

University of Parma Research Repository

Monitoring fetal well-being in labor in late fetal growth restriction

This is the peer reviewd version of the followng article:

Original

Monitoring fetal well-being in labor in late fetal growth restriction / Dall'asta, A.; Cagninelli, G.; Galli, L.; Frusca, T.; Ghi, T.. - In: MINERVA OBSTETRICS AND GYNECOLOGY. - ISSN 2724-606X. - 73:4(2021), pp. 453-461. [10.23736/S2724-606X.21.04819-X]

Availability: This version is available at: 11381/2903803 since: 2022-01-18T17:05:47Z

Publisher: Edizioni Minerva Medica

Published DOI:10.23736/S2724-606X.21.04819-X

Terms of use: openAccess

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

(Article begins on next page)

Minerva Ginecologica (New title: Minerva Obstetrics and Gynecology) EDIZIONI MINERVA MEDICA

Monitoring fetal well-being in labor in late fetal growth restriction.

Journal: Minerva Ginecologica (New title: Minerva Obstetrics and Gynecology) Paper code: Minerva Obstet Gynecol-4819 Submission date: February 17, 2021 Article type: Review Article

Files:

1.	. Manuscript
	Version: 1
	Description: Manuscript
	File format: application/vnd.openxmlformats-officedocument.wordprocessingml.document

Page 1 of 25

1 2	1	TITLE PAGE
3 4	2	Monitoring fetal well-being in labor in late fetal growth restriction.
5 6 7	3	Andrea Dall'Asta ^{1,2} , Greta Cagninelli ¹ , Letizia Galli ³ , Tiziana Frusca ¹ , Tullio Ghi ¹
, 8 9	4	Affiliations:
10 11	5	¹ Department of Medicine and Surgery, Obstetrics and Gynecology Unit, University of Parma, Parma,
12 13 14	6	Italy
15 16	7	² Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and
17 18	8	Developmental Biology, Imperial College London, United Kingdom
19 20 21	9	³ Unit of Obstetrics and Gynecology, Azienda Unità Sanitaria Locale, Istituto di Ricovero e Cura a
22 ¹ 22 ¹ 23	10	Carattere Scientifico (IRCCS), Azienda Unità Sanitaria Locale, Reggio Emilia
241	11	
25 26 1	12	Address for correspondence:
27		
20 29 30	13	Dr Andrea Dall'Asta, MD, PhD
31 1	14	Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma
32		Via Grancei 14, 42126 Dorma Dalu
33 <u>-</u>	15	via Gramsci 14, 43126 Parma, Italy
35	16	Email: andrea.dallasta1@gmail.com
37		
38 1	17	Phone: +390521702580
39		$\langle \bigcirc \rangle$ \checkmark
40		
41 42		
4Z //2		
44		
45		
46		
47		
48		
49		
50		
51		
52 52		
53 5⊿		
55		

1 18 Abstract

419 Late-onset fetal growth restriction (FGR) accounts for approximately 70-80% of all cases of FGR 6 20 secondary to uteroplacental insufficiency and is associated with an increased risk of adverse antepartum and perinatal events, which in most instances result from hypoxic insults either present 10 22 at the onset of labour or supervening during labour as a result of uterine contractions. Labour 13 23 represents a stressful event for the fetoplacental unit being uterine contractions associated with an up-to 60% reduction of the uteroplacental perfusion. Intrapartum fetal heart rate monitoring by 15 24 17 25 means of cardiotocography (CTG) currently represents the mainstax for the identification of fetal 20²⁶ hypoxia during labour and is recommended for the fetal surveillance in the case of FGR or other 22²27 conditions associated with an increased risk of hypoxia during labour. In this review we discuss the potential implications of an impaired placental function on the intrapartum adaptation to the 26 ₂₉ hypoxic stress and the role of the CTG and alternative techniques for the intrapartum monitoring of 30 the fetal wellbeing in the context of FGR secondary to uteroplacental insufficiency.

131 Introduction

3 4³² Fetal growth restriction (FGR) is a complex and multifactorial disorder characterized by pathological 5 6 33 smallness that is associated with an increased risk of adverse antepartum and perinatal events and 7 834 represents a risk factor for long-term neurodevelopmental, metabolic and cardiovascular disorders 9 10 35 [1-7]. Uteroplacental insufficiency, congenital infections, genetic syndromes and chromosomal 11 12 36 abnormalities are among the potential aetiologies, the former accounting for the vast majority of 14 FGR. The disease is subclassified into early-onset and late-onset FGR according to the gestational 15 37 16 1738 age at diagnosis of the disease, with an arbitrary cut-off conventionally set at 32 weeks [8]. Late-18 ¹⁹ 39 onset FGR accounts for approximately 70–80% of all cases of FGR of uteroplacental origin and differs 20 21 22 40 from its early-onset counterpart in terms of clinical manifestations, frequency of associated 23 hypertensive disorders of the pregnancy and patterns of fetal deterioration as a result of the lower 2441 25 2642 extent of impaired placental function [9]. 27

28 29⁴³ Over decades multiple definitions of FGR have been suggested [10-13]. Recently, a consensus-based 30 definition of late-onset FGR reached though a Delphi procedure involving international Fetal 3144 32 3345 Medicine experts defined late onset FGR & either estimated fetal weight (EFW) or abdominal 34 ³⁵ 46 36 circumference (AC) below the 3rd centile or by the combination of at least two among AC or EFW 37 <10th centile, longitudinal reduction of the EFW or the AC growth of at least 2 quartiles on growth 3847 39 centiles and cerebroplacental ratio (CPR) <5th centile or umbilical artery pulsatility index (PI)> 95th 4048 41 42 49 centile [14]. 43

According to the most recent and widely agreed definition fetal smallness is not a synonym of FGR. Indeed, also fetuses sized above the 10th centile may be growth restricted as they may have slowed their growth, hence failed to reach their growth potential. The concept that placental insufficiency may affect also fetuses weighing above the 10th percentile is supported by several studies investigating the role of the Doppler indicators of cerebral redistribution in appropriately grown investigating the role of the Doppler indicators of cerebral redistribution in appropriately grown Page 4 of 25

fetuses demonstrating an increased risk of intrapartum fetal distress and a higher frequency of 4⁵⁶ small-for-gestational age (SGA) neonates in cases showing Doppler features of fetal hypoxia [15-18]. 6 57 However, if we assume that fetal smallness is related to underlying placental insufficiency, then an EFW <10th percentile has been shown to represent the best clinical surrogate of FGR in the third 10 59 trimester [19]. 13⁶⁰ Intrapartum fetal heart rate monitoring by means of cardiotocography (CTG) currently represents the mainstay for the identification of fetal hypoxia occurring during labour and is recommended for 15 61 the fetal surveillance during labour in the case of FGR or other conditions associated with an ¹⁹63 increased risk of hypoxia potentially leading to cerebral palsy and stillbirth [20-21]. The presence of 22⁶⁴ FGR needs to be considered while interpreting the CTG trace. Labour represents a stressful event for the fetoplacental unit as uterine contractions have been associated with an up-to 60% reduction ²⁶66 of the uteroplacental perfusion. On this basis, labour may impact on the CTG findings of the fetuses -3 29⁶⁷ with a pre-existing chronic hypoxia secondary to a reduced functional reserve of the placenta [22-25]. In this review we discuss the potential implications of an impaired placental function on the 33 69 intrapartum adaptation to the hypoxic stress and the role of the CTG and of alternative techniques 35 70 36 70 for the intrapartum monitoring of the fetal wellbeing in the context of FGR secondary to uteroplacental insufficiency. 38⁷¹

172 Pathophysiology of placental insufficiency and adaptation in fetal growth restriction of 2 uteroplacental origin

Placental insufficiency is associated with an intrauterine hypoxic environment which leads to the activation the mechanisms of adaptation to chronic hypoxia. These include the reduction of the consumption of oxygen and the regulation of the flow through the shunts of the detail circulation such as the ductus venosus and arteriosus, leading to the diversion of the oxygenated blood towards the tissues at highest risk of hypoxic-related injury [26-27]. In order to maintain the oxygenation of the "central organs" – i.e. the brain and the heart – the fetus undergoes splanchnic and skin vasoconstriction, reduces the body temperature and abolishes non-essential activities such as movements and releases catecholamines, primarily adrenaline and noradrenaline. Such "basal" increase of the catecholamines activity leads to the increase of the setal heart rate and to the socalled "brain sparing effect", which consists in the coexistence of a peripheral vasoconstriction and a cerebral vasodilatation and is responsible for the diversion of the blood flow from nonessential peripheral organs to the brain and to the heart (2). Such redistribution of the blood flow can be documented by means of a reduced cerebroplacental ratio (CPR) or pulsatility index (PI) in the middle cerebral artery indicating low blood flow resistance in the cerebral circulation [28-29]. The adaptation of the autonomic nervous system in chronically hypoxic fetuses seems also to impact the fetal heart rate variability, as demonstrated in a longitudinal study by Shaw et al. showing that the exposure of fetal sheep to chronic hypoxia at advanced gestational age has the potential to alter the development of the autonomic control of the FHR and reduce the fetal heart rate variability [30].

Labour is a stressful event for the fetus as uterine contractions are associated with an up to 60% reduction in the utero-placental circulation, thus determining an intermittent reduction of the flow of oxygenated blood that reaches the fetus. On this ground, if we assume that FGR is secondary to

Page 6 of 25

placental insufficiency leading to chronic hypoxia, the onset of labor in FGR can be seen as a 497 superimposed hypoxic stress which has the potential to exacerbate a condition chronically 6 98 hypoxiemia. Based on available evidence, the "cerebral redistribution" characterizing antepartum chronic hypoxia is present also in the case of hypoxia occurring during labour [27]. When labour hypoxic stress supervenes in a fetus with pre-existing chronic hypoxia, the fetus is 13¹⁰¹ required to reduce further its oxygen consumption in order to keep a positive energy balance. **£**02 Available evidence suggests that the fetal exposure to chronic hypoxia before labour results in an attenuation of the defence mechanisms against hypoxic stress, which increases the susceptibility of 19₁₀₄ 20 the fetus to the hypoxic insults that may occur in labour 3136]. On this basis, the mechanisms 22105 characterizing fetal adaptation to slowly evolving hypoxia may not follow the sequence of events which is known to occur in previously normoxemic fetuses. This can be determined by the fact that 26<u>107</u> 27 the adrenal glands are of small size in FGR fetuses, which determines a low reserve of 29¹⁰⁸ catecholamines, furthermore the storage of glycogen in the liver and in the myocardium is reduced in FGR fetuses exposed to a chronically hypoxic environment. Other factors potentially determining the different sequence of adaptive events in FGR fetuses are represented by the limited amount of ³⁵111 36 Wharton's jelly as well as the small size of the umbilical cord, which may determine a longer duration 3812 of the decelerations of the FHR by limiting the restoration of the umbilical cord blood flow following uterine contractions. Of note, it is important to point out that the fetuses exposed to long-standing 43 hypoxia prior to labour may show a FHR pattern indicating a pre-existing injury affecting the fetal 45¹¹⁵ nervous system. This is featured by a static FHR which cannot be modified by intrapartum 4**1**16 maneuvers. In such cases, the response to a "new onset" hypoxic event is characterized by decelerations that are typically shallow and low in amplitude.

1118 Perinatal and labour complications associated with fetal growth restriction and placental 2 3 119 4 insufficiency 5 ქ20 At present no approach is available to reduce the impairment of the placental function and the only 7 8121 treatment option for FGR is delivery. However, available evidence has shown that the identification 9 19₂₂ 11 of fetal smallness per se is associated with improved perinatal outcomes as it allows the 12 13¹²³ implementation of antenatal management strategies including the serial assessment of the fetal 14 1924 wellbeing and timed delivery [37]. 16 17125 FGR is an acknowledged risk factor for antepartum and intrapartum complications, whose incidence 18 19 20 increased with decreasing fetal size [9][38] and is associated with an increased incidence of labour 21 22127 induction as well as of obstetric interventions including emergency caesarean section due to 23 intrapartum fetal compromise [39]. In a study including 5416 apparently uncomplicated term 2428 25 26₁₂₉ 27 pregnancies, Mendez- Figueroa et al [40] found an increased incidence of neonatal death in SGA 28 29¹³⁰ neonates, while another cohort study of 115,502 uncomplicated singleton term pregnancies 30 31431 showed an association between the postnatal diagnosis of SGA and composite hypoxic neonatal 32 33132 morbidity [41], whose risk was 40% higher in SGA compared to normally grown neonates. 34 ³⁵133 36 Consistently, a large case-control study including 493 babies born >35 weeks and subsequently 37 38134 diagnosed with cerebral palsy found that severe smallness - as defined by birthweight below 2 39 401.35 standard deviations for the given gestation – is associated with an almost five-fold higher risk of 41 42<u>1</u>36 43 cerebral palsy. 44 45¹37 Consistently with the most recent and widely agreed definition of FGR, which supports the concept 46 4**1**38 that also fetuses with an EFW> 10th centile may show the features of placental insufficiency, several 48 49139 observational studies have demonstrated an increased rate of adverse perinatal outcomes including 50 51 140 52 NICU admission and perinatal death in appropriate-for-gestational age (AGA) fetuses not fulfilling 53 54141 the criteria for FGR but showing decelerating growth [42] or cerebral redistribution at or close to

Page 8 of 25

delivery [18]. Such largely undetected subgroup of fetuses affected by subclinical placental
insufficiency is likely to be accounted for the vast majority of the cases of stillbirth occurring in the
third trimester and of adverse labor events recorded in AGA fetuses [37][43].

NA CIMBCO

1 45 2	CTG features of the growth restricted fetus
3	
4 146	The use of continuous intrapartum electronic fetal heart rate monitoring (EFM) by means of
6 1/147	cardiotocography (CTG) has been introduced in the clinical practice developed with the aim to
8 9148 10	identify fetal hypoxia and prevent asphyxia, thus improving perinatal outcomes [44]. Following its
11 ₁ 49 12	implementation, CTG has been shown to yield a good sensitivity but a low positive predictive value
13 1450	for intrapartum hypoxia, being its overall specificity as low as 30% [44], and available evidence has
15 16151 17	shown that the routine use of intrapartum CTG is associated with increased rates of obstetric
18 ₁₅₂ 19	interventions not accompanied by a decreased frequency of death, cerebral palsy and other labor
20 21 ⁵³	complications [45].
22 23154 24	Fetal growth restriction is among the acknowledged risk factors for intrapartum hypoxia and is
2 4 25155 26	currently among the indications for continuous CTG monitoring during labor [20-21], however to
27 ₁₅₆ 28	date no evidence supports its role in improving labor outcomes of growth restricted fetuses.
29 30 ¹ 57 31	While the characteristics of the normal CTG are acknowledged and listed in the existing classification
3 2 158 33	systems [20], the "baseline" CTG features of growth restricted fetuses may differ from those of
34 <u>1</u> 59 35	appropriately grown fetuses. Placental insufficiency is known impact the CTG features primarily in
36 37 38	terms of baseline FHR which increases in response to the catecholamines response secondary to
39.61 40	chronic hypoxia.
4 <u>1</u> 62 42	Studies evaluating the CTG features of growth restricted fetuses [47-50] reported a higher
43163 44	proportion of "lower amplitude" accelerations and a lower number of total accelerations [48]
45 4 0 64	compared to normally grown fetuses. Furthermore, a higher baseline FHR and a reduced variability

have been reported in FGR compared to normally grown fetuses [49-50]. Data from a retrospective
cohort of over 5000 non-anomalous term gestations investigating the CTG pattern during the
second stage of labour demonstrated an increased frequency of decelerations and a lower rate of
accelerations and fetal tachycardia in FGR compared to AGA fetuses during the 30 minutes prior to

Page 10 of 25

2 3₁₇₀ 4 delivery, with no difference in the FHR variability [47]. Consistently, a randomized controlled trial by Chauhan et al. found a reduced frequency of accelerations during the last hour of labor in growth 471 7 8172 restricted compare to normally grown fetuses. Furthermore, the rate of variable decelerations lasting greater than 60 seconds with depth greater than 60 beats per minute (bpm) or nadir less 19₇₃ 11 than 60 bpm were significantly more common in FGR fetuses, with no difference in terms of 13¹74 frequency of late and prolonged decelerations and fetal bradycardia. Of note, the trial could not demonstrate any difference in the rate of neonatal morbidity between FGR and AGA fetuses [51]. **£**75

Alternative techniques for the intrapartum monitoring of the fetal wellbeing in fetal growth

2	
3 477 4	restriction
5 478 7	Computerized CTG (cCTG) has been developed in the 1990s with the aim to improve the recognition
7 8179 9	of abnormal FHR patterns by reducing the intra- and inter-observer variability. Such automated
19 ₈₀ 11	analysis of CTG tracings can be performed by means of different algorithms [52][53] and requires
12 13 ¹⁸¹	the processing of the uterine contraction signals, the long- and short-term variability, the estimation
14 1 5 82 16	of the FHR baseline, the presence accelerations and the detection and classification of
17 <u>1</u> 83 18	decelerations. Algorithms calculate these variables based on pre-programmed system-specific
19 ₁₈₄ 20	criteria. While the role of cCTG in the antenatal monitoring and timing of delivery of early-onset FGR
21 22185	in the antepartum period is supported by grade "A" evidence [54] to date no data supports the use
23 2 4 86 25	of cCTG for the intrapartum monitoring in the context of FGR
26 ₁₈₇ 27	The use of ST-segment waveform analysis (STAN) of the fetal electrocardiogram (ECG) has been
28 29 ¹⁸⁸	implemented to detect the hypoxia in the central organs and improve the discrimination between
30 3 <u>1</u> 89 32	compensated and decompensating hypoxic stress occurring during labor. STAN analysis has been
3 <u>3</u> 90 34	available for the intrapartum fetal monitoring since 2000, and its features and contraindications
35 ₁₉₁ 36	have been recently addressed in another review from our group [57]. Briefly, in the presence of an
37 38192	acute hypoxic stress the STAN analysis can discriminate between the fetuses who can compensate
39 40193 41	and maintain a good oxygenation of the myocardium from those where there is a switch to an
42 <u>194</u> 43	anaerobic metabolism in response to the hypoxic insult, which depends on the catecholamine-
44 45 ¹⁹⁵	mediated myocardial glycogenolysis. The use of fetal ECG analysis in labor has been restricted to
46 4 1 96	monitor an apparently healthy term fetuses, as in the preterm fetus the endocardial-epicardial
48 49 <u>1</u> 97 50	interphase may be underdeveloped and interfere with signal conduction leading to a decreased
51 51 52	sensitivity of this technique in heralding fetal acidaemia. Fetal growth restriction is among the other
53 5499 55	limitations to the analysis of the ST segment of the fetal ECG as the chronically hypoxic environment

Page 12 of 25

which features FGR is acknowledged to be associated with low myocardial reserves of glycogen and

200

2 $\frac{1}{3}$ 01 with the limited availability of the enzymes deputed to glycogenolysis [57-58]. Furthermore, a 5 202 prerequisite for the STAN analysis is the absence of pre-existing CTG features indicating a hypoxic 7 203 or a non-hypoxic injury, which include the loss of variability or cycling, an unstable or abnormal FHR 9 10204 11 baseline and prolonged decelerations. On this basis, the STAN technology is not indicated for the 12 13²⁰⁵ monitoring fetal wellbeing in FGR fetuses [57] [59]. 14 1,206 The computerized interpretation of the FHR is another technique proposed for the intrapartum 16 1207 monitoring of the fetal wellbeing. Two large clinical trials have been conducted in order to evaluate 18 19₂₀₈ 20 the impact of such strategy on labor outcomes, and their findings have been incorporated in a recent 21 22⁰⁹ systematic review and meta-analysis summarizing the existing evidence on the topic [60]. The 23 24210 INFANT trial [61] included 47062 patients having continuous electronic fetal monitoring during 25 26211 27 labor, among whom known FGR accounted for less than 4% of all cases, who were randomly 28 29¹² assigned to decision support with the INFANT computerized interpretation system versus no 30 3⊉13 decision support. Despite the large study cohort the trial failed to demonstrate any role of the 32 33214 computerized CTG interpretation in improving maternal or neonatal outcomes. In another trial with 34 35 215 36 a similar design over 8000 women were randomized in order to investigate the role of the Omniview 37 38216 SisPorto decision support software in the identification of metabolic acidosis on umbilical cord gases 39 40217 [62]. The Omniview SisPorto system combines the interpretation of the CTG signal and of the fetal 41 4218 43 ECG (STAN) analysis and provides color-coded visual and auditory alerts notifying the operator when 44 45²19 the system detects an increased risk of fetal hypoxia. The results of the randomized clinical trial 46 47∕220 showed a trend towards a lower rate of fetal metabolic acidosis in the group randomized to the 48 49221 decision support system, with no improvement of other perinatal outcomes. Not surprisingly, a 50 51 222 52 recent systematic review and meta-analysis of randomised controlled trials [60] confirmed the 53 5⁄223 absence of clinical benefits in terms of metabolic acidosis and obstetric intervention in women 55

Page 13 of 25

⊉24 2	submitted to computerized analysis of the fetal CTG. On this ground, such approach cannot be
3,225 4	recommended for the intrapartum monitoring of late onset FGR fetuses.
6 7	
9 10	
11 12 13	
14 15 16	
17 18 19	
20 21	
22 23 24	
25 26 27	
28 29 30	
31 32	
34 35	
36 37 38	
39 40 41	
42 43	× ·
45 46	
47 48 49	
50	

- 51 52 53 54 55

Page 14 of 25

⊉26 2 3	Management and intrapartum monitoring of the fetal well-being in late FGR: state of the art.
4 227	Due to the lack of interventional randomized trials evaluating the role of CTG/cCTG, Doppler or
6 7 28	other monitoring parameters, to date there is no international consensus on the timing of delivery
8 9229 10	in late FGR [63]. Furthermore, no grade "A" evidence exists as to how to identify the optimal route
11 230 12	of delivery in late-onset FGR. The latest guidelines of the International Society of Ultrasound in
13 14 ²³¹	Obstetrics and Gynecology [8] recommend in favour of elective caesarean section in the case of
15 1 6 32 17	"critical" umbilical artery Doppler findings such as absent-or-reversed end-diastolic flow, while in
18233 19	other circumstances vaginal delivery and induction of labor may be undertaken. In such cases
20 21 ³⁴	individualized management in terms of timing and modality of elective delivery is advised and
22 23235 24	should be based on the ultrasound and Doppler findings together with the gestational age, parity
25236 26	and cervical findings. In such context, the only randomized interventional trial on FGR at or close to
27 ₂₃₇ 28	term so far conducted [64] demonstrated that an induction-of-labor policy is not associated with an
29 36 ²³⁸ 21	increased frequency of adverse neonatal or neurodevelopmental outcome, furthermore induction
3 2 39 33	of labor did not impact on the rates of obstetric intervention. However, more recent data suggest
34240 35	that a risk stratification based on the severity of the fetal smallness and on the presence or absence
36 37 ⁴¹	of maternal or fetal Doppler abnormalities allows to identify those cases where induction of labor
38 39242 40	may prevent adverse perinatal outcomes with no increase in the rate of obstetric intervention
4 <u>⊉</u> 43 42	[9][65-69].
43244 44	With regards to the intrapartum monitoring of FGR, no evidence supports the use of CTG nor of
45 46 ²⁴⁵	alternative monitoring strategies for improving the perinatal outcomes in pregnancies complicated
47 4 2 46	by FGR. However, the recently proposed pathophysiology interpretation of the FHR pattern may

49 50247 51 52248 53 54 55 support in the identification of the cause underlying an unusual CTG pattern [70-71] and allow

- individualized management in the context of FGR.

Page 15 of 25

₽49 From a pathophysiology perspective, prior to labour the baseline FHR is expected to be higher in 2 -3 4⁵⁰ the event of placental insufficiency as a result of the dysregulation of the autonomic nervous system 5 251 which favours the sympathetic activity. In such context, it is important to bear in mind that the 7 8252 reduced dimensions of the adrenal glands together with the dysregulation of the autonomic 9 10253 11 nervous system in FGR fetuses may impact on the adaptive mechanisms including the increase of 12 13²⁵⁴ the baseline FHR in the event of acute hypoxic events supervening during labour. 14 1\$255 The most common CTG features of growth restricted fetuses include a raised baseline which is 16 1256 associated with reduced FHR variability and absence of accelerations. These latter result from the 18 19₂₅₇ 20 reduction or the absence of fetal movements, which is a typical feature of the fetuses exposed to a 21 22²⁵⁸ hypoxic environment. In such context, the onset of uterine contractions reduces the utero-placental 23 24259 circulation and may precipitate the fetal provision of oxygen, with resulting hypoxemia potentially 25 26<u>2</u>60 27 leading to hypoxia and, ultimately, hypoxic-ischaemic enceptiopathy (HIE) and myocardial failure 28 29⁶¹ with terminal bradycardia and intrapartum stillbirth [46]. Therefore, these cases warrant careful 30 31262 administration of uterotonics and may benefit from the use of tocolytics and low threshold for 32 33263 delivery. 34 35 36⁴ An abnormal CTG in early labor or prior to labor may also indicate a pre-existing injury of the fetal 37 38²65 central nervous system which is not related to the hypoxic stress of labor. In such cases, the CTG 39 4**0**66 pattern is featured by a fixed and relatively stable baseline rate, with reduced variability that does 41 4267 43 not exhibit fetal cycling and shallow decelerations. Tachycardia may occur, and is usually more 44 45²⁶⁸ marked the more recent the central nervous system insult, while a normal baseline of the FHR is 46 47269 more common the more remote from admission the central nervous system insult. Such pattern is 48 49270 static and cannot be modified by tocolysis or other intervention described for intrapartum 50 51 271 52 resuscitation. Shallow decelerations are chemoreceptor-mediated and may not fulfil the criteria 53 5⁄272 defining decelerations acknowledged by the international guidelines [23]. Phelan and Kim [72] 55

Page 16 of 25

₽73 attempted a categorization of such nonreactive CTG traces on admission into three groups on the 2 3 74 4 basis of the baseline FHR and of the FHR variability, concluding that the CTG features may correlated 5 275 with the time at onset of the injury. In details, the finding of FHR tachycardia >160 bpm associated 7 8276 with a reduced or absent FHR variability was suggested to be related to a short time-interval 9 10277 11 between the injury and the CTG recording, while the finding of a normal baseline (FHR associated 12 13⁷⁸ with a reduced FHR variability is considered to represent a long interval between the brain injury 14 19279 and the CTG recording. When such CTG features last for over 50 minutes despite the adoption of 16 1280 maneuvers including changes of maternal position (to relieve supine hypotension), hydration, 18 19 281 20 stopping of oxytocin infusion, and use of tocolytic drugs if uterine hyperstimulation is suspected -21 22²⁸² in order to improve uteroplacental circulation and ensure adequate delivery of oxygen to the fetus 23 - delivery by caesarean section is warranted in order to prevent further damage to the fetus [23]. 24283 25 26<u>2</u>84 27 In the third case scenario, which may occur in "known" FGR fetuses or in FGR fetuses misdiagnosed 28 29⁸⁵ at third trimester screening of the fetal growth or in normally sized fetuses with subclinical placental 30 31286 insufficiency, the CTG pattern is normal at the onset of labor and the consequences of the impaired 32 33287 placental function may manifest with increasing uterine contractions. In such cases, the CTG 34 35 36⁸⁸ abnormalities most commonly minic those characterizing gradually evolving hypoxia - i.e. 37 38²89 repetitive decelerations associated with loss of accelerations followed by increase of the baseline 39 4**0**290 FHR and loss of cycling and variability [73] – however it has to be acknowledged that in such cases 41 4291 43 the sympathetic response may be dysregulated. This may determine the limited or no increase of 44 45²⁹² the baseline FHR and the altered cardiovascular response to sudden hypotensive stress, which 46 47293 ultimately increases the susceptibility of the fetus to the hypoxic insults that may occur in labour. In 48 49294 such context, the systematic adoption of a policy of low-threshold for intervention may contribute 50 51 52 52 in optimizing the labour outcome of growth restricted fetuses [23,31-32].

- 53
- 54 55

₿03 2	References
3 304 4	[1] Damodaram M, Story L, Kulinskaya E, Rutherford M, Kumar S. "Early adverse perinatal
5 605 7	complications in preterm growth-restrcited fetuses" Aust N Z J Obstet Gynaecol. 2011;51:204–9.
7 8306 9	[2] Mcintire DD, Bloom SL, Casey BM, Leveno KJ. "Birth weight in relation to morbildity and
10307 11	mortality among newborn infants" N Engl J Med. 1999; 340:1234–8.
12 13 ⁰⁸	[3] Jones RA, Robertson NR. "Problems of the small for dates baby" Clin Obstet Gynaecol.
14 1§09 16	1984;11:499–524.
17310 18	[4] Yanney M, Marlow N. "Paediatric consequences of fetal growth restriction" Semin Fetal Neonatal
19 20	Med. 2004;9:411–8.
21 2212 23	[5] Walker DM, Marlow N. "Neurocognitive outcome following fetal growth restriction" Arch Dis
2 /3 13 25	Child Fetal Neonatal Ed. 2008;93:322–5.
26314 27	[6] Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME "Growth in utero, blood pressure in
28 29 ³¹⁵ 30	childhood and adult life, and mortality from cardiovascular disease" BMJ. 1989;298:564–7.
3 <u>1</u> 816 32	[7] Newsome CA, Shiell AW, Fall CH, Phillips DI, Shier R, Law CM. "Is birth weight related to later
33317 34	glucose and insulin metabolism? A systematic review" <i>Diabet Med</i> 2003;20:339-48.
³⁵ 318 36 27	[8] Lees CC, Stampalija T, Baschat AA, da Silva Costa F, Ferrazzi E, Figueras F, et al. "ISUOG Practice
3819 39	Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth
4 3 20 41	restriction" Ultrasound Obstet Gynecol 2020; 56: 298–312.
43 ₂₁ 43	[9] Figueras F, Caradeux J, Crispi F, Eixarch E, Peguero A, Gratacos E. "Diagnosis and surveillance of
44 45 ³ 22 46	late-onset fetal growth restriction" Am J Obstet Gynecol. 2018 Feb;218(2S) : S790-S802.e1.
47823 48	[10] American College of Obstetricians and Gynecologists. "ACOG Practice bulletin no. 134: fetal
49324 50	growth restriction" Obstet Gynecol. 2013;121:1122–33.
51 52 53	[11] RCOG Green Top Guidline No.31. "The Investigation and Management of the Small-for-
5426 55	Gestational Age Fetus" January 2014.

Page 19 of 25

₿27 2	[12] Lees C, Marlow N, Arabin B, Bilardo CM, Brezinka C, Derks JB, et al. TRUFFLE GROUP. "Perinatal
3 328 4	morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of
5 629	randomized umbilical and fetal flow in Europe (TRUFFLE)" Ultrasound Obstet Gynecol. 2013;42:400-
7 8330 9	8.
10 ₃₃₁ 11	[13] Dall'Asta A, Brunelli V, Prefumo F, Frusca T, Lees CC. "Early onset fetal growth restriction"
12 13 13	Matern Health Neonatol Perinatol. 2017 Jan 18;3:2.
14 1\$33 16	[14] Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al.
17334 18	"Consensus definition of fetal growth restriction: a Delphi procedure" Ultrasound Obstet Gynecol.
19 ₃₃₅ 20	2016;48(3):333–9.
21 22 ³ 36 23	[15] Prior T, Mullins E, Bennett P, Kumar S. "Prediction of intrapartum fetal compromise using the
2 4 37 25	cerebroumbilical ratio: a prospective observational study" Am J Obstet Gynecol. 2013
26 ₃₃₈ 27	Feb;208(2):124.e1-6.
28 29 ³³⁹	[16] Khalil A, Thilaganathan B. "Role of uteroplacental and fetal Doppler in identifying fetal growth
30 3 <u>1</u> 840 32	restriction at term" Best Pract Res Clin Obstet Gynaecol. 2017 Jan;38:38-47.
33341 34	[17] Dall'Asta A, Ghi T, Rizzo G, Cancemi K, Aloisio F, Arduini D, et al. "Cerebroplacental ratio
35342 36	assessment in early labor in uncomplicated term pregnancy and prediction of adverse perinatal
37 3843 39	outcome: prospective multicenter study" Ultrasound Obstet Gynecol. 2019 Apr;53(4):481-487.
4 3 44 41	[18] Kumar S, Figueras F, Ganzevoort W, Turner J, McCowan L. "Using cerebroplacental ratio in non-
42 ₃₄₅ 43	SGA fetuses to predict adverse perinatal outcome: caution is required" Ultrasound Obstet Gynecol.
44 45 ³⁴⁶	2018 Oct;52(4):427-429.
40 47347 48	[19] Miranda J, Rodriguez-Lopez M, Triunfo S, Sairanen M, Kouru H, Parra-Saavedra M, et al.
49348 50	"Prediction of fetal growth restriction using estimated fetal weight vs a combined screening model
51 ₃₄₉ 52 53 54 55	in the third trimester" Ultrasound Obstet Gynecol. 2017 Nov;50(5):603-611.

Page 20 of 25

₿50 2	[20] Ayres-De-Campos D, Spong CY, Chandraharan E. "Erratum: FIGO consensus guidelines on
3 3 51 4	intrapartum fetal monitoring: Cardiotocography (International Journal of Gynecology and Obstetrics
5 6752 7	131 (2015) (13-24)," Int. J. Gynecol. Obstet., vol. 133, no. 1, p. 130, 2016.
7 8353 9	[21] SIGO Recommendations "monitoraggio cardiotocografico in travaglio" 2018 available from
10 ₃₅₄ 11	https://www.sigo.it/linee-guida/sigo
12 13 ³⁵⁵ 14	[22] Chandraharan E, Perez-Bonfils AG. "Fetal Oxygenation" In E. Chandraharan (Ed.), Handbook of
1\$56 16	CTG Interpretation: From Patterns to Physiology. Cambridge: Cambridge University Press, 2017.
17357 18	[23] Ghi T, Fieni S, Chandraharan E, Frusca T. "Cardiotocografia Intrapartum Concetti chiave per una
19358 20 21	nuova interpretazione" Cento (FE): Editeam 2018.
22 ²⁵⁹ 23	[24] Barcroft J. "The Croonian lecture: foetal respiration" Proc R Soc Lond 1935, B 118, 242–263,
2 4 860 25	[25] Rudolph AM, Heymann MA, "The fetal circulation" Annu Rev Med 1968, 19, 195–206.
26361 27	[26] Maurer HS, Behrman RE, Honig GR. "Dependence of the oxygen affinity of blood on the
28 29 ³⁶² 30	presence of foetal or adult haemoglobin" Nature 1976, 227, 388–390.
3₿63 32	[27] Giussani DA. "The fetal brain sparing response to hypoxia: physiological mechanisms" <i>J Physiol</i> .
33364 34	2016 Mar 1;594(5):1215-30.
35 ₃₆₅ 36	[28] Gramellini D, Folli MC, Raboni S, Vadora E, Merialdi A. "Cerebral-umbilical Doppler ratio as a
37 3866 39	predictor of adverse perinatal outcome" Obstet Gynecol 1992;79:416–420.
4 3 67 41	[29] Wladimiroff JW, Tonge HM, Stewart PA. "Doppler ultrasound assessment of cerebral blood flow
43 43	in the human fetus" Br J Obstet Gynaecol 1986;93:471–475.
44 45 ³⁶⁹ 46	[30] Shaw CJ, Allison BJ, Itani N, Botting KJ, Niu Y, Lees CC, et al. "Altered autonomic control of heart
47∂70 48	rate variability in the chronically hypoxic fetus" <i>J Physiol.</i> 2018 Dec;596(23):6105-6119.
49371 50	[31] Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, et al. "Altered Cardiovascular
51 372 52	Defense to Hypotensive Stress in the Chronically Hypoxic Fetus" Hypertension 2020 Oct;76(4):1195-
5,473 55	1207.

\$74 [32] Gardner DS, Fowden AL, Giussani DA. "Adverse intrauterine conditions diminish the fetal
\$75 defense against acute hypoxia by increasing nitric oxide activity" *Circulation.* 2002 Oct
\$76 22;106(17):2278-83.
7

877 [33] Anderson PA, Glick KL, Killam AP, Mainwaring RD. "The effect of heart rate on in utero left
10378 ventricular output in the fetal sheep" *J Physiol* 1986. 372, 557–573.

[34] Gardner DS, Giussani DA & Fowden AL. "Hindlimb glucose and lactate metabolism during
 umbilical cord compression and acute hypoxaemia in the late-gestation ovine fetus" Am J Physiol
 Regul Integr Comp Physiol 2003. 284, 954–964.

[35] Browne VA, Stiffel VM, Pearce WJ, Longo LD, Gilbert RD. "Cardiac beta-adrenergic receptor
function in fetal sheep exposed to long-term high-altitude hypoxemia" Am J Physiol.
1997;273:R2022–R2031.

[36] Zhang L, Hu X, Longo LD. "Effect of chronic hypoxia on advenoceptor responses of ovine foetal
 umbilical vessels" *Br J Pharmacol.* 1998;125:136–142.

30
387 [37] Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. "Maternal and fetal risk factors for
32
3388 stillbirth: population based study" *BMJ*. 2013 Jan 24;346:f108.

[38] Figueras F, Gardosi J. "Intrauterine growth restriction: new concepts in antenatal surveil- lance,
 diagnosis, and management" Am J Obstet Gynecol 2011;204:288-300.

4391 [39] Ohel G, Ruach M. "Perinatal outcome of idiopathic small for gestational age pregnancies at
41
4392 term: the effect of antenatal diagnosis" Int J Gynaecol Obstet. 1996 Oct;55(1):29-32.

[40] Mendez-Figueroa H, Truong VT, Pedroza C, Khan AM, Chauhan SP. "Small-for-gestational- age
 infants among uncomplicated pregnancies at term: a secondary analysis of 9 Maternal-Fetal

49395 Medicine Units Network studies" *Am J Obstet Gynecol* 2016;215:628.e1-7.

50 51

18

34

- 52
- 53
- 54
- 55

₿96 2	[41] Chauhan SP, Rice MM, Grobman WA, Bailit J, Reddy UM, Wapner RJ, et al. "Neonatal morbidity
3397 4	of small- and large-for- gestational-age neonates born at term in uncomplicated pregnancies"
5 6 ⁹ 98 7 8	<i>Obstet Gynecol</i> 2017;130:511-9.
9399 10	[42] Chatzakis C, Papaioannou GK, Eleftheriades M, Makrydimas G, Dinas K, Sotiriadis A. "Perinatal
11 ₄₀₀ 12 13	outcome of appropriate-weight fetuses with decelerating growth" J Matern Fetal Neonatal Med.
1401 15 16	2019 Nov 13:1-8.
17402 18	[43] Akolekar R, Syngelaki A, Gallo DM, Poon LC, Nicolaides KH. "Urnbilical and fetal middle cerebral
19 ₄₀₃ 20 21	artery Doppler at 35-37 weeks' gestation in the prediction of adverse perinatal outcome"
22 ⁰⁴ 22 23 24	Ultrasound Obstet Gynecol. 2015; 46(1):82–92.
25405 26	[44] Pinas A, Chandraharan E. "Continuous cardiotocography during labour: Analysis, classification
27406 28 29	and management" Best Pract Res Clin Obstet Gynaecol. 2016 Jan;30:33-47.
30 31407 32	[45] Clarke S, Hankins G. "Temporal and demographic trends in cerebral palsy -Fact and fiction" Am
3 3 408 34 35	J Obstet Gynecol 2003 Mar; 188(3):628e33.
36 ₄₀₉ 37	[46] Pereira S, Chandraharan E. "Recognition of chronic hypoxia and pre-existing foetal injury on the
39 ⁴ 10 40	cardiotocograph (CTG): Urgent need to think beyond the guidelines" Porto Biomed J. 2017 Jul-
4 1 411 42	Aug;2(4):124>129.
43412 44	[47] Epplin KA, Tuuli MG, Odibo AO, Roehl KA, Macones GA, Cahill AG. "Effect of Growth Restriction
45 46 47 48	on Fetal Heart Rate Patterns in the Second Stage of Labor" Am J Perinatol. 2015 Jul;32(9):873-8.
4 9 14 50	[48] Gagnon R, Hunse C, Bocking AD. "Fetal heart rate patterns in the small-for-gestational-age
5 1 415 52 53 54 55	human fetus" Am J Obstet Gynecol 1989; 161(3):779–784

Page 23 of 25

1	
416 2	[49] Henson G, Dawes GS, Redman CW. "Characterization of the reduced heart rate variation in
3417 4 5	growth-retarded fetuses" Br J Obstet Gynaecol 1984;91(8):751–755
ь 1/418 8	[50] Nijhuis IJ, ten Hof J, Mulder EJ, Nijhuis JG, Narayan H, Taylor DJ, et al. "Fetal heart rate in relation
9419 10	to its variation in normal and growth retarded fetuses" Eur J Obstet Gynecol Reprod Biol
11 ₄₂₀ 12 13	2000;89(1):27–33
14 1 5 421	[51] Chauhan SP, Weiner SJ, Saade GR, Belfort MA, Reddy UM, Thorp JM Jr, et al. "Intrapartum Fetal
17422 18	Heart Rate Tracing Among Small-for-Gestational Age Compared with Appropriate-for-Gestational-
19 ₄₂₃ 20 21	Age Neonates" Obstet Gynecol. 2018 Oct;132(4):1019-1025.
22 2 3 ⁴²⁴ 24	[52] Pardey J, Moulden M, Redman CW. "A computer system for the numerical analysis of nonstress
2§425 26 27	tests" Am J Obstet Gynecol. 2002;186:1095–103.
28426 29	[53] Kouskouti C, Jonas H, Regner K, Ruisinger P, Knably, Kainer F. "Validation of a new algorithm
30 31 ⁴ 27 32	for the short-term variation of the fetal heart rate an antepartum prospective study" J Perinat Med.
3 3 428 34 35	2018 Aug 28;46(6):599-604
36 ₄₂₉ 37	[54] Bilardo CM, Hecher K, Visser GHA, Papageorghiou AT, Marlow N, Thilaganathan B, et al TRUFFLE
38 39 ⁴ 30 40	GROUP "Severe fetal growth restriction at 26-32 weeks: key messages from the TRUFFLE study"
4 <u>1</u> 431 42 43	Ultrasound Obstet Gynecol. 2017 Sep;50(3):285-290.
44 ₄₃₂ 45	[55] Keith RDF, Beckley S, Garibaldi JM, Westgate JA, Ifeachor EC, Greene KR. "A multicenter
46 47 47 48	comparative study of 17 experts and an intelligent computer system for managing labour using the
4 9 434 50 51	cardiotocogram" Br J Obstet Gynaecol 1995;102:688–700.
52435 53	[56] Grivell RM, Alfirevic Z, Gyte GM, Devane D. "Antenatal cardiotocography for fetal assessment"
54 436 55	Cochrane Database Syst Rev. 2015 Sep 12;2015(9):CD007863.

Page 24 of 25

1437 2	[57] Cagninelli G, Dall'Asta A, Di Pasquo E, Morganelli G, Degennaro VA, Fieni S, et al. "STAN: a
2 3438 4	reappraisal of its clinical usefulness" Minerva Ginecol. 2020 Nov 30. [Epub ahead of print].
5 439 7	[58] Rosen KG, Martendal A, The Green Book of Neoventa Part I- The physiology of fetal surveillance.
7 8440 9	Neoventa Medical AB, 2014.
10 ₄₄₁ 11	[59] Amer-Wahlin I, Arulkumaran S, Hagberg H, Maršál K, Visser GHA, "Fetal electrocardiogram:
12 13 13	ST waveform analysis in intrapartum surveillance," BJOG An Int. J. Obstet. Gynaecol. 2007, vol.
14 1 5 43 16	114, no. 10, pp. 1191–1193,.
1 7 44 18	[60] Campanile M, D'Alessandro P, Della Corte L, Saccone G, Tagliaferri S, Arduino B, et al.
19 20 21	"Intrapartum cardiotocography with and without computer analysis: a systematic review and meta-
21 2 2 446 23	analysis of randomized controlled trials" J Matern Fetal Neonatal Med. 2020 Jul;33(13):2284-2290.
2 4 47 25	[61] INFANT Collaborative Group. "Computerised interpretation of fetal heart rate during labour
26 ₄₄₈ 27	(INFANT): a randomised controlled trial" Lancet 2017 Apr 29:389(10080):1719-1729.
28 449 29	[62] Costa A, Santos C, Ayres-de-Campos D, Costa C, Bernardes J. "Access to computerised analysis
3 <u>1</u> 450 32	of intrapartum cardiotocographs improves clinicians' prediction of newborn umbilical artery blood
33451 34	pH" BJOG. 2010 Sep;117(10);1288-93.
35 452 36 27	[63] McCowan LM, Figueras F, Anderson NH. "Evidence-based national guidelines for the
38453 389	management of suspected fetal growth restriction: comparison, consensus, and controversy" Am J
4 0 454 41	Obstet Gynecol 2018; 218: S855–868.
42 ₄₅₅ 43	[64] Boers KE, Vijgen SM, Bijlenga D, van der Post JA, Bekedam DJ, Kwee A, et al; DIGITAT study
44 45 ⁴⁵⁶ 46	group. "Induction versus expectant monitoring for intrauterine growth restriction at term:
47457 48	randomised equivalence trial (DIGITAT)" BMJ 2010; 341: c7087.
49458 50	[65] Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW, Schoonmade LJ, Bossuyt PMM,
51 ₄₅₉ 52 53 54	Mol BWJ, et al. "Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler
55	

1460 2	for adverse perinatal outcome: systematic review and meta-analysis" Ultrasound Obstet Gynecol
3461 4	2018; 51: 313 – 322.
5 462 7	[66] Meher S, Hernandez-Andrade E, Basheer SN, Lees C. "Impact of cerebral redistribution on
, &163 9	neurodevelopmental outcome in small-for-gestational-age or growth-restricted babies: a
10464 11	systematic review" Ultrasound Obstet Gynecol 2015; 46: 398–404.
12 13 ⁴⁶⁵	[67] Hernandez-Andrade E, Stampalija T, Figueras F. "Cerebral blood flow studies in the diagnosis
14 15466 16	and management of intrauterine growth restriction" Curr Opin Obstet Gynecol 2013; 25: 138–144.
1 7 467 18	[68] DeVore GR. "The importance of the cerebroplacental ratio in the evaluation of fetal well-being
19 20 21	in SGA and AGA fetuses" Am J Obstet Gynecol 2015; 213: 5–15.
21 22 ⁴⁶⁹ 23	[69] Habek D, Salihagić A, Jugović D, Herman R. "Doppler cerebro-umbilical ratio and fetal
24470 25	biophysical profile in the assessment of peripartal cardiotocography in growth-retarded fetuses"
26 ₄₇₁ 27	Fetal Diagn Ther 2007; 22: 452 – 456.
28 472 29 30	[70] Galli L, Dall'Asta A, Whelehan V, Archer A, Chandraharan E. "Intrapartum cardiotocography
31473 32	patterns observed in suspected clinical and subclinical chorioamnionitis in term fetuses" J Obstet
334,74 34	Gynaecol Res. 2019 Dec;45(12):2343-2350.
35 36 37	[71] Ghi T, Di Pasquo E, Dall'Asta A, commare A, Melandri E, Casciaro A, et al. "Intrapartum fetal
37 38 ⁴ 76 39	heart rate between 150 and 160 bpm at or after 40 weeks and labor outcome" Acta Obstet Gynecol
40477 41	Scand. 2020 Oct 13 [Epub ahead of print].
42 ₄₇₈ 43	[72] Phelan JP, Kim JO. "Fetal heart rate observations in the brain-damaged infant" Semin Perinatol.
44 479 45	2000;24:221–9.
47480 48	[73] Ugwumadu A. "Recognition of Chronic Hypoxia and the Preterminal Cardiotocograph" In E.
49481 50	Chandraharan (Ed.), Handbook of CTG Interpretation: From Patterns to Physiology. Cambridge:
51 ₄₈₂ 52 53 54 55	Cambridge University Press, 2017.