

University of Parma Research Repository

Antepartum evaluation of the obstetric conjugate at transabdominal 2D ultrasound: A feasibility study

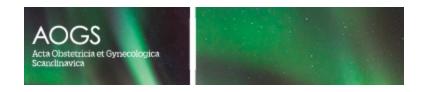
This is the peer reviewd version of the followng article:

Original

Antepartum evaluation of the obstetric conjugate at transabdominal 2D ultrasound: A feasibility study / Di Pasquo, E.; Volpe, N.; Labadini, C.; Morganelli, G.; Di Tonto, A.; Schera, G. B. L.; Rizzo, G.; Frusca, T.; Ghi, T.. - In: ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA. - ISSN 0001-6349. - 100:10(2021), pp. 1917-1923. [10.1111/aogs.14226]

Availability: This version is available at: 11381/2903801 since: 2022-01-19T19:40:39Z

Publisher: John Wiley and Sons Inc


Published DOI:10.1111/aogs.14226

Terms of use: openAccess

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

(Article begins on next page)

Antepartum evaluation of the Obstetric Conjugate at transabdominal 2D Ultrasound: a feasibility study.

Journal: Manuscript ID	Acta Obstetricia et Gynecologica Scandinavica
Manuscript ID	
- Idildoo.ipt 12	Draft
Wiley - Manuscript type:	Original Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Di Pasquo, Elvira; University Hospital of Parma, ; Volpe, Nicola; University Hospital of Parma Labadini, Corinne; University of Parma, Obstetrics and Gynecology Morganelli, Giovanni; University of Parma, Obstetrics and Gynecology Di Tonto, Andrea; University of Parma Schera, Giovanni; University of Parma Rizzo, Giuseppe; Università Roma Tor Vergata, Dept Ob Gyn Frusca, Tiziana; University of Parma, Department of Obstetrics and Gynaecology Ghi, Tullio; University of Parma, Obstetrics and Gynecology
Keywords:	Delivery, Pregnancy, Prenatal care, Ultrasound, Other

2 3	1	Antonontum analystics of the Obstatuis Conjugate of theored dominal 2D Ultrasounds a
3 4	1	Antepartum evaluation of the Obstetric Conjugate at transabdominal 2D Ultrasound: a
5 6	2	feasibility study.
7	3	
8 9	4	di Pasquo Elvira MD *1, Volpe Nicola MD*1, Labadini Corinne MD2, Morganelli Giovanni MD2,
10 11	5	Di Tonto Andrea MD ² , Schera Giovanni Battista Luca MD ² , Rizzo Giuseppe Prof ³ , Frusca Tiziana
11 12	6	Prof ³ , Ghi Tullio Prof ³
13 14	7	
15	8	*equally contributed as 1st authors
16 17	9	1. Department of Obstetrics and Gynecologist, Univers ity Hospital of Parma, Parma, Italy
18 19	10	2.Department of Obstetrics and Gynecologist, University of Parma, Parma, Italy
20 21	11	3. Department of Maternal and Fetal Medicine, "Cristo Re" Hospital, University of Rome Tor
22	12	Vergata, Rome, Italy
23 24	13	
25 26	14	Corresponding author:
27	15	Prof. Tullio Ghi
28 29	16	Department of Obstetrics and Gynecology
30 31	17	University of Parma, Italy
32 33	18	University of Parma, Italy tullioghi@yahoo.com Phone: (+39)0521702434
33 34	19	Phone: (+39)0521702434
35 36	20	
37 38	21	
39	22	
40 41	23	
42 43	24	
44	25	
45 46	26	
47 48	27	
49	28	
50 51		
52 53	29 30	
54		
55 56	31	
57 58	32	
59	33	
60	34	

1 2						
3	35	Disclosure: The authors report no conflict of interest				
4 5	36	Financial Support: No financial support was received for this study				
6						
7 8	37					
9 10						
11	38					
12 13						
14	39	Keywords: pelvimetry, ultrasound, obstetric conjugate, labor dystocia				
15 16						
17	40					
18 19						
20	41					
21 22	42	Abbreviations				
23	42	Abbreviations:				
24 25	43	OC= Obstetric Conjugate				
26	75					
27 28	44	44 BMI=Body Mass Index				
29						
30 31	45	ICCs= intraclass correlation coefficients				
32						
33 34	46	CS= Cesarean Section				
35 36						
37	47					
38 39						
40	48	Key message:				
41 42						
43	49	The antepartum assessment of maternal pelvimetry may improve the prediction of obstructed labor.				
44 45	50	Our demonstration that an accurate measurement of the OC is achievable by standard transabdominal				
46	51	ultrasound may usher in a new era for the clinical use of antepartum pelvimetry in obstetrics				
47 48						
49 50	52					
51						
52 53	53					
54	- 4					
55 56	54					
57	55					
58 59	J					
60	56					
	50					

60 85

ABSTRACT

Objectives: The obstetric conjugate (OC) represents the shortest anteroposterior diameter of the birth canal and it reflects the capacity of the pelvic inlet to allow the passage and the engagement of the fetal head. The antepartum evaluation of this parameter may be attempted at digital examination to predict the risk of cephalopelvic disproportion but the accuracy of clinical pelvimetry is notoriously poor. The aim of our study was to describe the sonographic measurement of the OC at transabdominal 2D-ultrasound

Methods: This is a prospective cohort study conducted at a tertiary University hospital. A non-consecutive series of pregnant women with uncomplicated singleton pregnancies attending at the antenatal clinic for routine booking from 34 weeks of gestation onward were included. The ultrasound probe was longitudinally placed above the level of the symphysis and the interpubic fibrocartilaginous disk was visualized. Then the promontory was identified as the most prominent segment of the sacral vertebral column. The OC was measured as the distance between the inner edge of the interpubic disk and the promontory. The intra- and interobserver repetability of this measurement was calculated using the intraclass correlation coefficient (ICC) and the Bland-Altman method.

Results: 119 women were considered eligible for the study purpose. Overall, 111/119 (93.3%) women were included in the analysis with a median gestational age of 36.0(35.0-37.0) weeks. The mean OC measurement was 11.4±0.93 mm for the first operator and 11.4±0.91 mm for the second operator. The overall interobserver ICC was 0.95(95% CI 0.92-0.96) while the overall intraobserver ICC was 0.97(95%CI 0.96-0.98). The degree of reliability was also analyzed for women with a BMI >30 and for women with a gestational age >37 weeks. The inter and intra-observer ICCs were respectively 0.97(95% CI 0.90-0.98) and 0.98(0.95-0.99) in the former group and 0.96(95% CI 0.93-0.98) and 0.97(95%CI 0.95-0.98) in the latter one

Conclusion: Our study demonstrated that among pregnant women at term gestation the sonographic measurement of the OC is feasible and reproducible

INTRODUCTION 86

1 2 3

4 5 6

7

8 9

10 11

12

13 14

15 16

17 18

19

20 21 22

23 24

25 26

27

29

31 32

33

37

42

44

46

53

87 Pelvimetry is the biometric evaluation of the birth canal and it has been historically used to identify those women at higher risk for labor dystocia due to cephalo-pelvic disproportion. The clinical 88 89 pelvimetry is based on the measurement of the main diameters of maternal pelvis either at external or at internal digital examination. Among them the obstetric conjugate which is the linear distance 90 91 between the sacral promontory and the internal edge of the pubic bone may be assessed at vaginal 92 examination¹. This is the shortest anteroposterior diameter of the birth canal and it is believed to 93 reflect the capacity of the pelvic inlet to allow the passage and the engagement of the fetal head². 94 Traditionally it is reported that the digital palpation of the promontory is suspected to herald a 95 narrower inlet of the birth canal and to anticipate the occurrence of cephalopelvic disproportion³.

However, the digital measurement of the obstetric conjugate at vaginal examination and the clinical 96 97 prediction of a narrow pelvic inlet is considered to be inaccurate and of limited reproducibility^{1,4}. Also, the combination of vaginal findings with more objective maternal anthropometric parameters 98 28 99 such as height, BMI, shoulder diameter, lower limbs length has been investigated and has shown to ₃₀⁻⁻100 yield a poor sensibility and specificity in predicting the risk of obstructed labor⁵⁻⁷.

101 The use of imaging techniques (X-ray, MRI and CT) has been claimed to provide accurate ³⁴ 102 35 measurements of pelvic diameters with a low intra and inter-observer variability⁸⁻¹⁰. However, the 36 103 routine use of imaging techniques in the antepartum assessment of pelvic capacity is highly 38 104 controversial and not supported by rigorous randomized controlled trials. A recent Cochrane review ³⁹ 40 105 found that women who undergo an X-ray pelvimetry may be more likely to have a CS and concluded ⁴¹ 106 that there is not enough evidence to support the use of X-ray pelvimetry for deciding on the mode of 43 107 delivery¹¹. Lastly, concerns have arisen regarding the fetal risks from radiation exposure and cost-45¹⁰⁸ benefit analysis especially in low-resource settings^{8,12}.

47 48 109 The assessment of the pelvic cavity size although not advisable on a routine basis might be of clinical ⁴⁹ 110 50 utility especially among women who seem at higher risk of cephalopelvic disproportion such as those 51 111 carrying a large for gestational fetuses or requiring a trial of labor after CS (TOLAC)^{13,14}. 52

A pioneer study had proposed to use of 2-Dimensional (2D) transabdominal ultrasound for measuring 54 112 ⁵⁵ 56 113 the OC and predicting of the risk of CD due to obstructed labor¹⁵. More recently some Authors have ⁵⁷ 114 58 reported the antepartum assessment of the OC thanks to the use of the tomography¹⁶. However, the 59 1 1 5 available data is still limited and the reliability of the sonographic assessment of the OC is still to be 60 116 proven.

1 2	
³ 117	The aim of our study was to describe the sonographic measurement of the OC at transabdominal 2D-
4 5 118	ultrasound and to assess its reproducibility in a group of women close to term of gestation.
6	
7 8 119	
9 10	
₁₁ 120	
12 13	
₁₄ 121	METHODS
15 ¹⁶ 17 122	Study design and nonvelation study
17 ¹²² 18	Study design and population study
¹⁹ 20	This is a prospective cohort study conducted at the tertiary care Maternity Hospital of the University
20 21 124	of Parma from December 2020 to February 2021.
22	
23 24 12 5	A non-consecutive series of pregnant women with uncomplicated singleton pregnancies attending at
²⁵ 26 12 6	the antenatal clinic for routine booking from 34 weeks of gestation onward were considered eligible
²⁷ 28127	for the study purposes.
28 29	
³⁰ 128 31	Inclusion criteria were: age between 18 and 45 years, singleton gestation with fetus in cephalic
32 129	presentation, absence of indications to scheduled CS delivery.
33 34	
35 130	Exclusion criteria were: low lying placenta, uterine fibroids, history of pelvic bone fractures.
36 37	
	With the woman lying supine with a moderately repleted bladder, the ultrasound probe was
³⁹ 40 132	longitudinally placed on maternal abdomen above the level of the symphysis. This structure was
⁴¹ 133 42	sonographically visualized as a hypoechoic oval with an internal echogenic core representing the
43 134	interpubic fibrocartilaginous disk. Then the promontory was identified as the most prominent
44 45 135	segment of the sacral vertebral column. The OC was measured as the distance between the inner edge
⁴⁶ 47136	of the interpubic disk and the promontory (fig 1).
48	
⁴⁹ 50 137	For the study purpose two ultrasound machines equipped with a transabdominal multifrequency 2D
51 138	convex transducer were employed. The standard 3 rd trimester setting was used for each examination.
52 53 139	In order to have the widest view of the maternal pelvis, the ultrasound probe sector was increased to
⁵⁴ 55 140	a maximum of 120° while the probe frequency was turned down at 2.5 mHZ to increase the
⁵⁶ 141 57	penetration of the ultrasound beam.
58 59 <u>1</u> 42	To assess the intra- and interobserver reproducibility of the sonographic measurements, all the
⁶⁰ 143	ultrasound examinations were performed twice by the operator 1 (N.V.) and once by operator 2

(C.L.). Operator 1 had >10 years' experience in prenatal ultrasound while operator 2 was a resident 144 with <2 years' experience. 145

The ultrasound measurements of the OC were not used for clinical purposes and the clinicians who 146 10 147 were in charge of the management of the women were blinded to the values obtained by the study ¹¹ 148 investigators

¹⁴ 149 Clinical data regarding pregnancy, labor and neonatal outcomes were obtained in all pregnancies from medical records. 16 150

19 15 1 Statistical analysis

1 2 3

4

5 6 7

8 9

12 13

15

17 18

20 21

26

28

31

33

38 39

41 42

44 45

47

₂₂ 152 The Shapiro-Wilk test was used to assess the normality of the distribution of the data. Mean±Standard ²³ 153 24 Deviation (SD) or median [IQR] were used to describe continuous data normally and non-normally 25 154 distributed, respectively. The agreement between the two examiners and between the two measurements made by the first examiner, were expressed using intraclass correlation coefficients 27 155 20 29 156 (ICCs) for single measurements and 95% confidence intervals (CI). The systematic differences were ³⁰ 157 also computed by means of the paired Student t test. As far as the repeatability is concerned, in order 32 158 to assess systematic bias between intra-, interobserver measurements, differences between values 34 159 were plotted against means of the measurements as described by Bland and Altman and the limits of ³⁵ 36 160 agreement were evaluated together with their 95% CI^{17,18}. A p-value<0.05 was considered as ³⁷ 161 statistically significant. Statistical analysis was performed by using SPSS 21.0.

40 162 **Ethical approval**

43 163 The study was approved by our local Ethics committee (270/2018/OSS/AOUPR, 24/04/2018).

46 164 **RESULTS**

48 During the study period, 119 women were considered eligible for the study purpose. In five cases the 49 165 ⁵⁰ 166 sacral promontory was not clearly visualized due to shadowing cast from the engaged fetal head, one ⁵² 167 case was excluded due to a previous trauma involving the sacrum, while in the remaining two cases 53 54 168 the correct visualization of the most prominent part of the inner symphysis surface was not possible ⁵⁵ 56 169 due to diastasis (figure 2). Overall, 111/119 (93.3%) women at a median gestational age of 36.0 (35.0-⁵⁷ 170 58 37.0) weeks were included in the final analysis. The main characteristics of the study population are 59 171 summarized in Table 1 60

Page 7 of 20

1 2 3

4

5 6

7 8

9

12

25

27 28

30

37

39

43 44

48

50

The median maternal age was 33.0 [29.0-36.5], the median OC measurement was 11.4±0.93 mm for 172 the first operator and 11.4±0.91 mm for the second operator (Table 1). No significant relationship 173 was found between the differences of the mean values of the two measurements made twice by the 174 same operator (intraobserver) (p=0.79) and of the measurements made by the first and the second 175 10 176 operators (interobserver) (p=0.62) (Table 2). 11

13 177 The overall interobserver ICC was 0.95(95% CI 0.92-0.96) while the overall intraobserver ICC was 14 ₁₅ 178 0.97(95%CI 0.96-0.98); the Bland-Altman graphs demonstrate the degree of intra and inter-observer 17⁰ 17 concordance (Figure 3 a and b). The degree of reliability was also analyzed for women with a BMI ¹⁸ 180 >30 at the enrollment and for those with a gestational age >37 weeks. The inter and intra-observer 19 ICCs were, respectively, 0.97(95% CI 0.90-0.98) and 0.98(0.95-0.99) for the first group and 20 181 21 22²182 0.96(95% CI 0.93-0.98) and 0.97 (95% CI 0.95-0.98) for the latter group thus indicating a substantial ²³ 183 24 good degree of reliability (Table 2).

²⁶ 184 **DISCUSSION**

29 185 Our study demonstrated that among pregnant women close to term gestation the measurement of the 31 186 OC at TA 2D-ultrasound is feasible and reproducible. In particular, we found that the sonographic 32 32 33 187 OC had an overall high intra-observer and interobserver agreement; and that this was not impacted ³⁴ 188 35 by the more advanced gestational age and increased maternal BMI. We have also provided original 36 189 data on the ultrasound measurement of the OC in a population of singleton pregnancies > 34 weeks ₃₈ 190 and this may offer the opportunity to build specific references charts.

40 41 191 The development of the ultrasound technique has enormously improved our ability to recognize the ⁴² 192 bony structures of the birth canal.

⁴⁵ 193 Compared to X-ray and MRI pelvimetry the ultrasound evaluation of the OC has many advantages 46 as fetal safety, low costs and the possibility to be performed at bedside evaluation also in low-47 194 49¹⁹⁵ resources settings^{19,20}.

51 52 196 While pubic symphysis may be easily visualized at both transperineal and transabdominal ⁵³ 197 54 ultrasound²¹⁻²², the sonographic demonstration of the sacrum promontory is much more challenging 55 198 especially at advanced gestational ages when the interposition of the fetal head may not allow the 56 57 199 correct visualization of this structure. In our series we found that if transabdominal ultrasound is ⁵⁸ 200 performed between 34-36 weeks the promontory can be visualized in most cases. In addition, using

201 our approach the whole inner margin of the pubic symphysis is visualized leading to the correct202 measurement of the OC.

To our knowledge, Katanozaka et al.¹⁵ firstly described the measurement of the OC by means of 203 8 9) 10 204 transabdominal ultrasound. More specifically, they investigated 209 women and found that the OC ¹¹ 205 assessed by ultrasound normally ranged from 10.7 to 15.1 cm; those women with an OC <12 cm had 12 13 206 a higher rate of Cesarean Section due to labor dystocia compare to those women with an OC >12 cm 14 15¹⁴207 (50% vs 5.7% p<0.001). Interestingly, they also reported a positive correlation between ultrasonic ¹⁶ 17 208 OC and X-Ray OC (r = 0.91; p < .0001) thus concluding that ultrasonic OC measurement is a safe ¹⁸ 209 and useful procedure in the prediction of dystocia. The most important limit of this study was that the 19 20 210 authors measured the antero-posterior diameter between the upper bone of the pubic symphysis and 21 22 **211** the promontory of the sacrum, and this was improperly defined OC while it corresponded to the ²³ 212 24 anatomic conjugate¹. Due to the technical limitations of the ultrasound equipment that were available 25 213 at that time they were not able to visualize the most prominent part of the inner symphysis surface 26 27 214 which is one of the reference landmarks for the correct measurement OC. Furthermore, the authors ²⁸ 29 **2**15 did not evaluate the inter and intraobserver agreement of their method in the sonographic assessment ³⁰ 216 of the conjugate. 31

Beside this single report on the ultrasound evaluation of the OC, the assessment of other anatomical landmarks for the evaluation of maternal pelvimetry has been attempted with the aim to predict the risk of obstructed labor.

³⁹ 220 Some Authors have reported the sonographic measurement of the pubic arch angle (PAA) at 41 **221** 42 transperineal 2D ultrasound and found that its width was inversely correlated with the risk of cesarean 43 222 of delivery in a group of women with prolonged 2nd stage of labor²². A significant positive correlation 44 45 **22**3 was found by the same research group between the 2D sonographic measurement of the PAA and the 46 47 224 OC measured on three-dimensional computed tomography23. In 2015, a study by Ghi et al.24 ⁴⁸ 225 demonstrated the reproducibility of a new 3-D transperineal ultrasound technique supported by a 49 50 226 specific contrast-enhancing technique in the measurement of the Subpubic arch angle (SPA) among ⁵¹ 52 **227** a group of women at term gestation. Subsequent studies evaluated the usefulness of the antenatal ⁵³ 228 54 assessment of this parameter in predicting the likelihood of an obstetric intervention. Youssef et al.²⁵ 55 **229** among 145 nulliparous with uncomplicated pregnancies demonstrated that the SPA was significantly 56 ₅₇ 230 narrower in the women submitted to obstetric intervention compared with those undergoing ⁵⁸ 231 spontaneous vaginal delivery (116.8 \pm 10.3° vs. 123.7 \pm 9.6°, p < 0.01). Another study on 368

1 2 3

4

5 6 7

32

4

5 6 7

8 9

11

15

21

26

44

47

53

Similarly, the clinical usefulness of antepartum US pelvimetry has been assessed in particular 234 -10 235 conditions such as in women carrying a suspected LGA fetus.

¹² 236 In 2017 a study on 129 nulliparous at higher risk of having a LGA fetus found that the SPA was ¹⁴237 narrower among those women who underwent to unplanned obstetric intervention (vacuum delivery 16238 or cesarean section) due to prolonged or arrested labor compared with those who achieved a ¹⁷ 18 239 spontaneous vaginal delivery (107.9 13.4 vs 120.7 9.4 p<0.001); in addition, they found a smaller ¹⁹240 SPA to be independent predictor of operative delivery (OR 1.09 95%CI 1.05-1.13)²⁷. 20

²² 241 The clinical usefulness of antepartum pelvimetry in anticipating the labor outcome has been 23 24 242 suggested also by the use of non-ultrasound imaging techniques. 25

A randomised controlled trial of magnetic-resonance pelvimetry on 235 women with breech 27 243 ²⁸ 29 **2**44 presentation at term showed that the emergency cesarean-section rate was significantly lower in the ³⁰ 245 study group (pelvimetry results were reported to the responsible obstetricians, who used them as the 31 32 246 basis for decisions on whether to schedule elective cesarean or trial of labor) than in the control group 33 ₃₄ 247 (pelvimetry results were not disclosed until 8 weeks post partum, and decisions about obstetric ³⁵ 36 248 management were made on the basis of clinical factors)²⁸. More recently, a large study conducted in ³⁷ 249 the Frankfurt maternity on 365 women with fetuses in breech presentation has demonstrated that an 38 increasing OC assessed by MRI pelvimetry was significantly associated with an increasing rate of 39 250 40 41 251 successful vaginal deliveries; based on this data it is claimed by the Authors that the OC may be used 42 43 252 to counsel the women carrying a breech fetus on the mode of delivery ²⁹.

⁴⁵ 253 **Clinical implication and future research** 46

⁴⁸ 254 The WHO guidelines recommend against the routine use of antenatal pelvimetry ³⁰. On note, this 49 recommendation is based on the Cochrane systematic review including 5 RCTs comparing X-ray 50 255 51 52 256 51 pelvimetry with no pelvimetry, 2 of them including women candidate to TOLAC.

⁵⁴ 257 This systematic review found that women undergoing X-ray pelvimetry were more likely to have a ⁵⁶ 258 CS (risk ratio (RR) 1.34, 95% CI1.19 to 1.52) compared to women receiving clinical pelvimetry or 57 58 259 no pelvimetry. In addition, no significant differences were found between groups for the following 59 ₆₀ 260 clinical outcomes: perinatal mortality (RR 0.53, 95% CI 0.19 to 1.45), perinatal asphyxia (RR 0.66, 95% CI 0.39 to 1.10), and admission to special care baby unit (RR 0.20, 95% CI 0.01 to 4.13)¹¹. 261

However, as mentioned above, the growing interest towards the antepartum assessment of pelvic 262 diameters seems justified by the reports showing that pelvimetry impacts the prediction of labor 263 outcome³¹⁻³⁶. Of course, our demonstration that an accurate measurement of the OC is achievable by 264 standard transabdominal 2D ultrasound may usher in a new era for the clinical use of antepartum 265 10 266 pelvimetry in obstetrics.

13 267 Following the creation of nomograms of the true OC based on 2D ultrasound, it will be necessary to 14 15 268 assess if this measurement impacts the labor outcome and more specifically if a shorter OC is ¹⁶ 17 269 associated with an increased risk of cesarean section due to cephalo-pelvic disproportion especially. ¹⁸ 270 This approach may turn particularly useful among those groups who seem at higher risk of obstructed 19 20 271 labor such as women with diabetes or those carrying a LGA fetus²⁷. In addition, women who are 21 22 **272** willing to undergo a trial of labor after cesarean might also benefit from the antenatal evaluation of ²³ 273 24 the OC.

²⁶ 274 27 Besides the assessment of the risk of obstructed labor, a correlation between the pelvic diameters 28 275 assessed at postpartum MRI and the five types of Levator ani muscle (LAM) injury has been recently 29 ²₃₀276 reported³⁷. Based on these experiences, the antenatal sonographic evaluation of the OC may be ³¹ 277 32 finalized at the prevention and prediction of major perineal injuries.

³⁴ 278 Strengths and limitations 35

³⁷ 279 The prospective design and the originality in describing the transabdominal ultrasound technique to evaluate the true OC represent the main strengths of the present study. Furthermore, potential 39 280 40 41 281 confounders as maternal BMI or advanced gestational ages have been considered in the analysis.

⁴³ 44 282 The small number of women and the fact that this data have not been validated in clinical practice ⁴⁵ 283 are to be acknowledged among the main study limitations.

47

46

1 2 3

4

5 6

7 8

9

11 12

25

33

36

38

42

⁴⁸ 284 49

50

53

51 285 **CONCLUSION** 52

In conclusion, our study has provided original data on the OC values measured at transabdominal 2D 54 286 ⁵⁵ 56 **287** ultrasound. It is still to demonstrate if the use of the antepartum evaluation of the OC alone or in ⁵⁷ 288 58 combination with other fetal parameters might help the clinician in identifying women at high risk 59 **289** for and adverse labor outcome. Further studies on larger low-risk population or in women with 60

1 2	
3 290 4	specific risk factors are required to investigate the clinical usefulness of this new ultrasound
5 291	parameter.
6 7 8 292 9	Acknowledgement: none
¹⁰ 11 293	Author contributions statements
12 13 294 14	Study conception and design: T. Ghi, G. Rizzo, N.Volpe, E. di Pasquo
15 295 16	Acquisition of data: C. Labadini, A. di Tonto, GBL Schera, G. Morganelli
¹⁷ 296 18	Analysis and interpretation of data: E. di Pasquo, N. Volpe
¹⁹ 20 297	Drafting of manuscript: E. di Pasquo, N. Volpe, T. Ghi
21 22 2 98 23	Critical revision: T. Frusca, G. Rizzo, T. Ghi
23 24 2 99 25	Critical revision: T. Frusca, G. Rizzo, T. Ghi
26 27 300	
28 29 30 301	
31	
32 33 302	
34 35 36 303	
37	
³⁸ 39 304	
40 ⁴¹ 205	
41 42 43	
⁴⁴ 306 45	
46 47 307	
48 49	
50 308 51	
52 53 309	
54 55	
56 310 57	
57 58 59 311	
60	

1 2 3 312 4 5 6 313 7 8 9 314 10		
11 12 315		
13 14		
₁₅ 316 16		
17 18 317		
19		
²⁰ 21 318	Refer	ences
22 23 21 0	1	Mahami D. Assassing asthelengly is diaman artism, hady to the hosing. Obstat Compact Symp
²³ 319 24 319 ²⁵ 320	1.	Maharaj D. Assessing cephalopelvic disproportion: back to the basics. Obstet Gynecol Surv. 2010 Jun;65(6):387-95. doi: 10.1097/OGX.0b013e3181ecdf0c. PMID: 20633305
26 27 321	2.	
²⁷ 321 ²⁸ ₂₉ 322	2.	Edition: Saunders Elsevier; 2014.
30 222	3.	
31 32 324	5.	outlet. Arch Gynecol. 1986;239(1):11-6. doi: 10.1007/BF02134282. PMID: 3740960
33 34 325	4	Adinma JI, Agbai AO, Anolue FC. Relevance of clinical pelvimetry to obstetric practice in
$35 \\ 36 326$		developing countries. West Afr J Med. 1997; 16(1):40±3. PMID: 9133823
³⁶ ³⁷ 327	5.	Benjamin SJ, Daniel AB, Kamath A, Ramkumar V. Anthropometric measurements as
38 39 328		predictors of cephalopelvic disproportion: Can the diagnostic accuracy be improved? Acta
40 41 329		Obstet Gynecol Scand. 2012 Jan;91(1):122-7. doi: 10.1111/j.1600-0412.2011.01267.x.
$\frac{42}{43}330$		Epub 2011 Oct 13. PMID: 21895610
⁴⁴ 331	6.	Rozenholc AT, Ako SN, Leke RJ, Boulvain M. The diagnostic accuracy of external
45 46 332		pelvimetry and maternal height to predict dystocia in nulliparous women: a study in
47 48 333		Cameroon. BJOG. 2007 May;114(5):630-5. doi: 10.1111/j.1471-0528.2007.01294.x. PMID:
⁴⁹ 50334		17439570
50 51 335	7.	Liselele HB, Tshibangu CK, Meuris S. Association between external pelvimetry and vertex
52 53 336		delivery complications in African women. Acta Obstet Gynecol Scand. 2000
⁵⁴ 55337		Aug;79(8):673-8. PMID: 10949233
56 338 57	8.	Rozenberg P. Quelle place pour la radiopelvimétrie au XXI(e) siècle? [Is there a role for X-
58 339		ray pelvimetry in the twenty-first century?]. Gynecol Obstet Fertil. 2007 Jan;35(1):6-12.
⁵⁹ 60 340		French. doi: 10.1016/j.gyobfe.2006.09.028. Epub 2006 Dec 21. PMID: 17188014

```
Page 13 of 20
```

1 2	
³ 341	9. Keller TM, Rake A, Michel SC, Seifert B, Efe G, Treiber K, Huch R, Marincek B, Kubik-
4 5 342	Huch RA. Obstetric MR pelvimetry: reference values and evaluation of inter- and
6 7 343	intraobserver error and intraindividual variability. Radiology. 2003 Apr;227(1):37-43. doi:
8 9 344	10.1148/radiol.2271011658. Epub 2003 Feb 11. PMID: 12601187
9 10 345	10. Raman S, Samuel D, Suresh K. A comparative study of X-ray pelvimetry and CT
11 12 346	pelvimetry. Aust N Z J Obstet Gynaecol. 1991 Aug;31(3):217-20. doi: 10.1111/j.1479-
¹³ 14 347	828x.1991.tb02784.x. PMID: 1804081
¹⁵ 348	11. Pattinson RC, Cuthbert A, Vannevel V. Pelvimetry for fetal cephalic presentations at or near
16 17 349	term for deciding on mode of delivery. Cochrane Database Syst Rev. 2017 Mar
18 19 350	30;3(3):CD000161. doi: 10.1002/14651858.CD000161.pub2. PMID: 28358979; PMCID:
²⁰ 21 351	PMC6464150
²² 352	12. Badr I, Thomas SM, Cotterill AD, Pettett A, Oduko JM, Fitzgerald M, Adam EJ. X-ray
23 24 353	pelvimetrywhich is the best technique? Clin Radiol. 1997 Feb;52(2):136-41. doi:
²⁵ 26 354	10.1016/s0009-9260(97)80107-9. PMID: 9043048
²⁷ 355 28	13. Sharma V, Colleran G, Dineen B, Hession MB, Avalos G, Morrison JJ. Factors influencing
²⁹ 356	delivery mode for nulliparous women with a singleton pregnancy and cephalic presentation
³⁰ 31 357	during a 17-year period. Eur J Obstet Gynecol Reprod Biol. 2009 Dec;147(2):173-7. doi:
³² 33 358	10.1016/j.ejogrb.2009.08.015. Epub 2009 Sep 18. PMID: 19766377
³⁴ 359 35	14. Sibony O, Alran S, Oury JF. Vaginal birth after cesarean section: X-ray pelvimetry at term
36 360	is informative. J Perinat Med. 2006;34(3):212-5. doi: 10.1515/JPM.2006.037. PMID:
³⁷ 38 361	16602841
³⁹ 362 40	15. Katanozaka M, Yoshinaga M, Fuchiwaki K, Nagata Y. Measurement of obstetric conjugate
⁴¹ 363 42	by ultrasonic tomography and its significance. Am J Obstet Gynecol. 1999 Jan;180(1 Pt
43 364	1):159-62. doi: 10.1016/s0002-9378(99)70168-7. PMID: 9914597
⁴⁴ 45 365	16. Perlman S, Raviv-Zilka L, Levinsky D, Gidron A, Achiron R, Gilboa Y, Kivilevitch Z. The
⁴⁶ 366 47	birth canal: correlation between the pubic arch angle, the interspinous diameter, and the
48 367	obstetrical conjugate: a computed tomography biometric study in reproductive age women. J
49 50 368	Matern Fetal Neonatal Med. 2019 Oct;32(19):3255-3265. doi:
⁵¹ 52 369	10.1080/14767058.2018.1462322. Epub 2018 Apr 22. PMID: 29621904
⁵³ 370 ₅₄	17. Bland JM, Altman DG: Applying the right statistics: analyses of measurement studies.
55 371	Ultrasound Obstet Gynecol 2003; 22: 85-93
⁵⁶ 57 372	18. Bland JM, Altman DG: Measuring agreement in method comparison studies. Stat Methods
⁵⁸ 373 59	Med Res 1999; 8: 135–160.
60	

³ 374 4	19.	Drukker L, Droste R, Chatelain P, Noble JA, Papageorghiou AT. Safety Indices of
5 375		Ultrasound: Adherence to Recommendations and Awareness During Routine Obstetric
6 7 376		Ultrasound Scanning. Ultraschall Med. 2020 Apr;41(2):138-145. English. doi: 10.1055/a-
8 9 377		1074-0722. Epub 2020 Feb 27. PMID: 32107757
⁹ 10 378	20.	Ayres-de-Campos D, Stones W, Theron G; FIGO Safe Motherhood and Newborn Health
11 12 37 9		Commitee. Affordable and low-maintenance obstetric devices. Int J Gynaecol Obstet. 2019
¹³ 14 380		Jul;146(1):25-28. doi: 10.1002/ijgo.12838. Epub 2019 May 25. PMID: 31055829
¹⁵ 381 16	21.	Ghi T, Eggebø T, Lees C, Kalache K, Rozenberg P, Youssef A, Salomon LJ, Tutschek B.
17 382		ISUOG Practice Guidelines: intrapartum ultrasound. Ultrasound Obstet Gynecol. 2018
18 19 38 3		Jul;52(1):128-139. doi: 10.1002/uog.19072. PMID: 29974596.
²⁰ 21 384	22.	Ghi T, Youssef A, Martelli F, Montaguti E, Krsmanovic J, Pacella G, Pilu G, Rizzo N,
22 385		Gabrielli S. A New Method to Measure the Subpubic Arch Angle Using 3-D Ultrasound.
23 24 386		Fetal Diagn Ther. 2015;38(3):195-9. doi: 10.1159/000380947. Epub 2015 Apr 8. PMID:
²⁵ 26 387		25871360.
²⁷ 388 28	23.	Youssef A, Salsi G, Cataneo I, Martelli F, Azzarone C, Bellussi F, Ghi T, Pilu G, Rizzo N.
29 389		Agreement between two 3D ultrasound techniques for the assessment of the subpubic arch
30 31 390		angle. J Matern Fetal Neonatal Med. 2016 Apr 28:1-5. doi:
³² 33 391		10.1080/14767058.2016.1175000. Epub ahead of print. PMID: 27050886
³⁴ 392 ³⁵	24.	Youssef A, Ghi T, Martelli F, Montaguti E, Salsi G, Bellussi F, Pilu G, Rizzo N. Subpubic
36 393		Arch Angle and Mode of Delivery in Low-Risk Nulliparous Women. Fetal Diagn Ther.
³⁷ 38 394		2016;40(2):150-5. doi: 10.1159/000441517. Epub 2015 Nov 11. PMID: 26555940.
³⁹ 395 40	25.	Gilboa Y, Kivilevitch Z, Spira M, Kedem A, Katorza E, Moran O, Achiron R: Pubic arch
⁴¹ 396 42		angle in prolonged second stage of labor: clinical significance. Ultrasound Obstet Gynecol
43 397		2013; 41: 442–446.
⁴⁴ 45 398	26.	Ghi T, Youssef A, Martelli F, Bellussi F, Aiello E, Pilu G, Rizzo N, Frusca T, Arduini D,
⁴⁶ 399 47		Rizzo G. Narrow subpubic arch angle is associated with higher risk of persistent occiput
48 400		posterior position at delivery. Ultrasound Obstet Gynecol. 2016 Oct;48(4):511-515. doi:
49 50 401		10.1002/uog.15808. Epub 2016 Aug 25. PMID: 26565728
⁵¹ 52402	27.	McMaster-Fay RA. Managing the breech presentation at term: the place of pelvimetry. Aust
⁵³ 403 54		N Z J Obstet Gynaecol. 2015 Feb;55(1):99. doi: 10.1111/ajo.12297. PMID: 25688824.
55 404	28.	Walkinshaw SA. Pelvimetry and breech delivery at term. Lancet. 1997 Dec 20-
⁵⁶ 57 405		27;350(9094):1791-2. doi: 10.1016/s0140-6736(05)63631-8. PMID: 9428246.
⁵⁸ 406 59	29.	Ghi T, Dall'Asta A, Suprani A, Aiello E, Musarò A, Bosi C, Pedrazzi G, Kiener A, Arduini
60 407		D, Frusca T, Rizzo G. Correlation between Subpubic Arch Angle and Mode of Delivery in

1	
2 ³ 408	Large-for-Gestational-Age Fetuses. Fetal Diagn Ther. 2018;44(3):221-227. doi:
4 5 409	10.1159/000481169. Epub 2017 Dec 13. PMID: 29232667
6 7 410	30. van Loon AJ, Mantingh A, Serlier EK, Kroon G, Mooyaart EL, Huisjes HJ. Randomised
8 111	controlled trial of magnetic-resonance pelvimetry in breech presentation at term. Lancet.
9 ⁴¹¹ 10 412	1997 Dec 20-27;350(9094):1799-804. doi: 10.1016/S0140-6736(97)05431-7. PMID:
11 12 413	9428250.
$^{13}_{14}$ 414	31. Klemt AS, Schulze S, Brüggmann D, Louwen F. MRI-based pelvimetric measurements as
¹⁵ 415	predictors for a successful vaginal breech delivery in the Frankfurt Breech at term cohort
16 17 416	(FRABAT). Eur J Obstet Gynecol Reprod Biol. 2019 Jan;232:10-17. doi:
18 19 417	10.1016/j.ejogrb.2018.09.033. Epub 2018 Oct 22. PMID: 30453166
²⁰ 21418	32. WHO recommendations: intrapartum care for a positive childbirth experience ISBN 978-92-
²¹ ²² 419	4-155021-5
23 24 42 0	33. Pavličev M, Romero R, Mitteroecker P. Evolution of the human pelvis and obstructed labor:
²⁵ ₂₆ 421	new explanations of an old obstetrical dilemma. Am J Obstet Gynecol. 2020 Jan;222(1):3-
²⁷ 422	16. doi: 10.1016/j.ajog.2019.06.043. Epub 2019 Jun 25. PMID: 3125192
28 ⁻²² 29 423	34. Ferguson JE 2nd, Sistrom CL. Can fetal-pelvic disproportion be predicted. Clin Obstet
30 31 424	Gynecol. 2000 Jun;43(2):247-64. doi: 10.1097/00003081-200006000-00004. PMID:
$\frac{32}{33}$ 425	10863624.
³³ 426	35. Zaretsky MV, Alexander JM, McIntire DD, Hatab MR, Twickler DM, Leveno KJ. Magnetic
35 36 427	resonance imaging pelvimetry and the prediction of labor dystocia. Obstet Gynecol. 2005
37 38 428	Nov;106(5Pt1):91926.doi:10.1097/01.AOG.0000182575.81843.e7. PMID: 16260507.
³⁹ 429	36. Floberg J, Belfrage P, Ohlsén H. Influence of pelvic outlet capacity on labor. A prospective
40 ⁴²³ 41 430	pelvimetry study of 1,429 unselected primiparas. Acta Obstet Gynecol Scand.
430 42 43 431	1987;66(2):121-6. doi: 10.3109/00016348709083032. PMID: 3618135.
44	37. Harper LM, Odibo AO, Stamilio DM, Macones GA. Radiographic measures of the mid
45 432 46 433	pelvis to predict cesarean delivery. Am J Obstet Gynecol. 2013 Jun;208(6):460.e1-6. doi:
47 48 434	10.1016/j.ajog.2013.02.050. Epub 2013 Mar 1. PMID: 23467050; PMCID: PMC3672361.
49 50 435	38. Macones GA, Chang JJ, Stamilio DM, Odibo AO, Wang J, Cahill AG. Prediction of
51	cesarean delivery using the fetal-pelvic index. Am J Obstet Gynecol. 2013
⁵¹ 436 ⁵³ 437	Nov;209(5):431.e1-8. doi: 10.1016/j.ajog.2013.06.026. Epub 2013 Jun 19. PMID:
54 55 438	23791690.
56	
58 440	39. Hampel F, Hallscheidt P, Sohn C, Schlehe B, Brocker KA. Pelvimetry in nulliparous and
⁵⁸ 440 59 60 441	primiparous women using 3 Tesla magnetic resonance imaging. Neurourol Urodyn. 2018
00 441	Aug;37(6):1950-1956. doi: 10.1002/nau.23537. Epub 2018 Feb 21. PMID: 29464757.

Table 1. Maternal characteristics and Obstetric conjugate (OC) measurements obtained twice by operator 1 and once by operator 2

	N=111
Maternal age (years)	33.0 [29.0-36.5]
Caucasian	83(74.8)
Nulliparous	52(46.8)
Gestational Age (weeks)	36.0[35.0-37.0]
Gestational Age ≥37 weeks	35(31.5)
BMI at the enrollment (Kg/m2)	23.7[20.4-27.0]
BMI≥30 Kg/m ²	15(13.5)
Mean value operator 1a (mm)	11.4±0.93
Median value operator 1b (mm)	11.4±0.94
Median value operator 2 (mm)	11.4±0.91
Numbers are expressed as median [IQR] or mean±SD or n(%)	C.

1	
2	
3	
4	
5	
4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 23 24 25 26 27 28 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 38 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
5/	

58 59 60

Table 2. Summary of intra- and interobserver reliability measurements of the Obstetric Conjugate


	Interobserver	Intraobserver
Mean difference ±SD	-0.02±0.42	0.008±0.32
Limits of agreement	-0.80 to 0.84	-0.62 to 0.63
Systematic difference	0.62	0.79
(p-value)		
Overall ICC	0.95(0.92-0.96)	0.97(0.96-0.98)
ICC for BMI≥30 Kg/m ²	0.97(0.90-0.98)	0.98(0.95-0.99)
ICC for GA≥37 weeks	0.96(0.93-0.98)	0.97(0.95-0.98)

CO POLOZ

ICC=Interclass Correlation Coefficient; BMI=Body Mass Index; GA= Gestational Age

Figure 1. Ultrasound evaluation of the Obstetric Conjugate (OC). The ultrasound probe is longitudinally placed above the level of the symphysis and the **interpubic fibrocartilaginous disk** (S) is visualized. Then the **promontory (P)** was identified as the most prominent segment of the sacral vertebral column. The OC is measured as the distance between the inner edge of the interpubic disk and the promontory

419x594mm (72 x 72 DPI)

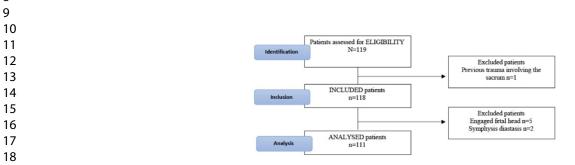


Figure. 2. Flow-chart of the included cases

419x594mm (72 x 72 DPI)

http://www.aogs-online.com

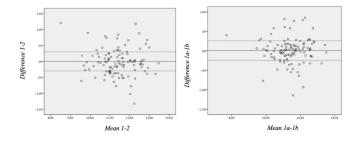


Figure 3. Bland-Altman plots of inter-(a) and intra(b)-observer variation in the measurement of the Obstetric Conjugate

419x594mm (72 x 72 DPI)