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A Comparative Assessment of Parcel Box Detection
Algorithms for Industrial Applications

Ernesto Fontana1, William Zarotti1 and Dario Lodi Rizzini1

Abstract—Industrial logistics may benefit from object perception
to perform flexible and efficient management of goods. This paper
illustrates and experimentally compares two approaches to parcel
box detection in depth images for an industrial depalletization
task. The model-based method detects clusters in the input point
cloud according to curvature and other geometric features, and
aggregates the candidate objects. The learning-based method
relies on the state-of-the-art Mask R-CNN, which has been re-
trained on an acquired dataset with missing measurements. The
target object poses are evaluated through standard geometric
registration. The experiments on acquired datasets show the
feasibility of the two approaches.

I. INTRODUCTION

An important task of industrial logistics is handling products
and arranging them into pallets. Parcel boxes or bottle bundles
are palletized for efficient storage and shipping at the end of
production pipelines [1]. In order to adapt to customer orders,
the stored pallets may be depalletized and arranged into the
requested pallet format. Sensor-driven object detection enables
manipulation of products in arbitrary configurations.
RGB-D cameras are relatively affordable sensors, which ac-
quire both the appearance and metric data of an observed
scene. However, industrial settings pose diverse challenges:
varying illumination conditions, low lights, low-texture and
symmetric objects, clutters, self-occlusions, viewpoint limita-
tions due to robot motion constraints. Object manipulation
often relies on the accurate and robust estimation of the
pose. The problem is usually addressed in two steps. First,
the system searches one or more areas of the depth image
corresponding to the searched object. Then, pose is estimated,
for example by aligning a template with the measurements
obtained from detection. Model-based algorithms address this
problem by finding geometric features and patterns character-
izing standard goods like parcel boxes. Machine manufacturers
and developers generally appreciate the reliability and control
of such approach.
The rise of deep learning methods in computer vision gives an
alternative and effective solution to image segmentation and
object detection. Although originally developed and trained in
different contexts, some of these algorithms can easily adapt
to novel classes of objects, including those commonly used
in industrial logistics. While they satisfactorily address object
detection, end-to-end estimation of pose is not accurate enough
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Figure 1: Outline of the system. (a) Experimental setup with the
boxes on the depalletizer conveyor belt observed by Sick

Visionary-S depth camera. (b) Colored point cloud and (c) depth
image acquired by the camera displaying missing data. (d) The
boxes detected with the model-based algorithm with the pose

aligned box models (overlapped boxes in gray). (e) Boxes detected
using the custom trained Mask R-CNN algorithm.

for manipulation tasks [2] and must be performed through
geometric reasoning.
The contribution of this paper is the comparative investiga-
tion of model-based and learning-based approaches to object
detection and pose estimation for an industrial depalletizing
application. The industrial depth camera Sick Visionary-S cap-
tures the top view of the parcel boxes taken from an arbitrary
pallet layer deposited on a conveyor belt (Figure 1(a)). The
point clouds and depth images (Figure 1(b)-(c)) suffer from
missing measurements and altered colors. The acquired data
are elaborated following two different approaches, which we
have labeled as model-based and, respectively, learning-based.
The model-based method performs an initial segmentation
finding Locally Convex Connected Patches (LCCP) [3], and
groups the connected supervoxels into clusters, according to
their similarity in curvature and color. The poses of the boxes
are then obtained through registration between each cluster
and the box geometric model (Figure 1(d)).



The learning-based algorithm is based on Mask R-CNN [4],
[5] re-trained for generic box detection. Training set consists
both of a general purpose parcel box dataset, based on free
images, and of a specific dataset acquired in an industrial
setup. The major issue found in the images acquired by
Sick Visionary-S is with invalid range measurements, and the
corresponding missing image pixels. Although the original
Mask R-CNN has been designed for, and trained on complete
RGB images, it has proven adaptable to the new application
after proper training (Figure 1(e)). Pose estimation is still
addressed through registration, with customized operations on
the found clusters.
Comparative experiments have assessed the performance in
object detection and pose estimation of the two approaches.
The already mentioned experimental dataset has been acquired
by mounting the depth camera on an industrial depalletizer and
observing the parcel boxes on the conveyor belt. The samples
consist of arbitrary images for detection experiments and box
configurations with known relative poses. The achieved results
illustrate the feasibility of both the approaches.

II. RELATED WORK

Computer vision and sensor technology have been used for a
long time in automation (e.g. in quality control inspection),
but their extensive use for end-line manipulation and logistics
is more recent. An early work [6] presents a genetic algorithm
to detect and label parcel boxes arranged in multi-layer pallets
using a gray scale camera. Prasse et al. [7] illustrate a method
for pallet load detection using a time-of-flight (ToF) sensor
and RFIDs. More recently, some model-based methods [8],
[9] have been proposed for depalletization using depth sensors
with or without color data.
Deep learning methods have also been applied to detection
and manipulation of products. The winning team of Amazon
Picking Challenge 2017 [10] used a Fully Convolutional
Network to recognize objects with different shapes. While a
notable effort, the contest setting, as well as the variety of
the scene, do not entirely reflect the usual industrial setup and
requirements. Because of this, the achieved results are deeply
influenced by the choice of an appropriate dataset. Significant
efforts have been made to learn both object detection and
poses, from color or depth images [11], [2]. Furthermore, the
systems developed in research projects like ILIAD [12] estab-
lish structured procedures in product manipulation driven by
deep learning. Object-RPE [13] combines Mask R-CNN and
multi-view registration to achieve recognition and evaluation
of several object poses.

III. SYSTEM OVERVIEW

Depalletization is the process of unloading pallets by taking
their component boxes one by one. The depalletizing machine
presented here decomposes the pallet by layers, bringing the
current top layer to a conveyor belt using a large gripper. Then,
the boxes are mechanically separated through friction, so that
they picked up by one or more industrial robotic manipulators,
to arrange them into a new pallet layout, according to customer

orders. In general, the layout of the input layer is arbitrary and
can vary. The dimensions of the boxes are assumed parameters
of the algorithm, although this hypothesis may not be used.
As discussed, the palletizing machine separates the boxes, but
there is no guarantee about the achievable pairwise object
distances. Thus, the algorithms must operate also objects in
contact.
In our system, a Sick Visionary-S depth camera is mounted
on pole and observes the goods directly from above, at about
1.80m height from the conveyor belt, as shown in Figure 1(a)-
(c). Such depth camera combines stereo vision processing
and structured light patterns in order to acquire accurate and
reliable measurements. It returns 640 × 512 depth and RGB
images, as well as point clouds, covering a 60◦×50◦ field-of-
view, and up to 2.5 m range. The sensor is calibrated by the
manufacturer, and the data fusion algorithm is not accessible.
Unfortunately, the returned RGB image is not directly the
one acquired by one of the two cameras; it is instead the
virtual image associated to the depth measurements. The pixels
corresponding to invalid range measurements have invalid
color marked as black, as shown in Figure 1. These missing
data represent an issue for any image processing, including the
deep learning algorithms designed for complete data. The Sick
Visionary-S returns data w.r.t. an arbitrary reference frame,
which could be placed on the conveyor belt. Such frame
transformation can also be handled externally from the camera
processor, which is convenient. The goal of the system is to
detect the boxes and evaluate their position and orientation
w.r.t. the frame used by the sensor. The estimation must be
performed after one single image, as the boxes move on the
conveyor belt and the manipulators have to sequentially pick
each of them. The admissible position error is about 5 mm,
while the angular one is about 1◦.

IV. MODEL-BASED METHOD

A. Detection

Model-based approaches include a range of solutions that vary
from keypoint feature extraction in images or point clouds [14]
to detection of geometric patterns. The parcel boxes to be
recognized are generally patternless objects characterized by
orthogonal planar faces. The Sick Visionary-S sensor de-
scribed in section III provides reliable range data, whereas the
images are affected by holes due to missing measurements.
Moreover, it is fixed directly above the objects and captures
their top faces. Additional working hypotheses are that the
estimation is performed using a single acquisition and that
no relative distance among the boxes should be assumed, i.e.
they can be contiguous, even though the depalletizer tends to
separate the products.
The initial step performs background removal, having the
goal to eliminate the conveyor belt plane, on which lie the
parcel boxes, from the acquired scene. In many commercial
solutions, segmentation is trivially obtained by searching range
discontinuities w.r.t. the background. The limitations of such
naive technique lie in potential inaccuracies due to missing
data, in mismanagement of contiguous target objects, and in



Figure 2: An example of model-based detection. Each color
identifies a different cluster representing a box.

the inability to handle unexpected configurations (e.g. boxes
not lying on the ground due to unpredictable deposit of the
pallet layer on the machine).
We implemented a more general and robust solution based on
LCCP algorithm [3]. This algorithm involves the segmentation
of the input point cloud Cin into clusters {Vi}. Internally,
LCCP computes a finer supervoxel subdivision according
to normal direction and connectivity. These supervoxels are
merged based on their reciprocal curvature and other simi-
larities, including the color of the points. Voxel resolution is
the main parameter for the decomposition, while curvature
smoothness threshold is decisive for the supervoxel clusteri-
zation. An example of the results of the described detection
method is illustrated in Figure 2. LCCP output is a set of
labeled clusters of points.
Although the industrial depalletizer described in section III is
designed to separate the boxes in order to facilitate manip-
ulation, we implemented a solution to recognize a group of
continuous boxes, that are detected as a single cluster. Such
solution requires the knowledge of the boxes’ dimensions. The
points of the cloud are handled as planar points corresponding
to their projection on the ground and classified as foreground
(object) or background (scene) points. First, the contours of
connected components of foreground region are extracted and
represented by a closed polygon. Since the clusters may have
”holes”, due to invalid range measurements, there may be
internal polygon rings that can be easily removed. Then, the
algorithm finds the orthogonal vertices of the external ring of
the polygon, i.e. polygon vertices with angle close to 90◦.
The vertices are used to place the boxes on the contour
through exhaustive search. The best box configuration is the
one maximizing the overlap area between the boxes and the
cluster polygon.
While this procedure has been implemented and tested, the
palletizing machine used in this section is able to separate the
boxes of the input pallet layers by using consecutive conveyor
belts at different speeds, manipulation and other mechanisms.
For these reasons, the examples presented in the experiments
section consist of separate boxes.

B. Pose Estimation

Once the clusters corresponding to candidate objects are found,
the algorithm evaluates their poses w.r.t. the sensor, through
registration between each cluster of points and the templates
of the boxes. Additional assumptions are assumed to achieve

Algorithm 1 Pose Estimation of a Box
1: function POSEESTIMATION(C, w, h)
2: // Compute initial guess of poses
3: µ← (

∑n
j=1 pj)/n;

4: Σ← (
∑n

j=1(pj − µ)(pj − µ)>)/n;
5: vmax ← eigenvector(Σ);
6: θ ← atan2 (vmax,y,vmax,x);
7: T← transformMatrix(µ, θ);
8: // Template box border of size w × h
9: B ← box(w, h);

10: while !stopping do
11: // Associate points to box
12: for pj ∈ C do
13: qj ← argminq∈B ‖T−1pj − q‖;
14: qj ← T qj ;
15: end for
16: // New Estimation of pose
17: T← solveProcrustes({(pj ,qj)}j=1,...,n);
18: end while
19: end function

Figure 3: Data association between points and box contour.

accurate estimation. The strongest one is the knowledge of
box dimensions, that allows the definition of the target object
template. The algorithm also requires that each cluster corre-
sponds to a different box. The detection algorithm described in
the previous section returns a collection of clusters {Vi}, each
corresponding to a single box. Pose estimation is addressed
as a 2D registration problem, since the boxes lie on the
conveyor belt, and their allowed motion is on the plane. The
algorithm presented in the following can be easily generalized
to estimate 3D poses (e.g. using a 3D template box and
Procrustes algorithm), but the palletizing machine requires
planar position and orientation. Furthermore, the point clouds
acquired by the depth camera provide a top view of the scene,
with few points on the lateral faces of the boxes.
Algorithm 1 illustrates the pose estimation algorithm. The
input data of the algorithm are the point cloud C, the width w
and height h of the box. The point cloud C corresponds to the
contour points of each cluster Vi, i.e. only the border points. A
virtual template box B, i.e. a rectangle shape, is built with the
given dimensions and centered in the reference frame origin.
The goal is to find the transformation matrix T that better
aligns B to C. First, an initial guess of the pose of the algorithm
is computed using the centroid µ of the cloud for translation,
and the eigenvectors of covariance Σi for orientation. Then,
the pose is refined according to iterative closest point (ICP)
algorithm. Each point pj of the cluster is associated to its



closest point qj of the box template B. To find the closest
point on the box, it is easier to transform the point pj to the
box B centered on the origin and then re-transform the found
qj (line 13). The association is iteratively updated after each
new estimate of transformation T. The association is based
on a ”closest point in contour” metric, graphically illustrated
in figure 3.
The output of the association is a list of pairs (pj ,qj), pj

belonging to the detected cluster and qj its closest point
on the virtual box template. The transformation minimizing
the average distance between these pairs is the solution of
the Procrustes problem. The Procrustes problem is solved
iteratively until stopping conditions are reached, producing as
output one affine transformation matrix, which is the geometric
element that contains all the information needed for the pose
estimation.

V. LEARNING-BASED METHOD

A. Detection

The learning-based method consists of two modules itself.
The first module solves the instance segmentation problem for
parcel box detection through the Mask R-CNN network. The
second module operates on the segments of the point cloud
corresponding to the boxes, in order to estimate their poses.
This two step procedure exploits both the presented state-
of-the-art deep learning algorithm for instance segmentation,
and the efficient geometric estimation limited to a region of
interest (ROI), modeled as a 2D Object-Oriented Bounding
Box (OOBB) containing a single box.
The detection phase is carried out entirely by the Mask R-
CNN neural network. The output of the network consists
of the masks corresponding to the objects to be recognized.
The network is distributed in pre-trained form for specific
object categories, which do not include the parcel boxes. Thus,
we initially trained it on a dataset of 1144 RGB images
containing boxes with different sizes, colors and patterns in
different contexts and environments. Since the upper faces of
these boxes are rectangular, each mask is summarized with its
OOBB, which is then used to label the dataset. Mask R-CNN
has the capability to adapt and detect generic objects with a
relatively limited new training set. This means that objects like
parcel boxes, that have a well defined geometry, can be easily
recognized.
The images acquired by the Sick Visionary-S suffer from
missing pixels and color distortion, as discussed in section III.
At this point, it is important to note that Mask R-CNN can
output insufficiently precise identification of the edges, which
would lead to inaccurate estimation of object orientation. As
a matter of fact, orientation is mainly computed by using the
points that are close to the edges, which are often missing due
to invalid range reading. Hence, the decision of capturing an
additional dataset of 220 images by mounting the depth camera
on the palletizer has been made. Adding these images to the
training set caused the network to estimate the rotation more
precisely, especially for the intended application proposed in
this paper. This dataset has been labeled using an expanded

OOBB around each box. The expanded OOBB is computed
by enlarging the rectangle from its center along its longest
and shortest sides by 8 mm. Unfortunately, the expanded
OOBBs of different boxes may intersect each other potentially
causing misclassification. The impact of this issue on the pose
estimation algorithm is explained next.

B. Pose Estimation

Pose estimation could be performed using the technique pre-
sented in section IV-B. Due to the particular and previously
discussed issues, we preferred to implement a customized
procedure. Following [15], the mask returned by the neural
network selects not only the ROI of the target box in the
image, but also in the corresponding point cloud. Then,
pose estimation is performed using only the subset of points
corresponding to the ROI.
The limited visibility of the lateral faces of boxes, along with
the constrained motion on the conveyor belt, make 3D pose
estimation superfluous and even error prone. The pose of each
object is almost completely defined by its planar position and
orientation w.r.t. the conveyor belt plane. Hence, the primary
goals are the extraction of points of the upper face, alongside
the removal of all points from the adjacent boxes, conveyor
belt, soil or side faces of the box itself, that have been included
in the expanded OOBB. To achieve these, we assume that
upper face points all have approximately the same height from
the ground plane, and that the OOBB center lies entirely on
it.
First, the algorithm coarsely filters the points having the
same height as the center, with a 4 cm tolerance error. Each
ROI returned by Mask R-CNN, and expanded as described
above, may also include points belonging to other boxes.
Connected components search discards the parts belonging to
the other boxes. The operation is carried out after projecting
all the points on the conveyor belt plane and according to
planar adjacency criterion. This operation can output multiple
rectangle-like clusters, which are all discarded except the one
having the largest perimeter. A further refinement is performed
on the remaining points by only keeping the ones whose height
is consistent with the average height of the cluster, assuming a
reduced tolerance range of 1 cm. The goal is to better remove
the points lying on the lateral faces. Finally, the box pose is
computed as the pose of the minimum rectangle containing
the points.

VI. EXPERIMENTS

Experiments, as well as dataset acquisitions, have been per-
formed on the depalletizing system illustrated in section III.
The Sick Visionary-S depth camera observes the scene directly
from above, returning a top view of the depalletizer and the
boxes. The acquired observations are in the form of depth
images, RGB images and colored point clouds. The exposure
time has been set according to the lighting conditions.
We acquired two datasets. The dataset MOVE consists of
about 551 images of parcel boxes in arbitrary poses moved
by the conveyor belt. Each image contains on average about



Figure 4: Detection results comparison. First row: input RGB depth image; second row: model-based results;
third row: learning-based results.

Figure 5: The paper board with the printed configurations of
the parcel boxes used as groundtruth.

13 boxes. The main use of this dataset is to provide different
configurations for training the Mask R-CNN. As discussed in
section V, 220 images have been labeled and used as training
set. The dataset POSE consists of 610 images of static parcel
boxes. We used four parcel box formats that are shown in the
first row of Figure 4, presenting different detection challenges,
in terms of box size and patterns. The parcel boxes have
been arranged according to the configurations printed on a
paper board (Figure 5). Since the relative poses marked on the
board are known, these configurations are used as groundtruth
in pose accuracy experiments. The four configurations are
labeled as box-4, box-7, box-13 and box-16 according to the
number of boxes appearing in each of them. The dataset also
includes single box acquisitions and other preliminary captures
on arbitrary box configurations, which have not been used.
Both the proposed model-based and the learning-based meth-
ods correctly detect the parcel boxes in all the images or
clouds. Figure 4 illustrates some detection results of the

model-based method learning-based method
pos err[mm] ang err[deg] pos err[mm] ang err[deg]

box-4 3.4 0.87 2.9 0.82
box-7 5.2 1.62 5.6 1.19

box-13 6.1 1.33 6.0 0.83
box-16 6.4 1.54 7.3 1.19

Table I: Position and orientation errors of the algorithms.

model-based (second row) and learning-based (third row).
Since it operates on the point cloud according to geometric
criterion, the first algorithm detects the top face of the box,
while Mask R-CNN finds the full mask of the boxes in the
RGB image.
The final goal of the perception system is to estimate the poses
of the parcel boxes w.r.t. the sensor frame, and then transform
them into the machine frame, since this is what is required
by the depalletizer in order to manipulate the boxes. Table I
returns the quantitative results of pose accuracy tests on dataset
POSE. The position and angular errors reported in this table
are the average errors obtained by comparison between the
estimated box poses and the groundtruth poses reported on the
paper board. The groundtruth poses have been rigidly aligned
with the estimated poses and then compared. The position
errors have the tendency to become larger when more boxes
are present in the scene, possibly due to cumulative errors, and
also to the imperfect manual placement of boxes on the board.
However, the errors are close to the target position and angular
errors of about 5 mm and 1◦. The errors are comparable for
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Figure 6: Best, worst and mean execution times of the
proposed model-based and learning-based algorithms.

the two methods. The learning-based method achieves slightly
better results in the simpler configurations, whereas the model-
based method performing becomes comparatively better when
the number of boxes increases.
The execution times of the two algorithms are shown in
Figure 6. The computation is dominated by the detection of the
parcel boxes w.r.t. pose estimation. Unfortunately, it has not
been possible to execute all the tests on the same computer.
The model-based algorithm has been performed on a machine
equipped with Intel Core i5-7200U processor, 8 GB RAM
and a 2 GB NVIDIA GeForce 920M GPU. The learning-
based approach has been performed on an Intel Core i5-
4210U@1.70GHz CPU, alongside a dedicated 4 GB NVIDIA
GeForce GTX 970 GPU. Under these operating conditions,
the average execution time of the learning-based algorithm is
less than the time required by the model-based algorithm. The
execution of the model-based algorithm is also less predictable
as suggested by the maximum time, possibly due to the
number of clusters found by LCCP. However, this assessment
does not lead to absolute conclusion. Indeed, the choice of
the GPU hugely affects the performance of Mask R-CNN: the
same algorithm executed on a different machine equipped with
GPU NVIDIA GeForce 840M takes on average 2000 ms and
up to 4500 ms.

VII. CONCLUSION

This paper has presented and compared a model-based and a
learning-based method for object detection and pose estima-
tion using a depth camera in industrial depalletization. The first
approach exploits the geometry of the standard shape of the
products to segment the input point cloud and perform pose
estimation. The second one adopts the state-of-the-art Mask
R-CNN for instance segmentation and registration to evaluate
boxes position and orientation. Although the neural network
has been originally trained for different contexts without
images with missing data, it has proven as adequate as the
customized model-based method. Both algorithms effectively
detect the targets and estimate their pose with compliant accu-
racy to the application requirements. A machine learning algo-
rithm like Mask R-CNN has proven an off-the-shelf reliable
solution also for industrial applications. Its main drawback

lies in the integration effort required to run learning-based
systems on current industrial technologies, more targeted to
reliability rather than computational effort. Moreover, further
investigation is required to assess the amount of training
for adopting more radical context changes and to test other
neural network architectures. The experiments performed in
this work suggest the potential of this approach for industrial
applications.
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