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Abstract—This paper presents an algorithm for detection and
pose estimation of cardboard parcel boxes in depth images based
on combinatorial enumeration. It is designed for sensor-driven
manipulation of pallets consisting of stacked planar layers chiefly
using 3D range measurements. The proposed method initially
detects the planar top layer of the pallet and its polygonal
contour, possibly containing holes. Then, it enumerates the
hypotheses about the layout of the pallet layer and estimates
the best matching configuration. Experiments on a real dataset
assess the feasibility of the proposed approach.

Index Terms—depth camera, object detection, pose estimation,
industrial application

I. INTRODUCTION

The end-line management of product packages is an impor-
tant part of industrial logistics. Packages are usually arranged
into stacks of pallet layers for storage and shipping to the de-
sired facilities. The operation of sorting packages into pallets is
called palletizing. The inverse operation is named depalletizing
and is an essential task for the customization of the pallet
format according to customer requirements. In order to ensure
stability, pallets are generally arranged as a stack of layers and
both palletizing and depalletizing are performed by inserting
or removing the parcel boxes from the top layer. Automated
operations on pallets are crucial for efficient management of
warehouses [1] that still rely on sensor-less manipulation with
part feeding mechanisms, assumptions about object poses and
constrained motion. However, the ongoing trend in industrial
logistics aims at increasing flexibility and adaptability, with
the goal of being able to manage different pallet and package
formats. The palletizing station is a new warehouse component
consisting of one or more robot manipulators and a proper
perception system to re-arrange an input pallet with unknown
layout into a new pallet format. Sensor-driven manipulation is
required to automatically adapt to production demands, with-
out explicit re-programming, and allowing considerable cost
savings when similar applications are required for different
manipulators.

Computer vision and sensor technology have been used for
long time in automation (e.g. in quality control inspection),
but their extensive use for end-line manipulation and logistics

is more recent. In particular, depth cameras enable reliable
3D geometric representation of the scene in the form of point
cloud data. Such sensors are based on different technologies
such as time-of-flight (ToF), structured light or stereo vision.
Range data are at times matched with RGB or grey color, but
the latter are not always available nor reliable. For example,
depth cameras such as IFM o3d3xx, that are designed for in-
dustrial applications, acquire both robust range measurements
and intensity images. The raw intensity image only provides
a complementary representation of the scene in the form of
a low resolution grey-scale image. Thus, detection and pose
estimation algorithms should rather focus on the point cloud.

In this paper, we present an algorithm for detection and
pose estimation of product boxes in depth images based on
combinatorial assessment of pallet layout. The method is
designed for a palletizing station that recognizes the config-
uration of pallet layers chiefly using the range measurements
of the cameras. It assumes parcel boxes belong to a limited
set of formats with known dimensions and that the boxes’
top sides lie on the same plane. The proposed approach
initially detects the co-planar points lying on the top pallet
layer and finds the polygonal contours enclosing the boxes.
Since the boxes of a layer are organized according to planar
patterns, the algorithm selects the points belonging to the
top plane and finds the polygonal curves, possibly with inner
“holes”, that contain each connected component in 2D space.
A crust technique [2] is exploited for robust detection of the
polygons from noisy points with slight displacement w.r.t. the
plane. The main original contribution of this paper lies in
the combinatorial algorithm to infer the layout of the pallet
layer. The proposed procedure is essentially a geometric bin
packing solver that iterates through the different possible box
configuration hypotheses by placing them inside the layer area.
This means that each hypothesis corresponds to a box layout
configuration and is generated from an orthogonal vertex
and expanded by adding stacked boxes on the existing ones.
The estimated pallet layout corresponds to the best coverage
found, and this output can be enforced and refined through
registration. Preliminary experiments on a real dataset assess
the feasibility of the proposed approach.

This paper is organized as follows. Section II presents rel-
evant literature on object detection for industrial applications.978-1-6654-0976-6/21/$31.00 ©2021 IEEE



Section III presents the procedure for detection of pallets and
of their contour, whereas section IV describes the algorithm
for the estimation of the parcel box configuration. Finally,
section V reports the results of the experiments.

II. RELATED WORK

While scientific literature on object detection and pose
estimation with depth cameras or computer vision is extensive,
occasional works about perception-driven manipulation in
manufactory are often strictly coupled with a given application
or too generic. An early work [3] presents a genetic algorithm
to detect and label parcel boxes arranged in multi-layer
pallets using a gray scale camera. Prasse et al. [4]–[6]
illustrate a method for pallet scene understanding using
a ToF sensor and RFIDs. The work in [7] addresses the
product unloading problem, comparing the effectiveness of
different range sensors. More recently, some model-based
methods have been proposed for depalletization using depth
sensors with or without color data. The technique proposed
in [8]–[10] combines box contour detection and general
pallet layout detection based on genetic optimization. Deep
learning algorithms have demonstrated their effectiveness
in recognition of objects with different shapes, notably in
the Amazon Picking Challenge 2017 [11]. Their success
often depends on careful preliminary training, which is
done on specifically acquired and labeled dataset. Moreover,
manipulation requires the estimation of object poses and
is generally solved by combining detection based on
convolutional networks and geometric registration [12],
[13]. Research projects like ILIAD [14] investigated more
structured procedures for product manipulation driven by
deep learning in industrial logistics, such as Object-RPE [15].
Several of the mentioned algorithms require both range
measurements and images, which in many industrial settings
are not available or do not guarantee sufficiently robust
detection.
Box layout estimation in pallet displays similarities with
2D rectangle packing [16], [17] and, more generally, of
rectangular knapsack packing problem. Such problem is
NP-hard and several deterministic and non-deterministic
approaches [18]–[20] have been proposed for industrial
applications. Other works make use of genetic algorithms [21],
often with heuristics that address the large computational
complexity. Finally, learning-based techniques such as [22]
have recently appeared, some of which also have the goal
of solving the 3D formulation of the problem [23], [24].
However, bin packing problem and pallet layout estimation
are different in input data and goal. Bin packing problem
operates on extact geometric description of the region to
be filled in order to maximizes, whereas layout recognition
searches the best arrangement of the given items into the
available noisy data without hard geometric constraints.

III. CONTOUR DETECTION

The first part of the algorithm presented in this paper deals
with the detection of the upper contour for the highest layer
of boxes standing on the pallet. Such contour is then used
as input for the box layout estimator. The contour detection
procedure incrementally filters the points that do not belong
to the contours of the boxes from the initial point cloud. The
geometric shape of the pallet layer contour, which is the output
of this procedure, allows the geometric reasoning presented in
section IV.

First, the contour detection algorithm extracts the dominant
plane of the scene, which corresponds to the upper side of
the top layer. Among the different possible approaches to this
task, we chose the well-known consensus method RANSAC.
The coordinates of the points are changed to a new reference
frame where aces are consistent with the plane tangent to the
pallet top layer. This frame is s.t. axis ẑ is oriented like the
normal of the dominant plane, whereas axes x̂ and ŷ lie on
it. The points belonging to the plane can be then easily found
using passthrough filtering on the point coordinate pi,z , with
a given tolerance on the coordinate value.

After filtering out all the points that do not fit into the
set gap, the remaining point cloud contains only the points
belonging to the boxes top side of the highest layer. From
this point on, the algorithms focuses on the detection of the
planar pattern of the boxes and operates only on their x
and y coordinates. Their z coordinate is close to zero and
negligible. This algorithmic choice follows from assumptions
derived from the industrial context and reduces the complexity
of a fully 3D problem. Next, the goal is the extraction of
the border points of the planar cloud representing the layer.
The first performed operation is the removal of points with
complete neighborhood, i.e. points surrounded by other points
belonging to the pallet layer. We use the 8-neighborhood in the
depth image or, equivalently, the organized point cloud, which
is faster to visit using row and column indices. The algorithm
marks as border points those with at least one neighbor not
on the layer.

At this point of the processing pipeline, two problems must
be addressed to estimate the planar contour of the pallet layer.
The first one straightforwardly derives from the aim to find one
or more closed polygonal curves: the algorithm should sort the
points s.t. each one has both a predecessor and a successor.
Such order cannot be directly derived from the indices of
input depth image, since the pallet top layer plane and the
camera plane do not correspond. Hence, neighbor pixels in
the image may corresponds to different ranges and parts of the
objects. As a result, the border detected with index reasoning
leads to overlap of different chains around the layer. Thus,
correct contour estimation requires to address a 2D curve
reconstruction problem. The second problem stems from the
presence of noisy and incomplete measurements. Cameras like
IFM O3D303 acquire about 2% invalid measurements that
must be filtered out to avoid detection of false contour points.

The initial approximate order is obtained from the topolog-
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Fig. 1. Main steps of the algorithm: (a) the input point cloud representing
the pallet, (b) the points corresponding to the top layer, (c) the noisy border
points with unsorted measurements overlapping on neighbor pixels, (d) the
cleaned contour points, (e) the contour and box layout configuration estimated
respectively by the crust algorithm and the proposed combinatorial algorithm,
(f) the pallet layer to be detected.

ical algorithm [25] implemented by function findContours()
of library OpenCV. The function can only be used to find
connected components and hierarchy due to the problem with
the order described before. The contour reconstruction is
performed using a curve crust method [26]. First, the Delaunay
triangulation is computed from the candidate contour points.
The geometric graph corresponding to the triangulation is
pruned by removing the edges whose length is greater than
threshold dmax. Second, the algorithm lists the points on the
convex hull in order to provide anchor vertices. Finally, the
anchor vertices are connected by searching minimum paths on
the graph. The joined paths are used to obtain polygonal curve
rings which correspond to the contour curves. In industrial
practice, some layouts of pallet layers have inner holes in
order to increase the friction between boxes of consecutive
layers. Thus, the layer contours may be polygons with genus
greater than 0, i.e. polygons with holes delimited by inner
rings inside an outer ring. A graphical representation of the
results obtained at different steps of the proposed algorithm is
in Figure 1.

IV. BOX LAYOUT ESTIMATION

The proposed algorithm estimates the layout of the pallet
layer starting from its polygonal contour C, which is computed

Algorithm 1 Find the best Layer Box Layout
1: function FINDBOXLAYOUT(C, {(wf , hf )}f=1...nf

)
2: // Places boxes on orthogonal vertices of contour
3: Q ← ∅;
4: for vi ∈ OrthogonalCorners(C) do
5: for f ← 1 . . . nf do
6: Binit ← InitV ertexBox(C,vi, wf , hf , true)
7: if Binit 6= null then
8: Hinit ← {Binit}
9: score(Hinit)← Area(Binit ∩ C)

10: Q ← push(Q,Hinit);
11: end if
12: Binit ← InitV ertexBox(C,vi, wf , hf , false)
13: if Binit 6= null then
14: Hinit ← {Binit}
15: score(Hinit)← Area(Binit ∩ C)
16: Q ← push(Q,Hinit);
17: end if
18: end for
19: end for
20: // Visits and expands the hypotheses in the queue
21: while not empty(Q) do
22: Hcur ← pop(Q)
23: // Finds all the valid boxes expanding Hcur
24: B ← ∅
25: for Bin ∈ Hcur and all box formats (wf , hf ) do
26: B ← B∪FindStackedBoxes(Bin, C, wf , hf )
27: end for
28: remove all Bnew ∈ B s.t.
29: Area(Bnew ∩ ∪Bj∈Hcur

) > Amax
30: // Generates new hypotheses
31: for Bnew ∈ B do
32: Hnew ← Hcur ∪ {Bnew}
33: score(Hnew)←score(Hcur)+Area(Bnew∩C)
34: Q ← push(Q,Hnew);
35: if score(Hnew) > score(Hmax) then
36: Hmax ← Hnew
37: end if
38: end for
39: end while
40: return Hmax
41: end function

according to the procedure presented in section III. The
polygonal contour may include holes deriving from some
filling pattern recurrent in industrial practice. In the infrequent
case of unconnected parcel boxes, our algorithm can be applied
separately to each contour.

The combinatorial procedure visits all the box coverage hy-
potheses. A box is represented by a tuple B = (c, θ, w, h,d),
where c and θ are respectively the origin and the orientation
angle of the box reference frame, w and h (w > h) the
width and height of the box, and d is the pivot direction. The
reference frame is placed on the centroid of the box, with the
axis x aligned with the longest edge. The frame coordinates



Algorithm 2 Try to place a box on vertex
1: function INITVERTEXBOX(C, vi, w, h, onPrev)
2: ep ← vi−1−vi

‖vi−1−vi‖ , en ← vi+1−vi

‖vi+1−vi‖
3: if not onPrev then
4: swap ep and en
5: end if
6: c← vi + ep w/2 + en h/2
7: θ ← direction(ep)
8: d← [sign(cx − vi,x), sign(cy − vi,y)]>
9: B ← Box(c, θ, w, h,d)

10: if Area(B ∩ C) > Amin then
11: return B
12: else
13: return ∅
14: end if
15: end function

are referred to a 2D frame in the pallet layer plane. The pivot
direction vector d points the direction of expansion of new
stacked boxes. The direction d is opposite to the original
vertex from which the configuration hypothesis originated (see
the following discussion of hypothesis initialization).

A box layout hypothesis (called with symbol H· and proper
pedix) consists of a set of placed boxes. Every hypothesis has
an associated score equal to the sum of the intersection areas
of each box with the layer surface, i.e.

score(H) =
∑
B∈H

Area(B ∩ C) (1)

The initial hypotheses are obtained by placing valid boxes
on each convex orthogonal vertex of contour C. A new child
hypothesis Hchild is obtained by adding a new valid box to
a parent hypothesis Hpar. A new box Bnew is valid if two
conditions hold:

1) Bnew lies on the layer, i.e. the area of its intersection
with the contour is greater than a threshold Amin

Area(Bnew ∩ C) > Amin (2)

2) Bnew does not conflict with the previously placed boxes,
i.e. the area of its intersection with the previously placed
boxes is less than a threshold value

Area(Bnew ∩ ∪Bi∈HparBi) < Amax (3)

The tolerance parameters Amin and Amax are required,
since the contour is detected from noisy data. Their value
is proportional to the area of the box (in our experiments
Amin = 0.9 Area(B) and Amax = 0.1 Area(B)).

Algorithm 1 illustrates the procedure for the layout es-
timation. The input data consist of the contour C and the
dimensions of the nf box formats of the pallets, i.e. width
wf and height hf . In most cases there is only a single
product type nf = 1, but the procedure can handle different
formats. The hypothesis queue Q is the main data structure
that stores the hypotheses to be expanded. Lines 4-19 provide
the initialization of the hypotheses. The new boxes are placed

Algorithm 3 Expand the given layout hypothesis H by adding
stacked boxes

1: function FINDSTACKEDBOX(Bin, C, w, h)
2: B ← ∅
3: // Tries to stack a new box on edges of Bin
4: Bin parameters: (cin, θin, win, hin,din)
5: c

(1)
new ←

[
din,x

win−w
2 ,−din,y hin+h

2

]
, θ1new ← 0

6: c
(2)
new ←

[
din,x

win−h
2 ,−din,y hin+w

2

]
, θ2new ← π

2

7: c
(3)
new ←

[
−din,x win+w

2 , din,y
hin−h

2

]
, θ3new ← 0

8: c
(4)
new ←

[
−din,x win+h

2 , din,y
hin−w

2

]
, θ4new ← π

2
9: for i = 1 . . . 4 do

10: if i < 2 then dnew = [−1, 1]
11: else dnew = [1,−1] end if
12: cnew ← R(θin)c

(i)
new + cin, θnew ← θ

(i)
new + θin

13: Bnew ← Box(cnew, θnew, w, h,dnew)
14: if Area(Bnew ∩ C) > Amin then
15: B ← B ∪ {Bnew}
16: end if
17: end for
18: return B
19: end function
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Fig. 2. Examples of insertion of new boxes. The new boxes are stacked on the
width or on height edges opposite to pivot point of input box, either aligned
or rotated by 90 deg.

on the orthogonal vertices vi of the contour either aligning
their longest edge with the previous vi−1vi or with the next
vivi+1 edge. The box initialization on a vertex is described
by Algorithm 2. After computing the box parameters (poses
and dimensions), the validity of the candidate box is tested
using the criterion of eq. (2) at line 10. After calling function
InitVertexBox(), it creates and scores a new hypothesis Hinit,
with a single valid box, and inserts it in the queue Q.

The queue expansion is illustrated at lines 21-39 of Algo-
rithm 1. The procedure iteratively extracts an hypothesis Hcur



and tries to expand it, starting from the boxes Bin ∈ Hcur.
Algorithm 3 implements the addition of new boxes by stacking
them on each Bin. Figure 2 illustrates with an example the
four ways (lines 5-8) to stack a new box on a given box. The
candidate stacked boxes are tested w.r.t. criteria of eq. (2) in
FindStackedBox() (line 14) and of eq. (3) in FindBoxLayout()
(line 28). At lines 31-38 of Algorithm 1, the new hypotheses
derived from the added valid boxes are scored and added to
the queue. After this insertion, the algorithm checks if the new
hypotheses achieve a better score and, in such case, it keeps
track of the best hypothesis Hmax. When the queue is empty,
and the exploration of hypotheses is finished, the algorithm
returns the best box layout.

The proposed algorithm is based only on tessellation of the
layer region and on geometric scoring of the configuration
hypotheses. A future improvement could take into account
the edges obtained from the intensity image that sensors like
IFM O3D303 provide with the depth image. While the raw
intensity image is not very accurate, it could help in order
to disambiguate between symmetric hypotheses, e.g. scoring
the hypotheses according to their matches with the extracted
edges. Our method efficiently estimates the layouts occurring
in most real industrial cases. For more complex arrangements,
optimizations to limit computational complexity when dealing
with the most recurrent pallet layouts could be made: an
example of this would be, when dealing with pallet layouts that
are evaluated as highly symmetric and populated, to run the
algorithm only along the edges of the extracted contour, and
then recur to dynamic programming for iterating the results
obtained on the edges across the interior of the layer.

V. EXPERIMENTS

The experimental evaluation of the box detection algorithm
has been performed in order to verify accuracy, precision,
and also computational cost of the box layout detection
algorithm presented in the previous sections. The dataset
consists of different box pallet layouts that simulate common
configurations used in industrial practice. A single box format
having upper face size of 315 × 232 mm has been used to
compose all configurations. Said configurations consist of two
pallet layers, although we focus only on the top layer. The
configurations include both complete and partially complete
layouts, as it was intended to simulate the state of the pallet at
different stages of the depalletization process, which generally
happens by removing one box after the other through a robotic
device which picks and places them. The position of each
box has been measured using an OptiTrack motion capture
system, by placing four markers on the vertices of a box, as
described in [8]. Given the centroids of the boxes in OptiTrack
reference frame, we have used their pairwise distances as
ground truth values to assess the accuracy of the proposed
detection algorithm.

Figure 3 shows the pictures of the box layouts and the
configurations estimated using the proposed method. The com-
binatorial layout detection algorithm has correctly estimated
most of the configurations with a notable exception of layout

TABLE I
POSITION ACCURACY OF THE BOX DETECTION ALGORITHM WITH

RESPECT TO GROUND TRUTH

config num boxes num clusters avg pw error [mm] avg stdev [mm]
A 9 1 13.86 6.2
B 3 3 13.46 5.2
C 6 1 21.52 20.1
D 3 1 11.34 4.4

C. However, the computed configuration for layout C is
compatible with the given contour due to symmetry between
the real and estimated box placements. The disambiguation for
such cases could be obtained either by improving accuracy of
contour detection or by extracting the edges in raw intensity
image acquired by the camera IFM O3D303. While the
premise of this work is the limited reliability of edges detection
and standard computer vision with these type of sensors, edge
information could complement the geometric score adopted in
section IV.

The metric accuracy has been assessed by matching and
comparing the pairwise distances between the centroids of the
detected boxes and the ground truth distances. The association
has been computed by comparing the pairwise distances of
the boxes and then calculating the mean error across all
measurements for every single configuration. In the case of
configuration C, the matching is partial due to the symmetry
of the estimated configuration. This test measures the accuracy
metric, although it does not directly capture the correctness
of the estimated box layout. Table I presents the results.
This centroids pairwise distances metric is a useful test for
establishing the accuracy of the working algorithm. However,
pallet layout detection would need additional testing on other
characteristics of the pallet layer (such as the area overlap of
boxes) in order to better establish the validity of the resulting
configuration. The average distance error is about 12 mm,
except for configuration C that doubles the error, likely for
the discussed mismatch. The estimated accuracy is adequate
for most industrial manipulation tasks and could be further
refined through registration.

VI. CONCLUSION

This paper has presented a new algorithm for detection,
layout inference and pose estimation of cardboard parcel boxes
on the top layer of a pallet. The core contribution is the
procedure for the enumeration and estimation of the layout
of boxes, as feasibility of the proposed approach has been
assessed. The system was successfully tested on real datasets
acquired using a depth camera, albeit with possibility of
ambiguous outcomes when used on specific configurations. In
our future work we plan to improve the algorithm by scoring
the box layout hypotheses according to their match with the
raw image, and by refining the final result with registration. We
expect to run additional tests on heterogeneous configurations
with larger numbers of boxes. Finally, an improved version of
the algorithm will be integrated in a palletizing station as part
of an industrial plant.



A B C D

Fig. 3. Pictures of four box configurations (from A to D) used in the experiments (top row) and the corresponding estimated layouts overlapped with their
point cloud (bottom row).
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