
Research Article
Effective Anomaly Detection Using Deep Learning in IoT Systems

Lerina Aversano ,1 Mario Luca Bernardi ,1 Marta Cimitile ,2 Riccardo Pecori ,1

and Luca Veltri 3

1University of Sannio, Benevento, BN, Italy
2Unitelma Sapienza University, Rome, RM, Italy
3University of Parma, Parma, PR, Italy

Correspondence should be addressed to Marta Cimitile; marta.cimitile@unitelmasapienza.it

Received 5 August 2021; Accepted 21 September 2021; Published 23 October 2021

Academic Editor: Zhihan Lv

Copyright © 2021 Lerina Aversano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Anomaly detection in network traffic is a hot and ongoing research theme especially when concerning IoT devices, which are
quickly spreading throughout various situations of people’s life and, at the same time, prone to be attacked through different
weak points. In this paper, we tackle the emerging anomaly detection problem in IoT, by integrating five different datasets of
abnormal IoT traffic and evaluating them with a deep learning approach capable of identifying both normal and malicious
IoT traffic as well as different types of anomalies. The large integrated dataset is aimed at providing a realistic and still
missing benchmark for IoT normal and abnormal traffic, with data coming from different IoT scenarios. Moreover, the
deep learning approach has been enriched through a proper hyperparameter optimization phase, a feature reduction phase
by using an autoencoder neural network, and a study of the robustness of the best considered deep neural networks in
situations affected by Gaussian noise over some of the considered features. The obtained results demonstrate the
effectiveness of the created IoT dataset for anomaly detection using deep learning techniques, also in a noisy scenario.

1. Introduction

The pervasive spreading of the IoT paradigm in many
aspects of our lives is becoming more and more an emerging
reality [1]; however, its huge and widespread development
implies also critical security issues [2–4], given that this par-
ticular Internet traffic is much more variegated and perva-
sive and comes from many sources such as industrial
machines during their maintenance, driverless cars for their
safe driving and positioning on the road, health sensors
measuring important vital signs of the body of people, and
smart home devices that try to automate daily housework.
Indeed, the large ongoing usage of IoT devices can foster
novel and emerging malicious manipulations and can have
deep implications on the security and the robustness of the
whole Internet. For example, the Mirai malware [5]
launched a severe distributed Denial of Service (DoS) attack

by gaining control over several zombified IoT bots [6] and
revealed the utmost need for secure authentication mecha-
nisms [7] and of apt traffic classification and identification
techniques [8]. As a consequence, many emerging IoT appli-
cations require more and more security and protection
mechanisms, which often entail accurate classification of
network traffic for the early detection of anomalies and
attacks as well as the enforcement of suitable and viable
countermeasures. Hence, the timely detection of IoT-
specific anomalous traffic is an ongoing and emerging hot
topic, but the current techniques published in the relevant
literature so far, including those employing artificial neural
networks, have the following shortcomings [9]: (i) they do
not present accurate preprocessing and optimization phases,
(ii) they are grounded only on local and ad hoc traffic data-
sets coming from one single network scenario, (iii) they
often do not rely on IoT traffic, and (iv) they seldom tackle

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 9054336, 14 pages
https://doi.org/10.1155/2021/9054336

https://orcid.org/0000-0003-2436-6835
https://orcid.org/0000-0002-3223-7032
https://orcid.org/0000-0003-2403-8313
https://orcid.org/0000-0002-5948-5845
https://orcid.org/0000-0003-2245-4823
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9054336


the data dimensionality reduction problem rigorously. Bas-
ing on the above considerations, we optimize a deep learning
approach to perform anomaly detection and attack classifi-
cation of IoT traffic over an integrated dataset. This study
significantly extends the research proposed in [8] with the
following novel contributions:

(i) The integration of further IoT traffic instances to
obtain a larger and more multifaceted integrated
dataset with even more proper IoT attack types
from different real IoT scenarios;

(ii) The analysis and optimization of different deep neu-
ral networks able to obtain very high classification
accuracy, both in the binary and the multiclassifica-
tion context, over the IoT dataset we built;

(iii) The identification of the minimum set of features
allowing the optimized deep neural networks to
achieve the best results. For data dimensionality
reduction, the autoencoder proposed in [10] is used
and compared with an alternative approach;

(iv) The verification of the robustness of the optimized
deep neural networks in a scenario that inherently
adds Gaussian noise to an increasing percentage of
features.

The remainder of the article is structured as follows: in
Section 2, the background about Internet traffic classification
is summarized. In Section 3, some recently published articles
regarding deep learning techniques for IoT anomaly detec-
tion are reviewed. Section 4 presents the used deep learning
model we employed. Section 5 describes how the integrated
dataset was built as well as the experimental settings. Section
6 shows the obtained results comparing the performance of
the optimized deep neural networks in both a normal and
a noisy scenario, as well as the outcomes of the performed
feature reduction. Finally, Section 7 concludes the paper.

2. Background

In the context of anomaly detection, network traffic is usu-
ally seen as a sum of bidirectional flows. Each flow is formed
of an ordered sequence of packets, exchanged between two
endpoints, and it is normally identified by the source and
destination IP addresses, the protocol number, and possible
upper-layer identifiers. In case of a flow between two trans-
port layer endpoints (e.g., TCP or UDP entities), it is
uniquely identified by the following: source IP address, desti-
nation IP address, transport protocol, source port, and desti-
nation port. A flow is composed of two unidirectional
subflows (from source to destination and vice versa) identi-
fied by interchanging source and destination addresses and
the corresponding transport ports. Internet traffic traces
can be captured on a network interface using standard net-
work sniffers like tcpdump (http://www.tcpdump.org/) and
Wireshark (http://www.wireshark.org/) or at the user space
by using network virtualization mechanisms like in [11].
These tools allow the gathering and analysis of Internet traf-

fic packets belonging to different flows, both in an offline
(reading of .pcap files) and in an online (live capture of the
packets) scenario. In the latter case, the capture takes place
for the packets flowing across the particular node the sniffer
is installed in. Regarding a classification purpose, all Internet
traffic classification techniques can be framed in the follow-
ing categories [12] [13]: session-based, content-based, and
statistical approaches. The first ones rely on the knowledge
of the so-called “well-known” ports, assigned to already
defined services and protocols by the Internet Assigned Num-
bers Authority (IANA) (https://www.iana.org/). Conversely,
the second one performs an exhaustive analysis of the packets’
payload to look for particular signatures of transport and
application protocols. Finally, the third ones are those
employed in this paper and they take advantage of concepts
and methods from statistics and information theory, as well
as artificial intelligence to perform the required identification.
Differently from the previous ones, these techniques do not
require known packet signatures or any information on the
application content; conversely, they perform identification
just based on “external” traffic characteristics, like packet sizes
and timing information, forming the set of input features of
the classification mechanism. Further characterization of the
possible techniques may refer to the granularity of the per-
formed traffic classification. In particular, the following two
classification types could be considered:

(i) fine-grained classification, whose aim is the detection
of the particular application protocol generating a
certain flow; [14]

(ii) coarse-grained classification, whose focus is the iden-
tification of a larger subset of protocols (e.g., web
surfing, mailing and file transfer), and not of a par-
ticular protocol.

As regards the traffic features that can be used for the clas-
sification, the most used refer to transfer-based, time-based,
and protocol-based characteristics of the packets [15]. More-
over, network packets are usually considered as belonging to
unidirectional or bidirectional flows between two endpoints.
The features describing a flow can be extracted from multiple
levels of abstraction [16]. Indeed, these features may regard:

(i) a single packet and its intrinsic characteristics, such
as the sequential position in a flow, the time distance
from the previous and the following packet, the size
in bytes, etc.

(ii) summarizing metrics of both the whole flow and its
constituting subflows, such as total duration, overall
volume in bytes, mean value, and standard deviation
thereof.

As we will point out later, in the experiments we described
in this paper, we considered both a binary classification, by
distinguishing benign traffic from anomalous flows, and a
more fine-grained multiclassification, by detecting different
typologies of attack flows. As for the feature model, described
in detail in Section 4.1, we considered features related to the

2 Wireless Communications and Mobile Computing

http://www.tcpdump.org/
http://www.wireshark.org/
https://www.iana.org/


summarizing metrics of a bidirectional flow and its two unidi-
rectional forward and backward subflows.

3. Related Work

Applications in the Internet of Things are becoming perva-
sive in many domains around the world (e.g., smart build-
ings, fleet management, and smart agriculture). However,
this leads to many security threats. In the literature, several
studies are focusing on the use of artificial intelligence tech-
niques for anomaly detection in IoT scenarios. In [17], an
approach exploiting a conditional autoencoder for anomaly
detection in IoT environments is studied. The proposed
method allows the retrieval of missing features as well as fea-
ture reconstruction in case of incomplete data. The NSL-
KDD (https://www.unb.ca/cic/datasets/nsl.html) dataset
was used. The obtained results highlight that the method
improves classification performance and is less complex
compared with other unsupervised approaches. An analysis
of wireless network threats is proposed in [18], where the
authors use an anomaly detection system to classify attacks
in IEEE 802.11 networks. The proposed network adopts a
Stacked Autoencoder, built by stacking multiple layers of
sparse autoencoders. A dataset generated from an emulator
was used for testing, and the obtained results with a 2-
layer neural network report an accuracy of 98.668% in a
multinomial classification (4 types of attacks are identified).
Fog Computing principles were adopted in [19] to detect
intrusions in IoT environments. Specifically, the authors
propose the use of edge devices provided with detection abil-
ities and adopt a deep learning network to detect intrusion
attacks. The NSL-KDD dataset was used for the experiments
considering 123 features, achieving 98.27% of accuracy for
4-class detection, which is improved by increasing the num-
ber of fog nodes. Another approach for intrusion detection is
the AdaBoost ensemble method proposed in [20]. It exploits
artificial neural networks, decision trees, and Naive Bayes
classifiers to mitigate botnet attacks in different protocols
(DNS, HTTP, and MQTT) utilized in IoT networks. The
study considered 36 features extracted from two different
datasets, but the authors adopted a feature selection process
as well. The best accuracy obtained for the binary classifica-
tion is 98.97%. In [21], the authors propose a hybrid and
scalable Dense Neural Network framework for the real-
time monitoring of network traffic and host-level events, in
order to identify possible attacks. They consider multiclassi-
fication for detecting different attacks and binary classifica-
tion to identify anomalies in the traffic. The evaluation is
performed on different public datasets, and the obtained
results were compared with traditional machine learning
algorithms. The best achieved overall accuracy for the multi-
classifier changes for the two used datasets (87.3% and
93.57%, respectively). In [22], a Hybrid Neural Network
approach is proposed and evaluated on two datasets. Similar
to [21], the model was tested for multiclassification and
binary classification. The adopted features refer to different
types of traffic flow. The best accuracy value for the binary
classification is 99.58%, while in the multiclass assessment
is 99.61%.

More recently, in [23] a system for attack detection that
interlinks development and operations frameworks is pro-
posed. Specifically, a deep convolutional neural network
architecture is used, with an optimization of the activation
functions, the filters, and the filter sizes. The experimental
results indicate that the proposed algorithm, for application
under the GAF-GYT attack, achieves higher accuracy than
the compared methods.

The analysis of the literature highlights that the perfor-
mance of the existing approaches strongly depends on the
adopted dataset and experimental settings. Therefore, in this
study, we evaluate our proposed approach on a large and
integrated dataset regarding IoT scenarios. Moreover, our
evaluation also includes the assessment of the classification
performance using different network configurations (hyper-
parameters permutations, feature selection, and noisy fea-
tures). The obtained performance is, generally, higher than
other similar approaches.

4. Proposed Approach

The proposed approach is summarized in Figure 1. Once the
complete feature set has been extracted, it is reduced by using
an autoencoder neural network (as an alternative, also Princi-
pal Component Analysis (PCA) is evaluated). The reduced
feature set is used as input to the classifier to perform both a
multinomial and binary classification. The detailed descrip-
tion of the extracted feature set, the data reduction step, and
the classification step are reported in the following.

4.1. Feature Model. Starting from the raw traffic flows, 70
features were extracted for each flow by using the CICFlow-
Meter tool (https://github.com/ahlashkari/CICFlowMeter)
[24]. Each flow has an initiator, that is, the entity that sent
the first packet to the other entity, and the responder, that
is, the other entity. Forward packets are the packets sent
from the initiator to the responder, while backward packets
are the packets from the responder to the initiator. The fea-
tures are summarized in the following:

(i) General features of the flow (5): duration of the
whole flow, that is, the interval between the first
and the last packet; the total number of forward
packets; the total number of bytes sent forward;
the total number of backward packets; and the total
number of bytes sent backward

(ii) Features related to packet sizes (14): minimum,
maximum, mean, standard deviation, and variance
of the size of flow packets; minimum, maximum,
mean, and standard deviation of the size of the for-
ward packets; minimum, maximum, mean, and
standard deviation of the size of the backward
packets; and backward to forward byte ratio, that
is, the total number of forward bytes divided by
the total number of backward bytes

(iii) Packet and byte rates (4): byte rate, computed as the
total number of bytes divided by the duration;
packet rate, that is, the total number of packets

3Wireless Communications and Mobile Computing

https://www.unb.ca/cic/datasets/nsl.html
https://github.com/ahlashkari/CICFlowMeter


divided by the duration; forward packet rate; and
backward packet rate

(iv) Packet interarrival times (14): minimum, maxi-
mum, mean, and standard deviation of packet
interarrival time for all flow packets; minimum,
maximum, mean, and standard deviation of the
interarrival time of forward packets; minimum,
maximum, mean, and standard deviation of the
interarrival time of backward packets; the sum of
all interarrival times of forward packets; and the
sum of all interarrival times of backward packets

(v) Features related to packet headers (14): the number of
forward TCP [25] PSHpackets, that is, forward packets
with PSH flag on; the number of forward TCP URG
packets; the number of backward TCP PSH packets;
the number of backward TCP URG packets; the total
number of TCP FIN packets; the number of TCP
SYN packets; the number of TCP RST packets; the
number of TCP ACK packets; the number of TCP
CWR packets; and the number of ECE packets

(vi) Features related to packet payloads (11): the average
payload size among all flow packets; the average pay-
load size in forward direction; the average payload size
in backward direction; the average number of packets
and average number of bytes in a burst of forward
packets, formed of almost consecutive packets; the
average number of packets and average number of
bytes in a burst of backward packets; the number of
bytes in the initial burst of forward packets; the num-
ber of bytes in the initial burst of backward packets;
the number of forward packets with payload; and
the minimum payload size of a forward packet

(vii) Flow state features (8): minimum, maximum,
mean, and standard deviation of active time and
of idle time

4.2. Dimensionality Reduction. Dimensionality reduction is a
method to decrease the complexity of a model and avoid
overfitting. In this work, we adopt a dimensionality reduc-
tion approach based on encoding/decoding neural networks
(i.e., autoencoders) comparing it with a standard baseline
approach like PCA [26].

An autoencoder (AE) is a neural network architecture
designed to learn new features. Autoencoders have been
originally formulated to initialize neural network weights
[27, 28] and continued to satisfy that goal for some time.
Across the latest years, other purposes for AEs have been
developing and other methods for training and regulariza-
tion of neural networks have replaced AEs [29, 30]. Conse-
quently, AEs moved from supporting neural networks
training to different purposes. A distinguishing aspect of
the AE training process is that it can be performed in an
unsupervised way, i.e., the model class labels can be ignored.
Alternatively, it elicits useful knowledge from each case by
applying to its feature vector several transformations that
force constraints on the permissible representations. Next,
the initial feature representation is linked to a novel feature
space by a set of transformations, and the autoencoder qual-
ity is assessed by looking at the correctness of the recon-
structed data. The computed error enables iteratively
adjusting the weights until the requested performance is
met. AEs are themselves neural networks with a single hid-
den layer at least and are comprised of two main parts: an
encoder subnet and a decoder subnet. These two subnets
are linked by a coding layer [31] compressing input data
and are normally symmetric in layer configurations to each
other, particularly if they are realized as fully connected neu-
ral networks. In the bottom center of Figure 1, the architec-
ture of a typical AE is depicted. Essentially, an AE is a
composition of the following:

(i) An encoding map F which projects inputs over a
distinct feature space

Batch
normalization

Hidden Layer +
Dropout

replicated
n times

Attack

Normal

Reduced feature set DoS HTTP

Xbash

DoS UDP

DoS TCP

Multinomial classification

Binary classification

Complete 
feature set

Encoder Decoder

Autoencoder network

Normal

Mirai

DDoS TCP

DDoS UDP

Scanning

CICFlow
meter
dataset

Figure 1: An overview of the proposed approach.

4 Wireless Communications and Mobile Computing



(ii) A decoding map G working with inverted logic

The primary purpose of the AE is to gain as much
knowledge as possible of the initial input to minimize the
distance between its original inputs and the outputs recon-
structed from the coding layer:

min
ϕ

〠
i∈I
λ i,Gϕ Fϕ ið Þ� �� �

, ð1Þ

where ϕ is the full set of trainable parameters of the AE
(e.g., weights and biases) and I is the set of all input
instances. The distance function λ used in the loss function
is usually either the cross-entropy or the mean squared
error. In this work, we adopted the latter, defined as follows:

λ i, i′
� �

= −i ∗ log i′
� �

+ 1 − ið Þ ∗ log 1 − i′
� �

, ð2Þ

where ∗ is the element-wise product. All the other oper-
ations are executed element-wise. For a cross-entropy loss,
variables are modeled by a Bernoulli distribution, normaliz-
ing input values in the [0,1] interval. Last layer units can use
a sigmoid activation function. The AE proposed in this work
is an adaption of the concrete AE used in [10]. The number
of units in the selector layers increases with the requested
level of feature compression. This layer picks a stochastic
linear combination of input features during training, reach-
ing a subset of features by the conclusion of the training step.
The decoder part, which serves as the regeneration function,
is a neural network whose architecture can be sized by look-
ing at the dataset extent and complexity. The AS as proposed
in [10] uses a temperature parameter T of the encoding layer
handled by a simulated annealing process that forces it to
reach zero at the end of the training obtaining a discrete fea-
ture selection instead of feature reduction. In our variant, the
parameter is managed to keep the layer temperature low:
this allows the generation of combinations of a reduced
number of features (sparse autoencoder) using a thin
single-layer encoding subnet and a generic n-layer decoder
that can be adequately sized by looking at the dataset size
itself.

4.3. Classification. The main deep neural network of the clas-
sifier we used is a feedforward neural network architecture,
whose main layers are depicted in Figure 1 and are described
in detail in the following:

(i) Input layer: this is the entry-level of the whole neu-
ral network, composed of several nodes equal to the
number of features in the considered dataset;

(ii) Batch normalization layer: this layer, added before
each dense hidden layer, is employed to enhance
the training phase of the neural network itself, given
that it augments the velocity of the training and
allows the adoption of higher learning rates and
the saturation of possible nonlinearities. This, in
turn, usually permits a higher accuracy on both val-
idation and test sets, because of a stable gradient

propagation inside the deep neural network itself;
[32]

(iii) Hidden layers: these are a variable number of dense
layers constituted of artificial perceptrons (MLP
[33]) which output a weighted sum of their inputs,
passed through a proper activation function. The
overall neural network is made up of at least five
fully connected (dense) layers of perceptrons;

(iv) Dropout layer: this layer is tightly coupled with the
aforementioned one and immediately following it.
Indeed, we replicated different times the triple batch
normalization layer-dense hidden layer-dropout
layer. The dropout layer allows the prevention of
overfitting by turning off randomly several neurons
in the coupled dense layer, following a Bernoulli
probability distribution function;

(v) Output layer: it provides the final classification and
is made of several nodes equal to the number of
classes. In Figure 1, two different output layers are
shown, the binary one and the multiclassification
one, but only one of them is considered in each
experiment. Indeed, it is a simple dense layer with
a softmax as an activation function.

In case of binary classification, only two traffic classes are
considered: Normal and Attack. Instead, in the case of multi-
classification, the neural network is used to distinguish
between Normal traffic and eight specific types of attacks
that have been considered, that are,

(i) Scanning: activity aimed at scanning a network for
discovering active hosts and open ports and for
identifying possible vulnerable active services;

(ii) TCP DoS: DoS attacks based on the TCP protocol,
usually consisting in a SYN flood attack that
exploits the initial TCP three-way handshake pro-
cedure, trying to saturate the processing resource
of the victim;

(iii) UDP DoS: DoS attacks where UDP packets are sent
to a targeted node to overload the processing capa-
bility of the node itself;

(iv) TCP DDoS: TCP DoS attack performed by a dis-
tributed attacker like a botnet or a TCP SYN-
ACK reflection attack, where the attacker sends
spoofed SYN packets to several TCP servers, using
as source IP address the victim IP address;

(v) UDP DDoS: UDP reflection attack or distributed
attack performed by a botnet;

(vi) HTTP DoS: DDoS attacks in which an HTTP
server is flooded by HTTP requests making the
server unable to respond to normal requests; like
the previous ones, it is based on the fact that either
the resource required by the target to respond is
larger than the resource used by the attacker or

5Wireless Communications and Mobile Computing



the attacker has much more resources (e.g., the
attacker uses a botnet and/or the server is a con-
strained device);

(vii) Mirai: specific Distributed Denial of Service
(DDoS) attack performed by a malware that
mainly targets consumer IoT devices such as home
WiFi routers and IP webcams and tries to install a
copy of the malware and transforming the node
into a zombie of a larger botnet;

(viii) Xbash: malware that spreads by attacking weak
passwords and unpatched vulnerabilities; it targets
Windows and Linux-based systems and combines
cryptomining, ransomware, botnet, and self-
propagation capabilities.

5. Evaluation

This section describes the used integrated dataset along with
the procedures followed for its construction and balancing
and presents the considered evaluation settings as well as
the considered neural network parameters.

5.1. Dataset Construction. The literature review demon-
strates that the research about anomaly detection mainly
uses ad hoc datasets, employed to assess specific malicious
traffic. Indeed, the main well-known limitations of the avail-
able datasets reside in the fact that:

(i) they are small and not suitable to be exploited by
deep learning techniques, which require a certain
amount of training samples;

(ii) they contain only a limited number of attacks or are
built in such a way that it is difficult to detach the
abnormal flows from the normal ones;

(iii) they are often built with traffic from the same net-
working environment, wherein packets and traffic
flows manifest the same behaviors and patterns
across the considered network attributes.

Taking inspiration from these drawbacks, the construc-
tion of a large integrated dataset was made. Specifically, five
different IoT subdatasets, with different types of attacks,
were integrated.

The integration procedure followed the subsequent
steps:

(i) Selection of the datasets;

(ii) Dataset transformation;

(iii) Dataset labeling checking;

(iv) Final dataset combination.

The first phase regarded finding recent datasets in the
IoT domain. Moreover, the selected datasets (D1, D2, D3,
D4, and D5) had to entail a sufficient number of instances
for both normal and malicious traffic.

Dataset D1 (https://ieee-dataport.org/open-access/iot-
network-intrusion-dataset) was published in September
2019. Its traffic comes from two typical smart home devices
(i.e., SKT NUGU and EZVIZ Wi-Fi Camera), and from
some laptops and smartphones, present in the same wireless
network. For this dataset, we considered normal traffic and
two types of malicious flows: Mirai traffic and scanning traf-
fic. As regards Mirai traffic flows, the packets are modified to
appear as originated from an IoT device. Conversely, scan-
ning flows, which include both “OS Scan” and “Service Scan”
attacks, contain packets simulated using Nmap.

Dataset D2 (https://www.unsw.adfa.edu.au/unsw-
canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot
.php) was generated in the Cyber Range Lab of UNSW of
Canberra. For this dataset, normal traffic, as well as various
types of malicious flows (i.e., Scanning, DDoS TCP, DDoS
UDP, DoS HTTP, DoS TCP, and DoS UDP), is considered.

As regards dataset D3 (https://iotanalytics.unsw.edu.au/
iottraces.html), it is described in [34]. For this dataset, only
normal traffic, coming from various devices, is considered.

For what concerns dataset D4 (https://www
.stratosphereips.org/datasets-iot), it mainly involves mali-
cious traffic, obtained at the Stratosphere IPS laboratory of
the Czech Technical University in 2018 and 2019. For this
dataset, only abnormal traffic of type Mirai and Xbash is
considered.

Concerning dataset D5 (https://github.com/tjcruz-dei/
ICS_PCAPS), it is derived from a small automation testbed
using MODBUS/TCP for research in the context of cyberse-
curity in Industrial Control Systems. The testbed emulates a
cyberphysical system process controlled by a SCADA system
using both MODBUS and TCP protocols.

The second phase concerned the creation of .csv files
starting from raw .pcap files. This activity was performed
by using the CICFlowMeter tool.

The third phase concerned the labeling of the flow
instances. For datasets D3 and D4, they were processed by
a proper Python script to assign the correct label to each
flow. This phase produces both a binary dataset containing
only the labels “Normal” and “Attack” and the multiclass
dataset, composed of nine different classes, namely, “Nor-
mal,” “Mirai,” “Scanning,” “DDoS TCP,” “DDoS UDP,”
“DoS HTTP,” “DoS TCP,” “DoS UDP,” and “Xbash.” The
scanning class merges “OS Scan” and “Service Scan” attacks
because often “OS Scan” attacks involve also the scanning of
well-known service ports.

The overall statistics of both the binary and the multi-
class dataset are summarized in Tables 1 and 2, respectively.
The whole integrated dataset is freely available (all data used
for this research were provided as a supplementary material
(available here)) and comprises a total of 421,530 flow
instances in the binary version and 213,210 in the multiclass
version. The binary version of the dataset is almost perfectly
balanced, whereas the multiclass version is slightly unbal-
anced as regards the “Scanning” class and rather balanced
for all the other classes.

5.2. Evaluation Settings. The evaluation of the proposed
approach is made, firstly, by performing both binary and

6 Wireless Communications and Mobile Computing

https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
https://iotanalytics.unsw.edu.au/iottraces.html
https://iotanalytics.unsw.edu.au/iottraces.html
https://www.stratosphereips.org/datasets-iot
https://www.stratosphereips.org/datasets-iot
https://github.com/tjcruz-dei/ICS_PCAPS
https://github.com/tjcruz-dei/ICS_PCAPS


multinomial classifications on the complete feature set
extracted from the integrated dataset. Successively, a hyper-
parameter optimization is performed and the performance
of the classifiers with different hyperparameter combina-
tions is evaluated. The best hyperparameter combination is
finally considered to evaluate and compare the classification
results obtained on a more reduced set of features (the con-
sidered feature numbers are 60, 50, 35, and 25). The feature
reduction is performed using two different autoencoder net-
works (3 layers and 9 layers), with the alternative PCA
approach also used as a comparison. Finally, we compare
the previously obtained results with those coming from a
noisy scenario, wherein up to 40% of the features may be
affected by Gaussian noise.

The classification is performed by using a deep neural
network based on MLP. The validation set is the 20% of
the training set, which is 90% of the whole dataset consid-
ered in each experiment.

The hyperparameter optimization [35] is performed
with a Sequential Bayesian Model-based Optimization
(SBMO) approach, implemented using the Tree Parzen Esti-
mator (TPE) algorithm as defined in [36].

The hyperparameters considered in the optimization are
reported in Table 3 and described in the following:

(i) Network size: we considered two possible sizes of
the DNN (small and medium), named after the
number of nodes per layer. A small-sized network
contains a maximum of 1.5mln learning parame-
ters, while a medium one is composed of several
parameters between 1.5mln and 7mln;

(ii) Activation function: we considered DNN configu-
rations with only the well-known and widely
adopted ReLU as an activation function and with
a mix of ReLU and Swish, a novel activation func-

tion with promising results in recent studies [37].
This choice is because ReLU suffers from the
“dead” unit problem, i.e., during the training
phase, some ReLU units always output the same
value for any input, with no role in discriminating
between inputs. This takes place when the network
learns a large negative bias term for its weights
during the training step. Whenever a ReLU unit
arrives at this state, it is not easy to be recovered
in the future, because the gradient function at 0 is
still 0, thereby SGD will not alter the weights.
Although some variants of ReLU, e.g., “Leaky”
ReLU, with a small positive gradient for negative
inputs, try to tackle this issue and provide a recov-
ery possibility, we chose to introduce Swish since it
does not suffer from the dead neuron problem and
faces better the vanishing gradient issue;

(iii) Learning rate: it ranged from 3 to 11, normalized for
the selected optimizer. For example, when the SGD
optimizer is used, the range was from 0.03 to 0.11;

(iv) Number of layers: the number of considered hid-
den layers, which was varied from 5 to 9;

Table 1: Statistics of the integrated binary dataset.

Class\dataset D1 D2 D3 D4 D5 Integrated

Normal 496 9,171 198,320 0 0 207,987

Attack 21,322 160,000 0 26,668 5,556 213,543

Total instances 21,818 169,171 198,320 26,668 5,556 421,530

Table 2: Statistics of the integrated multiclass dataset.

Class\dataset D1 D2 D3 D4 D5 Integrated

Normal 496 9,171 10,000 0 0 19,667

Mirai 18,623 0 0 4,000 0 22,623

Scanning 2,699 40,000 0 0 0 42,699

DDoS TCP 0 20,000 0 0 5,556 25,556

DDoS UDP 0 20,000 0 0 0 20,000

DoS HTTP 0 20,000 0 0 0 20,000

DoS TCP 0 20,000 0 0 0 20,000

DoS UDP 0 20,000 0 0 0 20,000

Xbash 0 0 0 22,665 0 22,665

Total instances 21,818 149,171 10,000 26,665 5,556 213,210

Table 3: Optimized hyperparameters and ranges.

Hyperparameters Ranges

Batch size 256, 512f g
Network size {Small, medium}

Activation functions {ReLU, Swish}

Dropout In range 0:1, 0:2½ �
Optimization algorithm {SGD, RMSProp, Nadam}

Learning rate 3, 11½ �

7Wireless Communications and Mobile Computing



(v) Batch size: it is the number of training samples
used in one iteration of update of the DNN inter-
nal parameters. Values greater than 512 usually
make the training phase rather unstable and the
final accuracy not satisfactory; thus, we considered
two batch sizes, namely, 256 and 512;

(vi) Optimization algorithm: we evaluated some of the
most used optimization algorithms, i.e., Stochastic
Gradient Descent (SGD) [38], RmsProp [39], and
Nadam [39]. Moreover, in all experiments, SGD
was integrated with Nesterov Accelerated Gradient
(NAG) correction, thus avoiding excessive changes
in the parameter space [40], while its momentum
was set to 0:12 and its decay to 10−6;

(vii) Dropout rate: the considered dropout rates belong
to the interval ½0:1,0:2� with a step of 0:05;

(viii) Number of training epochs: it is the number of
times the training set is presented to the DNN
and is set to 100 for the validation phase.

The classifier’s performance is evaluated by using four
well-known metrics: accuracy, validation accuracy, loss,
and validation loss. Accuracy is an overall metric and is
computed as the ratio of the sum of true positives and true
negatives to the total number of samples. The accuracy is
computed over the training set, while the validation accuracy
is calculated on the validation dataset. The loss implies how
poorly or well a model behaves after each iteration of opti-
mization and, similarly to the accuracy, is computed on both
the training and the validation set.

Moreover, to analyze results on the test set, we also con-
sider the weighted Precision, Recall, F-measure, and the
complete confusion matrix.

Precision is evaluated as the part of samples that truly
belong to a given attack (or normal flow) among all those
which were assigned to it by the classifier. The recall is the
proportion of samples assigned to a given attack (or normal
flow), among all the samples that truly belong to the attack
(or normal traffic) itself. The F-measure is the weighted har-
monic mean of precision and recall.

The DNN classifiers are developed by using Python lan-
guage, with a particular focus on TensorFlow (https://www
.tensorflow.org/), an open platform for deep learning tasks
from Google, coupled with Keras (https://keras.io/), an
open-source library working on a higher level than Tensor-
Flow itself. For the hyperparameter optimization, we took
advantage of Talos (https://autonom.io/), a hyperparameter
tuning library specifically developed to be used with Keras.
To carry out the various experiments, we employed an Intel

Core i9 9940X 10th gen server, equipped with 4 NVIDIA
Tesla T4 GPUs and 64GB of RAM.

6. Results and Discussion

In this section, we present the results of the experiments
described in the previous section.

6.1. Classification Performance. Herein, the performance of
the classifiers using the complete feature set is discussed.
As regards the binary classification, the best validation accu-
racy value is 0:9989, reached at epoch 73 in the best hyper-
parameter permutation. In Table 4, we present the values
of the hyperparameters for the best permutation and those
of the other two permutations (P1 and P2) performing very
close to the best one. As one can see, the configuration
achieving the top validation accuracy considers 8 layers
and all ReLU functions in a small DNN configuration. The
learning rate of the best permutation is 9, while the chosen
optimizer is Nadam, and the batch size is 512. Conversely,
the other two considered permutations use SGD as an opti-
mizer and 256 as the batch size and are endowed with 6 hid-
den layers as well as a variable network size and activation
function map. In Figure 2, we show the trend of the valida-
tion accuracy versus the number of epochs across a 10-fold
cross-validation process on the binary dataset for all the
aforementioned permutations. It can be seen that a sort of
saturation trend is reached just after the 20th epoch for all
the three curves, even if some oscillations are still present
after epoch 60, especially for the best permutation and per-
mutation P2. Differently, permutation P1 exhibits a much

Table 4: Best validation accuracy on the binary dataset for the top permutations.

Permutation Network size Activation functions Layers Bach size Dropout Optimization algorithm Learning rate Val accuracy

Best Small All ReLUs 8 512 0.15 Nadam 9 0.9989

P1 Medium All ReLUs 6 256 0.15 SGD 9 0.9986

P2 Small ReLUs and Swish 6 256 0.15 SGD 9 0.9985

Effective anomaly detection

Number of epochs

V
al

A
cc

0.97

0.98

0.99

1.00

200 40 60 80 100

Best
P1
P2

Figure 2: Validation accuracy versus the number of epochs for the
binary classification for the best performing permutations of the
hyperparameters.

8 Wireless Communications and Mobile Computing

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
https://autonom.io/


smoother trend and its curve is usually placed between the
other two.

For what concerns the multinomial classification, the
best validation accuracy value is 0:994, reached at the 94th

epoch. The top-performing permutations are shown in
Table 5. Similar to the binary case, the configuration achiev-
ing the top target result entails 8 layers, all ReLU functions,
and a batch size of 512. Differently from the binary case, a
medium DNN configuration is considered and the learning
rate is 10, while the optimizer is RMSProp. The other two
high-performing permutations are characterized by an acti-
vation function map with both ReLU and Swish functions,
a learning rate equal to 9, and a batch size of 256. In
Figure 3, the trend of the validation accuracy versus the
number of epochs across a 10-fold cross-validation process
on the multiclass dataset, for the aforementioned permuta-
tions, is shown. It can be seen that all the permutations reach
a sort of saturation, in this case, almost at epoch 10, and that,
differently from the binary case, the curves start at a much
lower point and tend to oscillate more till the 100th epoch.
This behavior, as well as the smaller top value for the valida-
tion accuracy, can be motivated by the greater inherent dif-
ficulty in discriminating more than 2 classes. Moreover, in
this case, permutation P1 is the most stable and smoothest,
even if not reaching the best validation accuracy values.

It is worth noting that the best-achieved results, on the
validation accuracy, are better than those obtained in the
work in [8] for the binary dataset and similar in the case of
the multiclass dataset, respectively. However, in the multino-
mial classification task, in this work, a higher number of
malicious traffic kinds (i.e., eight attacks instead of four)
are considered. Additionally, to improve the reliability of

the assessment, the validation is performed with a 10-fold
cross-validation rather than a 5-fold one, obtaining more
trustworthy results.

Finally, in Figure 4, we report the confusion matrix for
the multiclassification case under the best permutation. As
it can be easily inferred, the optimized DNN detects per-
fectly all DDoS or DoS attacks, except for the HTTP DoS
attack, confused only in one case with a Scanning attack
and in another one with the Xbash attack. Scanning attacks
are recognized almost perfectly as well, with less than 1%
of misclassified sample flows and mainly confused with
Mirai and normal traffic. Normal traffic and Xbash attacks
experience about 2% of not correctly classified flows, with
mistakes in the classification mainly focused on malware
attacks as well as onto normal traffic, respectively. Finally,
Mirai flows are the worst to be correctly detected, by exhibit-
ing, even in the best hyperparameter configuration, misclas-
sification in 3% of the cases, with HTTP DoS attacks as the
most confused class. Besides the confirmed riskiness of Mirai
attacks, the confusion matrix highlights also that the major-
ity of the classification mistakes regard normal traffic or a
very common type of traffic, i.e., HTTP flows.

6.2. Classification Performance with Feature Reduction. In
this subsection, we present the classification results we
obtained with a varying number of features.

Indeed, we performed various elaborations on the initial
integrated dataset, mainly focused on reducing the number
of attributes through an autoencoder. The results obtained
using two different autoencoder networks (9 layers and 3
layers) are evaluated and compared with those obtained by
using a PCA reduction approach. The new elaborated

Table 5: Best validation accuracy on the multiclassification dataset for the top permutations.

Permutation Network size Activation functions Layers Bach size Dropout Optimization algorithm Learning rate Val accuracy

Best Medium All ReLUs 8 512 0.15 RMSProp 10 0.994

P1 Small ReLUs and Swish 5 256 0.15 SGD 9 0.990

P2 Medium ReLUs and Swish 9 256 0.15 Nadam 9 0.990

Number of epochs

V
al

A
cc

0.7

0.8

0.9

1.0

200 40 60 80 100

Best
P1
P2

Figure 3: Validation accuracy versus the number of epochs for the multinomial classification for the best performing permutations of the
hyperparameters.

9Wireless Communications and Mobile Computing



datasets, both for the binary and the multiclassification task,
contain 60, 50, 35, and 25 features, respectively.

For the binary classification, the accuracy and F-measure
(F1) for a different number of features obtained, respectively,
using PCA, an autoencoder with 3 (AE 3layers), and 9 layers
(AE 9layers) are reported in Table 6. The accuracy is quite
stable across the reduction of the number of features for
both PCA and AE 9layers, and it achieves a top value of
0:994, whenever 35 features. This may indicate that about
half of the initially 70 features could be cut or merged into
other more significant ones, without perturbing the overall
performance at all.

In Figure 5, we show the trend of the F-measure on the
binary classifier for a varying number of features and the
three considered modes to perform feature reduction. The
performance of PCA and AutoEnc 9layers is very similar,
whereas the performance of AutoEnc 3layers is much worse.
In all cases, it is clear that only a small decrease in the num-
ber of features leads to worse average results, both in terms
of absolute values and in terms of trustworthiness (greater
standard deviation, values not shown).

The results for the multinomial classification are shown
in Table 7. Different from the binary case, the performance
changes across the considered evaluation metrics because
the dataset is rather unbalanced. Besides, it can be inferred,
from the obtained outcomes, that F-measure reaches the
best values when 50 features are considered in the case of
PCA and with 60 features in the case of AE 9layers, thus

demonstrating that, for the multiclassification, more features
can be necessary to perform good discrimination compared
to the binary case, but also confirming that the original 70
features are too many and may introduce unwanted noise.
Notwithstanding, the performance is quite stable across the
reduction of the number of features, dropping heavily only
when considering 25 features.

Effective anomaly detection

Number of features

0.95

0.96

0.97

0.98

0.99

1.00

20 25 30 35 45 50 55 60 65 70 7540

PCA
AutoEnc 3layer
AutoEnc 9layer

Figure 5: F-measure on the binary classifier versus a variable
number of features obtained with PCA and autoencoder.

Table 7: Performance of the multinomial classifier varying the
number of features through PCA and autoencoders, respectively.

Features
PCA AE 3 layers AE 9 layers

Accuracy F1 Accuracy F1 Accuracy F1

70 0.960 0.961 0.960 0.961 0.960 0.961

60 0.978 0.978 0.917 0.919 0.989 0.989

50 0.983 0.983 0.901 0.900 0.979 0.980

35 0.980 0.980 0.912 0.912 0.976 0.977

25 0.930 0.931 0.903 0.904 0.928 0.928

Normal 1927
96.93%

16
0.72%

10
0.23%

0
0.00%

0
0.00%

2
0.10%

0
0.00%

0
0.00%

11
0.49%

Mirai 16
0.80%

2199
98.43%

5
0.12%

0
0.00%

0
0.00%

43
2.10%

0
0.00%

0
0.00%

0
0.00%

Scanning 10
0.50%

19
0.85%

4232
99.37%

0
0.00%

0
0.00%

1
0.05%

0
0.00%

0
0.00%

7
0.31%

DDoS-TCP 0
0.00%

0
0.00%

0
0.00%

2556
100.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

DDoS-UDP 0
0.00%

0
0.00%

0
0.00%

0
0.00%

2000
100.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

DoS-HTTP 0
0.00%

0
0.00%

1
0.02%

0
0.00%

0
0.00%

1998
97.75%

0
0.00%

0
0.00%

1
0.04%

DoS-TCP 0
0.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

2000
100.00%

0
0.00%

0
0.00%

DoS-UDP 0
0.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

0
0.00%

2000
100.00%

0
0.00%

Xbash 35
1.76%

Normal

0
0.00%

Mirai

11
0.26%

Scanning

0
0.00%

DDoS-TCP

0
0.00%

DDoS-UDP

0
0.00%

DoS-HTTP

0
0.00%

DoS-TCP

0
0.00%

DoS-UDP

2220
99.15%

Xbash

Pr
ed

ic
te

d
C

la
ss

Actual Class

Figure 4: Confusion matrix for the best performing multinomial classifier.

Table 6: Performance of the binary classifier varying the number of
features through PCA and autoencoders, respectively.

Features
PCA AE 3 layers AE 9 layers

Accuracy F1 Accuracy F1 Accuracy F1

70 0.993 0.993 0.993 0.993 0.993 0.993

60 0.991 0.991 0.960 0.960 0.991 0.991

50 0.992 0.992 0.964 0.964 0.994 0.994

35 0.994 0.994 0.976 0.976 0.994 0.994

25 0.992 0.992 0.960 0.960 0.993 0.993

10 Wireless Communications and Mobile Computing



Figure 6 shows the trend of the F-measure for a varying
number of features obtained with PCA and autoencoder
approaches, respectively. The curve of AutoEnc 3layer is
the worst one as in the binary case, while the curves of
PCA and AutoEnc 9layer are quite superimposable, except
for the 60 feature case. Indeed, differently from the binary
case, it is clear that only a small decrease in the number of
features leads to better average results, both in terms of abso-
lute values and in terms of trustworthiness (smaller standard
deviation, values not shown).

6.3. Classification Performance in a Noisy Scenario. In this
section, we discuss the performance of the classifier in a sce-
nario wherein some features of the dataset under examina-
tion are corrupted by Gaussian noise with zero mean and
0:1 standard deviation (applied right after the min–max nor-
malization). The analyses regard both the original integrated
dataset, sporting 70 features, and the datasets with a reduced
number of features. Moreover, we report only the results
obtained by using the autoencoder with 9 layers because this
achieves similar results as PCA, and in one case, it is better.

Effective anomaly detection

Number of features

0.900

0.925

0.950

0.975

1.000

20 25 30 35 45 50 55 60 65 70 7540

PCA
AutoEnc 3layer
AutoEnc 9layer

Figure 6: F-measure on the multinomial classifier versus a variable number of features obtained with PCA and autoencoder.

Table 8: Performance of the binary and multinomial classifier for a varying number of features created through the 9-layer AE and with 5
and 10 random noisy features.

Features
Binary classifier Multinomial classifier

Accuracy5 Accuracy10 Accuracy5 Accuracy5 Accuracy10 Accuracy10
70 0.990 0.992 0.977 0.977 0.973 0.974

60 0.991 0.994 0.983 0.983 0.986 0.986

50 0.994 0.993 0.984 0.984 0.982 0.982

35 0.994 0.992 0.983 0.983 0.984 0.984

25 0.987 0.994 0.953 0.953 0.928 0.927

Features

0.980

0.985

0.990

0.995

1.000

20 25 30 35 45 50 55 60 65 70 7540

0 nf
5 nf
10 nf

Figure 7: Accuracy on the binary dataset versus a variable number of features and noisy features (nf) for the 9-layer AE.

11Wireless Communications and Mobile Computing



The number of features affected by Gaussian noise is 5 and
10, selected randomly across those available in each consid-
ered dataset, resulting in a percentage ranging from a mini-
mum of 7% for the 70-feature dataset to a maximum of 40%
for the 25-feature dataset.

The second and the third columns of Table 8 report the
values of the binary classifier accuracy when the number of
noisy features is 5 and 10 (Accuracy5 and Accuracy10),
respectively.

In Figure 7, we plot the relative curves. The figure shows
that, generally, the no-noise curve has an intermediate trend
compared to the two noisy curves, which are intertwined.
However, the curves are all very similar and inside the stan-
dard deviation range of the no-noisy curve (values not
shown for the sake of readability); thus, the optimized
DNN results are quite robust, in the binary case, against
the introduced noise on the features, even with 40% of noisy
features.

For what concerns the multinomial classification, the
rightmost columns of Table 8 report the classifier perfor-
mance with 5 and 10 noisy features. As discussed in the pre-
vious section, since the dataset is rather unbalanced, in this
case, both F-measure and accuracy values are reported. In
Figure 8, we show the F-measure curves for the multinomial
classifier in a noisy scenario and with a variable number of
features. As it can be seen, the no-noise curve exhibits a
behavior very similar to that of the 10-noisy-feature curve.
In all cases, the various points reside in the confidence inter-
val of the standard deviation of the other curves (values not
shown for the sake of readability), indicating a quite robust
trend against this type of noise. Moreover, in the case of 60
features, the best performing configuration for the multiclass
dataset with 9-layer AE, the original curve, i.e., the one with
no noise, is all the same as the best performing one.

7. Conclusions

This paper proposes a DL-based approach for anomaly
detection in IoT scenarios. We introduced a DNN architec-
ture and a feature model composed of 70 features to perform

anomaly detection identifying the type of attack from net-
work traffic. The approach also includes a feature reduction
step performed by using an autoencoder and a hyperpara-
meter optimization analysis. To perform our experiments,
we created a novel integrated dataset from IoT public traffic
traces of different nature.

The obtained results show good performance in all the
analyzed scenarios. For the binary classification, the best
accuracy is obtained when all the features are used (0:9989
for the top hyperparameter permutation). Moreover, when
feature reduction is performed, the classifier performance
is quite stable (changing the features number by using a
PCA and a 9-layer autoencoder, we always obtain accuracy
greater than or equal to 0:992, provided that the number
of features is greater than 35).

For the multinomial classifier, we observed that the 70
considered features are too many and that fewer features
can lead to better and more trustworthy outcomes. However,
in this case, the best accuracy (0:989) is obtained when the
number of features is 60 using the 9-layer autoencoder for
feature reduction. This feature reduction approach always
ensures better performance when the number of features is
between 60 and 35.

Finally, the robustness of the optimized DNN architec-
ture in a noisy scenario involving some of the considered
features is evaluated. We also show that the addition of
Gaussian noise up to 40% of the considered features does
not affect too much the performance, especially for the
binary case.

As future work, we will focus on a more detailed feature
selection approach, to find out explicitly the most relevant
features and not only their number, on the integration of
other IoT traffic datasets with more attack types, as well as
on the testing of different DL network architectures.

Data Availability

The data used to support the findings of this study are
included within the supplementary information file(s).

Effective anomaly detection

Features

0.900

0.925

0.950

0.975

1.000

20 25 30 35 45 50 55 60 65 70 7540

0 nf
5 nf
10 nf

Figure 8: F-measure on the multiclass dataset with a variable number of features and noisy features (nf) for the 9-layer AE.

12 Wireless Communications and Mobile Computing



Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Supplementary Materials

The integrated datasets, used for the binary and multinomial
classifications and described in Section 5.1, respectively, are
available as supplementary material. (Supplementary
Materials)

References

[1] H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar, “The
rise of traffic classification in IoT networks: a survey,” Journal
of Network and Computer Applications, vol. 154, p. 102538,
2020.

[2] G. Acampora, M. L. Bernardi, M. Cimitile, G. Tortora, and
A. Vitiello, “A fuzzy clustering-based approach to study mal-
ware phylogeny,” in 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 2019.

[3] M. Bernardi, M. Cimitile, F. Martinelli, and F. Mercaldo, “Key-
stroke analysis for user identification using deep neural net-
works,” in 2019 International Joint Conference on Neural
Networks (IJCNN), Budapest, Hungary, 2019a.

[4] M. L. Bernardi, M. Cimitile, D. Distante, F. Martinelli, and
F. Mercaldo, “Dynamic malware detection and phylogeny
analysis using process mining,” International Journal of Infor-
mation Security, vol. 18, no. 3, pp. 257–284, 2019.

[5] G. Perrone, M. Vecchio, R. Pecori, and R. Giaffreda, “The day
after Mirai: a survey on MQTT security solutions after the
largest cyber–attack carried out through an Army of IoT
devices,” in Proceedings of the 2nd International Conference
on Internet of Things, Big Data and Security, pp. 246–253,
Porto, Portugal, 2017.

[6] M. L. Bernardi, M. Cimitile, F. Martinelli, and F. Mercaldo,
“Game bot detection in online role player game through
behavioural features,” in Proceedings of the 12th International
Conference on Software Technologies, pp. 50–60, SciTePress,
Madrid, Spain, 2017.

[7] M. Calabretta, R. Pecori, and L. Veltri, “A token-based proto-
col for securing MQTT communications,” in 2018 26th inter-
national conference on software, telecommunications and
computer networks (SoftCOM), Split, Croatia, 2018.

[8] R. Pecori, A. Tayebi, A. Vannucci, and L. Veltri, “Iot attack
detection with deep learning analysis,” in 2020 International
Joint Conference on Neural Networks (IJCNN), Glasgow, UK,
2020.

[9] L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori, “A sys-
tematic review on deep learning approaches for IoT security,”
Computer Science Review, vol. 40, article 100389, 2021.

[10] M. F. Balın, A. Abid, and J. Zou, “Concrete autoencoders: dif-
ferentiable feature selection and reconstruction,” Proceedings
of the 36th International Conference on Machine Learning, K.
Chaudhuri and R. Salakhutdinov, Eds., , pp. 444–453, PMLR,
Long Beach, California, USA, 2019.

[11] L. Veltri, L. Davoli, R. Pecori, A. Vannucci, and F. Zanichelli,
“Nemo: a flexible and highly scalable network emulator,” Soft-
wareX, vol. 10, article 100248, 2019.

[12] R. Pecori and L. Veltri, “A statistical blind technique for recog-
nition of internet traffic with dependence enforcement,” in
2014 International Wireless Communications and Mobile
Computing Conference (IWCMC), Nicosia, Cyprus, 2014.

[13] C. L. Chowdhary, M. Mittal, P. A. Pattanaik, and Z. Marszalek,
“An efficient segmentation and classification system in medi-
cal images using intuitionist possibilistic fuzzy C-mean clus-
tering and fuzzy SVM algorithm,” Sensors, vol. 20, no. 14,
p. 3903, 2020.

[14] P. Ducange, G. Mannará, F. Marcelloni, R. Pecori, and
M. Vecchio, “A novel approach for internet traffic classifica-
tion based on multi-objective evolutionary fuzzy classifiers,”
in 2017 IEEE international conference on fuzzy systems
(FUZZ-IEEE), Naples, Italy, 2017.

[15] J. Camacho, P. Padilla, P. Garcia-Teodoro, and J. Diaz-Ver-
dejo, “A generalizable dynamic flow pairing method for traffic
classification,” Computer Networks, vol. 57, no. 14, pp. 2718–
2732, 2013.

[16] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, and B. Xie, “Internet
traffic clustering with side information,” Journal of Computer
and System Sciences, vol. 80, no. 5, pp. 1021–1036, 2014.

[17] Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Conditional variational autoencoder for prediction and fea-
ture recovery applied to intrusion detection in IoT,” Sensors,
vol. 17, no. 9, p. 1967, 2017.

[18] V. L. L. Thing, “IEEE 802.11 network anomaly detection and
attack classification: a deep learning approach,” in 2017 IEEE
Wireless Communications and Networking Conference
(WCNC), San Francisco, CA, USA, 2017.

[19] A. A. Diro and N. Chilamkurti, “Distributed attack detection
scheme using deep learning approach for internet of things,”
Future Generation Computer Systems, vol. 82, pp. 761–768,
2018.

[20] N. Moustafa, B. Turnbull, and K. R. Choo, “An ensemble
intrusion detection technique based on proposed statistical
flow features for protecting network traffic of internet of
things,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4815–4830, 2019.

[21] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, “Deep learning approach
for intelligent intrusion detection system,” IEEE Access, vol. 7,
pp. 41525–41550, 2019.

[22] C. Ma, X. Du, and L. Cao, “Analysis of multi-types of flow fea-
tures based on hybrid neural network for improving network
anomaly detection,” IEEE Access, vol. 7, pp. 148363–148380,
2019.

[23] S. Sarma, “Optimally configured deep convolutional neural
network for attack detection in internet of things: impact of
algorithm of the innovative gunner,” Wireless Personal Com-
munications, vol. 118, no. 1, pp. 239–260, 2021.

[24] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of Tor traffic using time based features,” in
Proceedings of the 3rd International Conference on Information
Systems Security and Privacy, pp. 253–262, SciTePress, Porto,
Portugal, 2017.

[25] Information Sciences Institute, USC, Transmission control
protocol, RFC 793. RFC Editor, 1981, https://www.rfc-editor
.org/rfc/rfc793.txt.

[26] I. Jolliffe, “Principal component analysis,” in International
Encyclopedia of Statistical Science, pp. 1094–1096, Springer,
Berlin Heidelberg, Berlin, Heidelberg, 2011.

13Wireless Communications and Mobile Computing

https://downloads.hindawi.com/journals/wcmc/2021/9054336.f1.docx
https://downloads.hindawi.com/journals/wcmc/2021/9054336.f1.docx
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc793.txt


[27] D. H. Ballard, “Modular learning in neural networks,” Proceed-
ings of the sixth National Conference on artificial intelligence-
volume 1, , pp. 279–284, AAAI press, 1987.

[28] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[29] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, G. Gordon,
D. Dunson, and M. Dudik, Eds., , pp. 315–323, JMLR Work-
shop and Conference Proceedings, Fort Lauderdale, FL, USA,
2011.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[31] D. Charte, F. Charte, S. Garcaa, M. J. del Jesus, and F. Herrera,
“A practical tutorial on autoencoders for nonlinear feature
fusion: taxonomy, models, software and guidelines,” Informa-
tion Fusion, vol. 44, pp. 78–96, 2018.

[32] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
proc. 32nd Int. Conf.On machine learning-Vol. 37, pp. 448–
456, 2015, http://jmlr.org/.

[33] M.W. Gardner and S. Dorling, “Artificial neural networks (the
multilayer perceptron)–a review of applications in the atmo-
spheric sciences,” Atmospheric Environment, vol. 32, no. 14-
15, pp. 2627–2636, 1998.

[34] A. Sivanathan, H. H. Gharakheili, F. Loi et al., “Classifying IoT
devices in smart environments using network traffic character-
istics,” IEEE Transactions onMobile Computing, vol. 18, no. 8,
pp. 1745–1759, 2019.

[35] Y. Bengio, “Gradient-based optimization of hyperparameters,”
Neural Computation, vol. 12, no. 8, pp. 1889–1900, 2000.

[36] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Proceedings of the 24th
International Conference on Neural Information Processing
Systems, pp. 2546–2554, Curran Associates Inc., USA, 2011.

[37] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for acti-
vation functions,” 2017, http://arxiv.org/abs/1710.05941.

[38] T. Schaul, I. Antonoglou, and D. Silver, “Unit tests for stochas-
tic optimization,” 2013, http://arxiv.org/abs/1312.6055.

[39] Y. Wang, J. Liu, J. Misic, V. B. Misic, S. Lv, and X. Chang,
“Assessing optimizer impact on DNN model sensitivity to
adversarial examples,” IEEE Access, vol. 7, pp. 152766–
152776, 2019.

[40] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the
importance of initialization andmomentum in deep learning,”
in International conference on machine learning, pp. 1139–
1147, PMLR, 2013, http://jmlr.org/.

14 Wireless Communications and Mobile Computing

http://jmlr.org/
http://jmlr.org/

	Effective Anomaly Detection Using Deep Learning in IoT Systems
	1. Introduction
	2. Background
	3. Related Work
	4. Proposed Approach
	4.1. Feature Model
	4.2. Dimensionality Reduction
	4.3. Classification

	5. Evaluation
	5.1. Dataset Construction
	5.2. Evaluation Settings

	6. Results and Discussion
	6.1. Classification Performance
	6.2. Classification Performance with Feature Reduction
	6.3. Classification Performance in a Noisy Scenario

	7. Conclusions
	Data Availability
	Conflicts of Interest
	Supplementary Materials

