisted R-matrices7. We will consider
the simple twist introduced in Section 4.3. Some remarkable simplifications
will later emerge in this case.

Let us first consider (πf ⊗ π+)(R̃), and (πf ⊗ π−̇)(R̃). The resulting Lax
matrices are

L̃+
2a−1(µ) = Λ(ũ)

(
1 + q

M−1

M
1

µ

M∑
i=1

vi,2a−1Eii+1

)
,(6.98)

L̃−̇2a(µ̄) = (1− q−1µ̄M )

(
1− q−

1

M µ̄

M∑
i=1

vi,2aEi+1i

)−1

Λ(ũ′),(6.99)

where ũ and ũ′ are defined as

(6.100) ũi,2a−1 =
∏
j

(uj,2a−1)−Xij , ũ′i,2a =
∏
j

(uj,2a)
−Xji .

and Xij is given in (4.25). The only non-trivial commutation relations in-
volving the variables above are given by

(6.101)
ũi,2a−1vj,2a−1 = q

2

M
−2δijvj,2a−1ũi,2a−1,

ũ′i,2avj,2a = q2δi,j+1− 2

M vj,2aũ′i,2a.

The algebra generated by the matrix elements of L̃(µ̄, µ) = L̃−̇(µ̄)L̃+(µ) has
generators

(6.102)
Ṽ2
i,a = u2

i,2avi,2avi,2a−1u−2
i+1,2a−1,

C̃2
i,a = vi,2avi+1,2a−1,

Ũi,a = ũ′i,2aũi,2a−1.

The physical degrees of freedom are conveniently represented by

(6.103) χ̃i,2a = vi,2a+1vi,2a, χ̃i,2a−1 = u2
i,2avi,2avi,2a−1u−2

i+1,2a−1,

7 The same twist has been used in [IS03].
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they satisfy the same algebra as χi,m. The light-cone evolution operators are
now found to be

(6.104) Ũ+
κ = Codd

N∏
a=1

q2f2a,2a+1

M∏
i=1

Jκ(χ̃2a), Ũ−κ = Ũ+
κ C−1,

where

(6.105) fab := − 1

2(πb2)2

∑
i,j

log(ui,a)Xij log(uj,b).

The equations of motion (3.5) are unchanged. This means that the integrable
lattice model constructed from the twisted universal R-matrices is as good
as a regularisation of the affine Toda theory as the original one.

In order to clarify how much replacing the universal R-matrix R by
R̃ modifies the integrable lattice models constructed using these universal
R-matrices let us temporarily consider more general twist elements of the
form F = σ(q−f ) with matrix Xij appearing in (4.25) left arbitrary. The
Lax matrices obtained from R̃ always take the form
(6.106)

L̃+(µ) = Λ(yL)`Λ(yR) =

M∑
i=1

(
a+
i Ei,i + b+

i Ei,i+1

)
,

L̃−̇(µ̄) = Λ(ȳL)¯̀Λ(ȳR) = (1− q−1µ̄M )

[
M∑
i=1

(
(a−i )−1Ei,i − b−i Ei+1,i

)]−1

,

where
(6.107)

` = 1 + q
M−1

M
1

µ

M∑
i=1

Ei,i+1, ¯̀= (1− q−1µ̄M )

(
1− q−

1

M µ̄

M∑
i=1

Ei+1,i

)−1

.

The dependence on the twist is encoded in the form of the variables yLi , yRi ,
ȳLi , ȳRi in terms of ui, vi. The explicit expressions will not be used in the
following. The gauge invariant combinations are

(6.108)

χ̃i,2a−1 =

(
1

ȳRi+1

ȳRi

)
2a

(
yLi

1

yLi+1

)
2a−1

∼
(

b−i a−i

)
2a

(
b+
i

1

a+
i+1

)
2a−1

,

χ̃i,2a =

(
ȳLi+1

1

ȳLi

)
2a

(
1

yRi
yRi+1

)
2a+1

∼
(

a−i+1b−i

)
2a

( 1

a+
i

b+
i

)
2a+1

.
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It is not hard to see that the algebraic relations and the discrete equation
of motion satisfied by the χ̃i,k are independent of Xij . Let us furthermore
note that for generic Xij we have

(6.109) T̃(λ) = T(λ)
∣∣
χ 7→χ̃

where T̃(λ) is the monodromy matrix defined from L̃ε(µ) in the same way
as T(λ) is built from Lε(µ). In order to verify (6.109) it suffices to note that

(6.110) M̃(λ) = Λ(yR1 )−1M′(λ)Λ(yR1 ), M′(λ) = Λ2N
¯̀Λ2N−1` . . .Λ1`,

where

(6.111) Λ2a := Λ(yR2a+1ȳL2a), Λ2a−1 := Λ(ȳR2ayL2a−1).

Notice that the matrices Λk contain only gauge invariant combinations.
Moreover, one can verify that the effect of the similarity transform Λ(yR1 ) on
the transfer matrix is the same for any value of the twist. We conclude that
the twist only modifies the way the variables χ̃i,k are constructed out of the
basic variables ui,k and vi,k. It will turn out, however, that some choices of
Xij are more convenient to work with than others.

6.8. Assembling the fundamental R-operators

6.8.1. Preparations. We had previously observed that the Lax-matrices
of our interest can be represented in a factorised form, LA(λ) = L̄−ā (µ̄)L+

a (µ).
We are using the notation A = (ā, a) and will denote the Hilbert space the
matrix elements of LA(λ) are realised on by HA = Ha ⊗Hā. It follows that
the corresponding fundamental R-operators can be obtained from

RAB(µ̄, µ; ν̄, ν) = r+−̇
ab̄

(ν̄/µ)r++
ab (ν/µ)r−̇−̇

āb̄
(ν̄/µ̄)r−̇+

āb (ν/µ̄).(6.112)

Our goal is to find more explicit representations for the operators RAB. We
begin by displaying the structure of the ingredients in a convenient form:

(6.113a)
r+−̇
ab̄

(ν) = (ϑ1/ν(χ̌b̄a))
−1q−tb̄a ,

r−̇+
āb (ν) = qtābϑν(χ̌āb),

r++
ab (ν) = Pabρ++

ν (wab),

r−̇−̇
āb̄

(ν) = Pāb̄ρ
−̇−̇
ν (w̄āb̄),

where χ̌āb, wab and w̄āb̄ denote the collection of operators

(6.113b)
wi
ab =

(
viu
−1
i+1

)
a

(
v−1
i ui

)
b
,

w̄i
āb̄ =

(
viui+1

)
ā

(
v−1
i u−1

i

)
b̄
,

χ̌iāb :=
(
ui+1vi

)
ā

(
viu
−1
i

)
b
.
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We may thereby represent RAB in the following form:

RAB(µ̄, µ; ν̄, ν) = PAB ·
[
ϑµ/ν̄(zAB)

]−1 · ρ++
ν/µ(xAB)ρ−−ν̄/µ̄(yAB) · ϑν̄/µ(zAB),

(6.114)

where

(6.115)
xiAB := q−tāb · wi

ab · q+tāb =
(
viu
−1
i+1

)
a

(
u−1
i+1ui

)
ā

(
v−1
i ui

)
b
,

yiAB := q−tāb · w̄i
āb̄ · q

+tāb =
(
viui+1

)
ā

(
ui+1u−1

i

)
b

(
uiv
−1
i

)
b̄
.

and zAB = χ̌iāb. It will be useful to observe that the operators xiAB, yiAB and

ziAB can be expressed in terms of operators UiA, V̂iA, UiB and V̌iB defined as
(6.116)
(UiA)2 = (uivi)ā

(
viu
−1
i+1

)
a
,

(CiA)2 =
(
v−1
i ui

)
ā

(
ui+1vi

)
a
,

V̂iA = (CiA)−1ViA,

V̌iB = (Ci+1
B )−1ViB,

ViA = ui+1,āui+1,a.

Notice that the operators CiA are central in the algebra generated by the
combinations (6.116), while UiA, ViA satisfy the defining relations of the al-
gebra WM .

The result is most conveniently expressed in the form

(6.117)
xiAB = (ziAB)−

1

2 (UiA)+2(ziAB)−
1

2 ,

yiAB = (ziAB)+ 1

2 (UiB)−2(ziAB)+ 1

2 ,
ziAB = UiAV̂iA(V̌i−1

B )−1UiB.

This representation makes clear that the operator PABRAB commutes with
CiA and CiB. Noting that CiA ≡ Ci2a−1 if A = (ā, a) (2a, 2a− 1), it becomes
easy to see that the fundamental transfer matrices T(µ̄, µ; ν̄, ν) defined
as T(µ̄, µ; ν̄, ν) = C · T (µ̄, µ; ν̄, ν), where C is the shift operator, commute
with Ci2a−1.

In order to show that the fundamental transfer matrices T(µ̄, µ; ν̄, ν) also
commute with Ci2a let us note that the cyclic symmetry of the trace allows
us to rewrite the definition of T (µ̄, µ; ν̄, ν) in terms of the fundamental R-
operators R′AB associated to the Lax-matrices L′A(λ) = L+

a (µ)L̄−ā (µ̄). The
corresponding fundamental R-operator R′AB may be represented as

R′AB(µ, µ̄; ν, ν̄) = r−̇+
āb (ν̄/µ)r++

ab (ν/µ)r−̇−̇
āb̄

(ν̄/µ̄)r+−̇
ab̄

(ν/µ̄).(6.118)

A straightforward generalisation of the analysis above leads to the conclusion
that PABR′AB commutes with Ci

′

A and Ci
′

B, defined as

(6.119) Ci
′

A := (viui)a
(
v−1
i ui+1

)
ā
, Ci

′

B := (viui)b
(
v−1
i ui+1

)
b̄
.
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Noting that Ci
′

A ≡ Ci2a if A = (a, ā) (2a+ 1, 2a) leads to the conclusion
that T(µ̄, µ; ν̄, ν) commutes with Ci2a. Taken together we have shown that
the fundamental transfer matrix is a physical observable.

XXZ-type chains. One may also consider RXXZ

AB defined as

(6.120) RXXZ

AB (µ̄, µ; ν̄, ν) = r−−̇
ab̄

(ν̄/µ)r−−ab (ν/µ)r−̇−̇
āb̄

(ν̄/µ̄)r−̇−āb (ν/µ̄),

with r−−ab (1) = Pab, r−̇−̇
āb̄

(1) = Pāb̄. The operator RXXZ

AB is related to the lattice

affine Toda fundamental R-operator RAT

AB = RAB via8

(6.121) RXXZ

AB (µ̄, µ; ν̄, ν) = ΩA · (FaFb)−1 · RAT

AB(µ̄, µ; ν̄, ν) · (FaFb) · Ω−1
B .

It follows that RXXZ

AB takes the form (6.114) with

(xAB, yAB, zAB)XXZ = S (xAB, yAB, zAB)AT S−1,(6.122)

S := ΩB · (FaFb)−1.

6.8.2. Twisted lattice affine Toda. One may easily carry out the same
analysis for the R-operators coming from the twisted universal R-matrices
R̃±, see (4.28). The formulae for the ingredients are very similar

(6.123a)
r̃+−̇
ab̄

(ν) = (ϑ1/ν(χ̌b̄a))
−1q−2fb̄a ,

r̃−̇+
āb (ν) = q2fābϑν(χ̌āb),

r̃++
ab (ν) = Pabρ++

ν (wab),

r̃−̇−̇
āb̄

(ν) = Pāb̄ρ
−−
ν (w̄āb̄),

where χ̌āb, wab and w̄āb̄ are now given by the expressions

(6.123b) χ̌iāb := vi,āvi,b,
wi
ab =

(
u−1
i+1viu

−1
i+1

)
a

v−1
i,b ,

w̄i
āb̄ = vi,ā (uiviui)

−1
b̄
.

The rest of the analysis proceeds as before. The resulting formula for the
operator R̃AB(µ̄, µ; ν̄, ν) is very similar to formula (6.117), the only changes

8 This equation differs from (3.55) by a similarity transform originating form the
definition of LXXZ, see (3.22).
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being that one needs to replace the expression for ziAB in (6.117) by

(6.124) z̃iAB = V̂iA(V̌i−1
B )−1,

and that one now needs to define

(6.125)
(UiA)2 =

(
u2
i vi
)
ā

(
viu
−2
i+1

)
a
,

(CiA)2 = v−1
i,ā vi+1,a,

V̂iA = vi,ā,

V̌iB = v−1
i+1,b.

This innocent-looking modification has important consequences. For appli-
cation to integrable lattice models it is helpful to have a formula for the
kernel of RAB(µ̄, µ; ν̄, ν) that is as simple as possible. Such a formula will be
derived shortly for the operator R̃AB(µ̄, µ; ν̄, ν) obtained from the twisted
R-matrices R̃±, taking advantage of the fact that z̃iAB is diagonal in repre-
sentations where ViA and ViB are diagonal.

We may observe, on the other hand, that it is impossible to diago-
nalise the families of operators {UiAViA; i = 1, . . . ,M} and {(ViB)−1Ui+1

B ; i =
1, . . .M} simultaneously as the operators in these families do not mutu-
ally commute for different values of the index i. This means that it will be
much more convenient to work with integrable lattice models build from the
twisted universal R-matrices R̃± rather than the original ones.

6.8.3. Factorization from the universal R-matrix.. In all the cases
above were able to express the R-operators in terms of the operators Ui,R.
Vi,R, Ci,R, R = A,B generating a sub-algebra of the algebra of all operators
acting on HA ⊗HB which has a center generated by the operators Ci,R. We
will now see that this phenomenon has a natural representation-theoretic
explanation.

We had observed in Section 6.3.3 that the tensor product π−λ1
⊗ π−̇λ2

is
isomorphic to the tensor product of a representation of evaluation type with
a trivial representation. A similar statement holds for the tensor product
π+
λ1
⊗ π+̇

λ2
. The precise statement is

(6.126)
(
π+
λ1
⊗ π+̇

λ2

)
∆(a) =

(
πmin
λ,κ ⊗ πtriv

)
∆(a), a ∈ Uq(b−),

where πmin
λ,κ and πtriv are defined via

πmin
λ,κ (fi) =

λ

q − q−1
V

1

2

i

(
κU−1

i+1 + κ−1Ui+1

)
V

1

2

i , πmin
λ,κ (qε̄i) = Ui,(6.127)

πtriv(fi) = 0, πtriv(qε̄i) = Ci,(6.128)
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provided that we define

U2
i = uiv

−1
i−1 ⊗ uivi−1, Vi = u−1

i ⊗ vi · Ci+1, C2
i = uivi−1 ⊗ uiv

−1
i−1,(6.129)

λ := q
1

2 (λ1λ2)
1

2 κ := (λ1λ
−1
2 )

1

2 .(6.130)

The isomorphisms (6.39) and (6.126) implies, upon assuming the validity
of (4.9b), that the R-operator R′XXZ

AB (µ̄, µ; ν̄, ν) has besides (6.35) another
factorisation of the schematic form

(6.131) R′XXZ

AB = R(min)⊗(min)
AB R(min)⊗(triv)

AB R(triv)⊗(min)
AB R(triv)⊗(triv)

AB .

Rewriting R′XXZ

AB in the form (6.131) will allow us to extract R(min)⊗(min)
AB

from R′XXZ

AB .
This is done as follows. Let us start from (6.35), repeated here for con-

venience:

(6.132) R′XXZ

AB = r+−̇
a,b̄

(µ, ν̄)r+−
a,b (µ, ν)r+̇−̇

ā,b̄
(µ̄, ν̄)r+̇−

ā,b (µ̄, ν).

Introducing the notation

(6.133) rε1ε2x,y (λ, µ) = r̄ε1ε2λ/µ({zε1ε2x,y })q−txy , zε1ε2i = −τ2
q (πε1(fi)⊗ πε2(ei)) ,

and moving the factors q−txy to the right we see that R′XXZ

AB can indeed be
written in the form (6.131) with

(6.134) R(min)⊗(min)
AB = r̄+−̇

µ/ν̄

(
f+
A e−̇B

)
r̄+−
µ/ν

(
f+
A e−B

)
r̄+̇−̇
µ̄/ν̄

(
f+̇
A e−̇B

)
r̄+−
µ̄/ν

(
f+
A e−B

)
q−tAB

where we used the notation

(6.135)
f+
i,A := Vi,AU−1

i+1,A, f+̇
i,A := Ui+1,AVi,A,

e−̇i,B := Ui,BVi,B, e−i,B := Vi,BU−1
i,B,

and the relation

(6.136) q−(tab̄+tab+tāb̄+tāb) = q−tABR(min)⊗(triv)
AB R(triv)⊗(min)

AB R(triv)⊗(triv)
AB .

6.9. Representation as integral operators

The generalized Baxter equation to be derived in the next section becomes
an efficient tool for the calculation of the spectrum of the affine Toda the-
ories once it is supplemented by certain informations about the analytic
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properties of the Q-operators. In order to derive this information it will be
useful to represent the Q-operators as integral operators, which will allow
us to deduce the relevant information from the analytic properties of the
kernels representing Q(λ), as was done in [ByT1] for the Sinh-Gordon case.

Our first goal is therefore to present a representation of the fundamental
R-operator RAB(µ̄, µ; ν̄, ν) as an integral operator.

6.9.1. Kernel of fundamental R-operator. We shall now compute the
kernel of R̃XXZ

AB (µ̄, µ; ν̄, ν). This operator may be represented as in (6.114),
where now

(6.137) ẑiAB = V̂iA(V̌iB)−1.

Let ŘXXZ

AB (µ̄, µ; ν̄, ν) := PABR̃XXZ

AB (µ̄, µ; ν̄, ν). As ŘXXZ

AB commutes with CiA and
CiB it suffices to consider the operator ŘAB obtained from ŘXXZ

AB by replacing

the representation for the operators UiA, UiB, V̂iA and V̌iB following from
(6.125) by a representation where these operators act on a Hilbert space
spanned by states 〈x, x′| such that

(6.138) 〈x, y|V̂iA = 〈x, y|e2πbxi,i+1 , 〈x, y|V̌iB = 〈x, y|e2πbyi,i+1 ,

using the notations xi,j := xi − xj . Our task is thereby reduced to the cal-
culation of the matrix elements of the operator ρ++

µ/ν(x̃AB)ρ−−µ̄/ν̄(ỹAB), where

(6.139)
x̃iAB = (z̃iAB)−

1

2 (UiA)+2(z̃iAB)−
1

2 ,

ỹiAB = (z̃iAB)+ 1

2 (Ui+1
B )−2(z̃iAB)+ 1

2 .

It is useful to represent the operators ρµ/ν(x̃AB) and ρµ̄/ν̄(ỹAB) using a
non-commutative generalisation of the Fourier transformation in the form
(6.140)

ρ++
λ (x̃AB) =

∫
RM

dµ(s) ρ̃++
λ (s) X(s), X(s) := exp

(
i

b

M∑
i=1

si log x̃AB

)
,

ρ−−λ (ỹAB) =

∫
RM

dµ(t) ρ̃−−λ (t) Y(t), Y(t) := exp

(
i

b

M∑
i=1

ti log ỹAB

)
,

using the notation dµ(s) =
∏M
i=1 dsiδ(

∑M
i=1 si). Working in a representation

where UiA and UiB are represented as operators generating shifts of x and y,
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respectively, leads to the following form for the matrix elements of X(s)Y(t),

〈x, y|X(s)Y(t)|x′, y′〉(6.141)

=
∏
i

δ(xi − si − x′i)δ(yi + ti − y′i)

× e−πisi(x−y)i,i+1e−πisi(x′−y′)i,i+1e+πiti(x−y)i−1,ie+πiti(x′−y′)i−1,i

=
∏
i

δ(xi + si − x′i)δ(yi + ti − y′i)

× e−πi(x−x′)i(x+x′)i,i+1eπi(y−y′)i(y+y′)i−1,ie2πixiyi,i+1e−2πix′iy
′
i,i+1 .

Thanks to the delta-functions in (6.141), the kernel of the operator
ŘAB(µ̄, µ; ν̄, ν), defined as

(6.142) Řµ̄,µ;ν̄,ν(x, y|x′, y′) := 〈x, y|ŘAB(µ̄, µ; ν̄, ν)|x′, y′〉,

becomes fully factorised,

Řµ̄,µ;ν̄,ν(x, y|x′, y′)(6.143)

= δ(x̄− x̄′)δ(ȳ − ȳ′)W+−

ν̄/µ(x, y)W
++

ν/µ(x, x′)W
−−

ν̄/µ̄(y, y′)W
−+

ν/µ̄(x′, y′),

using the notation x̄ =
∑M

i=1 xi for the sum of the components of a vector
x ∈ RM , and

W
++

λ (x, x′) = W
−−

λ (x′, x) = eπiP (x,x′)V̄w(x− x′),(6.144a)

W
−+

λ (x, y) =
(
W

+−

1/λ(x, y)
)−1

= eπiP (x,y)Vw(x− y);(6.144b)

We are using the notation P (x, y) =
∑M

i=1(xiyi+1 − yixi+1) and w =
1

2πb log λ. The explicit formulae for the functions appearing in these expres-
sions are

Vw(s) = e−
πi

2
Mw2

M∏
i=1

1

sb(si,i+1 + w)
,(6.145a)

V̄w(s) = Nw

M∏
i=1

sb(w − si,i+1 + cb).(6.145b)

The resulting expression resembles the one found for the generalised chiral
Potts models found in [BaKMS, DJMM].

Using (3.55) it is easy to get the kernel of RAB(µ̄, µ; ν̄, ν) from the kernel
of RXXZ

AB (µ̄, µ; ν̄, ν).
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6.9.2. Fundamental transfer matrices. Having the kernel RAB(µ̄, µ; ν̄, ν)
it is straightforward to compute the kernel representing the fundamen-
tal transfer matrices T (µ̄, µ; ν̄, ν) in an auxiliary representation for H =⊗N

a=1H2a ⊗H2a−1 that is defined as follows. Let us introduce the oper-
ators Ui,a = ui,2aui,2a−1 commuting with Ci,a ≡ ci,2a−1. The operators Ui,a
and Vi,a ≡ (χi,2a−1)

1

2 satisfy the defining relations of the algebraW. We may

furthermore introduce the operators Di,a := (ui,2a)
−1ui,2a−1 commuting with

Ui,a and Vi,a. The representation of WM ⊗WM defined on a Hilbert-space
Ĥa ' L2(R2M ) in terms of the operators ui,2a, vi,2a, ui,2a−1 and vi,2a−1 is
then unitarily equivalent to a representation on a Hilbert space represented
by wave-functions ψ(ya, ca) ∈ L2(R2M ) such that Ui,a, Vi,a Ci,a and Di,a are
represented as

(6.146)

Ui,aψ(ya, ca) = ψ(ya + ibεi, ca),

Ci,aψ(ya, ca) = ci,aψ(ya, ca),

Vi,aψ(ya, ca) = eπb(yi,a−yi+1,a)ψ(ya, ca),

Di,aψ(ya, ca) = ψ(ya, ca + ibεi),

where εi is the vector in RM with j-th component being δi,j − 1
M . The vec-

tors in H =
⊗N

a=1H2a ⊗H2a−1 will accordingly be represented by wave-
functions Ψ(y, c) ∈ L2(R2MN ), where y = (y1, . . . , yN ), c = (c1, . . . , cN ).

If Řµ̄,µ;ν̄,ν(x, y|x′, y′) is the kernel representing Ř(µ̄, µ; ν̄, ν) we may rep-
resent the fundamental transfer matrix T (µ̄, µ; ν̄, ν) as an integral operator
of the form

(6.147)
(
T (µ̄, µ; ν̄, ν)Ψ

)
(y, c) =

∫
dµN (y) Tµ̄,µ;ν̄,ν(y, y′)Ψ(y, c),

with dµN (y) =
∏N
a=1 dµ(ya), and the kernel Tµ̄,µ;ν̄,ν(y, y′) given as

(6.148) Tµ̄,µ;ν̄,ν(y, y′) =

∫
dµN (x)

N∏
a=1

Řµ̄,µ;ν̄,ν(xa+1, ya|x′a, y′a).

It is finally not hard to see that the same kernel Tµ̄,µ;ν̄,ν(y, y′) can be
used to represent the projection T(µ̄, µ; ν̄, ν) of T (µ̄, µ; ν̄, ν) to the physi-
cal Hilbert space defined in Section 3.3.1. Indeed, T (µ̄, µ; ν̄, ν) is a physical
observable and there exists a representation of the form (3.35). Such a repre-
sentation is related to the representation defined above in (6.146) by a gauge
transformation Ψ′(y, c) = eiη(y,c)Ψ(y, c), in general. Such a gauge transfor-
mation modifies the kernel Tµ̄,µ;ν̄,ν(y, y′) into Tµ̄,µ;ν̄,ν(y, y′)ei(η(y′,c)−η(y,c)).

teschner
Sticky Note
y -> y'

teschner
Sticky Note
x'_a -> x_a

teschner
Sticky Note
y -> y'
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The projection defined in Section 3.3.1 then has kernel

Tµ̄,µ;ν̄,ν(y, y′)ei(η(y′,1)−η(y,1)).

The factor ei(η(y′,1)−η(y,1)) can be removed by another gauge-transformation,
if necessary.

7. Imaginary roots and functional relations I

Let us now consider the definition of the imaginary root contributions to
the R-matrices. This turns out to be more delicate than the case of the
real root contributions. The formula (5.15) does not seem to have a natural
renormalized counterpart at first sight. We are going to argue that the deci-
sive requirement determining a canonical renormalisation of the imaginary
root contributions will be the consistency with taking tensor products, or
equivalently the validity of the conditions

(7.1)
RV1⊗V2,V3

= RV1,V3
RV2,V3

,

RV1,V2⊗V3
= RV1,V3

RV1,V2
.

RV,W := (πV ⊗ πW )(R),

obtained by evaluating the representation πV1
⊗ πV2

⊗ πV3
on (∆⊗ id)(R) =

R13R23 and (id⊗∆)(R) = R13R12, respectively.
Our renormalisation prescription can be directly applied to both sides in

(7.1) whenever the infinite products representing the universal R-matrices
truncate to finite ones in the given representations. This happens when one
of the representations applied to the universal R-matrix is of prefundamental
type. A natural strategy to construct families of operators RV,W satisfying
(7.1) is of course to start by identifying a class of basic representations from
which more general ones may be constructed by taking tensor products
and quotients. Having defined RV,W for V , W taken from the class of basic
representations one may simply use (7.1) recursively to extend the definition
to more general representations. Whenever our renormalisation prescription
can be applied to define all representations appearing in (7.1) one needs to
check explicitly that the relations following from (7.1) are satisfied.

We will apply this strategy using as basic representations the prefun-
damental representations of modular double type on the one hand, and the
finite-dimensional representations on the other hand. It turns out, in par-
ticular, that the renormalisation prescriptions for the basic representations
are strongly constrained by the already chosen definitions for the real root
contributions. The co-product mixes real and imaginary roots. This implies
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that a part of the imaginary root contributions in RV1⊗V2,V3
is given by the

real root contributions in RV1,V3
and RV2,V3

, and similarly for RV1,V2⊗V3
. The

renormalisation prescriptions for real and imaginary roots must therefore
be related to each other. Consideration of tensor products of finite- and
infinite-dimensional representations similarly implies relations between the
prescriptions adopted in the two types of representations, respectively.

It may furthermore happen, for example, that the tensor product of
representations becomes reducible for certain values of the relevant param-
eters, containing basic representations in sub-representations or quotients.
Whenever this happens, it implies relations between the imaginary root con-
tributions to the respective R-matrices, as will be shown explicitly in some
relevant examples. These relations take the form of certain functional re-
lations restricting possible renormalisation prescriptions for the imaginary
root contributions considerably.

These considerations will lead us to a uniform and unambiguous pre-
scription for the renormalisation of the imaginary root contributions for
the whole family of representations of our interest. Most important for ap-
plications to integrable lattice models is the observation that the proper
treatment of the imaginary root contributions provides the basis for the
representation theoretic derivation of the Baxter equation, generalising the
approach of [BaLZ3, AF] to the case of representations without extremal
weight.

In order to make the overall logic transparent we will in this section
restrict attention to the case of Uq(ŝl2). In the general case of Uq(ŝlM ) one
is facing a higher algebraic complexity which will be dealt with in the next
section.

7.1. Imaginary roots for basic representations

To begin with, we shall compute the imaginary root contributions for the
basic representations of finite-dimensional or prefundamental type.

7.1.1. Prefundamental representations. As a warm-up, let us con-
sider the case M = 2, where the imaginary root contribution to the universal
R-matrix, see (5.15), (5.18), simplifies to the following form

(7.2) R−∼δ = exp

(
− (q − q−1)

∞∑
k=1

k

[2k]q
f

(1)
kδ ⊗ e

(1)
kδ

)
,
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An important feature of the representations π±λ is the fact that e
(1)
kδ and f

(1)
kδ

get represented by central elements. The corresponding currents take the
form

π−λ (1 + E′1(z)) = 1 + λ−2z−1 ⇔ π−λ (e
(1)
kδ ) =

(−1)k+1

q−1 − q
λ−2k

k
,(7.3)

π+
λ (1 + F ′1(z)) = 1 + λ+2z−1 ⇔ π+

λ (f
(1)
kδ ) =

(−1)k+1

q − q−1

λ+2k

k
.(7.4)

These equations follow straightforwardly from the definitions (5.27), (5.28)
and the iterative construction of imaginary root vectors given in Section 5.2.1.
For |q| 6= 1 we therefore get

ρ+−(λµ−1) := (π+
λ ⊗ π

−
µ )(R−∼δ)(7.5)

= exp

(
−
∞∑
k=1

1

k

(−1)k+1

q2k − q−2k

(
− λ2

µ2

)k)
= (εq2(−λ2/λ2))−1,

compare to (5.34). Following the discussion in Section 5.4 we can immedi-
ately suggest the following renormalized version of this special function,

(7.6) ρ+−
ren (λµ−1) ≡ [(π+

λ ⊗ π
−
µ )(R−∼δ)]ren := (E2b2(−λ2/µ2))−1,

where

(7.7) E~(w) := exp

(∫
R+i0

dt

4t

w−
i

π
t

sinh(~t) sinh(t)

)
.

Note that E~(w) is not single-valued in w, it is better understood as a func-
tion of log(w). The definition (7.6) therefore needs to be supplemented by a
choice of the logarithm of −λ2/µ2. This is a subtle issue that will be resolved
in Section 7.7 below.

7.1.2. Evaluation representations. By means of straightforward com-
putations one may show that the image of imaginary root currents under
the evaluation map introduced in Section 5.3.1 takes the form

evλ(1 + E′1(z)) =
(1 + qz−1λ−2q+2x)(1 + qz−1λ−2q−2x)

(1 + q−1z−1λ−2qK2)(1 + q+1z−1λ−2qK2)
,(7.8a)

evλ(1 + F ′1(z)) =
(1 + q−1z−1λ2q+2x)(1 + q−1z−1λ2q−2x)

(1 + q−1z−1λ2q−1K−2)(1 + q+1z−1λ2q−1K−2)
.(7.8b)
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We recall that q2x, where x is defined up to a sign, parametrizes the Uq(sl2)
Casimir as in (5.21).

Considering finite dimensional representations of evaluation type one
may note that the imaginary root currents for πf.d.

λ,j take the form (7.8a)

with q2x and K replaced by q2j+1 and kj := diag
(
qj , qj−1, . . . , q−j+1, q−j

)
respectively. Taking the second tensor factor to be π−µ , one could proceed
along the lines of Section 7.1.1, leading to

(7.9) [(πf.d.
λ,j ⊗ π−µ )(R−∼δ)]ren =

E2b2(−q−2k−2
j λ2/µ2)

E2b2(−q−2j−2λ2/µ2)

E2b2(−k−2
j λ2/µ2)

E2b2(−q2jλ2/µ2)
.

If we further specialize (7.9) to the case of spin j = 1/2 we find

[(πf
λ ⊗ π−µ )(R−∼δ)]ren =

(E2b2 (−q−1λ2/µ2)
E2b2 (−q+1λ2/µ2) 0

0 E2b2 (−q−1λ2/µ2)
E2b2 (−q−3λ2/µ2)

)
(7.10)

= θ(λ/µ)

(
1 0
0 1− q−1λ2µ−2

)
.

Apart from defining the special function θ(z), the second equality in this
equation follows from the relation E2b2(q2x) = (1 + x)E2b2(q−2x) applied in
the case when x = −q−1λ2µ−2. Let us observe that

(7.11) θ(λ) =
ρ+−

ren (q+ 1

2λ)

ρ+−
ren (q−

1

2λ)
,

where ρ+−
ren (λ) is given in (7.5). Another example that will be useful in the

following is

[(πf
λ ⊗ evµ)(R−∼δ)]ren(7.12)

= ρev(λµ−1)

(
1− λ2µ−2qK2 0

0 (1−λ2µ−2q+2x)(1−λ2µ−2q−2x)
(1−λ2µ−2q−1K2)

)

where

ρev(λµ−1) =
E2b2(−λ2µ−2q2x)E2b2(−λ2µ−2q−2x)

E2b2(−λ2µ−2q2+2x)E2b2(−λ2µ−2q2−2x)
(7.13)

= θ(q
1

2
+xλµ−1)θ(q

1

2
−xλµ−1).

This result can be easily specialized to the modular double case as
πm.d.
s (q±x) = −e±πbs.
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7.1.3. L±(λ) from the renormalized universal R-matrix. Let us
now complete the derivation started in Section 5.3.2 to obtain L±(λ) from
the renormalized product formula for the universal R-matrix.

As explained in the following section, the real root contribution is not
affected by renormalization in this case as the corresponding root vectors
are realized by nilpotent operator in one tensor factor. The observations in
Section 5.3.2 together with the calculation (7.10) then gives[

(πf
λ ⊗ π−1 )(R−)

]
ren

(7.14)

= εq(−τ2
q λ
(

0 0
1 0

)
e1) · [(πf

λ ⊗ π−1 )(R−∼δ)]ren · εq(−τ2
q λ
(

0 1
0 0

)
e0) · q−t

= θ(λ)

(
1 0

λvu−1 1

)(
1 0
0 1− q−1λ2

)(
1 λv−1u
0 1

)(
u 0
0 u−1

)
= θ(λ)

(
u λv−1

λv u−1

)
.

For completeness let us recall the evaluation of the universal R-matrix for
πf
λ ⊗ evµ and how it is affected by the regularization. The infinite product

of real root vectors gives

(πf
λ ⊗ evµ)(R−≺δ) =

(
1 0

λµ−1(q−1−q)
1−λ2µ−2q−1K2 q

1

2 K−1E 1

)
,(7.15)

(πf
λ ⊗ evµ)(R−�δ) =

(
1 λµ−1(q−1−q)

1−λ2µ−2q+1K2 q
1

2 K+1F

0 1

)
.(7.16)

Together with (7.12) this implies that

[(πf
λ ⊗ evµ)(R−)]ren(7.17)

= ρev(λµ−1)

(
K−1 − λ2µ−2qK+1 λµ−1(q−1 − q)q+ 1

2 F̃

λµ−1(q−1 − q)q+ 1

2 Ẽ K+1 − λ2µ−2qK−1

)

where Ẽ = K−1EK−1, F̃ = K+1FK+1 and ρev(λµ−1) is given in (7.13).

7.2. Rationality of currents

The examples above lead us to a useful observation: An important role is
played by the generating functions 1 + E′1(z) and 1 + F ′1(z) that will be
called currents. The currents generate a commutative algebra for the level
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zero representations we are considering. Whenever the currents get repre-
sented by rational functions of z there exists a natural prescription for turn-
ing the formal series following from (7.2) into well-defined operators. We are
now going to show that the operators representing 1 + E′1(z) and 1 + F ′1(z)
will be rational functions of z for all representations of our interest. More
precisely we shall show that for any tensor product π− = π1 ⊗ · · · ⊗ πN of
basic representations of Uq(b+) we have

π−(1 + E′1(z)) =

∏n−
`=1(1 + z−1N−` )∏d−
`=1(1 + z−1D−` )

(7.18)

where N−` , D−` are mutually commutative operators. A very similar state-
ment holds for tensor products of basic representations of Uq(b−).

In order to derive (7.18), let us consider the monodromy matrix

(7.19) M(λ) := (πf
λ ⊗ π−)(R−).

It follows from the product formula for R− that we may represent M(λ) in
the form

(7.20) M(λ) =

(
1 0

F(λ) 1

)(
K+(λ) 0

0 K−(λ)

)(
1 E(λ)
0 1

)(
k−1 0
0 k

)
,

where K±(λ) are the eigenvalues of (πf
λ ⊗ π−)(R−∼δ) on u±,

(7.21) K±(λ) = exp

(
(q−1 − q+1)

∑
m∈Z+

um,11F
(1)
mδ,±π+(e

(1)
mδ)

)
,

where the numbers F
(1)
mδ,± are the eigenvalues of πf

λ(f
(1)
mδ) on the two basis

vectors u± of C2, πf
λ(f

(1)
mδ)u± = F

(1)
mδ,±u±. It follows straightforwardly from

(7.8a) that

(7.22) F
(1)
mδ,− − F

(1)
mδ,+ = (um,11)−1(−q−1λ2)m.

This implies that

(7.23) π−
(
1 + E′1(−qλ−2)

)
=

K−(λ)

K+(λ)
.
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We may note, on the other hand, that for any basic representation πk the
matrix Ln(λ) = (πf

λ ⊗ πn)(R−) takes the form ρn(λ)L′n(λ), with L′(λ) poly-

nomial in λ. It follows that M(λ) = M′(λ)
∏N
n=1 ρn(λ), where

(7.24) M′(λ) := L′N (λ)L′N−1(λ) · · ·L′1(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
,

is a matrix of polynomials in λ such that A(λ) = k−1 +O(λ), D(λ) = k +
O(λ), B(λ) = O(λ), C(λ) = O(λ).

It remains to observe that both K+(λ) and K−(λ) can be expressed as a
rational function of the matrix elements of M(λ), leading to the expression

(7.25)
K−(λ)

K+(λ)
=

q-det
(
M′(q−

1

2λ)
)

A(λ)A(q−1λ)
k−2,

where q-det(M′(λ)) is defined as

(7.26) q-det(M′(λ)) = A(q−
1

2λ)D(q
1

2λ)− C(q−
1

2λ)B(q
1

2λ).

In order to obtain formula (7.25) we used the commutation relations satis-
fied by the matrix entries of M′(λ). Equations (7.25) and (7.23) imply that
π−(1 + E′1(z)) is a rational function of λ of the form claimed in (7.18). �

With these observations in mind, let us formulate the prescription: for
representation π± of Uq(b∓) such that
(7.27)

π+(1 + F ′1(z)) =

∏n+

`=1(1 + z−1N+
` )∏d+

`=1(1 + z−1D+
` )
, π−(1 + E′1(z)) =

∏n−
`=1(1 + z−1N−` )∏d−
`=1(1 + z−1D−` )

let us set [ (
π+ ⊗ π−

)
R−∼δ

]
ren

(7.28)

=

∏d+

`=1

∏n−
`′=1 E2b2(−D+

` ⊗ N−`′ )∏n+

`=1

∏n−
`′=1 E2b2(−N+

` ⊗ N−`′ )

∏n+

`=1

∏d−
`′=1 E2b2(−N+

` ⊗ D−`′ )∏d+

`=1

∏d−
`′=1 E2b2(−D+

` ⊗ D−`′ )
,

where E2b2(w) is defined in (7.7) below. Notice that the unrenormalized ver-
sion of (7.28) is the same expression with E2b2(w) replaced by εq2(w). Above
we used the notation π± in order to avoid confusion with the prefundamental
representations π±λ , which are a special case of π±.

As we will see, after we fix a prescription of the form (7.27), (7.28) for
the prefundamental representations π±λ , the validity of the relations following
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from (7.1) implies that the same prescription (7.27), (7.28) needs to be used
for representations obtained by taking tensor products. The fact that this is a
consistent prescription is not obvious. We will show in all relevant cases that
consistency follows from the basic functional relations satisfied by Eb2(w).

7.3. Co-product of imaginary roots

We have proposed a definition for the imaginary root contributions to the
universal R-matrix for the basic representations of our interest. We will
now start analysing in some detail if this definition is compatible with the
relations (7.1). To this aim we will now derive useful identities, formulae
(7.30) and (7.41) below, satisfied by a generating function for the imaginary
root generators from the basic relations (id⊗∆)(R−) = R−13R

−
12 and (∆⊗

id)(R−) = R−13R
−
23.

As a useful generating function for the imaginary root generators let us
introduce M +

∼δ(λ) via

(7.29) 1⊗M +
∼δ(λ) := (π+

λ ⊗ id)(R−∼δ).

This definition makes sense as π+
λ (f

(1)
kδ ) are complex numbers. For the time

being we shall continue to work with formal series in λ. We are going to
prove the identity

(7.30) ∆(M +
∼δ(λ)) =

(
1⊗M +

∼δ(λ)
)
εq
(
(τqλ)2e1 ⊗ e0k1

) (
M +
∼δ(λ)⊗ 1

)
,

giving a useful representation of the co-product of the imaginary root gen-
erators. The contribution containing real root generators is clearly visible in
the argument of the function εq(x).

As a preparation let us note that M +
∼δ(λ) appears in

(7.31) (π+
λ ⊗ id)(R−) = εq(−τ2

q f1 ⊗ e1)
(
1⊗M +

∼δ(λ)
)
εq(−τ2

q f0 ⊗ e0)Λ−1(u),

where Λ−1(u) = e− log u⊗(ε̄1−ε̄2), fi := π+
λ (fi), τq = q − q−1. This may be re-

written as

(π+
λ ⊗ id)(R−) = Λ(y)

(
1⊗M +(λ)

)
Λ−1(y)Λ−1(u),(7.32)

M +(λ) := εq(λ
′e1)M +

∼δ(λ)εq(λ
′e0)(7.33)

where y := u−
1

2 vu−
1

2 , Λ(y) = e
1

2
log y⊗(ε̄1−ε̄2), and λ′ := −τqq

1

2λ. It seems re-
markable that there is a similarity transform Λ(y) so that the first tensor
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factor in (7.32) is the identity. This follows from the identities

(7.34) (q − q−1)π+
λ (fi)⊗ ei = λq

1

2 Λ(y) (1⊗ ei) Λ−1(y).

The rewriting (7.32) will be particularly useful in the higher rank case dis-
cussed in Section 8.2.

Proof of (7.30). The starting point of our derivation is the identity

(7.35) (π+
λ ⊗∆)(R−) = (π+

λ ⊗ 1)(R−13)(π+
λ ⊗ 1)(R−12).

Inserting the form (7.32) into this equation and simplifying the Λ factors we
obtain

(7.36) ∆
(
M +(λ)

)
=
(
1⊗M +(λ)

)
qt
(
M +(λ)⊗ 1

)
q−t,

where we have cancelled the first tensor factor being proportional to the
identity. The contribution qt originates from reordering the factors of Λ. It
acts as qt(ei ⊗ 1)q−t = ei ⊗ ki. The left hand side of (7.36) contains terms
εq(λ

′∆(ei)), i = 0, 1, ∆(ei)) = ei ⊗ ki + 1⊗ ei which may be further factor-
ized using

(7.37) εq(U)εq(V ) = εq(U + V ),

if UV = q−2V U . Using (7.37) we rewrite (7.36) as

(7.38) ∆(M +
∼δ(λ)) = (1⊗M +

∼δ(λ))Θ(M +
∼δ(λ)⊗ 1),

where

(7.39) Θ :=
1

εq(λ′e1 ⊗ k1)
εq(1⊗ λ′e0)εq(λ

′e1 ⊗ k1)
1

εq(λ′e1 ⊗ k1)
.

This expression can be simplified using the pentagon relation

(7.40) εq(V )εq(U) = εq(U)εq(qUV )εq(V ),

and noting that q−1(λ′)2 = (λτq)
2. The resulting formula is (7.30), as claimed.

�



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 191 — #92 i
i

i
i

i
i

Integrable light-cone lattice discretizations 191

Applying (id⊗π−ν ) to the second equation in (7.1) a similar analysis
shows that

(7.41) ∆(M−
∼δ(ν)) =

(
M−
∼δ(ν)⊗ 1

)
εq
(
(τqν

−1)2k0f0 ⊗ f1

) (
1⊗M−

∼δ(ν)
)
.

where

(7.42) M−
∼δ(ν)⊗ 1 := (id⊗π−ν )(R−∼δ).

It is worth to observe that

(7.43) ∆(f
(1)
δ ) = f

(1)
δ ⊗ 1 + 1⊗ f (1)

δ + τq[2]qk0f0 ⊗ f1,

where we have used the iterative definition f
(1)
δ = f0f1 − q−2f1f0 given in

(5.7). Before regularization, (7.41) can be considered as an equality of formal
power series in ν−2. In this interpretation (7.43) corresponds to the term of
order ν−2. It is remarkable that the coproduct of all the imaginary root
vectors can be brought to the simple form (7.41).

Let us finally note that our derivation of (7.30), (7.41) was based on the
identities (7.37) and (7.40). As noted earlier, these identities are satisfied by
the special function Eb2(w) whenever the arguments are replaced by positive
self-adjoint operators [Fa99, FaKV, Vo]. This observation may be used to
reduce the verification of (7.1) to the verification of the consequences of
(7.30) and (7.41) in the representations of interest.

7.4. Consistency

The mixing between real and imaginary root generators under the action
of the co-product expressed in (7.30), (7.41) implies that the renormalisa-
tion prescriptions adopted for the contributions of real and imaginary root
generators in the product formula must be related. Let us first state the
proposed renormalisation prescription of the real root contribution to the
universal R-matrix. We define

(7.44) Eq(x) := [εq(x)]ren =

{
εq(x) if x is a nilpotent operator

Eb2(x) if x is a positive self-adjoint operator

where these special functions are defined in (5.34) and (7.7). We will now
verify that our proposed prescription for the renormalisation of the imag-
inary root contributions is compatible with the definition (7.44) and the
consequences of (7.30), (7.41).
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7.4.1. Check of compatibility for π−λ1⊗λ2
:= (π−λ1

⊗ π−λ2
)∆. The im-

age of the left hand side of (7.30) under π−λ1⊗λ2
can be computed using the

explicit form of the imaginary root currents

(7.45) (π−λ1
⊗ π−λ2

)∆
(
1 + E′1(z)

)
=

(
1 + z−1q2xp

) (
1 + z−1q−2xp

)
(1− z−1q+1Zp) (1− z−1q−1Zp)

,

where q2x = λ1/λ2, p = (λ1λ2)−1, Z = vu−1 ⊗ v−1u−1. Following the pre-
scription outlined by equations (7.27) and (7.28) this implies[(

π+
λ ⊗ π

−
λ1⊗λ2

)
R−∼δ

]
ren

= (π−λ1
⊗ π−λ2

)∆
(
M−

δ (λ)
)

(7.46)

=
E2b2

(
q+1 λ2

λ1λ2
Z
)
E2b2

(
q−1 λ2

λ1λ2
Z
)

E2b2
(
− λ2

λ2
1

)
E2b2

(
− λ2

λ2
2

) .

On the other hand, applying π−λ1
⊗ π−λ2

to the right hand side of (7.30) and
using the definition (7.44) we obtain

(7.47)
Eb2
(
λ2

λ1λ2
Z
)

E2b2
(
− λ2

λ2
1

)
E2b2

(
− λ2

λ2
2

) .
The compatibility under tensor product, encoded in (7.30), states that (7.46)
has to be equal to (7.47). This is so provided that the functional relation

(7.48) E2b2(qw)E2b2(q−1w) = Eb2(w),

holds. This is indeed a simple consequence of the integral representation (7.7).

7.4.2. Tensor products of finite- and infinite-dimensional represen-
tations, I. For the derivation of the Baxter equation we will also need to
consider tensor products of finite- and infinite-dimensional representations
such as πf

ζ′ ⊗ π
+
ζ . Let us first generalise our renormalisation prescription in

a way that will allow us to cover cases involving such mixed tensor products.
Let x be an operator on a Hilbert-space of the form H⊗ V with V being
n-dimensional that can be diagonalised by means of a similarity transform
S in the sense that x = S · diag(λ1x1, . . . , λnxn) · S−1, where λk ∈ C∗ and xk,
k = 1, . . . , n are positive-selfadjoint operators. For such operators x it is nat-
ural to define

(7.49) Eq(x) = S · diag
(
Eb2(λ1x1), . . . , Eb2(λnxn)

)
· S−1.
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This definition allows us to define

(7.50) r
(vw)−
(12)3 (ζ ′, ζ) :=

[
(πvζ′ ⊗ πwζ ⊗ π−1 )

(
(∆⊗ 1)(R−)

)]
ren
,

for v, w ∈ {+, f}, keeping in mind that the infinite product over real root
contributions truncates to a finite product whenever π−λ is applied to the
second tensor factor.

Important for the derivation of the Baxter equation will be the identities

(7.51) r
(vw)−
(12)3 (ζ ′, ζ) = rv−13 (ζ ′)rw−23 (ζ),

rv−13 (ζ) =
[
(πvζ ⊗ π−1 )(R−)

]
ren
,

rw−23 (ζ) =
[
(πwζ ⊗ π−1 )(R−)

]
ren
.

The proof of these identities can follow almost literally the proof of (7.41)
provided that the identities (7.37), (7.40) used in this calculation are pre-
served by our renormalisation prescription. We need to verify that

(7.52) Eq(U)Eq(V) = Eq(U + V), Eq(V)Eq(U) = Eq(U)Eq(qUV)Eq(V),

when

(7.53) U = z(πf
λ ⊗ π+

µ )(fi ⊗ 1), V = z(πf
λ ⊗ π+

µ )(k−1
i ⊗ fi).

Let us start from the first equation in (7.52) for i = 1. The case i = 0 is
similar. First notice that

(7.54) U + V =

(
q−1x 0
zλ q+1x

)
= S

(
q−1x 0

0 q+1x

)
S−1 = SVS−1,

where x = zµτ−1
q u−1v and S =

(
1 0
t 1

)
with t = −λµ−1v−1u. We thus have

that U + V is similar to V which is self-adjoint and the prescription (7.44)
gives

(7.55) Eq(U + V) = SEb2(V)S−1 =

(
Eb2(q−1x) 0

t
(
Eb2(q−1x)− Eb2(q+1x)

)
Eb2(q+1x)

)
,

On the other hand U is a nilpotent operator and the same prescription gives
Eq(U) = εq(U) = 1 + τ−1

q U so that

(7.56) Eq(U)Eq(V) =

(
1 0

zλτ−1
q 1

)(
Eb2(q−1x) 0

0 Eb2(q+1x)

)
.

The equality between (7.55) and (7.56) follows from the functional relation
Eb2(q+1x) = (1 + x)Eb2(q−1x) and the identity zλτ−1

q = −tx.



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 194 — #95 i
i

i
i

i
i

194 C. Meneghelli and J. Teschner

Let us turn to the second relation in (7.52). Using the nilpotency of U
and upon simplifying the the U0 term it reduces to

(7.57) Eb2(V)U = U(1 + qV)Eb2(V).

Let us focus on the case i = 1. The matrix U is proportional to
(

0 0
1 0

)
so that

only the lower left entry of (7.57) is non-trivial and reduses to the identity
Eb2(q+1x) = (1 + x)Eb2(q−1x). �

7.4.3. Tensor products of finite- and infinite-dimensional represen-
tations, II. In order to verify that the consistency condition (7.41) holds
after we apply the representations πf

λ ⊗ π+
µ we first need to spell out the

form of the imaginary root vectors. Concerning πf and π−, they are given
as a specialization of (7.8a) and (7.4) respectively. The current of imaginary
roots for this tensor product on the other hand takes the compact form[(

πf
λ ⊗ π+

µ

)
∆
(
1 + F ′1(z)

)]
(7.58)

= S̃−1
[
πf
λ

(
1 + F ′1(z)

)
⊗ π+

µ

(
1 + F ′1(z)

)]
S̃,

where S̃ = SΛ−1(y) with S = 1 + q
1

2µλ−1
(

0 1
0 0

)
. Moreover, according to the

definition below (7.32) one has for the fundamental representation Λ(y) =
y

1

2

(
1 0
0 y−1

)
. The equality (7.58) can be verified by lengthy calculations using

the iterative construction of root vectors given in Section 5.2.1. The reader
might be satisfied checking the first order in z corresponding to the equality
(7.43). We will discuss (7.58) in Section 8.1.3 in more details.

The relation (7.58) with the renormalization prescription (7.27), (7.28)
implies that the left hand side of (7.41) reads

(7.59)
[(
πf
λ ⊗ π+

µ

)
∆
(
M−
∼δ(ν)

)]
= S̃−1

[
πf
λ

(
M−
∼δ(ν)

)
⊗ π+

µ

(
M−
∼δ(ν)

)]
S̃.

We are going to verify that this is equal to the right hand side of (7.41)
given by

(7.60)
(
πf
λ

(
M−
∼δ(ν)

)
⊗ 1
) (

1 +
(

0 t
0 0

)) (
1⊗ π+

µ

(
M−
∼δ(ν)

))
,

where t = q−
1

2
λµ
ν2 y. This formula is simply obtained recalling that τqπ

+
µ (f1) =

q
1

2µy and πf
λ(k0f0) = q−1λ

(
0 1
0 0

)
. Recall that the contribution πf

λ(M−
∼δ(ν)) is

given in (7.10). As ρ−f (x) in (7.10) and π−(M−
∼δ(ν)) are central, the equality
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between (7.59) and (7.60) reduces to

(7.61) S̃−1

(
1 0
0 1− q−1λ2ν−2

)
S̃ =

(
1 0
0 1− q−1λ2ν−2

)(
1 t
0 1

)
.

This is verified using the definition of t and S̃ given above.

7.5. Reducibility of tensor products

Other issues arise whenever tensor products of representations contain sub-
representations or quotients isomorphic to one of the basic representations.
The renormalisation of the imaginary root contributions must be compatible
with the existence of such relations. This will be seen to imply functional
relations between the special functions appearing in the imaginary root con-
tributions.

7.5.1. Highest weight representations. As a warm-up let us consider
a representation of the Weyl-algebra uv = q−1vu realised on vector spaces
with basis vj , j ∈ Z by means of

(7.62) vvj = vj+1, uvj = q−jvj .

It is possible to supplement the definition of π+
ζ by a lowest- or highest

weight condition, restricting the values of j to a semi-infinite subset of Z. It
was first noted in [AF] that the tensor product of representations π+

ζ ⊗ π
f
ζ′

contains for ζ ′ = q
1

2 ζ a subrepresentation isomorphic to π+
qζ , and that the

quotient π+
ζ ⊗ π

f
ζ /π

+
qζ is isomorphic to π+

q−1ζ .

To see this, let us consider tensor products of the form π+
ζ ⊗ π

f
ζ′ , and

look for a sub-representation π+
ζ′′ generated by vectors of the form

(7.63) wj := ajvj−1 ⊗ u+ + bjvj ⊗ u−,

using the standard basis u+ =
(

1
0

)
, u− =

(
0
1

)
for C2. A straightforward

calculation shows that such a sub-representation exists provided that ζ ′ and
ζ are related as ζ ′ = q

1

2 ζ. The sub-representation π+
ζ′′ then has the parameter

ζ ′′ = qζ. It is furthermore straightforward to check that the quotient π+
ζ ⊗

πf
ζ′/π

+
ζ′′ is isomorphic to π+

q−1ζ in this case.

Picking representatives w̄j for the quotient π+
ζ ⊗ π

f
ζ′/π

+
ζ′′ one gets a basis

for H− ⊗ C2 generated by vectors wj =
(wj
w̄j

)
. The action of Uq(b−), and

therefore the representation of (∆⊗ 1)(R−) will be represented by lower-
triangular matrices with respect to this basis.



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 196 — #97 i
i

i
i

i
i

196 C. Meneghelli and J. Teschner

7.5.2. Representations of modular double type. We are now going
to argue that this derivation can be generalised to cases where the represen-
tation π+

ζ is replaced by a representation of modular double type defined on
the space P of functions f(p) which are entire, and have a Fourier transfor-
mation that is entire as

(7.64) ug(p) = e−πbpg(p), vg(p) = g(p− ib).

The dual P ′ of P contains the complexified delta-functionals δp defined by
〈δp, f〉 = f(p) for all f ∈ P and all p ∈ C. The dual representation (π+

ζ )′ will
be realized on delta-functionals δp in terms of the transpose operators

(7.65) u′δp = e−πbpδp, v′δp = δp−ib.

We claim that the tensor product of representations π+
ζ ⊗ π

f
ζ exhibits

the same type of reducibility as observed in the previous subsection. This
is fairly easy to see: We claim that the representation π+

ζ ⊗ π
f
ζ′ on P ⊗ C2

becomes reducible for ζ ′ = q
1

2 ζ, containing the sub-representation π+
qζ , and

that the quotient π+
ζ ⊗ π

f
ζ′/π

+
qζ is isomorphic to π+

q−1ζ in this case.

In order to verify this claim let us note that the tensor product π+
ζ ⊗ π

f
ζ

is realized on vector space P ⊗ C2. Vectors in this space can be realised
as vector-valued functions v(p) = f+(p)u+ + f−(p)u−, where fε ∈ P, ε = ±,
and any basis {u+, u−} for C2. The dual (P ⊗ C2)′ of P ⊗ C2 is spanned by
elements of the form d = d+u

′
+ + d−u

′
−, with d± ∈ P ′. (P ⊗ C2)′ contains

in particular elements of the form

(7.66) w+(p) = a(p)δp+ib ⊗ u+ + b(p)δp ⊗ u−.

One may check that there exist a choice for the coefficient functions a(p)
and b(p) such that the action of (π+

ζ ⊗ π
f
ζ′)
′ on w+(p) becomes equivalent to

(π+
qζ)
′. This boils down to the same calculation as outlined in Section 7.5.1

using the identifications qj ≡ eπbp and vj ≡ δ−ibj . It follows that elements of
P ⊗ C2 of the form

∫
dp g(p)w+(p), g ∈ P, represented by the vector valued

functions

(7.67) v+
g (p) = g(p− ib)a(p− ib)u+ + g(p)b(p)u−,

will generate a sub-representation π+
qζ in π+

ζ ⊗ π
f
ζ′ if ζ ′ = q

1

2 ζ. As before in

Section 7.5.1 one may check that π+
ζ ⊗ π

f
ζ′/π

+
qζ ' π

+
q−1ζ . As representatives

for the quotient π+
ζ ⊗ π

f
ζ′/π

+
qζ one may take vectors of the form v−h (p) =

e−πbph(p)u−, h ∈ P.
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Any vector v(p) in P ⊗ C2 can be represented in the form v+
g (p) + v−h (p)

for suitable g, h ∈ P. This allows us to represent any operator on P ⊗ C2 in
terms of a matrix of operators acting on the column vector

( g
h

)
. It follows

that the matrix representing [(π+
ζ ⊗ π

f
ζ′ ⊗ π−)(R−)]

ren
will be lower triangu-

lar in such a representation,

[(π+
ζ ⊗ π

f
ζ′ ⊗ π−)((∆⊗ 1)(R−))]

ren
(7.68)

=

(
[(π+

qζ ⊗ π
−)(R−)]

ren
0

∗ [(π+
ζ/q ⊗ π

−)(R−)]
ren

)
.

if ζ ′ = q
1

2 ζ. The existence of such a relation implies relations between the
imaginary root contributions to the R-matrices appearing in equation (7.68).
It is easy to see that the relations following from (7.68) imply in particular
equation (7.11) that was previously observed to be satisfied by our renor-
malisation prescription.

7.6. Relation to the Baxter equation

Let us consider the Q-operator defined as

(7.69) Q̂(ζ) := trH+

{(
Ω` ⊗ 1

) [
(π+
ζ ⊗ π

q)R−
]
ren

}
,

together with the transfer matrix in the fundamental representation given
by

(7.70) T̂(ζ) := trC2

{(
Ω` ⊗ 1

) [
(πf
ζ ⊗ πq)R−

]
ren

}
.

The element Ω, with ` ∈ {0, 1} corresponds to the Z2 automorphism rep-
resented by the Pauil matrix σ1 for T̂(ζ) and by F2 for Q̂(ζ), see (6.21).
Introducing this factor is natural from the point of view of the quantum
affine algebra Uq(ŝl2) and it is necessary to discuss the modular XXZ mag-
net and lattice sinh-Gordon model on the same footing.

We are going to show that the validity of R−13R
−
23 = (∆⊗ 1)(R−) within

representations of the form π+ ⊗ πf ⊗ πq implies the Baxter equation

(7.71) T̂(q
1

2 ζ)Q̂(ζ) = Q̂(qζ) + Q̂(q−1ζ).
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In order to derive (7.71), let us note that we may, on the one hand, represent
T̂(ζ ′) and Q̂(ζ) as

Q̂(ζ) = trH0

[
r0,2N (ζ) · · · r0,1(ζ)

]
,

T̂(ζ ′) = trC2

[
L−2N (ζ ′) · · · L−1 (ζ ′)

]
.

The right hand side of (7.71) may be represented as

T̂(q
1

2 ζ)Q̂(ζ) = trH0⊗C2

[[
r0,2N (ζ)L−2N (ζ ′)

]
· · ·
[
r0,1(ζ)L−1 (ζ ′)

]]
ζ′=q

1
2 ζ
.

Using identity (7.51) we may represent each factor r0,k(ζ)L−k (ζ ′) in the

trace representing T̂(ζ ′)Q̂(ζ) in terms of
[
(π+
ζ′ ⊗ π

f
ζ ⊗ π

−
1 )
(
(∆⊗ 1)(R−)

)]
ren

,
which was found to have a lower triangular matrix representation in (7.68). It
follows that the matrix representation of

[
r0,2N (ζ)L−2N (ζ ′)

]
· · ·
[
r0,1(ζ)L−1 (ζ ′)

]
will also be lower triangular. The Baxter equation follows immediately from
this observation.

7.6.1. Baxter equation for XXZ-type spin chains. It remains to
show that the universal form of the Baxter equation (7.71) reproduces pre-
vious forms of the Baxter equation appearing in the literature.

Let us look at the explicit form of (7.69) and (7.70). To do so, recall
that for each site of the spin-chain we have[

(π+
ζ ⊗ π

−
λ )R−

]
ren

= ρ+−
ren (ζ/λ)r+−(ζ/λ),

[
(πf
ζ ⊗ π−λ )R−

]
ren

(7.72)

= θ(ζ/λ)L−(ζ/λ).

The normalization ρ+−
ren (x) and θ(x) are defined in (7.5) and (7.10) respec-

tively and the remaining operators r+−(ζ) and L−(ζ) are given in (5.44) and
(5.26), respectively. The definitions (7.69) and (7.70) will then reduce to

(7.73) T̂(ζ) = Θκ(ζ)TXXZ(ζ), Q̂(ζ) = Ξκ(ζ)QXXZ(ζ),

where Θκ(ζ) =
∏N
n=1 θ(ζ/κn)θ(ζ/κ̄n), Ξκ(ζ) =

∏N
n=1 ρ

+−
ren (ζ/κn)ρ+−

ren (ζ/κ̄n)
and

TXXZ(ζ) := trC2

[
L−
N̄

(ζ/κ̄N )L−N (ζ/κN ) · · · · · L−
1̄

(ζ/κ̄1)L−1 (ζ/κ1)
]
,

QXXZ(ζ) := trH0

[
r+−
0N̄

(ζ/κ̄N )r+−
0N (ζ/κN ) · · · · · r+−

01̄
(ζ/κ̄1)r+−

01 (ζ/κ1)
]
.(7.74)

We have set ` = 0 in (7.69) and (7.70). Using (7.11) the Baxter equa-
tion (7.71) is equivalent to

(7.75) TXXZ(q
1

2 ζ)QXXZ(ζ) = QXXZ(qζ) + ∆(ζ)QXXZ(q−1ζ),

teschner
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where

(7.76) ∆(ζ) =
Ξκ(q−1ζ)

Θκ(q
1

2 ζ)Ξκ(ζ)
=

Ξκ(q+1ζ)

Ξκ(q−1ζ)
=

N∏
n=1

(
1− ζ2

κ̄2
n

)(
1− ζ2

κ2
n

)
.

This is essentially the form of the Baxter equation for integrable spin chains
of XXZ type, with ∆(ζ) being the quantum determinant of the monodromy
matrix. Notice that in order to simplify ∆(ζ) we used again (7.11) and the
functional relation ρ+−

ren (q+1ζ/κ) = (1− ζ2/κ2)ρ+−
ren (q−1ζ/κ).

7.6.2. Baxter equation for the lattice Sinh-Gordon model. Let us
finally note that the Baxter equation for the lattice Sinh-Gordon model
studied in [ByT1] is an easy consequence of (7.75). Using the relations (5.45)
and (5.47) it is straightforward to deduce from (7.75) that the operators

TSG(ζ) := trC2

[
L−
N̄

(1/ζκ)L+
N (κ/ζ) · · · · · L−

1̄
(1/ζκ)L+

1 (κ/ζ)
]
,

QSG(ζ) := trH0

[
r+−
0N̄

(ζκ)r++
0N (ζ/κ) · · · · · r+−

01̄
(ζκ)r++

01 (ζ/κ)
]
.(7.77)

satisfy a Baxter equation of the form

(7.78) TSG(q
1

2 ζ)QSG(ζ) = aSG(ζ)QSG(q−1ζ) + dSG(ζ)QSG(qζ),

where

(7.79)
aSG(ζ) = (q

1

2 ζ/κ)−N (1− ζ2/κ2)N (1− ζ2κ2)N ,

dSG(ζ) = (q
1

2 ζ/κ)−N .

The equation (7.78) is equivalent to the Baxter equation derived previously
in [ByT1], as discussed in some detail in Appendix G.

7.6.3. Relation with previous representation-theoretic construc-
tions of Q-operators. Our definition (7.69) of Q-operators is in some re-
spects similar, but not quite identical to the definitions of Q-operators based
on representations of the q-oscillator algebra introduced in [BaLZ3]. The
most important difference is that the representations considered in [BaLZ3]
have extremal weight vectors, which is not the case for the representations
used in this paper. In the rest of this subsection we will compare the two
constructions in more detail.
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Both type of representations are constructed starting from the following
algebra homomorphism

(7.80) πλ(e0) = λ−1a, πλ(e1) = λ−1ā, πλ(k1) = πλ(k−1
0 ) = q2h

where a, ā, q±2h satisfy the defining relations of the q-oscillator algebra
(7.81)

qaā− q−1āa =
1

q − q−1
, q+2hāq−2h = q+2ā, q+2haq−2h = q−2a.

If q is not a root of unity this algebra admits only infinite dimensional
representations. As observed in Section 5.3.2 the relations (7.81) imply that
πλ(eδ) is central, from which it quickly follows that

(7.82) πλ(1 + E′(z)) = 1 + ωz−1, ω := qλ−2.

Given any representation π we can obtain a new one as π ◦ Ω using the
automorphism Ω(e1) = e0, Ω(e0) = e1. Applying this procedure to the case
above we find

(7.83) πλ ◦ Ω(1 + E′(z)) =

(
1 + ωz−1

)
(1 + q−1Cq−2hωz−1) (1 + q+1Cq−2hωz−1)

,

where C generates the center of the q-oscillator algebra and is defined as

(7.84) C := (q − q−1)q2h(aā− āa).

Notice that if C 6= 0 the imaginary root currents are not represented by
central elements.

The representation π− used in this paper, see (5.28), corresponds to
C = 0. In this case a and ā are inverse of each other up to a constant and
we conclude that for C = 0 the q-oscillator algebra is isomorphic to the Weyl
algebra generated by invertible elements u, v satisfying uv = q−1vu. In this
case the representations πλ and πλ ◦ Ω are equivalent.

The representations considered in [BaLZ3] are highest weight represen-
tations of the q-oscillator algebra generated from the Fock vacuum |0〉 sat-
isfying a|0〉 = 0. Upon introducing the notation

(7.85) π+
BLZ := πλ, π−BLZ := πλ ◦ Ω,

we find that the eigenvalues of the currents (7.82) (7.83) on the highest
weight state gives

(7.86) π±BLZ(1 + E′(z))|0〉 =
(
1 + q±1λ−2z−1

)±1 |0〉.



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 201 — #102 i
i

i
i

i
i

Integrable light-cone lattice discretizations 201

In the equation above, as in [BaLZ3] and [HJ], the label ± refers to simple
pole or simple zero for the eigenvalue of the current 1 + E′(z) on the highest
weight state. Such eigenvalues are rational expression in z−1 for the category
of representations introduced in [HJ]. In our paper ± labels representations
of the two Borel halves.

The representations considered in our paper do not have extremal weight
vectors. It is unknown to us if useful Q-operators can be constructed using
highest weight type representations in auxiliary space if the representations
used in quantum space are of modular double type.

7.7. Choice of branch

Let us finally return to the issue to fix a choice of branch for logarithm of the
argument of the special functions E~(w) used above to represent the imag-
inary root contributions. It will be fixed by the following reasoning: It was
shown in Section 6.3.3 that the tensor product of two pre-fundamental rep-
resentations contains an evaluation representation of modular double type.
It will be observed below that the dual of such a representation contains
representations of highest weight type. The rational function representing
the eigenvalues of the current on the highest weight vector simplifies some-
what compared to the eigenvalues of a generic vector. We demand that
the eigenvalues of [(π+

λ ⊗ π
m.d.
µ,s )(R−∼δ)]ren on the highest weight vectors of

these sub-representations coincide with what is obtained by applying our
renormalisation prescription to the eigenvalues of the current on the highest
weight vector. This gives a natural way to fix the choice of branch of log(w)
in the definition E~(w), as will now be described in more detail.

7.7.1. Highest weight representations in the dual of Ps. The key
observation is that the highest weight representations of Uq(sl2) are con-
tained in the dual to the representations Ps. In order to see this, let us
note that by simple changes of notation one may rewrite the representation
defined in (5.24) as

(7.87)
Ej ≡ es = [j −m]qT−,

Fj ≡ fs = [j +m]qT+,
Kj = qm,

where p = −ibm, T±f(m) = f(m± 1), and the parameter j is related to s
via

(7.88) j =
i

b
(s− cb), where cb :=

i

2
(b+ b−1).

teschner
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The dual space P ′s contains complexified delta-distrbutions ejm := δp. By
duality one gets

(7.89)
E′je

j
m = [j −m]qe

j
m−1,

F′je
j
m = [j +m]qe

j
m+1,

K′je
j
m = qmejm.

It follows that the distributions {ejm;m = j, j + 1, . . . } generate a Verma
submodule Rj within the dual P ′s of Ps.

7.7.2. Eigenvalues of currents on the highest weight vector. The
form of the imaginary root currents for representations of modular double
type follows form the first equation in (7.8a) and the expression of the (5.25)
to be

πm.d.
µ,s (1 + E′1(z)) =

(1− qz−1µ−2e+2πbs)(1 + qz−1µ−2e−2πbs)

(1 + q−1z−1µ−2qk2
s)(1 + q+1z−1µ−2qk2

s)
.(7.90)

The prescription (7.27), (7.28) with the currents as in (7.3), (7.90) then gives

(7.91) [(π+
λ ⊗ π

m.d.
µ,s )(R−∼δ)]ren =

E2b2(−q2k2
sλ

2/µ2)E2b2(−k2
sλ

2/µ2)

E2b2(qe2πbsλ2/µ2)E2b2(qe−2πbsλ2/µ2)
.

Let us now consider the dual action of πm.d.
µ,s (1 + E′1(z)) on ejj . Note that

(7.90) simplifies in this case, as a factor in the numerator can be canceled
against a factor in the denominator.

Requiring that our renormalisation prescription leading to (7.91) is con-
sistent with this fact finally fixes the choice of the branch of the logarithm
in the definition of factors like E2b2(−w): It should be such that the same
cancellation takes place when (7.91) is evaluated on ejj . This will be the case
when log(−w) = −πi+ log(w).

7.8. Towards a “more universal” R-matrix

Our findings suggest that there should exist a generalisation of the universal
R-matrix that not only makes sense for |q| = 1, but which also extends the
class of representations in which it can be evaluated by an interesting class
of infinite-dimensional representations. The representations of interest for us
can all be found in the tensor products of two types of representations, the
prefundamental representations of modular double type on the one hand,
and the finite-dimensional representations on the other hand. We have de-
fined renormalised versions of the image of the universal R-matrix for the
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basic examples of such representations from which more general representa-
tions can be constructed by taking tensor products.

Note that we have not defined the renormalisation of the product formula
for general tensor products yet. However, if we have a tensor product πij :=
(πi ⊗ πj) ◦∆ of two representation for which we have already defined the
image of the R-matrix, we may define the corresponding R-operators via
(7.1). One may thereby extend the definition of the renormalised universal
R-matrix to the whole category of representations generated by taking tensor
products of representations of prefundamental and finite-dimensional type.
This allows us, in particular, to construct

(7.92) Rs1s2
(λ/µ) =

[
(πev
λ,s1
⊗ πev

µ,s2
)(R−)

]
ren

from the product of four operators r+−(λ/µ) = [(π+
λ ⊗ π

−
µ )(R−)]ren, as noted

previously.
We’d finally like to propose that the prescription for the renormalisation

in the case of finite-dimensional representations is related to the one for the
case of infinite-dimensional representations even more deeply. We are going
to argue that the latter implies the former.

In Section 7.7.1 we discussed the dual of the representations Ps. It is
clear that the action of Rs1s2

(λ/µ) on Ps1
⊗ Ps2

defines the dual action on
(Ps1

⊗ Ps2
)′. As the latter contains highest weight representations Rj1 ⊗Rj2

with ji related to si via (7.88) for i = 1, 2, we get an action of (Rs1s2
(λ/µ))t

on Rj1 ⊗Rj2 . We are using the notation Ot for the transpose (dual) of an
operator O. We conjecture that this action coincides with the action of the
R-matrix obtained from the universal R-matrix using the renormalisation
prescription introduced above,

(7.93) (Rs1s2
(λ/µ))t · e1 ⊗ e2 = [(πev

λ,j1 ⊗ π
ev
µ,j2(R−)]ren · e1 ⊗ e2,

where e1 ∈ Rj1 , e2 ∈ Rj2 . A result in this direction was obtained in [ByT3]:
A formula like (7.93) holds if Rs1s2

(λ/µ) is replaced by the spectral pa-
rameter independent R-matrix Rs1s2

acting on the tensor product of two
representations of the modular double. We believe that a proof should be
possible for example using the alternative representation of the operator
Rs1s2

(λ/µ) derived in [ByT1, Appendix D].
The validity of the conjecture (7.93) would underline in which sense

the renormalised version of the universal R-matrix is a “more universal”
R-matrix: It can not only be used for infinite-dimensional representations of
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modular double type, it also defines the action of the R-matrices on finite-
dimensional representations in a way that automatically ensures compatibil-
ity with the structure of the enlarged category of representation generated
from both finite-dimensional representations and the infinite-dimensional
representations of modular double type.

8. Imaginary roots and functional relations II

In this section we shall begin by deriving a universal form of the Baxter
equation for models with Uq(ĝlM ) quantum group symmetry. A new feature
in our derivation is the use of a fermionic representation πF containing
all fundamental representations of Uq(ĝlM ) as sub-representations. Being
reducible, it admits a collection of spectral parameters µ = (µ0, . . . , µM ),
one for each fundamental representation Vk contained in F . The Baxter
equation will follow from the reducibility of the tensor products πF ⊗ π+ at
certain values of the spectral parameters.

The proof of the universal Baxter equation will be valid for the infinite-
dimensional representations of our interest if the renormalised R-matrices
satisfy the relations RV1⊗V2,V3

= RV1,V3
RV2,V3

and RV1,V2⊗V3
= RV1,V3

RV1,V2
.

We verify that this is the case for the representations of our interest. This will
again follow from a delicate interplay between the contributions associated
to real and imaginary roots in the product formula.

8.1. Universal Baxter equation

We are now going to prove the following universal form of the Baxter equa-
tion:

(8.1)

M∑
k=0

(−1)kT(k)(q
k

M ζ)Q+(−ωq
2k−M
M ζ) = 0,

where ω is an M -th root of unity ωM = 1. This equation reduces to (7.71)
for M = 2. The “universal” Baxter operator Q+(λ) is defined as

(8.2) Q+(λ) := trH
{(

Ω` ⊗ 1
) [(

π+
λ ⊗ πq

)
R−
]
ren

}
.

The representation π+
λ corresponding to the auxiliary space H is given in

(6.3). The trace is twisted by the `-th power of the ZM automorphism Ω
given in (4.7). The choice of the representation in the quantum space, de-
noted by πq, will only be restricted by the condition that the trace should
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exist. The (higher) transfer matrices T(k)(λ) are similarly defined as traces

(8.3) T(k)(λ) := trVk
{(

Ω` ⊗ 1
) [(

π
(k)
λ ⊗ πq

)
R−
]
ren

}
.

over certain finite-dimensional irreducible representations Vk that we de-
scribe in the following. It will be very useful for us to observe that the rep-

resentations π
(k)
λ relevant for the formulation of the Baxter equation (8.1)

appear as irreducible components in a reducible representation constructed
from fermionic creation- and annihiliation operators c̄i, ci, i = 1, . . . ,M
which satisfy

(8.4) {ci, c̄j} = δij , {ci, cj} = 0, {c̄i, c̄j} = 0.

Let F denote the fermionic Fock space. The representation πF is defined via

(8.5) πFλ (ei) = λ−1c̄ici+1, πFλ (fi) = λc̄i+1ci, πFλ (ki) = qni−ni+1 ,

where ni := c̄ici. Notice that this is a representation of the full Uq(ĝlM ).

It is easy to see that the total fermion number operator n :=
∑M

i=1 ni is

in the center of the representation πF . The eigenspaces Vk ' C(Mk ) of n
associated to the eigenvalue k are irreducible. Each Vk corresponds to the
k-th fundamental representation.

Remark 7. The M -th root of unity ω appearing explicitly in (8.1) will turn
out to play an important role for the integrable model studied in this paper.
It is not hard to see from the definition above that T(k)(ωζ) = T(k)(ζ), so
that the Baxter equation posses a ZM symmetry. We will see in Section 8.5
that this symmetry acts non-trivially on the solution Q(ζ) for the choice of
quantum space relevant for this paper.

Remark 8. In Section 3.4 we introduced two Q-operators Q±(λ), they
correspond to the two Q-operators Q+(λ), Q̄+(λ). These are constructed
using the representations π+

λ and π̄+
λ given in (8.13) and (8.36) and the

renormalized universal R-matrix. The operator Q̄+(λ) satisfies the Baxter
equation (8.37)

8.1.1. Preliminaries. In order to show (8.1), let us start with a simple
observation: Operators as the one appearing in (8.1) can be represented as
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traces over the tensor product F ⊗H in the following way

M∑
k=0

(−1)kT(k)(µk)Q+(λk)(8.6)

= trF⊗H

{(
Ω` ⊗ 1

) [
(−1)n

(
πµn,λn

F⊗H ⊗ πq
)
R−
]
ren

}
.

where the operators λn on F ⊗H are for given (λ0, . . . , λM ) ∈ CM+1 defined
as the operators multiplying each vector in Vk by λk, respectively. The tensor
product of representations is defined using the coproduct as

(8.7) πµn,λn

F⊗H :=
(
πµn

F ⊗ π
λn
+

)
∆.

The action of Ω ∈ End (F ⊗H) in auxiliary space is understood. The iden-
tity (8.6) follows from the decomposition of the fermionic representation πF
into irreducible finite-dimensional representations and from the following
property of the universal R-matrix:[(

πµF ⊗ 1⊗ πq
)
R−13

]
ren

[(
1⊗ πλ+ ⊗ πq

)
R−23

]
ren

(8.8)

=
[(
πµF ⊗ π

λ
+ ⊗ πq

)
(∆⊗ 1) R−

]
ren

This relation is crucial for the derivation of the Baxter equation. We will
show in Section 8.4.1 that the renormalization of the universal R-matrix
proposed in this paper preserves this property.

8.1.2. Block triangular structure of πµn

F ⊗ π
λn

+ . The following obser-
vation will be the key to the derivation of the Baxter equation (8.1). There
exist special values of the spectral parameter

(8.9) λk = λ̂k,` := −ω`q
2k−M
M ζ, µk = µ̂k := q

k

M ζ, ω` = e−
2πi

M
`,

such that the tensor product representation (8.7) has the following triangular

structure: For any χ ∈ Uq(b−) there exist orthogonal projectors Π
(`)
1 , Π

(`)
2

and an operator π̃new (χ) such that

Π
(`)
1

(
πµ̂n

F ⊗ π
λ̂n,`

+

)
∆(χ)Π

(`)
2 = 0,(8.10a)

Π
(`)
1

(
πµ̂n

F ⊗ π
λ̂n,`

+

)
∆(χ)Π

(`)
1 = π̃new (χ) Π

(`)
1 ,(8.10b)

Π
(`)
2

(
πµ̂n

F ⊗ π
λ̂n,`

+

)
∆(χ)Π

(`)
2 = π̃new (χ) Π

(`)
2 .(8.10c)
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The projectors Π
(`)
1 and Π

(`)
2 determine a (` dependent) decomposition

(8.11) F ⊗H ' V1 ⊕V2 = C2 ⊗V,

where in order to write the second equality we used V1 ' V2 ' V. We will
show that π̃new(χ) '

(
1 0
0 1

)
⊗ πnew(χ) and (−1)n '

(
1 0
0 −1

)
⊗ (−1)n

′
with re-

spect to the decomposition C2 ⊗V. The relation (8.10) can thus be rewritten
in block matrix form as

(8.12) (−1)n
(
πµ̂n

F ⊗ π
λ̂n,`

+

)
∆(χ) '

(
(−1)n

′
πnew(χ) ∗
0 −(−1)n

′
πnew(χ)

)
.

This is an operator acting on C2 ⊗V where each block acts on V.

Proof of (8.10). To prove this fact it is enough to show that it holds for the
generators fi, ki. To do so, it is convenient to rewrite the representation πλ+
in terms of new variables yi that are defined such that

(8.13) πλ+(fi) =
λ

q − q−1
u−1
i vi =

q
M−1

M λ

q − q−1
y−1
i yi+1, πλ+(ki) = uiu

−1
i+1.

It is not hard to see that (8.13) will hold provided that

(8.14) log yi =
1

4

∑
i

Xij log
(
u−1
i v2

i u−1
i

)
,

where Xij was defined in (4.25). The variables yi satisfy the following ex-
change relations

(8.15) yiyj = qYijyjyi, uiyj = qδij−
1

M yjui,

where Yij = δij − 1 + 2
M (i− j)mod-M . One of the advantages of introducing

yi’s is that they will allow us to simplify the study of tensor products in-
volving π+ by use of the following formulas

(
1⊗ πλ+

)
∆(fi) = Λ−1(y) · q

1−ε̄
M

(
f̂i +

λq
M−ε̄
M

q2 − 1
q2ε̄i+1

)
⊗ yi+1y−1

i · Λ(y),(8.16) (
1⊗ πλ+

)
∆(qε̄i) = Λ−1(y) · q

ε̄

M ⊗ ui · Λ(y),(8.17)

where ε̄ ≡ ε̄tot, f̂i = q
1

2
(ε̄i+ε̄i+1−1)fi and Λ(y) := e

∑M
i=1 ε̄i⊗log yi . �
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Proof of (8.16). It is straightforward to check that

(8.18) Λ−1(y) · (fi ⊗ 1) · Λ(y) = fiq
+ 1

2
Ei ⊗ y−1

i+1yi,

where

(8.19) Ei = (ε̄i + ε̄i+1 − 1) +
2

M
(1− ε̄) .

It is furthermore easy to verify that Λ(y)−1(1⊗ yi)Λ(y) = q−
∑M
k=1 ε̄kYki ⊗ yi.

Noting that

(8.20) Yi,j − Yi+1,j = − 2

M
, if j 6= i, i+ 1,

one finds that

(8.21) Λ−1(y)
(
1⊗ yi+1y−1

i

)
Λ(y) = q−

2

M
(1−ε̄)q−(ε̄i+ε̄i+1−1) ⊗ y−1

i yi+1.

The identity (8.16) follows easily by combining (8.18) and (8.21). �

For the fermionic Fock space representation (8.5), using q2ni−1 = (q −
q−1)ni + q−1, the identity (8.16) can be rewritten in the following way(

πµn

F ⊗ π
λn
+

)
∆(fi)(8.22)

= Λ−1(y) · µnq
1−n
M

(
c̄i+1(ci − gnci+1)− gn

q2 − 1

)
⊗ yi+1y−1

i · Λ(y),

where gn := −q
M−n
M µ−1

n λn. The triangular structure (8.10) will follow easily
from (8.22). This is best seen by performing a discrete Fourier transform
along the affine Dynkin diagram as follows

(8.23) c̄(p) :=
1√
M

M∑
`=1

e
2πip

M
`c̄` c(p) :=

1√
M

M∑
`=1

e−
2πip

M
`c`.

This transformation preserves the anti-commutation relations (8.4). We are
going to show that (8.10) holds with projectors

(8.24) Π
(`)
1 := Λ−1(y)N(`)Λ(y), Π

(`)
2 := Λ−1(y)N(`)Λ(y),
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where N(p) = c̄(p)c(p) and N(p) = c(p)c̄(p). Indeed, using (8.22) and (8.24),
the relation (8.10) for χ = fi is rewritten as

N(`) [c̄j+1(cj − ω`cj+1)] N(`) = 0,(8.25a)

N(`) [c̄j+1(cj − ω`cj+1)] N(`) = M`,jN(`),(8.25b)

N(`) [c̄j+1(cj − ω`cj+1)] N(`) = M`,jN(`),(8.25c)

where ω` = e−
2πi

M
` and M`,j is the same in the last two lines. Notice that

the term proportional to the identity in the first tensor factor of (8.22) has
already been simplified. The interested reader can find the specialization of
the formulae above to the case M = 2 in Appendix D.

In order to prove (8.25) let us rewrite the relevant combination entering
(8.22) in terms of momentum space oscillators as

(8.26) c̄j+1(cj − gncj+1) =
1

M

M−1∑
p,k=0

e
2πi

M
(p−k)(j+1)

(
e−

2πi

M
p − gn

)
c̄(k)c(p).

The projectors N(`), N(`) act in a simple way on Fourier transformed
fermionic oscillators

N(`)c̄(k)c(p)N(`) = δ`,p (1− δ`,k) c̄(k)c(p),(8.27a)

N(`)c̄(k)c(p)N(`) = (1− δ`,p) (1− δ`,k) c̄(k)c(p)N(`),(8.27b)

N(`)c̄(k)c(p)N(`) =
[

(1− δ`,p) (1− δ`,k) + δ`,kδ`,p
]
c̄(k)c(p)N(`).(8.27c)

Applying these relations to (8.26) with gn = ω`, relation (8.25) follows with
M`,j given as

(8.28) M`,j =
1

M

∑
p,k 6=`

e
2πi

M
(p−k)(j+1)

(
e−

2πi

M
p − ω`

)
c̄(k)c(p).

Notice that the oscillator of “momentum” ` does not appear in this
expression. We have thereby completed the proof of the triangular structure
(8.10). �

It is worth to emphasize that while for (8.10a) to hold it is enough to

have gn = ω`, the relations (8.10b), (8.10c) further require that µkq
− k

M is in-
dependent of k, see (8.22). The values (8.9) follows from these requirements.
From the explicit form of the projectors the decomposition (8.11) is easy to
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interpret: up to the similarity transform Λ(y) one has

(8.29) V1 ' F1 ⊗H, V2 ' F2 ⊗H,

where F1 and F2 corresponds to the subspaces of the Fock space F where
the `-th mode oscillators is respectively absent or present. They are clearly
isomorphic and their total number operator n differs by one unit.

It is clear that the Baxter equation (8.1) will immediately follow from
our preliminary observation (8.6) combined with the triangular structure
(8.12). This is so as the operators appearing in the diagonal elements of the
matrix in (8.12) coincide up to a sign, from which the vanishing of traces
over F ⊗H follows.

Remark 9. The form of projectors (8.24), the similarity transform Λ(y)
and the introduction of the fermionic oscillators in (8.23) is motivated by the
study of (π+ ⊗ πF )R−. Indeed, the triangular structure of (π+ ⊗ πF )∆ for
special values of the spectral parameter is related to values of the spectral
parameter for which the operator (π+ ⊗ πF )R− has a non-trivial kernel.

Remark 10. A form of the Baxter equation similar to (8.1) was derived
in [Hi01] for M = 3 using different techniques. In the language of this paper
the model considered in [Hi01] corresponds to the quantum space to be
(π−κ ⊗ · · · ⊗ π−κ ) ∆(N).

Remark 11. One may notice that for any a ∈ Uq(b−) there exist Ψ(a) such
that

(8.30)
(
πµ̂n

F ⊗ π
λ̂n,`

+

)
∆(a) = Λ−1(y){c̄(`)⊗ 1,Ψ(a)}Λ+1(y),

where {a, b} := ab+ ba. The explicit form of Ψ(qε̄i) and Ψ(fi) is easily ob-
tained from the discussion above, the existence of Ψ(a) follows.

8.1.3. Tensor products and Drinfeld’s currents. It is instructive to
spell out explicitly what happens to the imaginary root vectors when taking
the tensor product (πµn

F ⊗ π
λn
+ )∆ as in (8.7). We will use these observations

in Section 8.4.1 to show that (8.8) holds for the choice of quantum space
studied in this paper.

The imaginary root vectors are encoded in the generating currents 1 +
F ′i (z), i = 1, . . . ,M − 1 defined in (5.9). Their image under πF and π+ is
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given by

πµF
(
1 + F ′i (z)

)
=

1− κ̄iz−1q2(ni−ni+1)

1− κ̄iz−1
,(8.31a)

πλ+
(
1 + F ′i (z)

)
= 1 + δi,M−1λ

Mz−1.(8.31b)

The first expression is derived in Appendix C.2.3, the second is equivalent
to (6.10). These are rational expressions in z. An important feature of the
imaginary root currents is that in many cases their (generalized) eigenval-
ues behave multiplicatively under tensor product. We will return to this
observation in Section 8.4.2 where we will also present some new interesting
counter examples. For now, let us see explicitly how this works in the case
relevant for the Baxter equation.

The form of the imaginary root currents for the tensor product of these
representation is encoded in the following relation

Λ(y)
[(
πµn

F ⊗π
λn
+

)
∆
(
1 + F ′i (z)

)]
Λ(y)−1(8.32)

= S−1
[
πµn

F
(
1 + F ′i (z)

)
⊗ πλn

+

(
1 + F ′i (z)

)]
S

where

S = (1− gnc̄M−1cM ) · · · (1− gnc̄2c3) (1− gnc̄1c2)(8.33)

gn = −λnµ−1
n q

M−n
M .

Notice that S is invertible for any value of gn. The equality (8.32) can
be verified by lengthy calculations using the iterative construction of root
vectors given in Section 5.2.1. It also follows from Theorem 8.1 of [KhT94].

It is manifest from (8.32) and (8.31) that the tensor product (πF ⊗
π+)∆(1 + F ′i (z)) is a rational expression in z. If we rewrite (8.31a) for i =
M − 1 as follows

(8.34) πµn

F
(
1 + F ′M−1(z)

)
=

1 + (−q−1µn)Mqnq2(nM−1−nM )z−1

1 + (−q−1µn)Mqnz−1
,

it is then clear that for

(8.35) (λn)M =
(
− q

n−M
M µn

)M
,

the zero of π+(1 + F ′M−1(z)) cancels with the pole of πF (1 + F ′M−1(z)). This
mechanism signals the reducibility of the tensor product. Indeed, the condi-
tion (8.35) follows from (8.9).
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8.1.4. The representation π̄+ and the Baxter equation. There is
a second representation that can be used in auxiliary space to construct
Baxter Q-operators:

(8.36) π̄λ+(fi) =
λ

q − q−1
ui+1vi =

λ

q − q−1
q

1

M ȳ−1
i ȳi+1.

Following similar steps as the one given above for π+, we can show that

(8.37)

M∑
k=0

(−1)kT(k)(q
M−k
M ζ)Q̄+(ωq

M−2k

M ζ) = 0,

where T(k) are the same as in (8.1). For M = 2, π+ = π̄+ and one can show
that the two Baxter equations (8.1) and (8.36) are indeed equivalent by
noticing that T(0)(λ) = T(M)(λ) = 1 and −ω squares to one when ω does.

We collect some of the relevant formulae used in the derivation(
1⊗ π̄λ+

)
∆(fi) = Λ−1(ȳ) · q

ε̄−1

M

(
f̌i +

λq
ε̄

M

q − q−1
q1−2ε̄i

)
(8.38)

⊗ ȳi+1ȳ−1
i · Λ(ȳ),

where f̌i = q−
1

2
(ε̄i+ε̄i+1−1)fi. From the equality above the analog of (8.22)

follows (
πµn

F ⊗ π̄
λn
+

)
∆(fi) = Λ−1(ȳ) · µnq

n−1

M

(
(c̄i+1 − ḡnc̄i)ci +

ḡnq

q − q−1

)
(8.39)

⊗ ȳi+1ȳ−1
i · Λ(ȳ),

where ḡn := q
n
M µ−1

n λn. The tensor product representation exhibit triangular

structure for ḡn = ω`. Together with the condition that µnq
n−1

M is indepen-
dent of n this implies that λn = ω`q

M−2n
M ζ and µn = q

M−n
M ζ.

Let us finally quote the formulae for the Drinfeld currents relevant for
this case. We have

π̄λ+
(
1 + F ′i (z)

)
= 1 + δi,1λ

Mz−1.(8.40a)

πµF
(
1 + F ′1(z)

)
=

1 + µMq−nq2(n1−n2)z−1

1 + µMq−nz−1
, .(8.40b)

The poles in the tensor product (πµn

F ⊗ π̄
λn
+ )∆ cancels under the condition

that (λn)M = q−n(µn)M . In the special case M = 2 the representations π+

and π̄+ are manifestly the same and the current (8.34) coincides with (8.40b).

teschner
Sticky Note
Line-break better after equality sign

teschner
Sticky Note
Line break better after equality sign
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8.2. Renormalization of the imaginary root contribution to the
universal R-matrix

We had previously observed that the imaginary root contributions play a
key role for the validity of the identity (8.8) underlying the derivation of
the Baxter equation (8.1) presented in Section 8.1. As a preparation for the
verification of (8.8) we shall now introduce a prescription for renormalising
the imaginary root contribution to the universal R-matrix

8.2.1. Renormalization prescription for the imaginary root contri-
butions . In order to formulate our prescription it is necessary to spell out
the structure of the imaginary root currents first. As in the case of Uq(ĝl2)
imaginary root currents form a commutative algebra. We will restrict our at-
tention to representations in which the currents are represented by rational
functions of the form

(8.41)

π+(1 + F ′i (z)) =

∏ni,+
`=1 (1 + z−1N+

`,i)∏di,+
`=1(1 + z−1D+

`,i)
,

π−(1 + E′i(z)) =

∏ni,−
`=1 (1 + z−1N−`,i)∏di,−
`=1 (1 + z−1D−`,i)

.

It will be shown in Section 8.2.3 below that this condition holds for a large
class of representation including the ones we are interested in. Moreover this
property is preserved by taking tensor products.

Next notice that the coefficients um,ij given in (5.18) that enter the imag-
inary root contributions to the universal R-matrix (5.15), can be rewritten
using

(−1)m(i−j)[M −max(i, j)]qm [min(i, j)]qm(8.42)

= (−1)mM
kij∑
s=1

(−q)m(kij−2s+1)γ
(s)
i,j ,

where kij := M − |i− j| − 1, and γ
(s)
i,j =

∑M−max(i,j)
a=1

∑min(i,j)
b=1 δs,a+b−1. In

order to derive this relation one rewrites [n]q =
∑n

s=1 q
n−2s+1.

With this observations in mind it is clear that, before renormalization,
the contribution of imaginary roots for given representations takes the form
of a finite product

∏
α εqM (wα), where εq(w) is defined in (5.34). Our renor-

malization prescriptions consists in replacing εqM (w) with EMb2(w) defined
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in (7.7). For convenience we report the definition here

(8.43) EMb2(w) := exp

(∫
R+i0

dt

4t

w−
i

π
t

sinh(Mb2t) sinh(t)

)
.

The prescription above can be formulated more explicitly as follows

[ (
π+ ⊗ π−

)
R−∼δ

]
ren

(8.44)

=

M−1∏
i,j=1

∏di,+
`=1

∏nj,−
`′=1 Gij(D+

`,i ⊗ N−`′,j)∏ni,+
`=1

∏nj,−
`′=1 Gij(N+

`,i ⊗ N−`′,j)

∏ni,+
`=1

∏dj,−
`′=1 Gij(N+

`,i ⊗ D−`′,j)∏di,+
`=1

∏dj,−
`′=1 Gij(D+

`,i ⊗ D−`′,j)
,

where the image of the imaginary root currents under π± is given in (8.41)
and

(8.45) Gij(x) :=

kij∏
s=1

(
EMb2

(
(−1)M−1(−q)2ρs(kij)x

))γ(s)
ij

,

using the notation ρs(k) := k−2s+1
2 .

8.2.2. Examples of renormalized imaginary root contributions. In
this section we calculate the currents and formulate the resulting prescrip-
tion (8.44) for the renormalization of imaginary root contributions for the
basic representations of our interest. Let us start recalling the form of imag-
inary root currents for prefundamental representations

π+
λ

(
1 + F ′i (z)

)
= 1 + δi,M−1λ

+Mz−1,(8.46a)

π̄+
λ

(
1 + F ′i (z)

)
= 1 + δi,1λ

+Mz−1,(8.46b)

π−λ
(
1 + E′i(z)

)
= 1 + δi,M−1λ

−Mz−1,(8.46c)

π̄−λ
(
1 + E′i(z)

)
= 1 + δi,1λ

−Mz−1.(8.46d)

These equations are collected from (8.31), (8.40), (6.52c) and (6.13). Let us
define

(8.47) ρσ
+σ−(λµ−1) :=

[(
πσ

+

λ ⊗ πσ
−

µ

)
R−∼δ

]
ren
, σ± ∈ {±, ±̇},
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compare to (6.36). Following the prescription given in (8.44) one obtains

ρ+−(ζ) = ρ+̇−̇(ζ) =

M−1∏
s=1

1

EMb2 (−qM−2sζM )
,(8.48a)

ρ+−̇(ζ) = ρ+̇−(ζ) =
1

EMb2 ((−1)M−1ζM )
.(8.48b)

Notice that for M = 2, these two expressions coincide and are equal to (7.6).
The next example is the renormalization of (πF ⊗ π−)R−∼δ. In this case,

the prescription (8.44) for the currents (8.31), and (8.46c) gives

[(
πFµn
⊗ π−ν

)
R−∼δ

]
ren

=
EMb2

(
−qM−2ngM−

)
EMb2

(
−qMgM− q−2MnM

) ,(8.49)

g− := −q
n−M
M µnν

−1.

This equality results after a cancellation of terms in (8.44). The simplifica-
tion does not rely on any special property of the function EMb2(ω) and uses
the fact that each ni takes the values {0, 1}. At this point one can use the
property EMb2(q+Mx) = (1 + x)EMb2(q−Mx) to rewrite

[(
πFµn
⊗ π−ν

)
R−∼δ

]
ren

= θ−F (g−)
(
1− gM− nM

)
,(8.50)

θ−F (g−) :=
EMb2

(
−qM−2ngM−

)
EMb2

(
−qMgM−

) .

A similar analysis gives

[(
πFµn
⊗ π̄−ν

)
R−∼δ

]
ren

= θ̄−F (ḡ−)
(
1− ḡM− n̄1

)
,(8.51)

θ̄−F (ḡ−) :=
EMb2

(
−qM−2n̄ḡM−

)
EMb2

(
−qM ḡM−

) ,

where

(8.52) ḡ− := q
n̄−M
M µnν

−1, n̄ := M − n, n̄i := 1− ni.

More examples of renormalization of imaginary root contributions are pre-
sented in the following section and Appendix B.2.1.
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Lax operators for T(λ). Using the results (8.50) (8.51) we can write
down the explicit expression obtained from the renormalized universal R-
matrix for the Lax operators entering the tranfer matrices (8.3) with quan-
tum space (8.95).
(8.53)[(
πFµn
⊗ π−ν

)
R−
]
ren

= θ−F (g−)Λ(y)

 M∏
p=1

(
1− g−e−

2πip

M N(p)
)Λ−1(y)Λ(u),

(8.54)[(
πFµn
⊗ π̄−ν

)
R−
]
ren

= θ̄−F (ḡ−)Λ(ȳ)

 M∏
p=1

(
1− ḡ−e−

2πip

M N(p)
)Λ−1(ȳ)Λ(u).

The variables yi and ȳi entering the expressions above are introduced in
(6.52a), (E.5) (equivalently in (8.13), (8.36)) and the fermionic number op-
erators N(p) = c̄(p)c(p) and N(p) = c(p)c̄(p) are defined in terms of the
fermionic oscillators (8.23) in “momentum space” conjugated to the Dynkin
diagram circle. The main steps of the dervation are left to Appendix E.2.
The Lax operators (6.26), (6.1) can be recovered from these expressions
upon acting on the subspace of the fermionic Fock space where the total
number operator n has eigenvalue 1.

8.2.3. Rationality of the imaginary root currents. It remains to
show that the currents are indeed represented by rational functions of the
form (8.41) in the representations of our interest. To this aim we need to
generalise the proof of the rationality of the currents described in Section 7.2
for the case of Uq(ĝl2) to Uq(ĝlM ). This turns out to be somewhat more
involved. We will outline the proof below, leaving some technical details to
appendices.

It will be useful to consider the so-called universal Lax matrix

(8.55) L (λ) :=
(
πf
λ ⊗ 1

)
R−,

where πf
λ is the fundamental representation of Uq(ŝlM ) defined in (6.2). It

follows from the universal Yang-Baxter equation (4.23) that L (λ) satisfies
the quadratic relations (3.16). The product formula for the universal R-
matrices yields a triangular decomposition of the form

(8.56) L (λ) =

1 +
∑
i>j

`ji(λ)Eij

( M∑
i=1

ai(λ)Eii

)1 +
∑
i<j

`ji(λ)Eij

 ,
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where Eij are the matrix units, as before. It can be shown, see Appendix A
for details, that for any matrix L (λ) that satisfies the relations (3.16) the
following relations hold

(8.57) ap(λ) =
Ap(q

− p−1

M λ)

Ap−1(q−
p

M λ)
, Ap(λ) := q-det

(
L [p](λ

M

p )
)
, A0(λ) := 1,

where ρk = m−2k+1
2 and the p× p matrices L [p](λ) are defined as

(8.58)
(
L [p](λ

M

p )
)
ij

:= λ
M−p
p

(i−j) (L (λ))ij , i, j = 1, 2, . . . , p.

The quantum determinant q-det (L (λ)) in (8.57) is defined by an expression
of the form

q-det (L (λ)) =
∑
σ∈SM

cσ(q)Lσ(1),1(q−
2

M
ρ1λ)Lσ(2),2(8.59)

× (q−
2

M
ρ2λ) · · ·Lσ(M),M (q−

2

M
ρMλ),

The summation in (8.59) is extended over all permutations σ of M elements.
An explicit formula for the coefficients cσ(q) in (8.59) can be found in (A.7).
Note that [Ap(λ), Aq(µ)] = 0.

We are interested in the contributions of the imaginary root generators
to the universal Lax matrix contained in generating functions ki(λ) defined
via

(8.60)
(
πf
λ ⊗ 1

)
R−∼δ =

M∑
i=1

ki(λ)Eii.

The explicit form of ki(λ) can be obtained using the definition R−∼δ,

see (5.15) with (5.18), and the explicit formula for πf
λ(f

(i)
mδ) given in Ap-

pendix C.2.3 . One can verify by direct comparison that ki(λ) satisfy the
following relations

(8.61)
ki+1(λ)

ki(λ)
= 1 + E′i((−q)iλ−M ),

M∏
i=1

ki(q
− 2

M
ρiλ) = 1,

where 1 + E′i(z) is defined in (5.9) and ρi = M−2i+1
2 are the components of

the Weyl vector. Combining this observation with (8.57) and

(8.62)
(
πf
λ ⊗ 1

)
q−t =

M∑
i=1

Eii ⊗ q
ε̄

M
−ε̄i .
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we obtain

(8.63) 1 + E′i((−1)iλ−M ) =
Ai+1(λ)Ai−1(λ)

Ai(q
− 1

M λ)Ai(q
+ 1

M λ)
qε̄i+1−ε̄i ,

where Ai(λ) are defined in (8.57). Notice that this combination remains
unchanged if we rescale the matrix L (λ) by an overall function of λ. For-
mula (8.63) allows us to complete the proof of rationality of the currents for
the representations of interest along the lines of Section 7.2. It suffices to note
that the generating functions Ai(λ) get represented, up to an i-independent
factor proportional to the identity, by polynomials in λ. We have checked
this fact explicitly for the basic representations of our interest, and it will
continue to hold for any tensor product of these representations.

Remark 12. In Section 4.1 we presented a realization of the quantum
affine algebra Uq(ĝ) in terms of 3r generators. This presentation is due to
Drinfeld and Jimbo [Dr1, J]. There is an other realization known as Drinfeld
second realization [Dr87]. This realization involves certain currents which,
as explained in [KhT2], are directly connected to the root vectors defined
in Section 5.2.1. The isomorphism between the realization of Drinfeld and
Jimbo and the Drinfeld second realization has been proven in [Be1].

In the case ĝ = ŝlM there is yet an other presentation of the quantum
affine algebra following the Leningrad school, see [FaRT, ReSe]. The iso-
morphism between this realization and the Drinfeld second realization was
establshed in [DF]. We may note that the universal Lax matrix introduced
above contains (half) of the generators of Uq(ŝlM ) in the presentation of
[FaRT, ReSe]. The proof above therefore combines elements of all three re-
alisations.

8.3. Co-product of imaginary root generators

In Section 7.3 we had found the useful identity (7.30) expressing the mixing
between real and imaginary roots under co-product in the case of Uq(ŝl2). It
allowed us to analyse possible consistency conditions on the renormalisation
of the imaginary root contributions that might arise from this mixing. We
shall now describe the generalisation of the identity (7.30) to the case of
Uq(ŝlM ). As a useful generating function we shall again consider

(8.64) M−
∼δ(ν)⊗ 1 :=

(
1⊗ π−ν

)
(R−∼δ),
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The explicit expression of M−
∼δ(ν) follows from the definitions (8.68), (5.15)

and the form of the imaginary root vectors given in (6.52c):

(8.65) M−
∼δ(ν) = exp

( ∞∑
m=1

(−1)m+1

m

ν−mM

qmM − q−mM
f̃

(M−1)
mδ

)
,

with

(8.66) f̃
(j)
mδ := (qmM − q−mM )

M−1∑
i=1

um,jif
(i)
mδ,

and um,ij given in (5.18). We are going to show that the co-product of
M−
∼δ(ν) takes the form

(8.67) ∆
(
M−
∼δ(ν)

)
=
(
M−
∼δ(ν)⊗ 1

)
εq
(
ν−MΞ

) (
1⊗M−

∼δ(ν)
)
,

generalising (7.30) to the cases with M > 2. We are using the notation τq =
q − q−1 and

(8.68) Ξ := τ2
q

M−1∑
j=1

qε̄M−ε̄jfδ−(εj−εM ) ⊗ f
op
εj−εM ,

is the combination of real root generators appearing in the co-product of
M−
∼δ(ν). In the definition of Ξ the terms in the second tensor factor fop

γ are
constructed using the opposite root ordering compared to the one defined
in Appendix C.1.2 which is used for the construction of fγ . Their explicit
expression can be found in (E.50).

In the following we will report the main ideas that enter the derivation
of (8.67) leaving most of the technical details to Appendix E.3. The first
observation is the following(

1⊗ π−ν
)

(R̄−) = Λ(y)
(
M−(ν)⊗ 1

)
Λ−1(y),(8.69)

Λ(y) := e
∑M
i=1 ε̄i⊗log yi ,

where ε̄i are the Cartan generators (4.6) and the variables yi are introduced
in (8.13). Notice that we have already used the operators yi and the similarity
transform Λ(y) to simplify the study of tensor products involving π+ in
Section (8.1.2). The explicit expression of M−(ν) follows from the product
formula of the universal R-matrix (5.12) and the form of (1⊗ π−)(fγ ⊗ eγ)
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for γ a real root given in (E.7). It takes the form
(8.70)

M−(ν) = M−
≺ (ν)M−

∼δ(ν)M−
� (ν),

M−
≺ (ν) = εq(X≺1 ) · · · εq(X≺M−1),

M−
� (ν) = εq(X�M−1) · · · εq(X�1 ),

where

X≺i := τqν̌
−1f̌i, X�i := τqν̌

−i[· · · [f̌0, f̌1], . . . , f̌i−1],(8.71)

f̌i := q−
1

2
(ε̄i+ε̄i+1−1)fi,

with ν̌ = νq
M−ε̄
M and τq = q − q−1. The fact that only finitely many real roots

contribute to the product formula (5.12) is due to the special property of
π− spelled out in Section 6.52. Notice that the nested commutator in the
definition of X�i is

(8.72) [· · · [f̌0, f̌1], . . . , f̌i−1] = q−
∑i−1
k=1(ε̄k−1)q−

1

2
(ε̄i+ε̄M−1)fδ−(εi−εM ).

The commutation relations and coproduct formulae for the elements (8.71)
are collected in Appendix E.3.

The second ingredient used in derivation of (8.67) are certain identi-
ties satisfied by εq(X). In addition to the relations (7.37), (7.40) used in
Section 7.3 in the case M = 2, the following generalized pentagon equation
holds

(8.73) εq(V )εq(U) = εq(U)εq

(
V U − UV
q − q−1

)
εq(V ),

if

q−1V 2U + (q + q−1)V UV + q+1UV 2 = 0,(8.74)

q+1U2V + (q + q−1)UV U + q−1V U2 = 0.(8.75)

Notice that the identity (7.40) is a special case of (8.73) for UV = q−2V U .
The two basic identities (7.37) and (8.73) are known to be satisfied by εq(x).

The last important observation used in the derivation is that

(8.76) [fj , f̃
(M−1)
mδ ] = 0, forj = 1, . . . ,M − 2,

where f̃
(M−1)
mδ are defined in (8.66). This follow from the definition (8.66)

and the commutation relations9 (5.17).

9It is actually obtained by applying the Cartan anti-involution (4.14) to (5.17)
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Remark 13. For future use let us note that the relations obtained from
(8.73) by replacing εq(x) by Eq(x) and U , V by positive self-adjoint oper-
ators are also satisfied, see e.g. [Ip12] for a derivation. The identities ob-
tained by using our renormalisation prescription to define the evaluation of
∆
(
M−
∼δ(ν)

)
in representations of modular double type will therefore also

be valid.

Remark 14. The identity (8.67) is understood as an equality of formal
power series in the spectral parameter. One may notice that the the first
non-trivial term in this expansion reads

(8.77) ∆(f̃
(M−1)
δ )− f̃ (M−1)

δ ⊗ 1− 1⊗ f̃ (M−1)
δ = [M ]qΞ.

Within this interpretation, the relation (8.67) provides a compact expression
for the coproduct of imaginary root vectors. This should be compared with
known expressions in the literature from [Dam2] and [KhT94]. In [KhT94] an
explicit twist that maps the coproduct defined in this paper, to the so-called
Drinfeld coproduct, with respect to which imaginary roots are primitive
elements, is constructed. This form is not of direct use when both tensor
factors correspond to representations of Uq(b+) that cannot be extended to

representations of the full Uq(ŝlM ).

Remark 15. The quantity M−
∼δ defined in (8.68) appeared also in [FrH]

(Section 7.2), where it is called Ti=M−1(z).

8.4. Checks of compatibility

In the previous section we had verified in the case of Uq(ŝl2) that the pro-
posed renormalisation prescription preserves all the basic properties of the
universal R-matrices. This was found to be a consequence of the fact that
the function Eq(x) used to define the renormalisation of the real root con-
tributions satisfies the same functional relations (7.37), (7.40), and (8.73)
as are satisfied by the function εq(x) appearing in the product formula. In
the following we will outline how to generalise this discussion to the case of
Uq(ŝlM ).

It will furthermore be explained how the consequences of the identity
(8.67) are consistent with the renormalisation prescription

(8.78) π+
(
M−
∼δ(ν)

)
=

M−1∏
i=1

∏di,+
`=1 Gi,M−1(ν−MD+

`,i)∏ni,+
`=1 Gi,M−1(ν−MN+

`,i)
.
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This will again be a consequence of the functional equations satisfied by the
special function Eq(x).

8.4.1. The case of πF ⊗ π+ and the Baxter equation . In the follow-
ing we verify (8.67) when the first two tensor factors are chosen as πF ⊗ π+.
We leave the proof of the identity involving real root contributions, general-
izing the one presented in Section 7.4.3, to Appendix E.4. This is a prototyp-
ical example of tensor products involving finite dimensional representations
and modular double type representations. This verification, supplemented
with a similar analysis where π− is replaced by π̄− that goes along the same
lines, allows to complete the proof of the Baxter equation.

Explicit verification of πF ⊗ π+ applied to (8.67). The verification
of (8.67) in this case is greatly simplified by the analysis of imaginary root
currents given in Section 8.1.3. More specifically, the relation (8.32) implies
that the left hand side of (8.67) can be rewritten using

Λ(y)
[(
πFµn
⊗ π+

λn

)
∆
(
M−
∼δ(ν)

)]
Λ(y)−1(8.79)

= S−1
[
πFµn

(
M−
∼δ(ν)

)
⊗ π+

λn

(
M−
∼δ(ν)

)]
S.

where S is given in (8.33). Concerning the right hand side, the following
holds:

πFµn

(
M−
∼δ(ν)

)
= θ−F (g−)

(
1− gM− nM

)
,(8.80)

Λ(y)
[(
πµn

F ⊗ π
+
λn

)
Ξ
]

Λ(y)−1 = Ξ′ ⊗ 1,(8.81)

Ξ′ = −τqλMn

(
M−1∑
k=1

g−kn c̄k

)
cM ,

where θ−F (x) is defined in (8.50) and the operator π+(M−
∼δ) is central. The

equality (8.81) follows from (E.105) and the definition (8.68).
It follows from these observations and the prescription (7.44) for

Eq(ν−MΞ′ ⊗ 1) that (8.67) reduces to

(8.82) S−1
(
1− gM− nM

)
S =

(
1− gM− nM

) (
1 + τ−1

q ν−MΞ′
)
.

This simple equality of operators acting on the fermionic Fock space holds
as a consequence of

(8.83) S−1c̄MS = c̄M +

M−1∑
k=1

gM−kn c̄k.
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In order to reduce (8.82) to (8.83), one can use the explicit form of Ξ′ and the
following relations: nMcM = 0, S commutes with cM and ν−M (λn)M (g−)−M

= (gn)M . The identity (8.83) is easy to show. �

8.4.2. Checks of (8.67) evaluated on prefundamental representa-
tions. This section contains an explicit verification of the identity that
follows from (8.67) after applying π+ ⊗ π̄+ or π+ ⊗ π+ to it. The verifi-
cation requires a careful study of the the image of imaginary root currents
under the tensor product representations (π+ ⊗ π̄+)∆ or (π+ ⊗ π+)∆. These
are representations of Uq(b−). We will see that in this case the (generalized)
eigenvalues of imaginary root currents do not behave multiplicatively under
tensor product, see (8.84) and (8.89) below. This should be compared to a
rather general result, which is a corollary of Theorem 8.1 of [KhT94], which
states the following:

Let πfull be a representation of Uq(ĝ) and π+ a representation of Uq(b−),
then the generalized eigenvalues of (πfull ⊗ π+)∆ (1 + F ′i (z)) and (π+ ⊗
πfull)∆ (1 + F ′i (z)) are equal to the eigenvalues of

π+
(
1 + F ′i (z)

)
× πfull

(
1 + F ′i (z)

)
.

Notice that this result, once supplemented by the information that any finite
dimensional representation of Uq(b−) can be extended to a finite dimensional
representation of Uq(ĝ), implies the result of Proposition 1 in [FrR].

Explicit verification of π+ ⊗ π+ applied to (8.67). As in the example
in Section 8.4.1, in order to verify (8.67), we need to evaluate two basic
quantities: (1) the coproduct of imaginary root currents, (2) the element Ξ
defined in (8.68). Let us proceed in order. On the one hand the currents
of imaginary root vectors for the tensor product of two prefundamental
representations π+ take a particularly simple form
(8.84)

(
π+
λ1
⊗ π+

λ2

)
∆
(
1 + F ′i (z)

)
=


1 i 6= M − 2,M − 1

1 + rz−1 i = M − 2
(1+λM1 z−1)(1+λM2 z−1)

(1−q+1rz−1)(1−q−1rz−1) i = M − 1

where τq = q − q−1 and the operator r is given below. The result (8.84)
follows from a straightforward but lengthy calculation. The form (8.84) is not
too surprising if we recall that, in the special case of Uq(ŝlM ), the imaginary
root currents can be computed using the formula (8.63) with L replaced by
L+L+. It follows from (8.84) that the linear combination of imaginary roots
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defined in (8.66) satisfies the relation

(8.85)
(
π+
λ1
⊗ π+

λ2

) [
∆(f̃

(M−1)
mδ )− f̃ (M−1)

mδ ⊗ 1− 1⊗ f̃ (M−1)
mδ

]
= [M ]qmrm.

The result (8.84) with the definition (8.68) implies that

(8.86)

(
π+
λ1
⊗ π+

λ2

)
∆
(
M−
∼δ(ν)

)(
π+
λ1
⊗ π+

λ2

) (
M−
∼δ(ν)⊗M−

∼δ(ν)
) = Eb2

(
ν−Mr

)
In writing the left hand side of this expression we have used the fact that
the denominator is represented by central elements. The identity (8.86) is
then obtained by first computing (8.85) and then applying the renormaliza-
tion prescription to the expression (8.65). It is instructive to rederive (8.86)
from the general formula (8.78) with π+ 7→ (π+

λ1
⊗ π+

λ2
)∆. From this point

of view (8.86) holds as a consequence of the following identity
(8.87)

GM−1,M−1(−q+1ω)GM−1,M−1(−q−1ω)

GM−2,M−1(ω)
=

M∏
s=1

EMb2(q2ρs(M)ω) = Eb2(ω),

with ω = r. The first equality in (8.87) follows from the definition of Gij(x)
given in (8.45) and does not use any property of EMb2(x). The second equality
in (8.87) is a simple consequence of the definition (8.43).

In order to complete the verification that (8.67) holds when we apply
the representation π+ ⊗ π+, we need to evaluate the image of Ξ defined
in (8.68). A simple calculation shows that(

π+
λ1
⊗ π+

λ2

)
Ξ(8.88)

= (q − q−1)M
M−1∑
j=1

uMu−1
j (fj−1 · · · f1f0)⊗ (fM−1 · · · fj+1fj) = r,

with π+(fδ−(εj−εM )) and π+(fop
εi−εM ) given in (6.9) and below (E.104) re-

specively. Above we used the by now standard notation (π+
λ1
⊗ π+

λ2
)(fi ⊗

fj) = fi ⊗ fj . The operator r is the same as the one appearing in the cur-
rents (8.84). This conclude the check in this case.

Explicit verification of π̄+ ⊗ π+ applied to (8.67). The steps are the
same as in the previous paragraph with important structural differences.
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The imaginary root currents take the form

(8.89)
(
π̄+
λ1
⊗ π+

λ2

)
∆(1 + F ′i (z)) =

(
1 + z−1Xi−1

) (
1 + z−1Xi+1

)
(1− q−1z−1Xi) (1− q+1z−1Xi)

,

where

(8.90) Xi = λM−i1 λi2 (t1 · · · ti)−1 (ti+1 · · · tM ) ti =
(
quivi ⊗ v−1

i ui
) 1

2 .

Notice that ti are commuting operators and satisfy t1 · · · tM = 1. The linear
combination of imaginary roots defined in (8.66) satisfies the relation

(
π̄+
λ1
⊗ π+

λ2

) [
∆(f̃

(M−1)
mδ )− f̃ (M−1)

mδ ⊗ 1− 1⊗ f̃ (M−1)
mδ

]
(8.91)

= [M ]qm
(
λ1λ

M−1
2 t2M

)m
.

To obtain this expression it is useful to observe that most of the terms
in the sum (8.66) cancel with each other due to the form (8.89) and the
identity [i+ 1]qk + [i− 1]qk − [i]qk(q

k + q−k) = 0. By a similar mechanism
as in (8.86), this implies that

(8.92)

(
π̄+
λ1
⊗ π+

λ2

)
∆
(
M−
∼δ(ν)

)(
π̄+
λ1
⊗ π+

λ2

) (
M−
∼δ(ν)⊗M−

∼δ(ν)
) = Eb2

(
ν−Mλ1λ

M−1
2 t2M

)
.

It is instructive to rederive (8.92) from the general formula (8.78) with π+ 7→
(π̄+
λ1
⊗ π+

λ2
)∆. From this point of view (8.92) holds as a consequence of

M−1∏
i=1

GiM−1(−q−1ωi)GiM−1(−q+1ωi)

GiM−1(ωi+1)GiM−1(ωi+1)
(8.93)

=

∏M
i=1 EMb2(q2ρs(M)ωM−1)

ρ+̇−(ω0)ρ+−(ωM )
=

Eb2(ωM−1)

ρ+̇−(ω0)ρ+−(ωM )
,

with ωi = ν−MXi and ρε1ε2(ω) defined in (8.48). The first equality in (8.93)
does not uses any property of the special function EMb2(ω). The second
equality is the same as in (8.87). For the right hand side of (8.67) one finds
that

(8.94)
(
π̄+
λ1
⊗ π+

λ2

)
Ξ = (q − q−1)MuMu−1

1 f̄0 ⊗ (fM−1 · · · f2f1) = λ1λ
M−1
2 t2M ,
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where Ξ is defined in (8.68) The form of π̄+(fδ−(εj−εM )) = δj,1f̄0 follows from
the definition (8.36) and the iterative construction of root vectors, the sec-
ond tensor factor π+(fop

εi−εM ) is given below (E.104). This concludes the
verification of (8.67) in this case.

8.5. Modular duality and quantum Wronskian relations

By dividing the Q-operators by the scalar factors coming from the imaginary
roots one obtains Q-operators that are manifestly self-dual under b→ b−1.
We are now going to show that this has important consequences, leading to
functional relations among the Q-operators of quantum Wronskian type. In
the case M = 2 it has been observed in [Z00] that such functional relations
can be solved to express the eigenvalues of Q-operators in terms of solutions
to certain nonlinear difference equations of thermodynamic Bethe ansatz
(TBA) type.

8.5.1. Rewriting the Baxter equations. When the quantum space is
taken as

(8.95) πq(a) =
(
π−κN ⊗ π̄

−
κ̄N ⊗ · · · ⊗ π

−
κ1
⊗ π̄−κ̄1

)
∆(2N)(a) a ∈ Uq(b+).

the transfer matrices entering the Baxter equation (8.1) can be rewritten as
follows

(8.96) Q+(ζ) = Ξ(ζ)q+(ζ), T(k)(ζ) = Θ(k)(ζ)tk(ζ), k = 1, . . . ,M − 1,

where
(8.97)

Ξ(ζ) :=

N∏
a=1

ρ+−(ζκ−1
a )ρ+−̇(ζκ̄−1

a ), Θ(k)(ζ) :=

N∏
a=1

θ−k (ζκ−1
a )θ−̇k (ζκ̄−1

a ).

The function ρε1ε2(ζ) are given in (8.48) and the form of θεk(ζ) follows from
(8.50), (8.51) to be

(8.98) θ−k (ζ) =
EMb2((−1)M−1q−kζM )

EMb2((−1)M−1q+kζM )
, θ−̇k (ζ) = θ−M−k(−ζ).

The remaining transfer matrices involved in (8.1) are simply given by
T(1)(ζ) = T(M)(ζ) = 1. The rewriting above is convenient because the trans-
fer matrices tk(ζ) and q+(ζ) have simpler analytic properties as functions of
the spectral parameter compared to their ancestors.
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Inserting (8.96) in the Baxter equation (8.1) and dividing by Ξ(−qζ) we
obtain

M−1∑
k=1

(−1)k−1ck(ζ)tk(q
k

M ζ)q+(−ωq
2k−M
M ζ)(8.99)

= ∆(ζ)q+(−ωq−1ζ) + (−1)Mq+(−ωq+1ζ),

where
(8.100)

∆(ζ) :=
Ξ(−q−1ζ)

Ξ(−q+1ζ)
=

N∏
a=1

[(
1− ζM

κ̄Ma

)M−1∏
s=1

(
1− q−2s

(
−q ζ

κa

)M)]
,

(8.101)

ck(ζ) :=
Ξ(−q

2k−M
M ζ)

Ξ(−q+1ζ)
Θ(k)(q

k

M ζ) =

N∏
a=1

M−k−1∏
s=1

(
1 + (−1)M−1qM−2s ζ

M

κMa

)
.

Notice that compared to (8.1) we reabsorbed the M -th root of unity ω in
the definition of ζ. In order to derive (8.100) it is useful to notice that

ρ+−(q−1λ)

ρ+−(q+1λ)
=

M−1∏
s=1

(
1 + qM−2sλM

)
= q-det

(
L−̇(λ)

)
,(8.102a)

ρ+−̇(q−1λ)

ρ+−̇(q+1λ)
=
(
1 + (−1)M−1λM

)
= q-det

(
L−(λ)

)
.(8.102b)

8.5.2. Elementary properties of functional difference equations.
Consider the M-th order functional difference equation for q(λ)

(8.103)

M∑
k=0

(−1)ktk(λ)q[k](λ) = 0,

where f [k](λ) means to shift the argument of f(λ) in certain units, e.g.
f [k](λ) := f (pkλ). We set t0(λ) = tM (λ) = 1. This is the generic situation
as they can be reintroduced by rescaling the equation (8.103) with t0(λ)
and by redefining q(λ). Let us recall two elementary facts about functional
difference relations:
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1. Let q1(λ), . . . , qM (λ) be M solutions of (8.103) then the quantum Wron-
skian

(8.104) W (λ) := det
1≤a,b≤M

(
q

[a−1]
b (λ)

)
,

is a quasiconstant, i.e. W (λ) = W [1](λ).
2. Let q1(λ), . . . , qM−1(λ) be M − 1 solutions of (8.103) then

(8.105) q̄(λ) := det
1≤a,b≤M−1

(
q

[a−1]
b (λ)

)
,

satisfies the conjugate Baxter equation

(8.106)

M∑
k=0

(−1)k t̄k(λ)q̄[k](λ) = 0, t̄k(λ) := t
[k−1]
M−k(λ).

The statements can strengthened considerable provided one is dealing
with Q-operators that are self-dual under b→ b−1.

8.5.3. Modular duality. It is manifest from its explicit expression that
q+(ζ) is invariant upon replacing b with b−1. This means that q+(ζ) satisfies
a dual Baxter equation obtained by replacing b with b−1. In order to make
the behaviour under b→ b−1 more visible let us introduce u := M

2πb log ζ

along with sa := M
2πb log κa and s̄a := M

2πb log κ̄a. Multiplication by q
2

M and

e−πi
2

M in the ζ-plane translates into shifts by −ib+1 and −ib−1 in the u-
plane.

We have already observed in the remark below (8.5) that one can obtain
M solutions to the Baxter equation (8.1) by shifting the argument of the
Q-operator as follows Q+(ω`ζ) with ω` = e2πi`/M . The dual Baxter equation
guarantees that these are linear independent. It will be argued that the
following relations hold

(8.107) det
1≤k,`≤M

q+
(
u− i(kb+1 + `b−1)

)
= F(u−Mcb),

where the operator F(u) is determined up to a u-independent operator as

(8.108) F(u) = F0

N∏
a=1

[
eb
(
u− s̄a − cb

)M−1∏
s=1

eb
(
u− sa + (2s−M − 1)cb

)]
.
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We had noted above that the Baxter equation implies quasi-constancy of
F(u), more precisely we find in our case the functional equation

(8.109) F(u−Mcb) = ∆(−qe
2πb

M
u)F(u+ ib−Mcb).

The dual Baxter equation obtained by replacing b→ b−1 in the coefficients
implies that F (u) must satisfy a very similar difference equation with b
replaced by b−1. These equations posses the manifestly self-dual solution
(8.108). Taken together these two difference equations determine F(u) up
to a constant operator F0. This operator can be determined by studying
the asymptotics of q+(ζ) for ζ →∞, as was done for M = 2 in [ByT1]. We
intend to return to this question elsewhere.

Remark 16. It was observed in Remark 6 above that the tensor product
π+
λ1
⊗ · · · ⊗ π+

λM
contains for generic values of {λs} an irreducible represen-

tations of evaluation type, as expressed more precisely in equation (6.50).
Formal reasoning indicates that for certain values of {λs} there may exist in-
variant subspaces in the dual of π+

λ1
⊗ · · · ⊗ π+

λM
. In particular for λs = q

2s

M λ
there seems to exist a sub-representation isomorphic to the trivial represen-
tation. Similar observations have been used in the case of highest weight
representations to derive functional relations similar to (8.107) using reso-
lutions of the identity representation of Bernstein-Gelfand-Gelfand (BGG)-
type [BaLZ3, BaHK, BaFLMS, DM]. It would be interesting to know if a sim-
ilar approach can be used to derive functional equations in the case of repre-
sentations that do not have extremal weight vectors as considered in our pa-
per. A more systematic analysis of the tensor products (π+

λ1
⊗ · · · ⊗ π+

λ`
)∆(`)

and their connections with the functional relations involving Q-operators
may be an interesting project for the future.

Appendices

Appendix A. Quantum minors and triangular
decomposition of L (x)

The quantum determininant. In this appendix we introduce the quan-
tum determinant, see [KuSk81], [Mo], [Tar92]. It follows from the relation
(3.16) that

Π−12...mL1(q−
2

M
ρ1λ) · · ·Lm(q−

2

M
ρmλ)(A.1)

= Lm(q−
2

M
ρmλ) · · ·L1(q−

2

M
ρ1λ)Π−12...m,
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where

Π−12...m := (Rm−1,m)
(
Rm−2,mR

−
m−2,m−1

)
· · ·
(
R1,m · · ·R−1,2

)
(A.2)

∈ End
(
(CM )⊗m

)
,

and

(A.3) Ra,b =
q−1λMb − qλMa

q − q−1
Ra,b(λa, λb), λa = q−

2

M
ρaλ,

with R(λ, µ) given in (3.17) and ρa = m−2a+1
2 . The indices a, b in Ra,b and

La(λ) entering (A.1) denotes the a-th (b-th) copy of CM in (CM )⊗m. One
can show that Π−12...m projects into the totally antisymmetric part of CM in
(CM )⊗m. The case m = M plays a distinguished role. On the one hand

(A.4) Π−12...ML1(q−
2

M
ρ1λ) · · ·LM (q−

2

M
ρMλ)Π−12...M = q-det (L (λ)) Π−12...M ,

where q-det (L (λ)) acts as a scalar in (CM )⊗M and takes the form

q-det (L (λ)) =
∑
σ∈SM

cσ(q)Lσ(1),1(q−
2

M
ρ1λ)(A.5)

×Lσ(2),2(q−
2

M
ρ2λ) · · ·Lσ(M),M (q−

2

M
ρMλ),

where ρk = M−2k+1
2 . The coefficients cσ(q) are determined by the relation

(A.6) Π−12...M

(
eσ(1) ⊗ eσ(2) · · · ⊗ eσ(M)

)
= cσ(q)Π−12...M (e1 ⊗ e2 · · · ⊗ eM ) ,

where ei denote the canonical basis of CM , see [Mo]. With a little inspection
one finds that where

(A.7) cσ(q) = (−q)`(σ)qf(σ), f(σ) = − 2

M

M∑
k=1

(k − 1)(k − σ(k)).

One the other hand one can show via the fusion procedure that

[q-det (L (λ)) ,L (µ)] = 0.

Examples. The definition above produce

(A.8) q-det(L−(λ)) = 1 + (−1)M−1λM ,

where L−(λ) is defined in (6.22). Notice that only two permutation con-
tributes to the expression for the quantum determinant given above: σ = id
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and σ = ω := (2, 3, . . . ,M, 1). The coefficient in the quantum determinant
are computed recalling that `(ω) = M − 1 and f(ω) = 1−M .

An other relevant example is

π−µ=1 (Ai(λ)) = u1 · · · ui(1− δi,M−1λ
M (−1)M ),(A.9)

π̄−µ=1 (Ai(λ)) = u1 · · · ui
i−1∏
s=1

(1− λMqi−2s)(A.10)

where Ai(λ) are defined in (8.57). Notice that for M = 2 the two expressions
above coincide.

Definition. It is convenient to define

(A.11)
(
L [p](λ

M

p )
)
ij

:= λ
M−p
p

(i−j) (L (λ))ij , i, j = 1, 2, . . . , p.

This definition is motivated by the fact that L [p](λ) satisfies the same re-
lations as L (λ) with M replaced by p. The expression for the quantum
determinant of L [p](λ) is understood as (A.5) with M replaced by k.

The quantum comatrix. Let us define the quantum comatrix L (λ) of
L (λ) by

(A.12) L (q
M−1

M λ)L (q−
1

M λ) = q-det (L (λ)) .

The matrix entries of L (λ) can be expressed in terms of quantum minors
of L (λ). In the following we will need only the last diagonal elements given
by

(A.13)
(
L (λ)

)
M,M

= q-det
(
L [M−1](λ

M

M−1 )
)

where L [p](λ) is defined in (8.58)

Triangular decomposition of L (x). Consider the triangular decompo-
sition of the type (8.56) of a matrix X with non-commutative entries Xij .
One has

(A.14) ap =

(((
X [p]

)−1
)
pp

)−1

,
(
X [p]

)
ij

:= Xij , i, j = 1, . . . , p.

The derivation of this fact is elementary, see e.g. [Ioh] for its application in
a similar context. If X is replaced by L (λ), one finds a simple expression
for (A.14) as follows from (A.12) combined with (A.13). The relation (8.57)
follows.
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Appendix B. On the evaluation representation

In this appendix we review the definition of evaluation representation. Along
the way we will obtain explicit formulae for the image of imaginary root
currents under the evaluation homomorphism. We could not find such ex-
pressions in the literature. These formulae allow to compute the image of the
universal R-matrix under πf ⊗ ev, filling an apparent gap in the literature.

B.1. Jimbo evaluation homomorphism

In [J85] Jimbo introduced an homomorphism, usually called evaluation ho-
momorphism and denoted by ev, from Uq(ĝlM ) to Uq(glM ). This homomor-

phism can be given in terms of the generators {ei, fi, qε̄i} of Uq(ĝlM ) and
Uq(glM ) respectively, see e.g. [CP]. For the purposes of this section it is
more convenient to exploit this homomorphism using

(B.1) Lev(λ) :=
1

ρev(λ)

(
πf
λ ⊗ ev

)
R−.

It can be shown that, upon choosing the scalar factor ρev(λ) appropriately
(see below), one has

(B.2) Lev(λ) =

M∑
i=1

Eii ⊗
(
q+Hi + λMqγ−Hi

)
+
∑
i 6=j

λ(i−j)MEij ⊗ Eji.

It follows from the universal Yang-Baxter equation (4.23) that this Lax
operator satisfies the quadratic relations (3.16). These relations, together
with the specific dependence of Lev(λ) on the spectral parameter λ, provides
a definition of Uq(glM ) in terms of the generators {qHi}i=1,...,M , {Eij}i 6=j . The
fact that the definition (B.1) gives rise to a Lax operator of the form (B.2)
follows from the interwining property (4.9a) of the universal R-matrix. It is
shown in Appendix B.2 that this is the case upon defining

ev(ei) =
1

q−1 − q
Ei,i+1q

−Hi , ev(fi) =
1

q − q−1
qHi−γEi+1,i,(B.3)

ev
(
qε̄i−

1

M
ε̄
)

= q−Hi .(B.4)

A direct calculation of (B.1) using the infinite product formula for the
universal R-matrix has been done for Uq(ĝl2) in [KhST94], see also Sec-

tion 7.1.3, and Uq(ĝl3) in [Ra13]. As opposed to the derivation based on
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(4.9a), the direct calculation of the product formula determines the scalar
factor ρev(λ) as well. In the following section we determine the image of
the imaginary root vectors under the evaluation homomorphism and, as a
byproduct, the factor ρev(λ).

Remark 17. One may consider fixing the spectral parameter dependence
of some Lax operator to be that of a degree k polynomial in λ−1 for k ≤
M . The case k = M corresponds to (B.2). An identification of the type
(B.1) would then provide an homomorphisms form Uq(b+) to some algebra
whose commutation relations are dictated by the (3.16). The case k = 1 will
produce L−(λ) defined in (6.22).

Remark 18. The R-matrix in (3.17) is related to (B.2) as follows

(B.5) πf
µ=1 (Lev(λ)) = q

1

M (q−1 − q+1λM )R(λ, 1),

upon setting qγ = −q
2

M in the left hand side. Moreover, the expression (7.17)
coincide with (B.2) in the special case M = 2, upon identifying qγ = −q.

B.2. Intertwining properties for Lev(λ)

It follows from the definition (B.1) that Lev(λ) satisfies the intertwining
property
(B.6)

Lev(λ)
(
πf
λ ⊗ ev

)
∆(a) =

(
πf
λ ⊗ ev

)
∆op(a)Lev(λ), ∀a ∈ Uq(ŝlM ).

In the following we will study the implications of (B.6) where Lev(λ) is taken
to be of the form

(B.7) Lev(λ) =

M∑
i=1

Eii ⊗
(
qNi + λMqN i

)
+
∑
i 6=j

λ(i−j)MEij ⊗ Eji.

One can argue that the solution of (B.6) is unique up to multiplication by
an element of the form 1⊗ ρ(λ) where ρ(λ) belongs to the center of Uq(glM ).
In order for this to be the case it is important that (B.6) holds for the full
Uq(ŝlM ) and not just a Borel half. The fact that we can find a solution of
the interwining property of the form (B.7) thus provides a proof of (B.1).
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Let us proceed with the analysis. Using the form (B.7) and taking a =
qε̄i , the intertwining property implies

qNiev(qε̄j ) = ev(qε̄j )qNi , qN iev(qε̄j ) = ev(qε̄j )qN i ,(B.8)

Eijev(qε̄k) = qδjk−δikev(qε̄k)Eij .(B.9)

Next, consider the intertwining property for a = fi. The λM+1 term of these
equations immediately implies that

(B.10) ev
(
qε̄i
)

= qx̄qN i ,

for some constant x̄. Using this identification and (B.9), the λM terms of
the same equations give

(B.11) Ei+1,i = (q − q−1)qN iev(fi).

Let us turn to the case a = ei in (B.6). A similar analysis applied to the
terms of order λ−1 and λ0 shows that

(B.12) ev
(
qε̄i
)

= qxq−Ni , Ei,i+1 = (q−1 − q)ev(ei)q
Ni ,

for some constant x. The equations (B.10), (B.11), (B.12) give the identifi-
cation between the generators of Uq(ĝlM ) and Uq(glM ). The constants x and
x̄ correspond to the freedom of overall rescaling of Lev and introducing the
spectral parameter for ev. To obtain (B.2) we demand that the leading term
in the λ expansion is

(B.13) (πf ⊗ ev)q−t =

M∑
i=1

Ei,i ⊗ qHi ,

where qt is given in (4.21) , πf(qε̄i) = qEii and q−Hi = ev(qε̄i−
1

M
ε̄). Notice that∏

i q
−Hi = 1. This requirement implies that qNi = qHi and qN i = qγ−Hi . The

remaining equation contained in (B.6) prescribe how to express Eij in terms
of these generators. The equivalence between different looking expressions
for Eij is equivalent to the Serre relations.

B.2.1. Image of imaginary root vectors and Gelfand-Tsetlin alge-
bra. The image of the imaginary root vectors under the evaluation ho-
momorphism can be obtained by applying the procedure explained in Sec-
tion 5.2.1. As this procedure is quite involved we will use a shortcut based
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on the observations presented in Section 8.2.3. The expression (8.63) for the
imaginary root currents 1 + E′i(z) in terms of quantum minors is indepen-
dent of a rescaling of L (λ) by an arbitrary function of λ. For this reason
the quantum minors of Lev(λ) given in (B.2) can be directly used to obtain
ev (1 + E′i(z)). It is not hard to see that the relevant quantum minors take
the form

(B.14) Gp(λ
M ) := q-detL[p]

ev(λ
M

p ) = q
∑p
s=1Hs

p∏
s=1

(
1 + λMq2νp,s+γ

)
,

with
∑p

s=1 νp,s = −
∑p

s=1Hs. These quantum minors commute

[Gp(λ),Gq(µ)] = 0

and generate a maximally commutative subalgebra of Uq(glM ) known as
Gelfand-Tsetlin algebra, see e.g. [NaTa]. This algebra can be described as
follows. Let Z (Uq(glM )) be the center of Uq(glM ) and Uq(glp) be the sub-
algebra generated by {qHi}i=1,...,p, {Eij}1≤i 6=j≤p. The subalgebra of Uq(glM )
generated by Z (Uq(gl1)), Z (Uq(gl2)), . . . , Z (Uq(glM )) is evidently commu-
tative. This is what is called Gelfand-Tsetlin algebra. From (B.14) and (8.63)
we conclude that

ev
(
1 + E′p((−1)pz)

)
(B.15)

=

∏p+1
s=1

(
1 + z−1q2νp+1,s+γ

)∏p−1
s=1

(
1 + z−1q2νp−1,s+γ

)∏p
s=1 (1 + q−1z−1q2νp,s+γ)

∏p
s=1 (1 + q+1z−1q2νp,s+γ)

or equivalently

ev
(
e

(p)
kδ

)
=

1

k

(
(−1)p+1qγ

)k
q − q−1

(
t
(k)
p+1 + t

(k)
p−1 − [2]qkt

(k)
p

)
,(B.16)

t(k)
p :=

p∑
s=1

q2kνp,s .

Using this formula for the imaginary root vectors we can obtain the scalar
factor in (B.1) to be

(B.17) ρev(λ) = exp

( ∞∑
m=1

(−x)m

m

t
(m)
M

[M ]qm

)
=

M∏
s=1

εqM (q2νM,s−1x)

εqM (q2νM,s+1x)
,

where x := qγλM and εq(x) is defined in (5.34).
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Appendix C. Evaluation of the Universal R-matrix

C.1. Cartan-Weyl basis for Uq(ŝlM)

C.1.1. Choice of convex order for Uq(ŝlM). Recall that the simple
roots of slM are αi = εi − εi+1 with i = 1, . . . ,M − 1 and

(C.1) ∆+(slM ) = {εi − εj , 1 ≤ i < j ≤M}.

The highest root θ = α1 + · · ·+ αM−1 = ε1 − εM and the remaining simple
root of ŝlM is α0 = δ − θ. The set ∆+(ŝlM ) is given in (5.2), (5.3). We endow
this set with a convex (normal) order, see (5.4) for the definition, as follows

(C.2) Â1 ≺ Â2 ≺ · · · ≺ ÂM−1 ≺ Z>0δ ≺ B̂M−1 ≺ B̂M−2 ≺ · · · ≺ B̂1,

compare to (5.5). The ordered sets of real positive roots Âi and B̂i are defined
as

Âi := Ai ≺ Ai + δ ≺ Ai + 2δ ≺ · · · ,
Ai := εi − εi+1 ≺ εi − εi+2 ≺ · · · ≺ εi − εM ,

(C.3)

B̂i := · · · ≺ Bi + 2δ ≺ Bi + δ ≺ Bi,
Bi := δ − (εi − εi+1) ≺ · · · ≺ δ − (εi − εM ) ,

(C.4)

A similar root ordering appears in relation to the universal R-matrix for the
Yangian in [Stu]. We remark that the ordering above can be obtained in the
framework of [Ito], as an ordering of ”M-raw type“, using the action of the
extended affine Weyl group. According to theorem 2.3 in [Tol2] any convex
order can be obtained form any other by composition of so called elementary
inversions.

C.1.2. Explicit construction of root vectors for Uq(ŝlM).

Root vectors eγ where γ ∈ ∆+(slM).

eαi+αi+1
:=
[
eαi , eαi+1

]
q−1 ,(C.5)

eαi+αi+1+αi+2
:=
[
eαi , eαi+1+αi+2

]
q−1 ,(C.6)

and so on.
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Root vectors eδ−γ where γ ∈ ∆+(slM). There are M − 1 steps in the
construction. One has the following M − 1 definitions (first step)

eδ−θ := eα0
,(C.7)

eδ−θ+αM−1
:=
[
eαM−1

, eδ−θ
]
q−1 ,(C.8)

eδ−θ+αM−2+αM−1
:=
[
eαM−2

, eδ−θ+αM−1

]
q−1 ,(C.9)

eδ−θ+αM−3+αM−2+αM−1
:=
[
eαM−3

, eδ−θ+αM−2+αM−1

]
q−1 ,(C.10)

...

eδ−α1
:= [eα2

, eδ−α1−α2
]q−1 ,(C.11)

One has the following M − 2 definitions

eδ+α1−θ := [eα1
, eδ−θ]q−1 ,(C.12)

eδ+α1−θ+αM−1
:=
[
eαM−1

, eδ+α1−θ
]
q−1 ,(C.13)

...

eδ−α2
:= [eα3

, eδ−α2−α3
]q−1 ,(C.14)

One has the following M − 3 definitions

eδ+α1+α2−θ := [eα2
, eδ+α1−θ]q−1 ,(C.15)

eδ+α1+α2−θ+αM−1
:=
[
eαM−1

, eδ+α1+α2−θ
]
q−1 ,(C.16)

...

eδ−α3
:= [eα4

, eδ−α3−α4
]q−1 ,(C.17)

One has the following final definition ( step M − 1)

(C.18) eδ−αM−1
:=
[
eαM−2

, eδ−αM−1−αM−2

]
q−1 .

C.2. Fermionic Fock space representation

C.2.1. Fermionic Fock space representation: definition.

πµF : Uq(ŝlM )→ FM(C.19)

πµF (ei) = µ−1c̄ici+1 πµF (fi) = µc̄i+1ci πµF (ki) = qni−ni+1(C.20)

FM : {ci, c̄j} = δij {ci, cj} = 0 {c̄i, c̄j} = 0 ni := c̄ici(C.21)
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where the indices i, j, k, . . . are subject to cyclic identification: i+M ∼ i.
This representation is not irreducible as ntot is central. The fundamental
representation corresponds to ntot = 1. In this case

(C.22) πµ(ei) = µ−1Ei,i+1, πµ(fi) = µEi+1,i, πµ(hi) = Ei,i − Ei+1,i+1,

and

(C.23) EijEkl = δjkEil.

C.2.2. Fermionic Fock space representation: evaluation of root
vectors. Using the explicit definitions in Section 5.2.1 and Appendix C.1.2
one obtains

1.

πF (eεi−εj ) = µi−j c̄icjq
(
∑j−1
k=i+1 nk),(C.24)

πF (eδ−(εi−εj)) = (−q)i−1µj−i−M c̄jciq
(
∑M
k=j+1 nk)−(

∑i−1
k=1 nk).(C.25)

2.

πF (e
(i)
δ ) = κiq

ni+1−ni [ni+1 − ni]q,(C.26)

πF (eαi+kδ) = (κi)
k πF (eαi),(C.27)

πF (e(δ−αi)+kδ) = (κi)
k πF (e(δ−αi)),(C.28)

πF (e
′(i)
kδ ) = (κi)

k−1 πF (e
(i)
δ ).(C.29)

κi := µ−M (−q)iq(
∑M
k=i+2 nk)−(

∑i−1
k=1 nk)(C.30)

3. In the case of interest we do not need these generators.

4. It follows that

(C.31) πF
(
1 + E′i(z)

)
=

1− κiz−1q2(ni+1−ni)

1− κiz−1
,

which upon Taylor expansion gives

(C.32) πF (e
(i)
kδ ) =

1

k
(κi)

k qk(ni+1−ni)[k(ni+1 − ni)]q.
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Remark. From the formulas above one can easly obtain root vectors for the
fundamental representation (and further include step 3):

πµf (e(εi−εj)+kδ) = µi−j (−qti)k Ei,j ,(C.33)

πµf (e(δ−(εi−εj))+kδ) = tiµ
j−i (−qti)k Ej,i,(C.34)

πµf (e
(i)
kδ ) = tki

(−1)k+1

k
[k]q

(
Ei,i − q2kEi+1,i+1

)
,(C.35)

where i < j and ti = µ−M (−q)i−1.

C.2.3. Fermionic Cartan-Weyl basis: second Borel half.

1.

πF (fεi−εj ) = µj−ic̄jciq
−(

∑j−1
k=i+1 nk),(C.36)

πF (fδ−(εi−εj)) =
(
−q−1

)i−1
µM−(j−i)c̄icjq

−(
∑M
k=j+1 nk)+(

∑i−1
k=1 nk).(C.37)

2.

πF (f
(i)
δ ) = κ̄iq

ni−ni+1 [ni+1 − ni]q,(C.38)

πF (fαi+kδ) = (κ̄i)
k πF (fαi),(C.39)

πF (f(δ−αi)+kδ) = (κ̄i)
k πF (f(δ−αi)),(C.40)

πF (f
′(i)
kδ ) = (κ̄i)

k−1 πF (f
(i)
δ ).(C.41)

κ̄i := µM (−q−1)iq−(
∑M
k=i+2 nk)+(

∑i−1
k=1 nk)(C.42)

3. In the case of interest we do not need these generators.

4. Finally, notice that we just need to replace q with q−1 and x with x−1

so that

(C.43) πF
(
1 + F ′i (z)

)
=

1− κ̄iz−1q2(ni−ni+1)

1− κ̄iz−1
,

which upon Taylor expansion gives

(C.44) πF (f
(i)
kδ ) =

1

k
(κ̄i)

k qk(ni−ni+1)[k(ni+1 − ni)]q.
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C.3. Minimal representations of U(glM)

Let us define the following representation of Uq(n+)

(C.45) π(ei) =
si

q−1 − q
WiW

−1
i+1

(
tZi + t−1Z−1

i

)
,

where

(C.46) WiZj = qδijZjWi, WiWj = WjWi, ZiZj = ZjZi,

with
∏
i Zi =

∏
i Wi = 1 and si and t are complex numbers. The goal of this

appendix is to compute the image of the Cartan-Weyl generators under π.
We will see that image of infinitely many real roots is non zero. Using the
explicit iterative contruction presented in Section 5.2.1 and Appendix C.1.2,
one obtains

1.

π
(
eεi−εj

)
=

si
q−1 − q

[
j−1∏
k=i+1

qtskZk

]
WiW

−1
j

(
tZi + t−1Z−1

i

)
,(C.47)

π
(
eδ−(εi−εj)

)
=

sj
q−1 − q

[
i−1∏
k=1

t−1skZ−1
k

]
(C.48)

×

 M∏
k=j+1

qtskZk

WjW
−1
i

(
tZj + t−1Z−1

j

)
,

where 1 ≤ i < j ≤M .

2. Once we have constructed π(eδ−αi), we may notice that for each node
i we have an evaluation type representation of Uq(ŝl2). To make this
observation explicit we write

(C.49) π(e
(i)
δ ) =

pi
q−1 − q

(
[2]qki +

(
q2xi + q−2xi

))
,

where

(C.50)

ki := Zi+1Z−1
i , q2xi := qt2Zi+1Zi,

pi := qstot

[
i−1∏
k=1

t−1Z−1
k

][
M∏

k=i+2

qtZk

]
.
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It is easy to verify that pi and q2xi commute with π(eαi), π(eδ−αi) for
fixed i. With this observation in mind we evaluate the remaining root
vectors associated to the node i to be

π(eαi+kδ) =
(
q−1piki

)k
π(eαi),(C.51)

π(e(δ−αi)+kδ) =
(
q+1piki

)k
π(eδ−αi),

π(e
′(i)
kδ ) =

(pi)
k

q−1 − q
(ki)

k−2(C.52)

×
(
[k + 1]qk

2
i + [k]q

(
q2xi + q−2xi

)
ki + [k − 1]q

)
,

π
(
1 + E′i(z)

)
=

(
1 + z−1q+2xipi

) (
1 + z−1q−2xipi

)
(1− z−1q+1kipi) (1− z+1q+1kipi)

.(C.53)

Comparison with the general form of the currents (B.15). The
imaginary root currents (C.53) can be rewritten as

(C.54) π
(
1 + E′i(z)

)
=

(
1 + z−1Xi−1

) (
1 + z−1Xi+1

)
(1− z−1q+1Xi) (1− z−1q−1Xi)

,

The comparison with (B.15) follows from the formula

(C.55) π′

(
p∏
s=1

(
1 + tq2νp,s+γ

))
= gp(t) (1− (−1)ptXp) , π = π′ ◦ ev,

where

(C.56) gp(t) =

p−1∏
s=1

(
1− tλ−M2 qp−2s

)
.

Notice that the contribution from gp(λ) cancel out (for p > 1) in the combi-
nation (B.15) leaving a rational function with two zeroes and two poles in
λM . We conclude that for these representations of Uq(glM ), the image of the
Gelfand-Tsetlin algebra coincides with the image of the Cartan subalgebra.
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Appendix D. Triangular decomposition of
(
πFµ ⊗ π

+
λn

)
∆

for M = 2

It can be useful to present the main formulae of Section (8.1.2) in a more
explicit form for the case of M = 2. The relation (8.22) in this case reads
(D.1)

(
πFµ ⊗ π+

λn

)
∆(f1) = Λ(y)−1

(
q

1

2 y−2

q − q−1

)
λ0 0 0 0
0 q−1λ1 0 0

0 q−
1

2 τqµ q+1λ1 0
0 0 0 λ2

Λ(y)

(D.2)

(
πFµ ⊗ π+

λn

)
∆(f0) = Λ(y)−1

(
q

1

2 y+2

q − q−1

)
λ0 0 0 0

0 q+1λ1 q−
1

2 τqµ 0
0 0 q−1λ1 0
0 0 0 λ2

Λ(y)

where y1 = y−1
2 = y and τq = q − q−1. If µ = q

1

2λ1 one finds a block triangu-
lar structure10 given by

P+Λ(y)

[(
πF
q

1
2 λ1

⊗ π+
λn

)
∆(fi)

]
Λ(y)−1P− = 0(D.3)

P±Λ(y)

[(
πF
q

1
2 λ1

⊗ π+
λn

)
∆(fi)

]
Λ(y)−1P±(D.4)

=

(
q

1

2 y+2σi

q − q−1

)
λ0 0 0 0
0 q±1λ1 0 0
0 0 q±1λ1 0
0 0 0 λ2

P±

where σ1 = −1, σ0 = +1 and

P+ :=


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0

 = S
[(

1 0
0 0

)
⊗
(

1 0
0 1

)]
S−1,(D.5)

P− := 1−P+.

10 The terminology refers to the following fact: For an operator O, we say that
it has a block triangular structure if P+OP− = 0 and P−OP+ 6= 0 for orthogonal
projectors P±.
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Where ⊗ refers to the Kronecker product and the matrix S is easily worked
out. These relations reduce to (8.10) with Π1 = Λ(y)−1P+Λ(y) and Π2 =
Λ(y)−1P−Λ(y). Using the similarity transform S we rewrite (D.4) as

S−1P+Λ(y)

[(
πF
q

1
2 λ1

⊗ π+
λn

)
∆(fi)

]
Λ(y)−1P+S(D.6)

=

(
q

1

2 y+2σi

q − q−1

)(
1 0
0 0

)
⊗
(
λ0 0
0 q+1λ1

)
S−1P−Λ(y)

[(
πF
q

1
2 λ1

⊗ π+
λn

)
∆(fi)

]
Λ(y)−1P−S(D.7)

=

(
q

1

2 y+2σi

q − q−1

)(
0 0
0 1

)
⊗
(
q−1λ1 0

0 λ2

)

The statement expressed by (8.12) is actually stronger then (D.3) and (D.6),
(D.7) as it states that the 2× 2 matrix in the right hand side of (D.6) and
(D.7) as to be the same, up to a similarity transform. This implies, up to
exchange of λ0 with λ2, that λ0 = q−1λ1 and λ2 = q+1λ1.

A similar analysis can be done in the case of µ = −q
1

2λ1.

Appendix E. Form of (1⊗ π−) R− and (1⊗ π̄−) R− and
action of the coproduct on the first

tensor factor

E.1. Image of the universal R-matrix under 1⊗ π− and 1⊗ π̄−

For the following analysis it is convenient to rewrite

(E.1) π−λ (ei) =
λ−1

q−1 − q
viu
−1
i =

(
q

1−M
M λ

)−1

q−1 − q
yi+1y−1

i , π−λ (ki) = u−1
i ui+1.

The exchange relations of these variables are given in (8.15).

1⊗ π− on combinations of root vectors entering the universal
R-matrix. Let γ ∈ ∆re

+(ŝlM ), the relations (8.18), (8.21), together with
(6.52a), imply
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Λ−1(y)
[
(1⊗ π−ν )(fγ ⊗ eγ)

]
Λ(y)(E.2)

=
1

τ̄q


ν̌−1

(
q−

1

2
(ε̄i+ε̄i+1−1)fγ ⊗ 1

)
γ = εi−εi+1

ν̌−i
(
q−

∑i−1
k=1(ε̄k−1)q−

1

2
(ε̄i+ε̄M−1)fγ ⊗ 1

)
γ = δ−(εi−εM )

0 otherwise

where τ̄q := q−1 − q and ν̌−1 = q
ε̄−M
M ν−1. The contribution of the imaginary

root to the universal R-matrix is left unchanged by the action of Λ(y). We
conclude that the image of the reduced universal R-matrix can be written
as

(E.3)
[(

1⊗ π−ν
)
R̄−
]
ren

= Λ(y)
(
M−(ν)⊗ 1

)
Λ−1(y).

The explicit expression for (8.70) follows from the from (E.2) and the prod-
uct formula (5.12), upon recalling that Eq(τqx) =

[
expq2(x)

]
ren

.

Intertwining relation for M−. The property (4.18) of the universal
R-matrix implies

[M−(ν), ěi] = ν−1q
ε̄

M
q−2ε̄i+1M−(ν)−M−(ν)q−2ε̄i

q−1 − q
,(E.4)

ěi = q−
1

2
(ε̄i+ε̄i+1−1)ei.

The form of
(
1⊗ π̄−

)
R−. Introduce ȳi via

(E.5) π̄−(ei) = ēi =
q−

1

M λ−1

q−1 − q
ȳi+1ȳ−1

i .

The variables ȳi satisfy the same exchange relations as yi with q replaced by
q−1. We can rewrite (6.11) and (6.12) as

(E.6)

π̄−(eεi−εj ) =

(
q

1

M λ
)i−j

q−1 − q
ȳj ȳ
−1
i ,

π̄−(eδ−(ε1−εj)) =

(
q

1

M λ
)j−M−1

q−1 − q
ȳ1ȳ−1

j ,
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In analogy with (E.2) we obtain

Λ−1(ȳ)
[
(1⊗ π−)(fγ ⊗ eγ)

]
Λ(ȳ)(E.7)

=
1

τ̄q


λ̂i−j

(
q
∑j−1
k=i+1 ε̄kq

1

2
(ε̄i+ε̄j−1)fγ ⊗ 1

)
γ = εi−εj

λ̂j−M−1
(
q
∑M
k=j+1 ε̄kq

1

2
(ε̄1+ε̄j−1)fγ ⊗ 1

)
γ = δ−(ε1−εj)

0 otherwise

where τ̄q = q−1 − q and λ̂ = λq
ε̄

M . The asymmetry between π− and π̄− is a
consequence of the fact that we choose the same root ordering.

In analogy with (E.4)

(E.8)
[(

1⊗ π̄−
)
R̄−
]

= Λ(ȳ)
(
M̄− ⊗ 1

)
Λ−1(ȳ),

satisfy the interwining relation

(E.9) [M̄−, êi] = ᾱ
q2ε̄iM̄− − M̄−q2ε̄i+1

q−1 − q
, êi = q+ 1

2
(ε̄i+ε̄i+1−1)ei,

where ᾱ = −q−1γ̄−q
1

M
(1−ε̄).

E.2. Some steps for the evaluation of
(
πF ⊗ π−

)
R− and(

πF ⊗ π̄−
)
R−

Computation of
(
πF ⊗ π−

)
R−. Applying πF to (E.2) and using (C.36),

(C.37) one obtains
(E.10)

(
πFµn
⊗ π−ν

)
(fγ ⊗ eγ) =


Λ(y)

(
g−

q−q−1 c̄i+1ci

)
Λ−1(y) γ = εi − εi+1

Λ(y)
(

gi−
q−q−1 c̄icM

)
Λ−1(y), γ = δ − (εi − εM )

0 otherwise

where γ ∈ ∆re
+(ŝlM ) and and g− is defined in (8.50). Next, one obtains

(E.11)
(
πFµn
⊗ π−ν

)
R−∼δ = θ̃−F

(
1− gM− nM

)
, θ̃−F =

(gM− q
2M ; q2M )∞

(gM− q
2(M−n); q2M )∞

.
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This calculation is the same as in (8.50) before regularization. The last non-
trivial identity used in the derivation of (8.53) is

(1−g−c̄2c1) · · · (1−g−c̄McM−1)︸ ︷︷ ︸
from R≺δ

(
1−gM− nM

)(
1−

M−1∑
i=1

gi−c̄icM

)
︸ ︷︷ ︸

from R�δ

(E.12)

=

M∏
p=1

(
1−g−e−

2πip

M N(p)
)
.

In particular notice that the cyclicity property, i.e. the fact that it commutes
with the internal shift operator, of this object is obscure in the left hand
side and totally manifest in the right hand side.

Computation of
(
πF ⊗ π̄−

)
R−. Applying πF to (E.7) and using (C.36),

(C.37) one obtains
(E.13)

(
πFµn
⊗ π̄−ν

)
(fγ ⊗ eγ) =


Λ(ȳ)

(
ḡj−i−
q−1−q c̄jci

)
Λ−1(ȳ) γ = εi − εj

Λ(ȳ)
(
ḡM−j+1
−
q−1−q c̄1cj

)
Λ−1(ȳ), γ = δ − (ε1 − εj)

0 otherwise

where ḡ− is given in (8.51). The contribution of the imaginary roots is

(E.14)
(
πFµn
⊗ π̄−ν

)
R−∼δ = θ̃−̇F

(
1− ḡM− n1

)
, θ̃−̇F =

(ḡM− q
2M ; q2M )∞

(ḡM− q
2n; q2M )∞

,

compare to (8.51) The last identity we use to prove (8.54) is

(1+B1c1) · · · (1+BM−1cM−1)︸ ︷︷ ︸
from R≺δ

(
1−ḡM− n1

)1+

M∑
j=2

ḡM−j+1
− c̄1cj


︸ ︷︷ ︸

from R�δ

(E.15)

=

M∏
p=1

(
1−ḡ−e−

2πip

M N(p)
)
.

where Bi =
∑M

j=i+1 ḡ
j−i
− c̄j and ni = 1− ni = cc̄. As (1− αni)(1− αni) =

1− α this is the inverse matrix of (E.12).
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E.2.1. Check of the Jimbo equation. Let us verify that (E.12) satisfies
the relations (E.4) via an explicit calculation. We can rewrite (E.4) as

(E.16)
[
πF
(
M−) , c̄ici+1

]
= −g−

(
ni+1πF

(
M−)− πF (M−) ni) ,

where we have used q−2ni = 1− niq
−1(q − q−1) to simplify the right hand

side and introduced g− as in (8.50). It is easy to check that the relation
(E.16) is satisfied if

πF
(
M−) c̄i = (c̄i − g−c̄i+1)πF

(
M−) ,(E.17)

ci+1πF
(
M−) = πF

(
M−) (ci+1 − g−ci) .(E.18)

These equations are easy to solve upon Fourier transformation in the index
i and give the solution (E.12). πF

(
M̄−) satisfies the same equations as

πF (M−)
−1

with g− replaced by ḡ−.

E.3. Derivation of (8.67)

E.3.1. From (∆⊗ id) (R) = R13R23 to ∆(M−). Applying (1⊗ 1⊗
π−) to (4.9b) and using (E.3), one obtains

(E.19) ∆
(
M−) =

(
F−1

12 M−
1 F12

) (
q∞F12M

−
2 F−1

12 q
−1
∞
)
,

where

(E.20) F12 := q−
1

2

∑M
i,j=1(ε̄i⊗ε̄j)Yij , q∞ = q

∑M
i=1(ε̄i⊗ε̄i).

This claim can be easily derived using (1⊗ π−)q−t = Λ(u) and

∆ (Λ(y))−1 Λ1(y) = F−1
12 Λ2(y),(E.21)

Λ2(y)−1Λ2(u)∆
(
Λ(y)−1Λ(u)

)−1
= q−

c

M
(ε̄⊗ε̄)Λ1(u)−1Λ1(y)F−1

12 q
−1
∞ ,(E.22)

Λ2(y)Λ1(y)−1Λ1(u)Λ2(y)Λ1(u)−1Λ1(y) = q+ c

M
(ε̄⊗ε̄)q∞F 2

12.(E.23)

These relations are derived using (8.15).
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E.3.2. Preliminaries.

Commutation relations involving X≺i , X�i defined in (8.71). The
following relations hold

X�i X�j = q2(δi<j−δi>j)X�j X�i , i, j = 1, . . . ,M − 1.(E.24)

X�i X≺j =

{
q2δi,j+1X≺j X�i i > j

X≺j X�i i < j 6= M − 1
, for 1 ≤ i 6= j ≤M − 1.

(E.25)

The case i = j corresponds to the iterative definition X�i+1 = τ−1
q [X�i ,X

≺
i ],

where τq = q − q−1 (compare to (8.71)).

Proof. One may verify the relations above by direct calculations and induc-
tive arguments. In the following we will show how these relations arise as
a consequence of (5.10) and the definitions (8.71), (8.72). This is a simple
corollary of (5.10):

Let α, β ∈ ∆+(ĝ) with α ≺ β be such that the decomposition α+ β =∑
k nkγk with nk ∈ Z>0 and γk ∈ ∆+(ĝ) is unique. Then

(E.26) fαfβ = q−(α,β)fβfα.

As an illustrative example let us show how this corollary implies (E.24).
The identity (E.25) is shown similarly. It is easy to see that α = δ − (εi − εM )
and β = δ − (εj − εM ) for i > j satisfy the conditions for (E.26) to hold. We
conclude that

(E.27) fδ−(εi−εM )fδ−(εj−εM ) = q−1fδ−(εj−εM )fδ−(εi−εM ), i > j.

The relation (E.24) easily follows from this identity together with the defi-
nitions (8.71), (8.72) and the relation qhfγ = q−〈h,γ〉fγq

h. �

Coproducts of X≺i , X�i defined in (8.71). A simple calculation using
the definition of the coproduct shows that

(E.28) ∆
(
X≺i
)

= X≺i (1) + X≺i (2),

where

(E.29) X≺i (1) := X≺i ⊗ ai, X≺i (2) := aik
−1
i ⊗ X≺i , ai = q

1

M
ε̄q−

1

2
(ε̄i+ε̄i+1).
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The coproduct of X�i defined in (8.71) is more complicated. Set

(E.30) δi := ∆(X�i )− X�i (1)− X�i (2).

where

X�i (1) := X�i ⊗ bi, X�i (2) := biq
−(ε̄M−ε̄i) ⊗ X�i ,(E.31)

bi = q
i

M
ε̄totq−

∑i−1
k=1 ε̄kq−

1

2
(ε̄M+ε̄i).

Notice that bi commutes with fδ−(εi−εM ). The explicit expression of δi is
given below.

Remark.

F−1
12

(
X≺i ⊗ 1

)
F12 = X≺i (1), q∞F12

(
1⊗ X≺i

)
F−1

12 q
−1
∞ = X≺i (2),(E.32)

F−1
12

(
X�i ⊗ 1

)
F12 = X�i (1), q∞F12

(
1⊗ X�i

)
F−1

12 q
−1
∞ = X�i (2).(E.33)

More commutation relations. It is a simple exercise to show that the
combinations defined in (E.29), (E.31) satisfy the following relations

X≺i (1)X≺j (2) = q−2(δi,j−δi+1,j)X≺j (2)X≺i (1)(E.34)

X≺i (1)X�j (2) = q2(δi,M−1−δi,j−1)X�j (2)X≺i (1)(E.35)

X�i (1)X≺j (2) = q2δi,jX≺j (2)X�i (1)(E.36)

X�i (1)X�j (2) = q−2δi≥jX�j (2)X�i (1)(E.37)

The exchange relations involving X?i (a), X?
′

j (a) with a fixed are the same as
(E.24) and (E.25).

Explicit form of δi. It follows from the definition (E.30) that

(E.38) δ` = q

`−1∑
k=1

τ (k−`+1)
q [· · · [X≺k (2),X≺k+1(2)] · · · ,X≺`−1(2)]X�k (1),

where τq = q − q−1.
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Proof. Upon applying the coproduct to the inductive definition X�i+1 =
τq[X

�
i ,X

≺
i ] and using (E.36), (E.35) one easily obtains

(E.39) δi+1 = qX≺i (2)X�i (1) + τ−1
q [δi,X

≺
i (1) + X≺i (2)].

Further observe that

(E.40) [δi,X
≺
k (1)] = 0, k = i, i+ 1, . . . ,M − 2.

This can be easily shown by induction using (E.39) and the exchange prop-
erties given in the previous paragraph. Equation (E.39) thus reduces to

(E.41) δi+1 = qX≺i (2)X�i (1) + τ−1
q [δi,X

≺
i (2)],

from which the explicit form of δi given above follows. �

We notice that while δi was originally defined for i = 1, . . . ,M − 1, we
extend the definition to i = M using the explicit formula (E.38).

Some commutation relations involving δi. We collect the following
relations

δiX
�
i (1) = q2X�i (1)δi, δiX

�
k (2) = q−2δk,iX�k (2)δi, k ≥ i.(E.42)

δiX
≺
k (2) = X≺k (2)δi, k = i+ 1, . . . ,M − 1.(E.43)

[δi,X
≺
i (2)]X�i (1) = X�i (1)[δi,X

≺
i (2)](E.44)

[δi,X
≺
i (2)]

(
X≺i (2)X�i (1)

)
= q2

(
X≺i (2)X�i (1)

)
[δi,X

≺
i (2)](E.45)

The last identity follows from the Serre relations (4.4) (). Finally

V := δ`, U := X≺` (2),(E.46)

satisfy the (twisted) Serre relations (8.74), (8.75).

The relation (8.75), which is linear in δ`, can be shown easily using the
exchange relations collected above and the fact that X≺`−1(2), X≺` (2) satisfy
the (twisted) Serre relations (8.75). Showing (8.74) requires a bit of work. It
is not hard to see, using the explicit expression for δ` given in (E.38), that
the equality

q−1(wmwn + wnwm)f̌` + q+1f̌`(wmwn + wnwm)(E.47)

= (q + q−1)
(
wmf̌`wn + wnf̌`wm

)
,

where n 6= m < ` and wn = [· · · [f̌n, f̌n+1], . . . , f̌`−1] implies (8.75). The re-
lations (E.47) can be shown as follows. Let m > n and notice that wn =
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[x,wm] where [x, f̌`] = 0, (E.47) is satisfied if the same equation holds for
wn 7→ wm. The relation (E.47) for m = n is a consequence of this elemen-
tary fact: If (f1, . . . , fi, fi+1, . . . , fM ) satisfy the Serre relations of Uq(ĝlM ),
then for any i ∈ Z/MZ and choice of sign σ, the elements (f1, . . . , fifi+1 −
qσfi+1fi, . . . , fM ) satisfy the Serre relations of Uq(ĝlM−1).

δi and the opposite root ordering. Let fop
εi−εj be root vectors con-

structed using the opposite root ordering, explicitly

(E.48) fop
εi−εj = fif

op
εi+1−εj − q

−1fop
εi+1−εjfi, j = i+ 2, . . . ,M,

with fop
εi−εi+1

= fi. It is easy to inductively show that

fop
εi−εj = q

i−j+1

2 q
1

2

∑j−1
k=i(ε̄k+ε̄k+1−1)[. . . [f̌i, f̌i+1], . . . , f̌j−1],(E.49)

1 ≤ i < j ≤M.

In the special case of j = M it may be rewritten as

(E.50) fop
εi−εM = q

∑M−1
k=i+1(ε̄k−1)q

1

2
(ε̄i+ε̄M−1)[. . . [[f̌i, f̌i+1], f̌i+2], . . . ], f̌M−1].

E.3.3. From ∆(M−) to ∆(M−
∼δ).

On coproduct of M−
≺ . The following identity holds

(E.51) ∆
(
M−
≺
)

=
(
F−1

12 M−
≺,1F12

)(
q∞F12M

−
≺,2F

−1
12 q

−1
∞

)
,

Proof. Recall the form of M− from (8.70). It follows from (7.37) and the
exchange relation (E.34) that

(E.52) ∆
(
Eq(X≺i )

)
= Eq

(
∆(X≺i )

)
= Eq(X≺i (1))Eq(X≺i (2)).

The identity (E.51) follows from this relation together with (E.32) and the
exchange relations (E.34). �

On coproduct of M−
� . Let us define B as follows

(E.53) ∆
(
M−
�
)

= B−1
(
q∞F12M

−
�,2F

−1
12 q

−1
∞

)
.

More explicitly, using the form of M� given in (8.70) and (E.33)

(E.54) B =
[
Eq(X�M−1(2)) . . .Eq(X�1 (2))

] [ 1

Eq(∆(X�1 ))
. . .

1

Eq(∆(X�M−1))

]
.

In order to simplify this expression we will use the following lemma.
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Lemma. This identity holds

(E.55) ∆
(
Eq(X�i )

)
= Eq

(
∆(X�i )

)
= Eq(X�i (1))Eq(δi)Eq(X�i (2)),

where ∆(X�i ) = X�i (1) + X�i (2) + δi, compare to (E.30).

Proof. (E.55) is derived using two simple observations

(i)

(E.56) Eq(U + V + W) = Eq(U)Eq(W)Eq(V),

if

(E.57) UV = q−2VU, UW = q−2WU, VW = q+2WV.

(ii) The exchange relations (E.57) are satisfied by

(E.58) U = X�i (1), V = X�i (2), W = δi.

Point (i) is derived using (7.37) twice. Point (ii) uses the exchange relations
(E.36) and (E.42). �

By applying this lemma to (E.54) and rearranging terms using the ex-
change relations (E.37) and (E.42) we obtain
(E.59)

B =

(
1

Eq(X�1 (1))

)(
1

Eq(δ2)

1

Eq(X�2 (1))

)
. . .

(
1

Eq(δM−1)

1

Eq(X�M−1(1))

)
.

The second tensor factors of δi and X�i (1) are written in terms of
{fk}k∈{1,...,i−1} and Cartan generators only. This fact, combined with the
observation (8.76) and the explicit form (E.59), makes it manifest that

(E.60) (1⊗M∼δ) B = B (1⊗M∼δ) .

Using this relation and the explicit form of B, we rewrite (E.19) as

(E.61) ∆
(
M−
∼δ
)

=
(
M−
∼δ ⊗ 1

)
A B

(
1⊗M−

∼δ
)
,

where

A :=

(
1

Eq(X≺M−1(2))
· · · 1

Eq(X≺1 (2))

)
(E.62)

×
(
Eq(X�M−1(1)) · · ·Eq(X�1 (1))

) (
Eq(X≺1 (2)) · · ·Eq(X≺M−1(2))

)
,
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To derive this expression we also used the fact that A and (M−
∼δ ⊗ 1) com-

mute.

Completing the derivation. In the following we will show that

(E.63) A B = X`Eq(δ`)Y`, ` = 1, . . . ,M.

where

X` =

(
1

Eq(X≺M−1(2))
· · · 1

Eq(X≺` (2))

)(
Eq(X�M−1(1)) · · ·Eq(X�` (1))

)
(E.64)

Y` =
(
Eq(X≺` (2)) · · ·Eq(X≺M−1(2))

)
(E.65)

×
[(

1

Eq(δ`)

1

Eq(X�` (1))

)
· · ·
(

1

Eq(δM−1)

1

Eq(X�M−1(1))

)]
and δi are given in (E.38).

Proof. For ` = 1 the identity trivially follows from the explicit form of A , B
given in (E.62), (E.59) and the fact that Eq(δ1 = 0) = 1. For ` = M one has
XM = YM = 1 and the identity (E.63) implies (8.67). We will prove (E.63)
by induction on `. First notice that

X` = X`+1Eq(qX≺` (2)X�` (1))Eq(X�` (1))
1

Eq(X≺` (2))
(E.66)

Y` = Eq(X≺` (2))
1

Eq(δ`)

1

Eq(X�` (1))
Y`+1.(E.67)

The first identity easily follows from the exchange relations (E.36) and the
pentagon relation (7.40). The second identity follows from the exchange
relations (E.43) and (E.36). The crucial observation is that as a consequence
of (E.46) one can use (8.73) to rewrite

(E.68)
1

Eq(X≺` (2))
Eq(δ`)Eq(X≺` (2))

1

Eq(δ`)
= Eq(τ

−1
q [δ`,X

≺
` (2)]).

Finally (E.44) and (E.45) with (7.37) imply the result. �

E.4. For mixed pentagon

The goal of this appendix it to show that (E.52), (E.55) and (E.68) are
satisfied when we apply πF ⊗ π+.
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E.4.1. Preliminaries. The first step is to provide explicit expressions for
the arguments of the special functions entering, (E.52), (E.55) and (E.68)
when we apply πF ⊗ π+.

Action of 1⊗ π+ on X≺` (1) and X≺` (2). Consider X≺` (1) and X≺` (2)
defined in (E.29) and (8.71). They satisfy the following relations

Λ(y)
[(

1⊗ π+
λ

)
X≺` (1)

]
Λ−1(y) = τqλ

−1q−
ε̄

M f̂` ⊗m≺` ,(E.69)

Λ(y)
[(

1⊗ π+
λ

)
X≺` (2)

]
Λ−1(y) = q2(ε̄`+1− ε̄

M ) ⊗m≺` ,(E.70)

where

(E.71) m≺` := q−
1

2 q
1

M λν−1π+
λ (a`)y`+1y−1

` ,

and f̂` = q
1

2
(ε̄`+ε̄`−1), compare to the definition below (8.16). These rela-

tion follows from (8.18), (8.21) and Λ(y)
[(

1⊗ π+
λ (qε̄i)

)]
Λ−1(y) = q−ε̄i+

ε̄

M ⊗
π+
λ (qε̄i).

Applying πFµ to the first tensor factor. From the identities above it
follows that

Λ(y)
[(
πFµ ⊗ π+

λ

)
X≺` (1)

]
Λ−1(y) = τqµλ

−1q−
n
M c̄`+1c` ⊗m≺` ,(E.72)

Λ(y)
[(
πFµ ⊗ π+

λ

)
X≺` (2)

]
Λ−1(y) = q2(n`+1− n

M ) ⊗m≺` .(E.73)

Rewriting of δ` defined in (E.38). One can rewrite δ` defined in (E.38)
as
(E.74)

δ` = q
1

2 τ2
q ν
−`

`−1∑
k=1

qk−`b`q
ε̄`−ε̄kfδ−(εk−εM ) ⊗ q(

`−k
M )ε̄[. . . [f̌k, f̌k+1] . . . , f̌`−1]bk,

where b` are defined in (E.31).

Derivation: It follows form the definitions (E.29) and (8.71) that11

[· · · [X≺k (2),X≺k+1(2)] . . . ,X≺`−1(2)](E.76)

= x`−kb`b
−1
k qε̄`−ε̄k ⊗ q(

`−k
M )ε̄[· · · [f̌k, f̌k+1] . . . , f̌`−1],

11 To derive this identity one may notice that

(E.75) b`b
−1
k = q

`−k
M ε̄q−

∑`−1
s=k+1 ε̄sq−

1
2 (ε̄`+ε̄k) =

`−1∏
s=k

as.
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where x = q−1τqν
−1. If follows from the definitions (E.31), (8.71) and the

observation (8.72) that

(E.77) X�k (1) = q−
1

2 τqν
−kbkfδ−(εk−εM ) ⊗ bk

Action of 1⊗ π+ on δ`, X
�
` (1) and X�` (2).

Λ(y)
[(

1⊗ π+
λ

)
δ`
]

Λ−1(y)(E.78)

= τq

(
`−1∑
k=1

λ−kqε̄`−ε̄kq−
1

2 b−2
` bkfδ−(εk−εM )

)
⊗m�` ,

Λ(y)
[(

1⊗ π+
λ

)
X�` (1)

]
Λ−1(y)(E.79)

= τqλ
−`q−

1

2 b−1
` fδ−(ε`−εM ) ⊗m�` ,

Λ(y)
[(

1⊗ π+
λ

)
X�` (2)

]
Λ−1(y) = b−2

` qε̄`−ε̄M ⊗m�` ,(E.80)

where

(E.81) m�` := q
1

2 q
`−M
M λ`ν−`π+

λ (b`)y`y
−1
M

Derivation: The relation (E.78) is obtained from (E.74) by applying the
following

π+
λ

(
[· · · [f̌k, f̌k+1] . . . , f̌`−1]

)
= q−

1

2 τ−1
q

(
q
M+1

M λ
)`−k

π+
λ (b`b

−1
k )y`y

−1
k ,(E.82)

π+
λ (b−1

k )y`y
−1
k π+

λ (bk) = q−
1

2 y`y
−1
k ,(E.83)

Λ(y)
(
fδ−(εk−εM ) ⊗ 1

)
Λ−1(y) = q−

1

2 q
k

M fδ−(εk−εM )b
−1
k ⊗ yky−1

M .(E.84)

Λ(y)
(
1⊗ y`y

−1
k

)
Λ−1(y) = b−2

` b+2
k ⊗ y`y

−1
k .(E.85)

Λ(y)
(
1⊗ π+

λ (b`)
)

Λ−1(y) = b−1
` ⊗ π

+
λ (b`).(E.86)

The relation (E.79) follows from (E.77) with (E.84) and (E.86). The rela-
tion (E.80) follows from

(E.87) π+
λ (fδ−(ε`−εM )) =

q
`

M λ`

q − q−1
y`y
−1
M .

with (E.85) and (E.86).

Applying πF to the first tensor factor. We can apply πFµ to the first
tensor factor of (E.78), (E.79), (E.80) and use the expressions collected in
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Appendix C.2.3 to obtain

Λ(y)
[(
πFµ ⊗ π+

λ

)
δ`
]

Λ−1(y) = −τqq−1t`

(
`−1∑
k=1

g−kn c̄k

)
cM ⊗m�` ,(E.88)

Λ(y)
[(
πFµ ⊗ π+

λ

)
X�` (1)

]
Λ−1(y) = −τqq−1t`g

−`
n c̄`cM ⊗m�`(E.89)

Λ(y)
[(
πFµ ⊗ π+

λ

)
X�` (2)

]
Λ−1(y) = t` ⊗m�` ,(E.90)

where t` = q−
2`

M
nq2

∑`
s=1 ns and gn := −q

M−n
M µ−1λ. To derive these relations

recall that πFµ (q−
1

2 bkfδ−(εk−εM )) = −(−q
n−M
M µ)kc̄kcM .

Action of 1⊗ π+ on τ−1
q [δ`,X

≺
` (2)]. The following holds

Λ(y)
[(

1⊗ π+
λ

)
τ−1
q [δ`,X

≺
` (2)]

]
Λ−1(y)(E.91)

= τq

(
`−1∑
k=1

λ−kqε̄`+1−ε̄k− 1

2 b−2
`+1bkfδ−(εk−εM )

)
⊗m�`+1.

Derivation: The starting point is (E.41) with (E.70), (E.79) and (E.78). It
follows from the definitions (E.71) and (E.81) that m�`+1 = qm≺` m�` .

Applying πFµ to the first tensor factor.

Λ(y)
[(
πFµ ⊗ π+

λ

)
τ−1
q [δ`,X

≺
` (2)]

]
Λ−1(y)(E.92)

= −q−1τqt`+1

(
`−1∑
k=1

g−kn c̄k

)
cM ⊗m�`+1.

E.4.2. Verifications of πF ⊗ π+ on (E.52), (E.55) and (E.68).

Verification of πF ⊗ π+ on (E.52). In order to verify (E.52) using the
prescription (7.44), let us first observe that the image of the sum ∆(X≺` ) =
X≺` (1) + X≺` (2) can be rewritten as

(E.93) Λ(y)
[(
πFµ ⊗ π+

λ

)
∆(X≺` )

]
Λ−1(y) = (S ⊗ 1)

(
q2n`+1 ⊗ 1

)
ω` (S ⊗ 1)−1 ,

where ω` := q−2 n
M ⊗m≺` . To obtain this expression we used the relations

(E.72) and (E.73), and the identity

(E.94) Sq2n`+1S−1 = q2n`+1 + xτqc̄`+1c`, S = 1− q−1xc̄`+1c`,
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where x = µλ−1q
n
M . Form these relations and recalling that Eq(τqx) = 1 + x

when x2 = 0, it follows that the identity (E.52) reduces to

(S ⊗ 1) Eb2
((
q2n`+1 ⊗ 1

)
ω`
)

(S ⊗ 1)−1(E.95)

= (1 + xω` (c̄`+1c` ⊗ 1)) Eb2
((
q2n`+1 ⊗ 1

)
ω`
)
.

The only non trivial term in this identity is the one linear in x, which can
be rewritten as

Eb2
((
q2n`+1 ⊗ 1

)
ω`
)

(c̄`+1c` ⊗ 1)(E.96)

=
(
1 + q+1ω`

)
(c̄`+1c` ⊗ 1) Eb2

((
q2n`+1 ⊗ 1

)
ω`
)
.

Recalling that q2n`+1 c̄`+1 = q2c̄`+1 and c̄`+1q
2n`+1 = c̄`+1 we obtain

(E.97) Eb2
(
q2ω`

)
=
(
1 + q+1ω`

)
Eb2 (ω`) .

This is the basic property of Eb2(x) defined in (5.37).

Verification of πF ⊗ π+ on (E.55). The image of the three operators
entering (E.55) is given in (E.88), (E.89) and (E.90). Their sum is ∆(X�i ) =
X�i (1) + X�i (2) + δi, compare to (E.30). Its image can be rewritten as

(E.98) Λ(y)
[(
πFµ ⊗ π+

λ

)
∆(X�` )

]
Λ−1(y) = (S ⊗ 1)

(
t` ⊗m�`

) (
S−1 ⊗ 1

)
.

This equality follows form

(E.99) St`S−1 = t`
(
1− q−1τqC̄`cM

)
, S = 1 +

(
M−1∑
k=1

g−kn c̄k

)
cM ,

where C̄` :=
∑`

k=1 g
−k
n c̄k. Following the prescription given in (7.44) and the

relations above, the identity (E.55) reduces to

(S ⊗ 1) Eb2
(
t` ⊗m�`

)
(S ⊗ 1)−1(E.100)

=
(
1− q−1t`C̄`cM ⊗m�`

)
Eb2
(
t` ⊗m�`

)
.

Notice that to simplify the right hand side we used the following: for x2 = 0
we have Eq(τqx) = 1 + x. The term proportional to g−kn in (E.100) is given
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by

Eb2
(
t` ⊗m�`

)
(c̄kcM ⊗ 1)(E.101)

=
(
1 + q−1t` ⊗m�`

)
(c̄kcM ⊗ 1) Eb2

(
t` ⊗m�`

)
.

To derive this relation we also used that c̄s with s = `+ 1, . . . ,M − 1 com-
mute with t`. The final observation is that t`c̄kcM = q2t`,kc̄kcM and
c̄kcM t` = t`,kc̄kcM where t`,k commutes with c̄kcM , so that (E.101) reduces
to

Eb2
(
q2t`,k ⊗m�`

)
(c̄kcM ⊗ 1)(E.102)

=
(
1 + q+1t`,k ⊗m�`

)
(c̄kcM ⊗ 1) Eb2

(
t`,k ⊗m�`

)
.

This relation follows the basic property of Eb2(x), see (5.37).

Verification of πF ⊗ π+ on (E.68). Inserting (E.88), (E.73) and (E.92)
in (E.68) and using the prescription (7.44), we obtain, after simple manip-
ulations

(E.103)
(
1⊗m�`

)
Eb2(z`)− Eb2(z`)

(
1⊗m�`

)
= Eb2(z`)qz`

(
1⊗m�`

)
,

where z` := q2(n`+1− n
M ) ⊗m≺` . To derive this equation we also used m�`+1 =

qm≺` m�` . Upon observing that (1⊗m�` )z` = q2z`(1⊗m�` ) the relations
(E.103) reduces to the basic property of Eb2(x), see (5.37).

E.4.3. Auxiliary for check of ∆(Mδ). The following relation holds

Λ(y)
[
fδ−(εi−εM ) ⊗ π+

λ

(
fop
εi−εM

)]
Λ−1(y)(E.104)

=
λM−i

q − q−1

(
q

1

2 bifδ−(εi−εM ) ⊗ 1
)
.

Derivation: The relations (E.50) and (E.82) imply that πλ+
(
fop
εi−εM

)
=

τ−1
q (q

1

M λ)M−iyMy−1
i . The relation (E.104) follows upon implementing the

action of Λ(y) as given in (E.84) and (E.85). �

Applying πF to the first tensor factor, (E.104) reduces to

Λ(y)
[
πFµn

(
fδ−(εi−εM )

)
⊗ π+

λn

(
fop
εi−εM

)]
Λ−1(y)(E.105)

= − (λn)M

q − q−1

((
−q

n−M
M µn

)i
qc̄icM ⊗ 1

)
.
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E.5. The R-matrix in the fundamental representation from the
universal R-matrix

Using (C.33), a simple calculation shows that

(
πf
x ⊗ πf

y

) −→∏
γ∈Âi

R+
γ

 = 1 + σ

M∑
j=i+1

(
x

y

)(i−j)
Eij ⊗ Eji,(E.106)

σ =
q−1 − q+1

1− (x/y)M
.

Recall that R+
γ is given in (5.13) wirh sγ = 1 and the ordered set Âi is de-

fined in (C.3). The simple result in (E.106) follows from the fact that, for
the fundamental representation, the root vectors associated to the set Âi
are nilpotent and commute among themselves. Moreover, the simple depen-
dence on k in (C.33) is responsible for turning infinite products over k into
geometric series giving rise to the denominator of σ. Multiplying the factors
(E.106) according to the order (C.2) one finds

(E.107)
(
πf
x ⊗ πf

y

)
R+
≺δ = 1 + σ

∑
i>j

(
x

y

)(i−j)
Eij ⊗ Eji.

Similarly

(E.108)
(
πf
x ⊗ πf

y

)
R+
�δ = 1 + σ

∑
i<j

(
x

y

)(i−j)−M
Eij ⊗ Eji.

The evaluation of R+
∼δ defined in (5.15) gives

(E.109)
(
πf
x ⊗ πf

y

)
R+
∼δ = ρ(z)

M∑
i,j=1

yM − xMq−2δi>j

yM − xMq+2δi<j
Eii ⊗ Ejj ,

where

ρ(z) :=
(q−2z; q−2M )∞(q2−2Mz; q−2M )∞

(z; q−2M )∞(q−2Mz; q−2M )∞
(E.110)

=
εqM (−q+Mz)εqM (−q−Mz)
εqM (−qM−2z)εqM (−q2−Mz)

,
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where z = (y/x)M , (z; q)∞ :=
∏
k≥0

(
1− zqk

)
and εq(x) is defined in (5.34).

To obtain (E.109) one uses (5.18), (C.35) and their Cartan-conjugated ana-
logues. Finally the evaluation of (4.21) gives

(E.111) (πx ⊗ πy) q−t = q
1

M

M∑
i,j=1

q−δijEij ⊗ Eji.

Assembling the pieces together one obtains

(E.112)
(
πf
x ⊗ πf

y

)
R+ = q

1−M
M ρ(z)R(x, y),

where

R(x, y) =
∑
i

Eii ⊗ Eii + ν
∑
i 6=j

Eii ⊗ Ejj +
∑
i 6=j

κ(i−j)modMEij ⊗ Eji,(E.113)

ν =
yM − xM

q−1yM − q+1xM
, κ` =

q−1 − q+1

q−1yM − q+1xM
yM−`x`,(E.114)

One can verify that (E.112) satisfies the intertwining relations (4.9). Finally
one observes that

(E.115) R12(x, y)R21(y, x) = I.

and (crossing symmetry)

(((
R−1(x, y)

)T1

)−1
)T1

= η(z)R12(q−2x, y),(E.116)

η(z) =
(1− zq−2)(1− zq2M−2)

(1− z)(1− zq−2M )
.

where T1 means transposition in the first tensor factor. Notice that according
to the properties of the projection of the universal R-matrix on evaluation
representations, see e.g. chapter 9 of [EFK] one has ρ(z) =

∏
k≥0 η(q−2Mkz).

For M = 2, 3 the calculation presented in this appendix can be found in
[BrZG] and [BoGKNR].
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Appendix F. Supplementary material for Section 6

F.1. On the cyclicity of ř++

Let

(F.1) Ξ := h(zw2)h(zw3) · · ·h(zwM )h(zM−1w1 (M−1)) · · ·h(z2w1 2)h(zw1),

and recall wiwi+1 = q−2cwi+1wi. In order to show that Ξ is cyclic we apply
the following procedure

1. Apply pentagon (2→ 3) to the last two terms on the left of Ξ, i.e.

(F.2) h(zw2)h(zw3) = h(zw3)h(z2w2 3)h(zw2),

2. Move h(zw2) all the way to the right before meeting the last two terms
in the product formula for Ξ. This is done without problems since
wkw2 = w2wk for 4 ≤ k ≤M and w1 lw2 = w2w1 l for 3 ≤ l ≤M − 1.

3. Use pentagon again (3→ 2) on the three terms on the right, i.e.

(F.3) h(zw2)h(z2w1 2)h(zw1) = h(zw1)h(zw2),

4. Rewrite

(F.4) Ξ = h(zw3)Ξ̃h(zw2),

and apply the three steps above to Ξ̃ to obtain

(F.5) Ξ = h(zw3)h(zw4)˜̃Ξh(z2w2 3)h(zw2),

and so on. In the last steps one uses

(F.6) h(zM−1w2 M )h(zw1) = h(zw1)h(zM−1w2 M ).

F.2. r++ satisfies the YBE

In this appendix we prove that ρz(w), related to r++ via (6.81), satisfies
the relation (6.84). The proof we present uses only the identity (6.94) and
is in some respect similar to the proof of the star-star relation for elliptic
Boltzmann weights given in [BaKS13].
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The braid relation (6.84) for ρz(w) , upon inserting

(F.7) ρz(w) =

∫
dµ(s)K̃z(s)w(s), dµ(s) = δ(stot)

M∏
i=1

dsi,

can be rewritten as

∫
dµ(x)q−2(x,2(Ω−1)t2+(Ω−1−Ω)t1)K̃z1

(t1 + x) K̃z1z2
(2t2) K̃z2

(t1 − x)

(F.8)

=

∫
dµ(x)q−2(x,2(1−Ω−1)t1+(Ω−1−Ω)t2)K̃z2

(t2 + x) K̃z1z2
(2t1) K̃z1

(t2 − x) .

(F.9)

Above we used the notation (a, b) =
∑M

i=1 aibi and (Ωa)i = ai+1, see below
for the derivation of (F.8) from (6.84). Next, set
(F.10)

Az1,z2
(t1, t2) :=

∫
dµ(x)q−2(x,2(Ω−1)t2+(Ω−1−Ω)t1) K̃z1

(t1 + x) K̃z2
(t1 − x)

K̃z1z2
(2t1)

.

It follows from the cyclicity of K̃z(σ), namely K̃z(σ) = K̃z(Ωσ), that the
identity (F.8) is equivalent to

(F.11) Az1,z2
(t1, t2) = Az2,z1

(t2,Ω
−1t1).

As explained below one can show that

(F.12) Az1,z2
(t1, t2) =

∫
R
dλ

M∏
k=1

sb(αk − λ)

sb(βk − λ)
eπiλ(v2−v1),

where

(F.13) α = 2Ω(τ1 − τ2) + v1+v2

2 Mv0, β = 2(τ1 − Ωτ2)− v1+v2

2 Mv0.

and vi = 1
2πb log zi, τa = ibta and v0 = 1

M (1, 1, . . . , 1). It is clear from the
definition of α, β that (F.11) is equivalent to the fact that (F.12) is invari-
ant if α 7 → −β, β 7 → −Ω−1α and v1 and v2 are exchanged. This is manifest
from recalling that sb(x)sb(−x) = 1 and changing integration variable from
λ to −λ. The calculations omitted in the derivation above are given in the
following.
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From (6.84) to (F.8). We start from the braid relation (6.84) and insert
ρz(w) as above. Next, reorder the non-commuting exponentials as follows

w1(s1)w2(s2)w1(s3) = q−α(s1,s2,s3)e(log(w1),s1+s3)+(log(w2),s2)(F.14)

w2(s′1)w1(s′2)w2(s′3) = q−β(s1,s2,s3)e(log(w2),s′1+s′3)+(log(w1),s′2)(F.15)

where

α(s1, s2, s3) = 2(s−, (Ω− 1)s2 + (Ω−1 − Ω)s+), s± =
s1 ± s3

2
.(F.16)

β(s1, s2, s3) = 2(s′−, (1− Ω−1)s′2 + (Ω−1 − Ω)s′+), s′± =
s′1 ± s′3

2
.(F.17)

These relations follow from w1,iw2,j = q2(δi,j−δi+1,j)w2,jw1,i, which in turns
follows from the definitions below (6.82). The next step is to take the “co-
efficient” of e2(t1,logw1)+2(t2,logw2) so we set

(F.18) 2s+ = 2t1 = s′2, s− = x = s′−, s2 = 2t2 = 2s′+.

The rewriting (F.8) follows. �

Simplifying Az1,z2(t1, t2). Set y = ib(Ω− 1)x and τa = ibta. The expo-
nential in the definition of Az1,z2

(t1, t2) can be rewritten as

(F.19) q−2(x,2(Ω−1)t2+(Ω−1−Ω)t1) = e2πi(y,τ̃),

where τ̃ = 2Ωτ2 − (1 + Ω)τ1. Inserting the delta function in the from
δ(ytot) ∼

∫
dλe2πiλytot , one then finds

(F.20) Az1,z2
(t1, t2) =

∫
R
dλ

M∏
k=1

Ik(λ),

where
(F.21)

Ik(λ) :=

∫
R
dy

sb(τ̂k,k+1 − y − v1 + cb)sb(τ̂k,k+1 + y − v2 + cb)

sb(2τ̂k,k+1 − v1 − v2 + cb)
e2πiy(τ̃k+λ),

where τ̂ = τ1 and va = 1
2πb log(za). This integration can be done explicitly

as
(F.22)∫

R
dysb(u− y)sb(v + y)e2πiyw =

sb(u+ v − cb)sb(−w − u+v
2 + cb)

sb(−w + u+v
2 − cb)

eiπw(u−v),
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which follows from (6.94). We thus conclude that

(F.23) Ik(λ) =
sb(αk − λ)

sb(βk − λ)
eπiλ(v2−v1)elinear in τ ,

where α and β are given in (F.13) and the terms linear in τ cancel out in
the product over k.

Appendix G. Comparison with the literature

In the case M = 2 closely related models have been studied in the literature
by other techniques, see in particular [ByT1, ByT3] and [BaMS]. The pur-
pose of this appendix is to clarify the relation between the representation
theoretic constructions described in this paper and the objects constructed
in [ByT1, ByT3] and [BaMS].

G.1. Projection to the lattice-Sinh Gordon model I
— Lax operators

As a preparation for some of the following discussions let us clarify the
relation between the approach to the lattice Sinh-Gordon model described
in [ByT1, ByT3] and the formalism used in this paper in some detail.

Abstractly, one may define the lattice Sinh-Gordon model on the kine-
matical level by defining its ∗-algebra of observables ASG in terms of gener-
ators fk, k = 1, . . . , 2N and relations

(G.1) f2nf2n±1 = q2f2n±1f2n, fkfk+l = fk+lfk for |l| > 1.

The time evolution is represented by the automorphism τ of ASG,

(G.2) τ(fk) = f−1
k

κ2 + qfk−1

1 + qκ2fk−1

κ2 + qfk+1

1 + qκ2fk+1
.

The generators fk represent initial values for the time-evolution τ that are
naturally associated with the vertices of the saw-blade contour C depicted
in Figure 3.1. Equally natural appears to be the contour C̄ related to C by
means of a spacial translation with length 1

2∆. The half-shift σ
1

2 defined by

σ
1

2 (fk) = fk+1 alone is not an automorphism ofASG. Let us instead introduce
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the related automorphism σ̃
1

2 by

(G.3) σ̃
1

2 (f2n−1) = f−1
2n , σ̃

1

2 (f2n) = f2n+1.

The lattice Sinh-Gordon model was defined in [ByT1] by means of the
Lax matrix

(G.4) LSG

n (u) = 1
i e
−πbs

(
i sinπb2Es,n eπbuK−1

s,n − e−πbuKs,n

eπbuKs,n − e−πbuK−1
s,n i sinπb2Fs,n

)
.

This description is associated to the following representation of the algebra
of observables,

(G.5) πSG(f2n−1) = e−2πbpn , πSG(f2n) = e2πb(xn+xn+1),

where xn and pn generate the usual Schrödinger representation of the
Heisenberg-algebra [pn, xm] = (2πi)−1δn,m on wave-functions ψ(x) = 〈x|ψ〉,
x = (x1, . . . , xN ).

Another natural representation π̄SG is obtained by composing πSG with
the automorphism σ̃

1

2 . It is naturally associated to the contour C̄. The op-
erator Y∞ with kernel

(G.6) 〈x′|Y∞|x〉 =

N∏
n=1

e2πix′n(xn+xn+1) =

N∏
n=1

e2πi(x′n−1+x′n)xn ,

is easily seen to satisfy

(G.7) pn · Y∞ = Y∞ · (xn + xn+1), (xn + xn+1) · Y∞ = −Y∞ · pn+1,

which implies that Y∞ implements the automorphism σ̃
1

2 in the representa-
tion πSG.

We are now going to explain how to associate natural representations
of the algebra of observables to these two contours. To this aim let us note
that the monodromy matrix M(λ) associated to C will be represented as

(G.8) M(λ) := L−2n(λ/κ)L+
2n−1(λκ) · · ·L−2 (λ/κ)L+

1 (λκ).

Considering the contour C̄ leads to the definition of the monodromy matrix

(G.9) M̄(λ) := L+
2n(λκ)L−2n−1(λ/κ) · · ·L+

2 (λκ)L−1 (λ/κ).

In the first case it is natural to regard Lk(λ) = L−2k(λ/κ)L+
2k−1(λκ) as the

Lax-matrix associated to parallel transport along one physical lattice site,
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and to compare it with LSG

n (λ). To simplify notation we will temporarily
restrict attention to a specific value of k, and drop the subscript k in the
notations. The Lax-matrix L(λ) can be represented as

Ln(λ) = L−2n(λ/κ)L+
2n−1(λκ) =

(
u2n

κ
λv−1

2n
κ
λv2n ū−1

2n

)(
u2n−1 λκv2n−1

λκv−1
2n−1 u−1

2n−1

)
= κ

(
iτqEn ηn

(
λAn + λ−1A−1

n

)
η−1
n

(
λA−1

n + λ−1An
)

iτqFn

)
,(G.10)

using the notations ηn = (v−1
2n u2nu−1

2n−1v2n−1)
1

2 , iτq = i(q − q−1) = sinπb2,
and

(G.11)
iτqFn = B

− 1

2
n

(
κAn + κ−1A−1

n

)
B
− 1

2
n

iτqEn = B
+ 1

2
n

(
κ−1An + κA−1

n

)
B

+ 1

2
n

An = (v2nu2nu2n−1v2n−1)
1

2 ,

Bn = (v−1
2n u2nu2n−1v−1

2n−1)
1

2 .

There is a natural representation of the algebraASG associated to this set-up,
defined by setting

(G.12) f2n−1 ≡ πlc(f2n−1) := A2
n, f2n ≡ πlc(f2n) := B−1

n B−1
n+1.

This representation is reducible. One could project onto the eigenspaces of
the the central elements ηn. A convenient explicit description of the projec-
tion may be given in the representation where the operators (uk)

1

2 v−1
k (uk)

1

2

are diagonal with eigenvalues eπbxk . Let |yr, ys〉 be a delta-function normal-
ized vector satisfying

(ur)
1

2 v−1
r (ur)

1

2 |yr, ys〉 = eπbyr |yr, ys〉,
(us)

1

2 v−1
s (us)

1

2 |yr, ys〉 = eπbxs |yr, ys〉,
〈y′r, y′s|yr, ys〉 = δ(y′r − yr)δ(y′s − ys).

Let us furthermore use the shorthand notation

|y〉 :=

N⊗
n=1

|y2n, y2n−1〉, y = (y1, . . . , y2N ).

ηn is diagonal in this representation with eigenvalue eπb(y2n−y2n−1). The
projection Π is then defined by simply setting y2n = y2n−1 = xn for n =
1, . . . , N , which is equivalent to setting the eigenvalue of ηn to one. It is
clear that Π maps πlc to πSG. The projection of L(λ) will coincide with

teschner
Sticky Note
Replace x_s by y_s
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κ2LSG(u) if the parameters are related respectively as

(G.13) κ = m∆ = eπbs, λ = −ieπbu.

It is equally natural to regard L̄k(λ) = L+
2k+1(λ/κ)L−2k(λκ) as the Lax-

matrix associated to parallel transport along one physical lattice site. This
Lax-matrix can be represented by a formula similar to (G.10), but with An,
Bn and ηn replaced by Ān, B̄n and η̄n, defined respectively as

(G.14)
Ān = C−

1

2 · B−1
n · C

1

2 ,

B̄n = C−
1

2 · An · C
1

2 ,
η̄n = (v2n+1u2n+1v−1

2n u−1
2n )

1

2 ,

where C
1

2 is the operator representing the translation by one-half of a physi-
cal lattice site, satisfying C−

1

2 · On · C
1

2 = On+1 for each local observable On.
There is another natural representation π̄lc of the algebra ASG associated
to this set-up, defined by replacing in (G.12) the operators An and Bn by
Ān, B̄n, respectively. The representation π̄lc is naturally defined in such a
way that the operators (uk)

1

2 vk(uk)
1

2 are diagonal with eigenvalues eπbȳk , for
k = 1, . . . , 2N , respectively. The natural analog of the projection Π will be
denoted Π.

G.2. Projection to the lattice Sinh-Gordon model II
— Q-operators

Let us recall that the Q-operators have been defined as

Q(λ; µ̄, µ) : = TrH0

(
r+−
0,2N (λ/µ̄)r++

0,2N−1(λ/µ) · · · r+−
0,2 (λ/µ̄)r++

0,1 (λ/µ)
)

(G.15)

Our goal in this subsection is to demonstrate that the projection ofQ(λ; µ̄, µ)
to the physical subspace, denoted as Q(λ; µ̄, µ) can be represented in the
form

(G.16) Q(eπbw; eπbm̄, eπbm) = e
πi

4
((l−m)2+(l−m̄)2)Y(l; m̄,m) · Y∞,

where the operator Y∞ has been defined above via (G.6), and Y(l; m̄,m) is
an integral operator with the kernel

(G.17) 〈x′|Y(l; m̄,m)|x〉 =

N∏
n=1

Vm̄−l(x
′
n + xn+1)V̄m−l(x

′
n − xn).
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The special function Vu(x) appearing in (G.17) is defined as

(G.18) Vu(x) :=
sb(x− u

2 )

sb(x+ u
2 )
.

We may note that the projection of the Q-operator onto the physical sub-
space is equal to the operator Q− constructed in [ByT1].

In order to derive (G.16), let us start from (G.15), and insert the ex-
pressions (5.48) for r+−

rs (λ) and (5.51) for r++
rs (λ). It is useful to represent

r++
rs (λ) as

(G.19) r++
rs (λ) = F−1

r · Prsρλ(g+
rs) · Fs,

using the notation g+
rs := urvrusvs. By moving all operators Fn to the right

one may represent Q(λ; µ̄, µ) in the form

(G.20) Q(µ, µ̄; ν) = Y(µ, µ̄; ν) · C−
1

2 ·
2N∏
n=1

Fn,

where Y−1
∞ = C−

1

2 ·
∏2N
k=1Fk,

Y(λ; µ̄, µ) := TrH0

[
P0,2Nρλ/µ̄

(
f+
0,2N , g

−
0,2N

)
P0,2N−1ρλ/µ(g+

0,2N−1) · · ·(G.21)

· · ·P0,2ρλ/µ̄
(
f+
0,2, g

−
0,2

)
P0,1ρλ/µ(g+

0,1)
]
· C

1

2 .

The strategy will be to evaluate the matrix elements of the operator
〈y′|Y(µ, µ̄; ν)|y〉 in the representation introduced in the previous subsection.
We claim that

〈y′|Y(eπbl; eπbm̄, eπbm)|y〉(G.22)

= ζ2N
b e

πi

4
((l−m)2+(l−m̄)2)

×
N∏
n=1

Vm̄−l(y2n+1 + y′2n)V̄m−l(x
′
n − xn)eπi(y2n+1−y′2n)2

,

where xn = 1
2(y2n + y2n−1). The function V̄w(x) is the Fourier-transformation

of Vw(x), which may be expressed as

(G.23) V̄u(x) :=

∫
dy e2πixyVu(x) =

V−u−2cb(x)

sb(u+ cb)
, cb :=

i

2
(b+ b−1).

In order to prove (G.22), let us insert the identity operator in the form∫
dyr|yr〉〈yr| in front of each operator Pr,0 in (G.21), and let us furthermore



i
i

“3-Meneghelli” — 2018/2/5 — 23:34 — page 269 — #170 i
i

i
i

i
i

Integrable light-cone lattice discretizations 269

xr

xr

xsx’s

x’s xs

x’r

x’r

b) 

c)

xr

x’s

x’r

xsa)

x’2n x’2n−1

x2n x2n−1

x’2n−3x’2n−2

x2n−2 x2n−3

d)

Figure G1: Diagrammatic representations for the kernels defined in equa-
tions (G.24a), (G.24b) and (G.24c), respectively. The labels correspond to
the variables appearing in the formulae (G.24).

insert id =
∫ ∏2n

k=1 dy
′′
k |y′′k〉〈y′′k | in front of C−

1

2 . This produces an integral
representation for the matrix element on the left hand side of (G.22). The
building blocks of the integrand are

〈y′r, y′s|Prs|yr, ys〉 = δ(y′r − ys)δ(y′s − yr),(G.24a)

〈y′r, y′s|Prsρeπbw(g+
rs)|yr, ys〉 = δ(z′rs + zrs)V̄−w(y′rs − yrs),(G.24b)

〈y′r, y′s|Prsρeπbw(f+
rs, g

−
rs)|yr, ys〉 = δ(y′r − ys)δ(y′s − yr)V−w(xrs)e

πiz2
rs ,(G.24c)

where

x′rs = 1
2(y′r + y′s),

xrs = 1
2(yr + ys),

z′rs = y′r − y′s,
zrs = yr − ys.

Equation (G.24b) follows easily from the identity

(G.25) 〈x′|F (p)|x〉 = F̄ (x′ − x), F̄ (x) :=

∫
R
dy F (y)e2πixy,

where x, p satisfy [p, x] = 1/2πi, while |x〉 and 〈x′| are eigenvectors of x with
eigenvalues x and x′, respectively. The delta-distributions allow us to carry
out all the appearing integrations. In order to keep track of the resulting
identifications of variables it may be helpful to use the diagrammatic rep-
resentations of the building blocks (G.24) and of the matrix element (G.22)
given in Figure G1.

teschner
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Let Y(λ; µ̄, µ) be the projection of Y(λ, µ̄, µ) onto the physical subspace
defined by setting all zn to zero. It easily follows from (G.22) that Y(λ; µ̄, µ)
can be represented as integral operator with the matrix elements (G.17).

The operator Y∞ satisfies the relations

(G.26)
Y−1
∞ · f2n−1 · Y∞ = f−1

2n ,

Y−1
∞ · f2n · Y∞ = f2n+1,

Y−1
∞ · ηn · Y∞ = η̄n.

This means that Y∞ intertwines the representations πlc and π̄lc respectively.
It follows easily that the projection of Y∞ onto the physical subspace can be
identified with the operator denoted Y∞, in the sense that Π · Y∞ = Y∞ ·Π.

G.3. Comparison with alternative definitions of the Baxter
Q-operator

A Baxter Q-operator QBT(u) was constructed in [ByT1] in such a way that
it satisfies a Baxter-equation of the form

(G.27) TBT(u)QBT(u) = aBT(u)QBT(u− ib) + dBT(u)QBT(u+ ib).

The coefficient functions aBT(u) and dBT(u) on the right hand sider of (G.27)
are given explicitly as

(G.28) aBT(u) = dBT(−u) = e−Nπbs
[

cosh(πb(u− s− i
2b))

]N
.

The operator QBT(u) constructed in [ByT1] can be represented as the prod-
uct QBT(u) = Y(u) · Z, with Y(u) and Z being represented by the kernels

(G.29)

〈x′|Y(u)|x〉 =

N∏
r=1

Vu−s−cb(x
′
r + xr+1)V−u−s−cb(x

′
r − xr),

〈x′|Z|x〉 =

N∏
r=1

V̄−2s(x
′
r − xr).

Our aim is to compare QBT(u) with the Q-operators obtained from the
universal R-matrix within the formalism developed in this paper. Using for-
mulae (5.51) and (5.48), and following the discussion given in Sections 6.8
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and 6.9 it is straightforward to find

Rλ̄,λ;µ̄,µ(x′K , x
′
L|xK , xL)(G.30)

= e
πi

4
(l−m̄)2

Vm̄−l(x
′
K + x′L)e

πi

4
(l−m)2

V̄m−l(x
′
L − xK)

× e
πi

4
(l̄−m̄)2

V̄m̄−l̄(x
′
K − xL)e−

πi

4
(l̄−m)2

Vm−l̄(xK + xL),

where V̄u(x) was defined in (G.23). It follows that the fundamental transfer
matrix has the kernel

〈x′|T(eπbl̄, eπbl; eπbm̄, eπbm)|x〉(G.31)

= e
πi

4
((l−m̄)2+(l−m)2+(l̄−m̄)2−(l̄−m)2)

×
∫
dy1 · · · dyN

N∏
r=1

Vm̄−l(yr+1 + x′r)V̄m−l(x
′
r − yr)

× V̄m̄−l̄(yr − xr)Vm−l̄(yr + xr+1).

Setting l̄ = m in (G.31), for example, one gets Q(λ; µ̄, µ) := T(µ, λ; µ̄, µ) with
kernel

〈x′|QSG(eπbl; eπbm̄, eπbm)|x〉(G.32)

= e
πi

4
((l−m̄)2+(l−m)2+(m−m̄)2)

×
∫
dy1 · · · dyN

N∏
r=1

Vm̄−l(yr+1 + x′r)V̄m−l(x
′
r − yr)

× V̄m̄−m(yr+1 − xr).

This expression can now easily be compared with the formulae for the kernel
of the lattice-Sinh-Gordon Q-operator QBT(u) constructed in [ByT1]. We
have

(G.33) QSG(q
1

2 ζ) ≡ Q(q
1

2 ζ; µ̄, µ) = ζ4N
b e

πi

2
((u−cb)2+3s2)(wb(u+ s))NQBT

s (u),

if the parameters are related respectively as

(G.34)
µ = eπbm = κ = m∆ = eπbs,

µ̄ = eπbm̄ = κ−1 = (m∆)−1 = e−πbs,
ζ = eπbl = ie−πbu,

It follows from (G.27) that Q(ζ) satisfies a Baxter-type equation of the form

(G.35) TSG(q
1

2 ζ)QSG(ζ) = aSG(ζ)QSG(q−1ζ) + dSG(ζ)QSG(qζ),
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where

aSG(ζ) = q−
N

2 (ζ/κ)−N (1− ζ2/κ2)N (1− κ2ζ2)N ,(G.36)

dSG(ζ) = q−
N

2 (ζ/κ)−N .

The Baxter equation (G.35) coincides with the equation derived using the
representation theory of quantum affine algebras in the main text.

G.4. Connection with the Faddeev-Volkov model

We are now going to show how the 1+1-dimensional lattice model studied in
this paper is related to the two-dimensional model of statistical mechanics
called Faddeev-Volkov model, defined and studied in [BaMS]. To this aim
it will be useful to introduce the Boltzmann weights Wu(x) related to the
special function Du(x) by multiplication with a u-dependent factor,

(G.37) Wu(x) := Ξ(u)Vu(x),

where Ξ(u) := e
πi

4
(2x2+1+ 2

3b2
(1+b4))Φ(u), and Φ(u) is defined as

(G.38) log Φ(u) :=

∫
R+i0

dt

8t

e−2itx

sinh(bt) sinh(b−1t) cosh((b+ b−1)t)
.

The special function Φ(u) satisfies the functional equations

(G.39) Ξ(u+ cb)Ξ(u− cb) = (wb(u))−1, Ξ(u)Ξ(−u) = 1.

Together with (G.23) one finds that Wu(x) is self-dual under Fourier-
transformation in the sense that

(G.40) W u(x) :=

∫
dy e2πixyWu(x) = W−u−2cb(x).

Other useful properties noted in [BaMS] are

(G.41) W0(x) = 1, W 0(x− y) = δ(x− y).

Let us denote the operator obtained from T by the replacement Vu(x)→
Wu(x) and V̄u(x)→W u(x) by T′.

It then follows easily from our formula (G.31) above that for even num-
ber of lattice sites one may identify the kernels representing products of
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fundamental transfer matrices

T SG

w̄,w;s(xN+1,x0)(G.42)

:= 〈xN+1|ΩoddT′S(w̄M , wM ) · · ·T′S(w̄1, w1)Ωodd|x0〉,

where Ωodd =
∏N
n=1 Ω2n−1; we are using the notations w = (w1, . . . , wM ),

w̄ = (w̄1, . . . , w̄M ) and s = (s1, . . . , sN ). Let us temporarily restrict atten-
tion to the case that N is even. It is easy to see that

(G.43) T SG

w̄,w;s(xN+1,x0) = ZFV

w̄,w;s(xN+1,x0)

where ZFV

w̄,w;s(xN+1,x0) is the partition function of the Faddeev-Volkov
model on a rectangular lattice which may be explicitly represented as

ZFV

w̄,w;s(xN+1,x0)(G.44)

:=

∫ N∏
n=1

M∏
m=1

dymn Wwm−sn(ymn+1 − ym+1
n )W̄wm+sn(ym+1

n − ymn )

× W̄w̄m−sn(ymn − ym−1
n )Ww̄m+sn(ymn − xm−1

n+1 ).

Note that the range of values of the parameters considered in [BaMS] (mo-
tivated by positivity of the Boltzmann weights) corresponds to imaginary
values of u, u′ and s.
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