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Abstract— Many recent works in the literature declare that
Orthogonal Time-Frequency-Space (OTFS) modulation is a
promising candidate technology for high mobility communication
scenarios. However, a truly fair comparison with its direct
concurrent and widely used Orthogonal Frequency-Division Mul-
tiplexing (OFDM) modulation has not yet been provided. In this
paper, we present such a fair comparison between the two digital
modulation formats in terms of achievable communication rate.
In this context, we explicitly address the problem of channel esti-
mation by considering, for each modulation, a pilot scheme and
the associated channel estimation algorithm specifically adapted
to sparse channels in the Doppler-delay domain, targeting the
optimization of the pilot overhead to maximize the overall
achievable rate. In our achievable rate analysis we consider
also the presence of a guard interval or cyclic prefix. The
results are supported by numerical simulations, for different
time-frequency selective channels including multiple scattering
components and under non-perfect channel state information
resulting from the considered pilot schemes. This work does not
claim to establish in a fully definitive way which is the best
modulation format, since such choice depends on many other
features which are outside the scope of this work (e.g., legacy,
intellectual property, ease and know-how for implementation, and
many other criteria). Nevertheless, we provide the foundations to
properly compare multi-carrier communication systems in terms
of their information theoretic achievable rate potential, within
meaningful and sensible assumptions on the channel models and
on the receiver complexity (both in terms of channel estimation
and in terms of soft-output symbol detection).

Index Terms— OFDM, OTFS, compressed sensing, Doppler-
delay domain, sparsity, pragmatic capacity, channel state
information.
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I. INTRODUCTION

IN ANY communication scenario, the channel state infor-
mation (CSI), i.e., the knowledge of the communication

channel, is required at the receiver in order to perform coherent
detection [1]. The most common approach to acquire CSI is
through the transmission of known pilot symbols [1]. Gener-
ally, these pilots are arranged within the block of information
symbols following a chosen fixed pattern known to both trans-
mitter and receiver (see e.g, [2]–[4]).1 It is also well-known
that, subject to the meaningful and widely used assumption
of block fading (i.e., the propagation channel remains con-
stant over blocks of consecutive time-domain symbols, and
may change independently from block to block), pilot-aided
schemes are indeed nearly information-theoretically optimal
in terms of the capacity scaling in the high spectral efficiency/
high signal-to-noise ratio (SNR) regime (see, e.g., [5]–[8]).
On the other hand, both the pilot pattern and the channel
estimation algorithm should be optimized for the particular
communication scenario. By considering a noisy channel,
the CSI is inevitably affected by an estimation error, whose
magnitude depends on the channel SNR and number of pilots
per block. The estimated channel coefficients are then used
to perform coherent detection at the receiver side. Taking
as the meaningful and most relevant performance metric the
achievable communication rate, i.e., the amount of useful
information sent in a block of symbols, there is a tension
between the number of pilot symbols per block dedicated
to CSI estimation and the number of information-bearing
symbols. The optimization of this tradeoff is generally not
trivial and depends on the modulation format and on the
channel propagation characteristics.

In this work, we compare two digital modulation for-
mats designed to handle time-frequency selective channels,
namely orthogonal time frequency space (OTFS) [9] and
orthogonal frequency division multiplexing (OFDM), in terms
of pragmatic capacity, i.e., the achievable rate of the chan-
nel induced by the signal constellation and the detector

1In some communication scenarios the transmitter could send an entire block
of pilot symbols, i.e., without any useful information, followed by blocks
with no pilots. Thus, the symbol detection is based on the channel estimation
made from the first block. In this work we are not considering such a case,
by focusing on a per block channel estimation, with associated benefits and
losses.
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soft-output [10], [11].2 In general, a soft-output detector at
the receiver side produces an estimate of the posterior prob-
ability of the transmitted symbols given the received signal
block (pilots and data). This estimated posterior probability
(e.g., in the form of log-likelihood ratios) is then passed to
a decoder, that treats the sequence of soft-output symbols
as the output of a virtual channel. The pragmatic capac-
ity is the capacity of such virtual channel, with discrete
input represented by the modulation symbols, and soft-output
generated by the detector. Hence, the pragmatic capacity is
representative of the achievable rate under the assumption
of separate detection and decoding, i.e., without “turbo”
reprocessing of the decoder output (see, e.g., [13], [14] and
references therein). In practice, iterative “turbo” detection is
very hard to implement since often the detector is implemented
in hardware (e.g., in an integrated circuit) and the decoder
is implemented in software, and maybe even in a different
location (as for example in the so-called 7.2 split between
hardware and software, enabling cloud-based processing of
the signals from remote radio heads [15]). For this reason,
we believe that the pragmatic capacity for separated detection
and decoding is a very meaningful performance metric to
compare different modulation formats and the associated pilot
schemes and soft-output detectors.

In order to make a fair comparison between the two
modulation formats, we take into account the pilot overhead
resulting from the optimization of the above mentioned trade-
off. Since the loss associated to the presence of pilots cannot
be neglected, the achievable communication rate inevitably
deviates from the upper limit of additive white Gaussian
noise (AWGN) capacity for the same constellation format.
Moreover, we also consider the presence of a guard interval
(GI) or cyclic prefix (CP), which additionally reduces the
achievable rate. One GI for each block is used in OTFS to
avoid inter-block interference (IBI) [16], while a CP is used
for every OFDM symbol to avoid inter-symbol interference
(ISI) and to make symbols orthogonal in the time-frequency
domain. Here a first significant difference between the two
modulation formats evidently appears. In fact, in order to
accommodate typical channel delay spreads, the CP length
in several communication standards based on OFDM may
be a large fraction (up to 25%) of the symbol time (see,
e.g., [17] and references therein), leading to a remarkable loss
in terms of capacity. On the other hand, OTFS does not need
a per symbol separation, but this comes at the cost of a non-
negligible increase in signal processing complexity [18].3

The time-frequency selective channels of interest mainly
target outdoor scenarios with high mobility, since OTFS
has been specifically proposed for these cases, where the
Doppler spreads are significant and where there are few
reflectors (or group of reflectors with similar properties), and

2Indeed, the analysis can be extended to the many multicarrier modulation
formats proposed so far in the literature (e.g., see [12]). However, we consider
here OFDM only since by far the most widely used scheme in modern
standards.

3There exist OFDM-based OTFS systems, e.g., [19], which consider “OTFS-
like” operations as precoding and equalization of an inner OFDM system.
We will not consider such a type of systems, which deviate from the scope
of this work.

thus a small number of multipath components [9]. Since
the properties of the communication channel represented in
the Doppler-delay domain depend on the physical geometry
of the environment, the scattering components are thus sparse
in the Doppler-delay plane.4 In this context, exploiting the
channel sparsity plays a fundamental role since estimation
algorithms built over this concept exhibit very good tradeoffs
between pilot overhead, complexity, and estimation error.

The idea of exploiting the channel sparsity in multi-carrier
systems is well established and shared by other estimation
techniques in the current literature, which generally applies
concepts from compressed sensing (CS) (e.g., see [19]–[26]),
for both OFDM and OTFS modulations. However, it should be
noticed that CS is meaningful when the measurements (i.e., the
pilot symbols) are obtained in the dual domain with respect
to the domain in which the channel is sparse. Thus, in our
case, the channel is sparse in the Doppler-delay domain, for
which the dual domain (related by a two-dimensional Fourier
transform) is the time-frequency domain. In the considered
pilot scheme for OTFS, the pilots are directly placed in the
sparsity domain (Doppler-delay). Hence, direct estimation via
the maximum likelihood (ML) approach is both efficient and
computationally feasible. In contrast, the OFDM modulation
format places the pilot symbols in the time-frequency domain.
Therefore, in this case it makes sense to consider a CS-based
channel estimation approach.

Based on the aforementioned discussion, the proposed chan-
nel estimation algorithm for OTFS takes into account a pilot
scheme similar to the one proposed in [4] (adopted in some
other works, see, e.g., [27]), which considers a high energy
center pilot (or a cluster of pilots [19], to contrast eventual
destructive non-linear amplification effects over the single
pilot) surrounded by zeros in the transmitted two-dimensional
(Doppler-delay domain) block of symbols. This configuration
of pilots and information symbols is a natural consequence
of the input-output relation of OTFS, where the effect of the
channel cause a cyclic shift of the transmitted symbol of a
quantity proportional to the delay and Doppler shifts associ-
ated to each channel path. The estimation algorithm for OTFS
is based on the ML approach of [18], with the introduction
of a low-complexity pilot-based mechanism to detect channel
multipath components and achieve a first coarse estimation
of relevant parameters. On the other hand, for OFDM we
adopt a well-known CS-based estimation algorithm based on
least-absolute shrinkage and selection operator (LASSO) [28]
(i.e., l1-norm regularized least squares minimization). In this
case, the pilots placed in the time-frequency domain define the
sensing matrix, and the proposed estimation algorithm makes
use of the soft-thresholding iterative algorithm [29], optimized
to efficiently work in our system setup [30]–[32]. The pilot
configuration for OFDM is discussed in Sec. II.

The paper is organized as follows. In Sec. II and in Sec. III
we present the input-output relation, the used pilot scheme,
and the proposed channel estimation algorithm for OFDM

4A richer scattering environment such as indoor scenarios, could break
the sparsity constraint with subsequent problems for the proposed estimation
algorithms. Thus, the proposed methods mainly focus outdoor scenarios with
channels represented by few sparse components.
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and OTFS modulation, respectively. Sec. IV discusses the
numerical results, while Sec. V concludes the paper.

II. OFDM MODULATION AND THE CS ALGORITHM

We consider OFDM with per-symbol CP transmitted over
a time-frequency selective channel, assuming perfect symbol
orthogonality and absence of inter-carrier interference (ICI).
The channel impulse response (CIR) in time-frequency domain
is given by [33]

H (t, f) =
P−1∑
p=0

hpe
j2πνpte−j2πτpf , (1)

where P is the number of multipath scattering components
and hp, νp, and τp are the complex channel gain including the
pathloss, the Doppler shift, and the delay, associated to the p-th
scattering component, respectively. Note that the maximum
channel delay and Doppler shift are assumed to satisfy

τmax < T, νmax < Δf, (2)

where T is the symbol time and Δf is the subcarrier spacing.
By discretizing the time axis at steps nT , for n = 0, . . . , N−1,
and the frequency axis at steps mΔf , for m = 0, . . . ,M − 1,
we obtain the discrete time-frequency channel matrix

H =
P−1∑
p=0

hpa (νp)bH (τp) , (3)

where

a (νp) =
[
1, ej2πτpT , . . . , ej2πτp(N−1)T

]T

, (4)

b (τp) =
[
1, ej2πνpΔf , . . . , ej2πνp(M−1)Δf

]T

, (5)

where (·)T and (·)H denote the transpose and the conjugate
transpose (Hermitian) operation, respectively. By gathering
the information symbols {xn,m} in a N ×M matrix X, the
expression of the received samples after transmission over the
channel in (3) is

Y = X� H + Z, (6)

where � denotes element-wise multiplication and Z is the
AWGN with zero mean and covariance matrix σ2INM . Infor-
mation symbols may belong to any suitable complex modula-
tion alphabet.

At this point, in order to help understanding the rationale
behind the adopted channel estimation algorithm, let us rep-
resent the channel in a different form. Suppose to define
a Doppler-delay grid Γ, with some grid steps (both in the
Doppler and delay domain) and total dimension G, given by
the product between Doppler and delay axis dimensions. For
each grid point γi ∈ Γ, for i = 0, . . . , G− 1, the correspond-
ing rank-1 channel component can be expressed, similarly
to (3), as

H̃ (γi) = a (τ (γi))bH (ν (γi)) , (7)

in which τ (γi) and ν (γi) are two fixed values of delay and
Doppler depending on the discretization point γi. By stacking
the N ×M matrices H̃ (γi) to column vectors for all points

γi ∈ Γ (vec(·) operator) and concatenating the obtained
vectors, we create a generally overcomplete dictionary matrix

D =
[
vec
(
H̃ (γ0)

)
, . . . , vec

(
H̃ (γG−1)

)]
, (8)

of dimension NM × G. We also define a G × 1 vector
hsp (read: “h-sparse”), representing the channel gains cor-
responding to each discrete Doppler and delay component
γi ∈ Γ. Thus, the vectorized channel matrix H̄, which is an
approximation of the true channel matrix H in (3), takes on
the form

vec(H̄) = Dhsp. (9)

Since the true channel contains only a small number P � G
of Doppler-delay components, the grid coefficient vector hsp

is a sparse, in the form

hsp =
[
0, . . . , 0, h̄0, 0, . . . , 0, h̄1, 0, . . . , 0, h̄2, 0, . . .

]T
, (10)

where the positions of the approximated (to the nearest grid
step) channel coefficients h̄i select the columns of D with the
pair of channel coefficients (τ (γi) , ν (γi)), to overall repre-
sent the triplet

(
τ (γi) , ν (γi) , h̄p

)
emulating the true channel

parameters (τp, νp, hp). Thus, the approximated received sam-
ples expression in vectorized form can be written as

ȳ = x � (Dhsp) + z, (11)

where x = vec (X) and z = vec (Z). Moreover, by defining
a selection matrix S, of dimension |P| ×NM , to choose |P|
symbols (pilots) among the total NM (P is the set of pilots
and |·| indicates its cardinality), the transmitted vector of pilots
xpl,OFDM (read: “x-pilot”) takes the form

xpl,OFDM = Sx, (12)

and

ȳpl = xpl,OFDM � (SDhsp) + z. (13)

The estimation of the channel coefficients can be carried on
by solving the problem known as LASSO [28], i.e.,

ĥ = arg min
h

‖ypl − xpl,OFDM � (SDh)‖2
2 + λ ‖h‖1 , (14)

where SD, under this configuration, takes the role of the
sensing matrix of the CS configuration, and λ is the LASSO
regularizer (see details in Appendix A). Notice that ypl is
obtained through the transmission over the actual channel, and
thus differs from ȳpl, obtained through the process of approx-
imation of the channel matrix described before. The incurred
approximation error should be kept small, by choosing appro-
priately the grid Γ with sufficiently fine discretization. In any
case, the residual approximation error between ypl and ȳpl

is automatically included in the minimization or the overall
quadratic error term ‖ypl − xpl,OFDM � SDh‖2

2 in (14).
The LASSO minimization problem has been extensively

studied in literature. It can be solved using many different
algorithms [29], [30], [32], and it was also adopted for the
specific case of channel estimation [20]. As a final outcome,
the estimated channel matrix resulting from the minimization
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Fig. 1. Example of a random pilot scheme for OFDM modulation.

of (14) and subsequently passed to the symbol detector is
given by

Ĥ = Dĥ. (15)

For completeness and for the sake of reproducibility of our
results, the details of the used LASSO solver, together with
an analysis on its complexity, are described in Appendix A.

A. Pilot Scheme

The optimization of a deterministic sensing matrix for CS
problems such as LASSO is up to now one of the most studied
open problems in CS theory. In fact, the typical performance
guarantees of CS require properties such as the restricted
isometry property [20], [34], for which explicit constructions
are not available and even checking the property for a given
randomly generated matrix is exponentially complex [35].
On the other hand, ensembles of randomly generated matrices
have the property of satisfying these properties with high prob-
ability [20]. Hence, here we resort to a pseudo-random pilot
placement on the 2-dimensional time-frequency grid. We have
verified by simulation that such random placement achieves
with high probability the best performance with respect
to regular “lattice” placements (e.g., equally spaced combs
of subcarriers) usually specified in wireless standards [3].
An example of a random pilot scheme is depicted in Fig. 1.
Generally, almost every configuration of a fixed number of
pilots randomly placed within the 2-dimensional grid provides
similar performance in terms of channel estimation. If pilots
are not placed randomly but follow some periodic pattern, the
algorithm for solving the LASSO produces far inferior results.
This behavior is caused by the periodic sampling of a random
Fourier matrix (i.e., H or Dhsp). This is the reason why
commonly used pilot schemes (see, e.g., [3] and references
therein), generally structured or periodic, are not suitable for
the CS-based estimation of OFDM systems (assuming that the
OFDM channel is represented by a Fourier matrix). In fact, it is

well-known that deterministic contribution of sensing matrices
with small restricted isometry property (RIP) constant is a very
hard problem (see [36] and references therein). In contrast,
the RIP constant and therefore CS reconstruction guarantees
of random sensing matrices have been extensively analyzed in
the theoretical CS literature. In particular, it is well-known
that “random DFT” matrices (i.e., matrices obtained by a
random selection of the rows of a unitary DFT matrix) have
very good properties, analyzed for example in the classical
papers [37] and [38]. While there is no result saying that a
pseudo-random selection of the pilot symbols position is the
best possible (in fact, by definition, there must be a determin-
istic choice that performs better than average, by the usual
random coding argument), an explicit algorithmic construction
that performs better than random selection has not yet been
found. This is a well-known open problem in compressed
sensing. Since the focus of this paper is not to exhibit the
best possible scheme, and random selection has theoretical
guarantees of good performance with high probability, we have
resorted to random selection. Moreover, with CS, the number
of measurements, i.e., pilot symbols, is much less than the
dimension of the target signal that we want to estimate. In this
regime, standard LS-type channel estimation would fail since
the underlying regression problem is under-determined. This is
precisely the regime where novel compressed sensing schemes
as the LASSO scheme used in our paper (which is pretty much
the state of the art for noisy measurements as in our case)
allow good estimation with a much reduced number of pilot
symbols.

We aim at maximizing the overall achievable rate under
random pilot placement. Hence, we can optimize the number
of pilots per block to seek the optimal tradeoff between CSI
estimation quality and pilot overhead (see (40) in the following
and numerical results in Sec. IV).

B. Received Samples Expression — Real and
Approximated Channel Conditions

Without entering into details of the complete input-output
derivation of a CP OFDM system which can be found, e.g.,
in [39], we only provide the received sample expression.
By considering real and approximated channel conditions,
the received samples at time instant n and subcarrier m are
respectively given by (16) and (17), shown at the bottom of
the page, in which the ICI-free approximation follows the
assumption νmax/Δf � 1, and the last equality follows by
using the orthogonality property. Note that (17) is equivalent

y [n,m] =
1
M

P−1∑
p=0

hpe
j2πνpnT

M−1∑
m′=0

x [n,m′] e−j2πm′Δfτp

M−1∑
i=0

ej2π i
M

νp
Δf ej2π

i(m′−m)
M (16)

≈ 1
M

P−1∑
p=0

hpe
j2πνpnT

M−1∑
m′=0

x [n,m′] e−j2πm′Δfτp

M−1∑
i=0

ej2π
i(m′−m)

M

=
P−1∑
p=0

hpe
j2πνpnT e−j2πτpmΔfx [n,m] (17)
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to (6). For numerical simulations we generally consider the
approximated channel model (17) in which the assumption on
the absence of ICI holds. However, we also show the results
with a comparison of OFDM under real channel conditions,
i.e., considering (16), showing the performance degradation in
the case where the ICI-free assumption is not well satisfied.

III. OTFS MODULATION AND THE PROPOSED

ESTIMATION ALGORITHM

A. OTFS Input-Output Relation

In this section we concisely review the derivation of the
input-output relation of OTFS modulation (see, e.g., [18], [40])
and cast it in the notation of this paper.

Data symbols {xk,l}, for k = 0, . . . , N − 1 and l =
0, . . . ,M − 1 belonging to any modulation format (e.g., some
quadrature amplitude modulation (QAM) constellation), are
arranged in an N × M two-dimensional grid referred to as
the Doppler-delay domain, i.e., Γ = {(k/NT , l/MΔf)} for
k = 0, . . . , N − 1 and l = 0, . . . ,M − 1 (see (6) for the
analogy with OFDM). The transmitter first applies the inverse
symplectic finite Fourier transform (ISFFT) to convert data
symbols {xk,l} into a block of samples {X [n,m]} in the
(dual) time-frequency domain, thus

X [n,m] =
N−1∑
k=0

M−1∑
l=0

xk,le
j2π( nk

N −ml
M ), (18)

for n = 0, . . . , N−1 and m = 0, . . . ,M−1. Then, it generates
the continuous-time signal

s(t) =
N−1∑
n=0

M−1∑
m=0

X [n,m]gtx(t− nT )ej2πmΔf(t−nT ), (19)

where X [n,m] denotes the sample sent at time n and over
subcarrier m, and gtx(t) is a generic transmit shaping pulse.

After transmission over the channel defined in (1), the contin-
uous received signal without noise is

r(t) =
P−1∑
p=0

hps(t− τp)ej2πνpt, (20)

and the output of the receiver filter-bank adopting a generic
receive shaping pulse grx(t) is given in (21), shown at the
bottom of the page. By sampling at t = nT and f = mΔf ,
we obtain (22), shown at the bottom of the page, where the
time-frequency domain channel hn,m[n′,m′] is given in (23),
shown at the bottom of the page, having defined the cross
ambiguity function Cu,v(τ, ν) �

∫∞
−∞ u(s)v∗(s−τ)e−j2πνsds

as in [41], set h′p = hpe
j2πνpτp , and imposed the term

e−j2πmn′ΔfT = 1, ∀n′,m, which is always true under the
assumption T = 1/Δf . Since X [n,m] is generated via ISFFT,
the received signal in the Doppler-delay domain is obtained
by the application of the symplectic finite Fourier transform
(SFFT)

y[k, l]=
∑
n,m

y[n,m]
NM

ej2π( ml
M −nk

N )=
∑
k′,l′

xk′,l′gk,k′ [l, l′] , (24)

where the ISI coefficient of the Doppler-delay pair [k′, l′] seen
by sample [k, l] is given by

gk,k′ [l, l′] =
∑

p

h′pΨ
p
k,k′ [l, l′], (25)

with Ψp
k,k′ [l, l′] defined as in (26), shown at the bottom of the

page.
Using rectangular shaping pulses and after a suitable

approximation of the cross ambiguity function as illustrated in
the derivation in [18] and omitted here for the sake of brevity,
the simplified version of Ψp

k,k′ [l, l′] is given by (27), shown
at the bottom of the page.

y(t, f) =
∫
r(t′)g∗rx(t

′ − t)e−j2πft′dt′ =
∫

t′
g∗rx(t

′ − t)
P−1∑
p=0

hps(t′ − τp)ej2πνpt′e−j2πft′dt′

=
∑

p,n′,m′
hpX [n′,m′]

∫
t′
g∗rx(t

′ − t)gtx(t′ − τp − n′T )ej2πm′Δf(t′−τp−n′T )ej2π(νp−f)t′dt′ (21)

y[n,m] = y(t, f)|t=nT,f=mΔf =
N−1∑
n′=0

M−1∑
m′=0

X [n′,m′]hn,m[n′,m′] (22)

hn,m[n′,m′] =
P−1∑
p=0

h′pCgtx,grx((n− n′)T − τp, (m−m′)Δf − νp)ej2πn′Tνpe−j2πmΔfτp (23)

Ψp
k,k′ [l, l′] =

∑
n,n′,m,m′

Cgrx,gtx ((n−n′)T−τp,(m−m′)Δf−νp)

NM ej2πn′Tνpe−j2πmΔfτpe
j2π

�
n′k′

N −m′l′
M

�
e−j2π(nk

N −ml
M ) (26)

Ψp
k,k′ [l, l′] �

1
NM

1 − ej2π(k′−k+νpNT)

1 − ej2π
(k′−k+νpNT)

N

1 − ej2π(l′−l+τpMΔf)

1 − ej2π
(l′−l+τpMΔf)

M

e−j2πνp
l′

MΔf

×
{

1 if l′ ∈ [0,M − 1 − 	τp/ (T/M)
]
e
−j2π

�
k′
N +νpT

�
if l′ ∈ [M − 	τp/ (T/M)
,M − 1]

(27)
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Fig. 2. Symbol (magnitude) translation in the Doppler-delay domain.
(a) Transmitted symbol. (b) Received samples. (c) Heatmap (magnitude).

B. Pilot Scheme

In this section we describe the pilot scheme inspired by [4].
Using (24) expressed in matrix form, the OTFS input-output
relation is given by

y =

(
P−1∑
p=0

hpΨp

)
x + z, (28)

where z denotes the AWGN with zero mean and covari-
ance matrix σ2INM . Note that Ψp implicitly takes into
account a Doppler-delay pair (τp, νp), i.e., Ψp � Ψp(τp, νp).
Without entering into mathematical details, the effect of the
channel to symbols arranged in blocks is described in the
following.

Consider a block composed by all zero symbols but one
non-zero with enough energy to be well distinguishable and
positioned anywhere within the block (the position of the
symbol does not influence the result, since the channel shift
effect is circular within the block), transmitted over the time-
frequency selective channel in (3). At the receiver, most of
the energy concentrates at positions on the 2-dimensional
block (one per multipath component), with some diffusion
to the surrounding positions according to the Dirichlet kernel
functions appearing in the OTFS channel matrix expression
in (27) (see [18] and references therein for more details).
Examples of blocks of transmitted symbols and received
samples in the case of a single multipath component are
depicted in Fig. 2 (a) and Fig. 2 (b), respectively. Since the
channel is composed of P components and is linear, in general
the resulting received signal is formed by the superposition of
the effects of P multipath components, i.e., a single transmit
symbol will be shifted in P different positions, each of
which has some surrounding diffusion as qualitatively shown
in Fig. 2. Intuitively, the estimation of the pairs (τp, νp)
follows by searching the peaks of the magnitude of the
received samples grid (as suggested in [4]). This intuitive
estimation procedure is, however, only able to provide the
integer parts of the Doppler and delay shifts, associated to
the Doppler-delay grid point collecting the maximum energy.
The fractional parts are linked to the dissipation of the
energy around the peak points and must be treated separately,
as we will do via Algorithm 1 and Algorithm 2 in the
following.

The approximation of the channel behavior to integer
Doppler and delay shifts, as it was done in [4], yields
accurate results only under the non-realistic conditions of

Fig. 3. Example of a pilot scheme for OTFS modulation. Within the block
of dimension N × M it is well distinguishable the centered pilot with high
energy ε, surrounded first by zero pilots (the hollow zone) and after by
information symbols (here, for convenience, with unit energy).

integer Doppler and delay shifts. Thus, based on our previously
proposed ML estimator in [18], we will extend the idea of [4]
providing a reliable estimation algorithm for general sparse
channels with non-integer shifts.

A block of dimension N × M of transmitted symbols
contains both information bearing symbols and pilot symbols.
The arrangement of pilot symbols consists of a rectangular
region placed in the block containing two types of symbols
(see Fig. 3):

• Zero Pilots: Placed between information symbols and
non-zero pilots to guarantee no significant interfer-
ence between them. The Dirichlet kernel functions
appearing in the OTFS input-output relation (27) are
rapidly decreasing functions, hence, perfect orthogonal-
ity between information symbols and pilots cannot be
achieved, but, at least, the Doppler-delay ISI can be
reduced.

• Peak Pilot: A pilot symbol with high energy, collecting
the energy of the whole pilot field, is placed at the grid
center. Its shifts in the Doppler-delay grid are used to
provide the initial coarse estimation of the Doppler-delay
pairs, which results to be fast and simple.

Given this pilot arrangement, the number of pilot symbols
has to be optimized to match the optimal performance-
overhead tradeoff, while keeping constant the total block
energy.

Note that in OFDM, symbols are independent, i.e., ISI
and ICI free for modulation definition, and the pilot vector
xpl,OFDM, defined in (12) through a selection matrix S, results
to be a subset of symbols x. Differently, in OTFS, since the
channel, as depicted in Fig. 2, behaves per block and not per
symbol as in OFDM, the processing at the receiver could not
be based on a subset of samples but must take into account
the entire block. As a result, the vector of pilots xpl,OTFS has
dimension NM × 1 and is composed of all zero entries (the
positions of unknown data symbols are set to zero) but one,
i.e., the peak pilot (Fig. 3).
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C. Channel Estimation

The proposed channel estimation scheme is based on the
ML approach of [18],5 providing a parameter estimation of
Doppler, delay, and complex channel gain associated to each
multipath component. In the following, we provide a concise
description of the scheme, since it plays a central role within
the channel estimation algorithm for OTFS.

The objective is to estimate the set of parameters θ =
{h′p, τp, νp} ∈ T P , with T = C × R × R. By defining the
ML function as

l(y|θ,xpl,OTFS) =
∣∣∣y −

∑
p h

′
pΨpxpl,OTFS

∣∣∣2 , (29)

the ML solution becomes

θ̂ = arg min
θ∈T P

l(y|θ,xpl,OTFS). (30)

For a fixed set of {τp, νp}, the ML estimator of {h′p} is
given by solving the following set of equations

xH

pl,OTFSΨ
H

p

(
P−1∑
q=0

h′qΨq

)
xpl,OTFS = xH

pl,OTFSΨ
H

py. (31)

By expanding (29), solving the system of equations in (31)
to find the complex channel gains h′p for every multipath
component, and substituting these results in (29), after some
long but relatively simple algebra (not given explicitly for the
sake of brevity), we find that the minimization w.r.t. θ reduces
to maximizing the function

l2(y|θ,xpl,OTFS) =
∑

p

h′py
HΨpxpl,OTFS

=
∑

p

S(τp, νp) − Ip({h′q}q �=p,θ), (32)

where S(τp, νp, φp) and Ip({h′q}q �=p,θ) (Sp and Ip in short
hand notation) denote the useful signal and the interference
term for the multipath component p, given respectively by

Sp =
|yHΨpxpl,OTFS|2
|Ψpxpl,OTFS|2

, (33)

Ip =
(yHΨpxpl,OTFS)xH

pl,OTFS

(
ΨH

p

∑
q �=p h

′
qΨq

)
xpl,OTFS

|Ψpxpl,OTFS|2
.

(34)

The algorithm to obtain the estimation of Doppler, delay,
and complex channel coefficient of each multipath component
is described in the following.

After the definition of the ML approach, Algorithm 2
describes the actual CSI estimation, i.e., the estimation of the
unknown parameters of each multipath component. Note that,
as for OFDM, if the number of multipath components P is not
available at the receiver, we instead select all local maxima or

5In [18] we proposed the ML method to estimate the Doppler shift and
delay of the main path assuming LoS in the backscattered wave for a joint
radar and communication application with OTFS modulation format. Since
in [18] the estimation of the radar parameters is performed at the transmitter
side, all modulation symbols in the block are known as they are generated
by the transmitter itself. Therefore, they can be all treated as pilot symbols.
Here we use the same ML approach, but applied to the specific pilot pattern
considered in this paper.

Algorithm 1 Multipath Parameters Estimation

Result: The set (ĥ′p, τ̂p, ν̂p), for p = 0, . . . , P − 1.
It: Let i = 0, 1, 2, . . . be the iteration number;
Initialization: For i = 0, initialize ĥ′p[0] = 0;
for i = 1, 2, . . . do

• Delay and Doppler update: For each p = 1, . . . , P ,
find the estimates τ̂p[i], ν̂p[i] by solving the
two-dimensional maximization

(τ̂p[i], ν̂p[i]) = arg max(τ,ν)

{
Sp − Ip

}
, (35)

with Sp and Ip calculated for (ĥ′p[i], τ, ν, φ̂p[i]);
• Complex channel coefficients update: Solve the
linear system (31) with channel matrices Ψp with
parameters (ĥ′p[i], τ̂p[i], ν̂p[i], and let the solution be
denoted by ĥ′p[i].

end

Algorithm 2 CSI Estimation

Result: The set (ĥ′p, τ̂p, ν̂p), for p = 0, . . . , P − 1.
Coarse Estimation: By analyzing on-grid Doppler and
delay shifts, get the first coarse estimation of the pairs
(τ̂p, ν̂p) through the shifts of the peak pilot w.r.t. the
Doppler-delay grid, by selecting the first P local maxima;
It: Let i = 0, 1, 2, . . . be the iteration number;
for i = 1, 2, . . . do

• Grid step and interval refinement: Refine the
granularity of the step around the estimated values
within a refinement interval. The finer the step size
and the larger the interval, the greater the
computational complexity;
• Use the ML approach described in Alg. 1 to get a
finer estimation of the unknown parameters;
• Select the first P local maxima.

end

peaks (of the groups of estimates) whose magnitude is above
a certain threshold (to be defined).

The iterative process allows to refine the estimation through
iterations while keeping the computational cost limited and
speed-up the minimization of the estimation error. As indicated
in [18], few number of iterations, e.g., less than 5, is enough
to reach the algorithm convergence. The definition of the
refinement interval and grid step is not mandatory and depends
on the hardware capabilities of the system. Note that other
iterative schemes based on coarse and refined estimation
over discretized Doppler-delay-angle grids can be found in
literature (see, e.g., [26] and references therein). However,
our scheme relies on a rigorous derivation of OTFS with
rectangular pulses and fractional Doppler and delay shifts,
thus differs significantly from the approach proposed in [26],
where OTFS is seen as a pre- and post-processing for an inner
OFDM modulation, for which CS algorithms can be applied
(due to the orthogonality of received samples, as discussed
in Section II).
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Remark 1: Note that, by considering the pilot scheme of
Fig. 3 (and also the definition of xpl,OTFS), the multiplication
between the channel matrix Ψp and the pilot vector xpl,OTFS

is just a column selection of matrix Ψp, which significantly
simplifies all the equations involved. We did not explicitly
take advantage of this aspect, by keeping the treatment as
general as possible (one can think to modify the pilot pattern
configuration of Fig. 3), but note that the reduction in terms
of computational complexity could be remarkable.

IV. COMPARISON IN TERMS OF PRAGRAMATIC CAPACITY

Before proceeding to the numerical results, we introduce
the simulation setting in terms of the pilot schemes and their
overhead, further details on the channel estimation algorithms,
the performance metric adopted for the comparison, and the
soft-output symbol detection algorithms for OFDM and OTFS.
All these details are listed in the following with the aim of
providing a clear definition of the comparison of these two
modulation formats.

• In general, we denote by D and by P the set of data and
pilot symbols, respectively, in a NM frame of length
NM for both OFDM and OTFS. An important aspect
in the system optimization is the number of pilots |P|
(|·| denoting the cardinality of a set). Consider first the
OFDM modulation. It is well known in the CS literature
that the minimum number of pilots (or measurements,
from CS literature) to recover a sparse signal is given by
the logarithmic scaling factor [42]

|P| ≥ P log
G

P
, (36)

where P and G are the number of non-zero components
and the dimension of the vector to be estimated, respec-
tively. Thus, given a multipath channel with P paths
and a sensing matrix of dimension |P| × G (defined
in (7)), the (asymptotically) minimum number of pilot
symbols necessary to solve the minimization problem in
(14) is given by (36). As a consequence, the required |P|
slowly increases with G, i.e., with the resolution of the
Doppler-delay grid (see also the Appendix A). Moreover,
(36) provides only the scaling law of the number of
measurements (up to some constant factor larger than 1)
and the actual optimal system performance might be
achieved for a number of pilots larger than the bound in
(36). Note that this is not a precise quantitative analysis
but it just gives a qualitative idea or intuition on how large
the number of pilots per block should be, knowing that the
aforementioned CS-based conditions are always given up
to constant factors that depend on the specific problem,
SNR, shape of the sensing matrix, and other variables.
In other words, the analytical optimization of the number
of pilots is an intractable problem. Thus, we based our
comparison on a brute-force search over a suitable set
of overhead values, identifying the best tradeoff between
number of pilots and channel estimation performance for
the given scenarios.
For OTFS modulation, the pilot scheme presented in
Section III-B and its estimation algorithm are independent

of the block dimension, and depend only on the maxi-
mum Doppler shift and delay of the channel. Moreover,
if the dimension of the block increases, one can set
more pilots to zero to raise the power of the peak
pilot, allowing the detection of low power scattering
components when the number of paths P is not known
a-priori, using the threshold-based approach explained in
the following. However, limits on the block dimension
come, in first place, from important restrictions on OTFS
detection computational complexity [18], and then from
the assumption that the channel parameters are time-
invariant, which breaks down if the block becomes too
large. Thus, realistic block sizes have to be considered
for both OFDM and OTFS.

• For both OFDM and OTFS, during the channel estimation
process, a “peak selection” has to be performed. In a
genie-aided scenario where the number of propagation
paths P is a-priori known, this results in the search of
the P local maxima of the objective function. However,
this information may not be available at the receiver
and, in such a case, the algorithms should select all
local maxima above a certain threshold (to be defined).
By considering scattering components with decreasing
power, which is generally the case, once the pathloss
brings the power below the threshold, the corresponding
component is neglected in the construction of the (esti-
mated) channel matrix. Clearly, this results in a less
accurate CSI, but, at the same time, the contribution
of low- or very-low-energy paths has a minor impact.
In our simulation results we consider the genie-aided case
where P is known, while the threshold-based scheme is
a conceptually straightforward extension.

• In the numerical results, we assess the performance of
both schemes in terms of pragmatic capacity, i.e., the
mutual information of the virtual channel having at its
input the constellation symbols and at its output the
detector soft-outputs [10], [11]. The pragmatic capacity is
representative of the achievable rate under the assumption
of separate detection and decoding, i.e., without “turbo”
reprocessing of the decoder output. By considering a
sequence of NM symbols {xk} belonging to any con-
stellation C, let {x̂k} be the noisy estimates of the
transmitted symbol. The pragmatic capacity is simply
defined as the symbol-by-symbol mutual information (see
[10], [11], [18] for more details), which can be easily
computed by Monte Carlo simulations as

IPC = log2 |C| −
1

NM

∑
k∈D

P (xk|x̂k) log2

1
P (xk|x̂k)

,

(37)

where P (xk|x̂k) is the a-posteriori probability mass
function of symbols xk ∈ C given the detector soft-
output x̂k , while D is the set of information symbols,
i.e., excluding the pilots. Note that, since the numerator
sums |D| ≤ NM terms, while the denominator is the
block size NM , the pilot overhead emerges naturally.
An indication of the minimum length of the sequence to
obtain reliable pragmatic capacity results is given in [43].
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• For OFDM, we adopt the linear minimum mean square
error (LMMSE) detector, whose soft-output under non-
perfect CSI, i.e., employing the estimated channel matrix
Ĥ,6 is given by

x̂ = ĤH

(
ĤĤH + σ2I

)−1

y. (38)

Note that for OFDM, whose (estimated) channel matrix
is diagonal, the LMMSE detector reduces to the symbol-
by-symbol detection given by

x̂k =
H∗

k,k

|Hk,k|2 + σ2
yk, (39)

which significantly simplifies the computational com-
plexity at the detector. On the other hand, the same
detector cannot be adopted for OTFS modulation, because
of the costly matrix inversion of a non-diagonal matrix
in (38). Hence, different solutions have been proposed
in the literature [18], [44]–[46]. However, some of
these approaches rely on non-realistic model or channel
assumptions (e.g., Doppler shifts and delays integer mul-
tiples of the symbol grid) and therefore their performance
degrades significantly when applied to realistic channel
conditions [18]. For this reason, in place of the very-high-
complexity block-based LMMSE detector (38) for OTFS,
we consider the low-complexity message-passing (MP)
soft-output algorithm proposed in [18], which achieves
linear complexity per block (i.e., constant complexity per
symbol, comparable with the symbol-by-symbol LMMSE
detector for OFDM).
As a reference benchmark, the mutual information for the
considered input constellation transmitted over an AWGN
channel (thus in the absence of fading), denoted to as
AWGN (symmetric) capacity Csym

AWGN, [47], will be also
computed. At high SNR, where the estimation error is
supposed to be small, the gap between pragmatic capacity
curves and this benchmark is only due to the presence
of the overhead of pilot symbols within the transmitted
block. Asymptotically, the achievable rate loss R�x is
given by

R� =
P
NM

× 100 [%]. (40)

and the rate simply becomes the AWGN capacity mul-
tiplied by the fraction of data symbols per block, i.e.,
|D| /NM = 1 − |P| /NM . Moreover, as already said,
in order to make a fair comparison, the overhead intro-
duced by a CP for OFDM and by a generic GI (between
blocks) for OTFS must be taken into account. While a GI
interposed between two OTFS blocks, to avoid IBI, intro-
duces a small-to-negligible overhead (especially when the
dimension of the block increases), the CP overhead of
OFDM is kept constant within the entire block (whatever
its dimension), introducing a considerable loss in terms
of pragmatic capacity. For instance, by considering a CP

6Note that, always for fairness, both modulations use the same estimation
grid granularity.

TABLE I

SYSTEM PARAMETERS

Fig. 4. Pragmatic Capacity vs. SNR for OFDM modulation with P = 1 and
P = 4 and different pilot overhead (whose percentage is indicated in the
legend).

of length T/4, being T the symbol time, the loss is

T

T + T/4
=

T

5T/4
=

4
5

= 0.8 = 20%. (41)

This means that, with a modulation constellation of size
|C|, OFDM saturates at 0.8 · log2 |C| bits/symbol. The
overall loss takes into account both the pilot overhead
and the presence of a CP and/or GI (also of length T/4,
for consistency).

• As anticipated at the beginning of this paper (Section II),
in order to restrict to the classical low-complexity
symbol-by-symbol minimum mean square error (MMSE)
estimation for OFDM we have neglected the ICI.
As already seen in (16), the ICI depends on the ratio
between the subcarrier spacing Δf and the maximum
Doppler shift introduced by the channel. In order to have
negligible ICI, the necessary condition is Δf  νmax,
or, equivalently, νmax/Δf � 1. Since Δf = B/M , with
B total bandwidth, the condition may not be satisfied
when the number of subcarriers M becomes too large,
even for moderate Doppler. In this paper we insist on
neglecting ICI and consider the range of system parame-
ters for which this assumption is indeed virtually exact.
Furthermore, we notice that while OFDM incurs in this
additional limitation, OTFS remains not sensitive to the
Doppler shift.

A. Simulation Results

We present results in terms of pragmatic capacity vs. SNR
for OTFS and OFDM with quadrature phase-shift keying
(QPSK) modulated symbols, for a time-frequency multipath
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Fig. 5. Pragmatic Capacity vs. SNR for OTFS modulation with P = 1 and
P = 4, different detection algorithms, i.e., LMMSE and MP approach of [18],
for a fixed pilot overhead, in percentage 5.28%.

channel with P components and affected by AWGN, under the
CSI estimation schemes and pilot schemes of Section II for
OFDM and Section III for OTFS, respectively. As said, as a
reference benchmark, we plot the mutual information for a
QPSK input constellation transmitted over an AWGN channel
(thus in the absence of fading) Csym

AWGN and without any pilot
overhead. The system parameters are listed in Table I.

Fig. 4 shows the performance of OFDM for a different
number of pilot symbols. For the case P = 1, it easy
to note that the performance slightly changes for different
pilot overheads, whose percentage is indicated in the legend.
On the other hand, as suggested by (36), if the number of
non-zero components to be estimated increases, i.e., with
P = 4, the channel estimation algorithm needs more pilots
to work efficiently. Given these results, from now on, we will
consider a pilot overhead of 3.125%, achieving, in our setup,
the best tradeoff between estimation accuracy and achievable
pragmatic capacity (for any number of scattering components).

Fig. 5 shows the performance of OTFS with different
detection algorithms. The MP soft-output detection approach
of [18] is able to almost achieve the AWGN capacity under
non-perfect CSI for a low number of scattering components,
i.e., P = 1, together with a remarkable reduction of the com-
putational complexity [18]. However, in line with the results
of [18], the detector performance slightly decreases with
increasing multipath. Note that the small loss w.r.t. Csym

AWGN

under non-perfect CSI is an indicator of the performance of
the channel estimation algorithm, which results to be very
accurate (otherwise the curve would have deviated from the
benchmark). In light of these results, we see that there is no
reason to adopt the LMMSE estimator for OTFS, which results
in high complexity and worse performance (see [18] for a more
detailed analysis). Hence, from now on, for the comparison
with OFDM modulation, we consider the MP approach of [18].

In Fig. 6, we plot the pragmatic capacity vs. SNR for OFDM
and OTFS under the configurations mentioned above. First of
all, it is possible to note that the performance decreases only

Fig. 6. The curves take into account the loss related to the presence of
pilots in the block of N × M symbols. The OFDM CP curve includes the
CP overhead which is 0.25 of the symbol time, while the OTFS GI curve
includes a GI for the entire block. A QPSK modulation is used. The legend
indicates the percentage of pilot symbols.

slightly while increasing the number of multipath components,
proving the robustness of the pilot schemes and the algorithms
proposed. The pilot overhead has been chosen ad hoc for both
modulations. For OTFS, as said in Sec. III, the peak centered
pilot collects all the energy of surrounding zero pilots, and the
percentage of overhead (indicated in the figures) is an indicator
of the peak pilot energy. For OFDM, as pointed out before,
the optimal tradeoff between estimation performance and pilot
overhead has been found by exhaustive searching over a
suitable set of values (some of them are shown in Fig. 4).
While the performance of the two modulations is similar,
the presence of a per symbol CP for OFDM remarkably
deteriorates the pragmatic capacity, while a per block GI for
OTFS introduces a negligible loss.
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Fig. 7. Pragmatic Capacity vs. νmax/Δf ratio for OFDM modulation with
P = 1, at SNR = 18 dB.

TABLE II

MAXIMUM SUPPORTABLE VELOCITY W.R.T. THE RATIO νmax/Δf FOR

OFDM MODULATION WITH SUBCARRIER SPACING Δf = B/M
AND CARRIER FREQUENCY fc = 5.89 GHz. THE

VELOCITY IS GIVEN BY v = c · νmax/ (2fc)

In Fig. 7, we plot the pragmatic capacity of OFDM and
OTFS for a fixed value of SNR, i.e., 18 dB, while changing the
ratio between the maximum Doppler shift and the subcarrier
spacing, i.e., νmax/Δf , for different number of subcarriers
M (N = 50 for all cases). In this case, in particular for
OFDM, the received samples are obtained by considering a
real channel taking into account the ICI, i.e., (16), while
the channel estimation works under the hypothesis of an
ideal interference-free channel. By first taking into account
OFDM, intuitively, the performance degrades when the ICI
becomes significant. Note that the estimation performance of
the LASSO solver is independent of the number of subcarrier
M and, for this reason, whatever the choice of νmax and M ,
the performance of OFDM depends only on their ratio. Fig. 7
shows that the PC performance starts decreasing significantly
for νmax/Δf � 0.15. Almost the same behavior is shown
for different number of subcarriers M (not reported here for
the sake of space limitation), except for the percentage of
pilot loss due to different block dimensions, supporting what
stated above. However, as pointed out in Table II, while the
performance is almost constant, the maximum supportable
Doppler (or velocity), inversely proportional to M , is not. For
these reasons, as expected, OFDM is not independent of the
block dimension and the system has to be defined properly to
operate in the range where the ICI is negligible.

Also in Fig. 7 we report the performance of OTFS in
the same conditions, from which it is evident that OTFS is
insensitive to the Doppler effects. This means also that the
simulation results of OTFS depicted in Fig. 6 are valid for
any Doppler spread.

V. CONCLUSION

In this paper we carried out a fair comparison between
OFDM and OTFS modulation formats in terms of maximum
achievable rate for practical separated detection and decoding,
quantified by the Pragmatic Capacity measured at the soft-
detector output.

We considered two pilot schemes and channel estimation
algorithms each one specifically suited for the given modula-
tion scheme. Both pilot and CSI estimation schemes are able
to achieve very good performance (near genie-aided) under
time-varying communication channel in the sparsity regime
of a small number of number of multipath components. This
conclusion is fully supported by numerical results, where sim-
ulation curves achieve the theoretical benchmark under non-
perfect CSI, proving the quality of the proposed approaches.

OTFS achieves a better communication rate mainly because
of the presence of a per symbol Guard Interval rather than a
per-symbol Cyclic Prefix as in OFDM. This of course comes
at the cost of a more complex channel estimation scheme,
working on large block-wise operations.

In terms of soft-output data detection, the use of our
Message-Passing soft-output detector, previously proposed
in [18], yields constant per-symbol complexity for OTFS,
which is the same scaling law of symbol-by-symbol MMSE
detection for OFDM. Although we do not claim that the
complexity of the two detectors is identical, in fact the actual
complexity differ for some implementation-based constant.

Finally, we can observe that OTFS is indeed insensitive to
the magnitude of the Doppler shifts, while the performance of
OFDM degrades significantly even under small-to-moderate
Doppler values if the number of subcarriers increases. There-
fore, OTFS is effectively a good candidate for high-mobility
systems in rural environments (e.g., high speed trains [48]) or
aerial environments (e.g., UAVs [49]), where Doppler shifts
may be large, and the propagation channel contains typi-
cally the line-of-sight and a few other reflection components
(e.g., ground reflection, hills, large buildings), and it is there-
fore sparse in the Doppler-delay domain.

APPENDIX A
THE LASSO SOLVER

For the sake of completeness and reproducibility of the
results, in this Appendix we give the details of the algorithm
used to solve the LASSO minimization problem in (14).

0) Initialization: By defining the known support matrix
A � Xpl �SD, in which Xpl is a matrix of dimension
|P| ×G composed of G equal vectors xpl, i.e., Xpl �
[xpl, . . . ,xpl], let Λ � AHA and initialize the step size
ε as [29]

ε � 1
‖ΛHΛ‖F

=
1√

trace (ΛHΛ)
, (42)
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in which ‖·‖F indicates the Frobenius norm and the
trace(·) operation takes the sum of the matrix main
diagonal elements. The threshold t is set as t = λε,
where λ is the LASSO regularizer appearing in (14).
The vector of estimated values ĥ is initialized to all
zeros.

1) Iterations i = 1, 2, . . .
a) Soft Thresholding: with ψst (·, t) soft thresholding

operator with threshold t (see [29], [50]), compute

βi+1 = ψst

(
ĥi + εAH

(
y − Aĥi

)
, t
)
. (43)

b) Nesterov’s Acceleration Factor (Optional) [29]:
Introduce a tuning coefficient αi ∈ [0, 1], which
can be fixed or variable in t, and compute

ĥi+1 = βi+1 + αi

(
βi+1 − ĥi

)
, (44)

with αi defined, e.g., in [29]–[31] and reviewed for
completeness in Appendix B.

c) Shrink: Remove the entries of y and β, the
columns of A, and the entries of ĥ, corresponding
to the zero entries of ĥ.

2) Restoring: Restore the estimated vector ĥ to its full
dimension (this operation is necessary after the shrink
of the vectors during the iterations).

We used as stopping criterion the maximum number of itera-
tions. Note that the shrinking operation is allowed because
zero entries of vector ĥ at iteration i cannot assume a
value �= 0 at iteration i′ > i [32]. From a complexity point
of view, the first iterations are the most costly, while the
algorithm can run > 106 times keeping the complexity almost
constant and the computational time linear (when the number
of iterations is large enough, i.e., far away from starting
costly ones).

A. Complexity of the LASSO Solver and Step Size Refinement

The sensing matrix D is composed of G columns of
length NM . While the dimensions N and M depends on
system settings and can be somehow controlled or tuned,
the dimension G takes into account the estimation precision,
or granularity, of the searching grid Γ. Hence, the larger
the dimension G, the more reliable the result. Using some
examples:

• If Γ is equivalent to the Doppler-delay grid (delay and
Doppler shifts integer multiple of the grid), G = NM and
D is a NM×NM matrix. Blockwise operations adopted
by any LASSO solver are feasible in this framework.

• If the step size for both Doppler and delay axis
is a fraction 1/ρ of the Doppler-delay grid step,
G � O

(
NM · ρ2

)
and D is approximately a NM ×(

NM · ρ2
)

matrix. Clearly, increasing the granularity of
the grid quickly increases the complexity.

In order to overcome the complexity induced by searching
grid with fine granularity, it is possible to refine the step size in
successive phases, rather than directly defining a low fractional
value for the entire grid. The proposed refinement scheme is

Algorithm 3 Refinement of the Granularity

Result: Fine estimation ĥ for LASSO problem (14).
Coarse Estimation: For any LASSO solver, get a first
coarse estimation ĥ such that the searching grid Γ is
equivalent to the Doppler-delay grid (i.e., delay and
Doppler shifts integer multiple of the grid). In this case
G = NM and D is a NM ×NM matrix;
for Iteration i = 1, 2, . . . do

• Peak Selection: Select the first P local maxima of
ĥ;
• Step Refinement Around Maxima: Build a new
sensing matrix based on an extension of matrix D
such that the step size around the peaks is decreased
(i.e., the granularity and the precision are increased);
• Finer Estimation: For any LASSO solver, get a
finer estimation ĥ.

end

illustrated in Algorithm 3. During the Peak Selection step,
if the number of multipath components P is not available at the
receiver, instead select all local maxima or peaks (of the groups
of estimates) whose magnitude is above a certain threshold
(to be defined).

Note that during the Coarse Estimation step, i.e., when D
is an NM ×NM matrix, it is possible to adopt the approach
proposed in [51] to solve the LASSO minimization in (14).
The algorithm of [51], benefiting of the hierarchical structure
of vector h, is able to provide a first coarse and reliable
estimation optimizing the computational complexity. However,
if h takes off-grid values, the approach of [51] becomes inap-
propriate, as confirmed by the presented simulation results. For
this reason, after a Coarse Estimation, i.e., within the Iteration
step, another LASSO solver must be chosen to obtain the best
performance in terms of channel estimation.

APPENDIX B
NESTEROV’S ACCELERATION FACTOR

The Nesterov’s acceleration factor governs the dependency
between two successive estimations, while remarkably reduc-
ing the convergence time of the algorithm [30]. The choice of
the optimization coefficient αi is not mandatory. By following
the pioneering work [31], which inspired many other works,
e.g., [29], αi can be recursively defined as

ξi+i =
1 +

√
4ξ2i + 1
2

, (45)

αi =
ξi − 1
ξi+i

, (46)

with ξ0 = 1. Another choice simply based on the iteration
index i is αi = (i− 1)/(i+ 2) [30], [31]. Both solutions
describe a curve growing from an initial value (“far” from 1)
up to 1. The associated plots, with their similar behaviors, can
be seen in Fig. 8. The most conservative choice is αi = 1,
for which the dependency from the previous estimated values
is maximized, while the less conservative choice is αi = 0,
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Fig. 8. The evolution of αi over iterations i for different approaches.

completely forgetting the previous estimated values. Intu-
itively, a small value of αi is preferable for the first noisy
iterations, while a parameter αi near to one should be chosen
when the reliability of the estimation increases.
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