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ABSTRACT 
The ever-increasing competitiveness, due to the market globalisation, has forced the industries to 
modify their design and production strategies. Hence, it is crucial to estimate and optimise costs as 
early as possible since any following changes will negatively impact the redesign effort and lead time. 
This paper aims to compare different parametric cost estimation methods that can be used for 
analysing mechanical components. The current work presents a cost estimation methodology which 
uses non-historical data for the database population. The database is settled using should cost data 
obtained from analytical cost models implemented in a cost estimation software. Then, the paper 
compares different parametric cost modelling techniques (artificial neural networks, deep learning, 
random forest and linear regression) to define the best one for industrial components. 
Such methods have been tested on 9 axial compressor discs, different in dimensions. Then, by 
considering other materials and batch sizes, it was possible to reach a training dataset of 90 records. 
From the analysis carried out in this work, it is possible to conclude that the machine learning 
techniques are a valid alternative to the traditional linear regression ones. 
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1 INTRODUCTION AND LITERATURE REVIEW 

The product conceptualisation is the first phase of a design process, which then continues with the 

embodiment and detailed design. During this phase, designers collaborate to define the overall product 

architecture and individual modules or components' general characteristics. The definition of a product 

architecture starts from modules arrangement and layout definition, including the analysis of the 

preliminary manufacturing process of each element (Ulrich et al., 2011). To facilitate the design 

process, 2D CAD models are often developed for the graphical representation of components. Cost 

reduction opportunities are significant at the conceptual stage because there is enough space to 

investigate different alternatives (product architectures). More than 70% of the product cost is 

committed during the conceptual design stage (Boothroyd et al., 2011). Hence, it is crucial to estimate 

and optimise costs as early as possible since any following changes will negatively impact the 

redesign effort and lead time (Favi et al., 2016). During the conceptual design, cost estimation cannot 

be performed using analytical cost estimation approaches based on 3D CAD models as they are not yet 

available. On the contrary, if such models are available, they do not contain the details required to get 

reliable economic results with such methods (Mandolini et al., 2020). The evaluation needs to follow 

other approaches capable of processing 2D geometries or simple numerical parameters. This paper 

aims to compare different parametric cost estimation methods that can be used for analysing 

mechanical components. The methods developed for cost estimation are grouped into two families: (i) 

qualitative methods, which include knowledge-based and intuitive methods, and (ii) quantitative 

methods, which could be divided into analytical methods and parametric methods (Niazi et al., 2005). 

In the context of parametric methods, the scientific literature is characterised by several scientific 

papers aiming at applying and evaluating the performance of data mining, machine learning and 

artificial intelligence approaches for cost estimation during the preliminary design phases. Regression 

(linear or not) is one of the most widespread methods for parametric cost estimation. Regression 

models can learn from the given data by adjusting the regression parameters to map a mathematical 

relationship based on the given data. This method attempts to establish the nature of the relationship 

between variables by providing a prediction mechanism. There are two different types of variables: 

dependent, which represent various system parameters, and independent, which represent the costs of 

the project or the part. Regression, therefore, is a branch of applied statistics that allows to quantify the 

relationship between the dependent variable and one or more independent variables and to describe the 

accuracy of this relationship. Within the scientific literature, several applications were developed for 

parametric cost modelling using linear regression. Langmaak et al. (Langmaak et al., 2013) present a 

cost estimation tool for gas turbine components. The tool is divided into two parts. The first is a 

generic factory cost model based on activity-based costing that can estimate various costs at multiple 

levels of any manufacturing plant. A parametric and scalable cost model is the second tool for 

assessing the unit cost of future integrally bladed disc (blisk), a component used by the aerospace 

industry in gas turbine compressors. Another example in the context of gas turbine engineering is 

presented by Masel et al. (Masel et al., 2010), with a definition of a cost estimation model based on 

CER (Cost Estimation Relationship. Other examples of parametric cost estimations for jet components 

are provided by Bertoni et al. (Bertoni et al., 2018; Bertoni et al., 2020). Parametric cost estimation 

using regression models is also applied in machining (Stockton et al., 2013) in software development 

(Heiat, 2002), in sheet metal parts (Verlinden et al., 2007), or painting cost estimation (Stockton et al., 

2013). In parametric cost estimation also machine learning (ML) techniques play an essential role. 

Machine learning is generally more efficient than traditional mathematical and statistical models in 

manufacturing. However, enterprises are still hesitant in adopting these techniques because they have 

the limit of being considered as "black boxes" [Hihn, 2015]. It is not possible to give a theoretical 

interpretation of the results, especially in unexpected or unjustified values. On the other hand, a linear 

regression model can be deducible from technical considerations and, consequently, it is clearly 

understandable for the users. Traditional methods remain incapable of understanding complex 

relations among data samples' features and predicting unknown feature values for a new piece (Dogan 

et al., 2011). ML techniques include artificial neural network (ANN), deep learning (DL), support 

vector machines (SVM), decision trees (DT) and random forest (RF). ANN are biologically inspired 

models to mimic the human neural system for information-processing and computation purposes. 

ANN is a ML technique that can learn from past data. Learning forms can be supervised, 

unsupervised, and reinforcement learning (Sala et al., 2018). ANN is widely used in many fields, as 
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cost estimation of construction projects (Elmousalami, 2019), in software development effort 

estimation (Heiat et al., 2002) and also in cost estimation of an industrial component or part (sheet 

metal parts (Verlinden et al., 2007), injection moulding (Wang et al., 2013), aircraft (Chen et al., 2020) 

and machining (Ning et al., 2020)). Some authors compared the results of different parametric cost 

estimation methods, in particular, ANN. Although such techniques are more challenging to interpret 

(Loyer et al., 2016), they generally obtain better results (mean square error - MSE and mean absolute 

percentage error - MAPE) than CER (Cavalieri et al., 2004). Regression-based methods require the 

definition of a relationship between inputs and outputs, while in ANN, this relationship happens 

automatically (Cavalieri et al., 2004). If the number of inputs is limited, the regression works well. On 

the contrary, with many inputs, the ANN is the most suitable choice (Verlinden et al., 2007). Another 

popular ML algorithm is the Random Forest, known for its simplicity, ease of use and interpretability. 

Random forests model is an ensemble method of decision trees, a weak learner and can easily be over-

fitting. By assembling the decision trees, their instability and high variance can be overcome (Wang et 

al., 2018). A decision tree represents a classification or regression model in a tree structure. Each node 

in the tree structure represents a particular "question" about a feature; each branch signifies a decision. 

At the end of a branch, each leaf is the corresponding output value (Breiman, 2001). To obtain a result, 

starting from a specific input, the decision process begins from the root node (at the top) and runs 

through the tree until it reaches a leaf that contains the result. In each node, the path to follow depends 

on the values assumed by the various features. Similar to neural networks, the tree is created through a 

learning process using training data. RF algorithms are used for cost estimation in the construction 

industry (Bilal et al., 2020), in software estimation effort (Abdelali et al., 2019), in the marine field 

(Isıklı et al., 2020) or for battery capacity estimation (Li et al., 2018). However, there is a lack of RF 

application for cost estimation of industrial components. Generally, ML algorithms and regression 

methods are trained using historical data. Then they use present data to predict future outcomes. 

However, it must be considered that data acquisition can be changed and adapted over time. Therefore, 

it may be necessary to clean up historical data or models based on older data must be retrained 

(Weichert et al., 2019). Historical data may be few, with a not well-defined structure. They may 

contain outliers, so their use is not always applicable. 

Based on the above literature analysis, the first research question could then be summarized in: "Is it 

possible to overcome the historical data limitations?". In response to this research question, the 

current work presents a cost estimation methodology that uses non-historical data for the database 

population. The database is populated using should cost data obtained from an analytical cost model 

implemented in a cost estimation software (LeanCOST® by HyperLean).  

The second research question is: "What's the best parametric cost estimation approach for industrial 

components?" Concerning this latter, the article is focused on a comparison between machine learning 

techniques (ANN, DL and RF) and regression one (CER). The goal is to define the best performing 

cost estimation method for a well-defined family of industrial components: axial compressor discs. 

2 MATERIALS AND METHODS 

This paper's research work is ground on a methodology (Figure 1) adopted to perform the parametric 

cost estimation.  

 

Figure 1: Parametric cost estimation methodology 

The first step of this methodology consists of defining and pre-processing the database (Section 2.1). 

The dependent parameter (the cost of the parts) came from a should-cost analysis. This process aims to 

determine the price of a piece considering factors such as the raw materials cost, production costs, 
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overhead, etc. The usefulness of this type of analysis is twofold. On the one hand, there is the 

"contracting with the supplier" factor. On the other hand, when the part is produced internally, the 

analysis allows identifying the most burdensome operations in terms of cost. Starting from a set of 

should cost data, a pre-processing phase allows preparing the database used as a training dataset. In 

particular, any outliers are excluded, and only cost drivers with a strong influence on the output are 

considered. A significance check analysis defines the main cost drivers. Subsequently, the database is 

split into two groups: the training and testing sets. The training set is used to implement the traditional 

linear regression method (Section 2.2) and non-linear machine learning methods (Sections 2.3 and 

2.4). The testing set is used to validate the resulting cost models (Section 2.5). The final validation is 

based on the value of the prediction error. 

2.1 Database construction and pre-processing 

The accuracy of a cost estimate analysis depends highly on the form of the input database. The 

database consists of input data (geometric and non-geometric drivers) and related output data (raw 

material and production costs). The first step is database generation. The database is populated using 

should cost data obtained from analytical cost models implemented in a cost estimation software 

(LeanCOST® by Hyperlean). Once the database is created, the pre-processing step begins. This phase 

involves two main activities: 

 Check the significance of each input variable. 

 Identify and delete outliers. 

The way to check each input's significance occurs through a regression model and the Pearson 

coefficient definition to evaluate the correlation between variables. At first, input variables that are not 

correlated with outputs (Pearson values < 0.3) are identified and removed. After that, input variables 

positively related to other input ones (Pearson values > 0.8) are further defined. Such variables can be 

deleted because they do not represent a cost-driver or output (Duran et al., 2012). Once finalised the 

significance check, outliers must be defined. Outliers correspond to wrong and also duplicate and 

incomplete records. To obtain an efficient cost estimation, it is necessary to delete all outliers. Cook's 

distance is one of the methods for outlier's discovery. If Cook's values are < 1, there is no need to 

delete that case; otherwise, the outliers must be removed (Cook et al., 1982). The next step consists of 

splitting the data. Data are divided into two groups: a part is used to create the cost model, while the 

rest is used for its testing. The test set allows validating the model results. A typical subdivision is 

60% for training, and 40% for testing (Green et al., 1991). 

2.2 Cost estimating relationship (CER) 

The first parametric approach implemented in this work is based on linear regression. Since this 

technique can only be developed with a numerical database, the first step was to convert all the 

categorical variables (contained in the starting database) into a dummy or binary variables. The use of 

dummy variables, indicated by D, is the standard method to solve qualitative factors' value 

assignment. The D value definition could be a manual process, using "0" or "1" according to its 

dichotomy characteristics. D=1 means that the qualitative factors possess specific attributes or are 

subjected to some aspects. D=0 is the contrary (Tan et al., 2011). Once the nature of starting variables 

has been changed, the procedure developed is iterative. Through regression, the parametric equation 

(CER) is determined and validated. The parameter that allows measuring CER accuracy is the 

coefficient of determination R2. If its value is acceptable, the analysis shall be completed. Otherwise, 

the procedure shall be repeated after making appropriate changes to the database. R2 values higher 

than 0.9 mean a satisfying correlation. R2 values between 0.6 and 0.9 should push analysts to deep 

dive into the data to identify more cost drivers. R2 values lower than 0.6 are not acceptable. No 

correlation can be used for further studies, so the analysis must be repeated (Martinelli et al., 2019). 

2.3 Artificial Neural Networks (ANN) and Deep Learning (DL) 

Besides the CER method, this work considers two other approaches: the artificial neural network 

(ANN) and deep learning (DL). While the CER development requires conversion to dummy variables, 

ANN and DL can handle numerical and categorical variables. To implement these ML techniques, it is 

necessary to define two significant parameters: the number of hidden layers and the number of neurons 

for each hidden layer. On this aim, the theory of Haytham H. Elmousalami (Elmousalami et al., 2019) 



ICED21 2383 

has been applied. According to this theory, one or two hidden layers are most likely to converge. Too 

more or too less may lead to poor convergence results. Empirically speaking, one layer may be chosen 

for the general problems, and two layers may be used for more complex ones. The definition of the 

right quantity of neurons for the hidden layer is also crucial. A low number of neurons will reduce the 

resources needed to solve the problem. Using too many neurons, the training effort will significantly 

increase. Besides, an excessive number of hidden neurons may cause a problem called overfitting. One 

rough guideline for choosing the right number of hidden neurons in many problems is the geometric 

pyramid rule. It states that, for many practical networks, the number of neurons follows a pyramid 

shape, with the number decreasing from the input toward the output. The network construction starts 

using few numbers of neurons. Once the appropriate criteria have been chosen to assess network 

performance, this is trained and tested and its performance is recorded. Then, the process is repeated 

iteratively by slightly increasing the number of hidden neurons. Another critical parameter to 

determine is the number of training cycles. Since there is no general rule, it is necessary to implement 

an iterative process to identify the best configuration, even in this case. 

2.4 Random Forest (RF) 

The last parametric approach considered in this work is the random forest. In this case, there are two 

fundamental parameters to be defined: the number of trees and the maximal depth. The more the trees 

in the forest, the more robust (high accuracy) the cost model. However, an increased number of trees 

can lead to a higher computational burden. The generalisation error converges as the number of trees 

increases, meaning that the estimation accuracy cannot be increased after reaching a certain point. To 

determine the optimal value for such parameters, default values were initially defined. Once the 

variation ranges were chosen, it was possible to implement an iterative process to determine the 

optimal configuration in that given range. The default value for the number of trees was 500, while the 

maximum depth was 20 (Rockwell et al., 1975). Once the optimal parameters are known, the final 

model can be obtained. Its accuracy is evaluated using MAPE and relative percentage error. 

2.5 Validation 

Once created the previously presented cost models, the test phase began. As mentioned above, the 

initial database is divided into two broad groups: training data and testing data. The former is used to 

generate cost models, while the latter is used for their validation. This stage is essential in the cost 

estimation because it allows the understanding of which models are most suitable for the study type. 

Relative errors are used as metrics. There are different relative error types; the most used is MAPE 

(Mean Absolute Percentage Error).  
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Where: 

 𝑦: Known actual cost or should cost value;  

 𝑦   Estimated actual cost or should cost value; 

 n: Total number of pairs. 

3 CASE STUDY 

This work aims to assess the potential of four cost estimation methods: linear regression, artificial 

neural network, deep learning and random forest. The components considered for this case study 

belongs to the disc product family of an axial compressor. Parametric methods were developed in 

RapidMiner® (by RapidMiner), a data science software platform that provides an integrated 

environment for data preparation, machine learning, deep learning, text mining, and predictive 

analytics. For each technique used, a process consisting of five sub-processes was implemented. The 

sub-processes implemented in RapidMiner are pre-processing data, training model, testing model, 

creating prediction and output. Initially, should cost analyses were conducted using the LeanCOST® 

software. The results of this analysis permitted the definition of the starting database (90 records). The 

records were obtained from 9 axial compressor discs, different in dimensions. Each disc can be 

manufactured in 5 different material types and different batch sizes. Then, by considering other 
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materials and batch sizes, it was possible to reach 90 records. However, the defined database is not yet 

suitable for applying the cost estimation methods, but it requires a pre-processing phase. The number 

of independent variables (cost drivers) is reduced through a DB pre-processing phase to use this low 

number of records in ML techniques. As stated in some research in different fields (building: 

Elmousalami, 2019; software development: Heiat, 2002; stamping dies: Özcan et al., 2014), the 

number of independent variables must be congruent with the number of records available in the 

database (a small DB implies few numbers of cost drivers). This initial operation was done to identify 

each independent variable's importance and eliminate any abnormal values or duplicate data. In this 

respect, a significance check analysis was carried out to determine the independent variables most 

closely related to the dependent one. The significance check also permitted to eliminate the 

independent variables that are significantly correlated with each other. The input variables (rows in the 

first column) and output variables (second and third columns) are summarised in Table 1, which also 

shows the final cost drivers chosen to implement the methods (X values) and an image of the disc 

(fourth column). They were distinguished between those necessary to obtain the process and raw 

material cost. 

Table 1 cost drivers 

Input Material Cost 

(Cmat) 

Process Cost 

(Cpro) 

Disc Image 

Final diameter (d) X -  

 

Final thickness (s) X - 

Material type (M1, M2, M3, M4 or M5) X X 

Number of slots (Ns) - - 

Roughness (R)  - - 

Presence of treatments (Tratt) - - 

Batch size (B) - X 

Starting raw type (closed-die forging 

(Fc) or open-die forging (Fo))  

X X 

Equivalent disc weight (Peq),  X X 

Semi-finished weight (Psl),  - - 

Raw weight (Pg)  - - 

Equivalent disc volume (Veq) - X 

 

Once completed the significance check analysis, anomalous and duplicate records were identified and 

eliminated. For process cost, the final database has the same number as the initial database. For the 

material cost, the number of rows has been considerably reduced (from 90 to 33). Subsequently, to avoid 

problems in applying the methods, material and starting raw variables were converted into dummy 

variables. Dummy variables could assume only two values: 0 or 1. Taking as example a disc in material 

M1 and manufactured by closed die forging (starting raw type: Fc), then for this component, the 

variables M1 and Fc will be equal to 1, while all the other variables related to material type (M2, M3, 

M4 and M5) and connected to starting raw type (Fo) will be null (0). Finally, the data were split into 

training and testing sets. In material cost, 80% of data was used as training and the remaining 20% as 

testing. For process cost, the percentages were 70% for training and 30% for testing. More training data 

were considered for material cost estimation because the database is smaller than process cost, and the 

materials examined have very different unit costs. Once the data subsets from training and testing have 

been defined, the various parametric approaches have been implemented. 

The first method analysed is linear regression. The resulting equations (equations 2 and 3) are: 

Cmat=25329,6−4621,9∗M1−3640,7∗M2+7858,0∗M3+4104,6∗M4−3697∗M5+167,6∗Fo−167,6
∗Fc−d∗35,9−s∗157,6+Peq∗145,9 (2) 

Cpro=1195,0−689,8∗M1−475,7∗M2+906,1∗M3+696,4∗M4−436,9∗M5+121,1∗Fo−121,1∗Fc−
B∗15,5−35476∗Veq−1,3∗Peq (3) 

The equations' accuracy is given by the coefficient R2, which was 0.90 for material cost and 0.84 for 

process cost. As the values are acceptable, the models obtained are considered valid.  
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The second approach used was the neural network. The two main parameters to define were the number 

of hidden neurons and training cycles. Eight hidden neurons were considered. Through an optimisation 

function and respecting the relative error, it was possible to define the optimal value of training cycles. 

The optimum value in the training phase was 670 cycles for the material cost, with an error of 16.4%. In 

comparison, for process cost, it was 990 cycles with an error of 13.1%.  

The third technique analysed was the deep learning. In this case, the number of hidden neurons cannot be 

determined by a rule of thumb. Still, it requires the use of a parametric optimisation function. Although 

deep learning can have more than two hidden layers, in this study, we considered only two layers with 

several neurons from 5 to 50 (per layer). The results of this optimisation in the training phase were: 

 material cost model: 5 neurons in layer 1 and 30 neurons in layer 2, with a relative error of 24%; 

 process cost model: 40 neurons in layer 1 and 5 neurons in layer 2, with a relative error of 10%. 

In this case, it is unnecessary to use parametric optimisation to obtain the optimal number of training 

cycles. They are determined independently by stochastic gradient descent. 

The last model implemented was the random forest. In this case, the parameters obtained from 

parametric optimisation are the number of trees and the maximal depth. Regarding the material cost, the 

lowest error in the training step was obtained with 50 trees and a depth of 10 (the relative error was about 

23.5%). The most accurate estimate in the case of process cost is obtained with 100 trees and a depth of 

10 (the relative error was about 12.0%). 

4 RESULTS AND DISCUSSION 

To validate and compare the parametric cost models, two testing configurations have been considered. 

The first one consisted of taking the testing records of the original database. The data of the first test 

derives from splitting the whole database in training and test records. The second configuration has been 

performed considering components with dimensions beyond those of the training range. In particular, a 

ticker component has been taken. The different parametric cost modelling techniques have been 

compared by considering the MAPE. Figure 2 shows the results for the cost models developed for 

estimating both material and process costs. The graph used for this comparison is a box-and-whisker 

plot. Rectangles are called "boxes", while the lines that extend vertically are called "whiskers". The 

boxes represent the interquartile range, which is the difference between the third quartile (upper border) 

and the first quartile (lower border). Within the interquartile range, 50% of the observations fall 

(therefore, the most frequent values are contained in this range). The line inside the boxes corresponds to 

the median or the second quartile. Instead, whiskers correspond to the minimum value (lower whisker) 

and the maximum value (upper whisker) observed after excluding the outliers.  

 

Figure 2:  MAPE for the different parametric cost modelling techniques (test 1). 

Considering the average performance for both material and process costs, the machine learning 

techniques perform better (MAPE = 12.3%, 11.2% and 13.8% respectively for ANN, DL and RM) 

than the traditional linear regression one (MAPE = 23%). DL appears to be the best method (MAPE = 

12.2%) for estimating the material cost, whereas RF is the best for process cost (MAPE = 8.5%). The 

accuracy in estimating material cost is lower than the process cost. The reasons for this difference are 

attributable to: 

 Different number of records of the two initial databases (33 vs 90, respectively for material and 

process cost); 

 Nature of the data: very different materials (in terms of unit cost) were considered. 
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The test data for the process costs are more numerous than the material one. This difference was the 

consequences of the whole data available and different independent variables considered for each cost 

model. To be noted that the exclusion of parameters from a database, because of their low sensitivity 

on the cost (i.e., the batch size for material cost), determines the generation of duplicate records that 

must be removed. This difference between the two databases implies more significant results 

reliability for the "process cost" than the "material cost". A second comparison was made to evaluate 

the parametric techniques' reliability in estimating the cost of components that dimensions and 

characteristics are beyond the range of data used for the training. For the material cost, since the low 

quantity of training records, reliability cannot be considered adequate. For process cost (Figure 3), 

instead, it is possible to observe that ML techniques behave worse than parametric ones. This 

conclusion leads authors to extend the type of components considered and the size of the training 

database. 

 

Figure 3:. MAPE for the different parametric cost modelling techniques (test 2). 

The third test consisted of extending the database by should-costing additional configurations of discs, 

considering five batch sizes and three different materials. The new database contains around 500 

records. The results obtained using this database (test 3, Figure 4) are much better than those of test 1 

(Figure 2). All four parametric cost estimation methods are more accurate than test 1 (overall, MAPE 

was reduced by around 50%). The average MAPE reduction for material and cost estimation was -

39%, -41%, -48% and -67%, respectively, for CER, ANN, DL and RF. RF is the best parametric cost 

modelling technique for estimating both the material and process costs, with an accuracy (MAPE) of 

5.6% and 3.6%, respectively. 

 

Figure 4:. MAPE for the different parametric cost modelling techniques (test 3). 

5 CONCLUSIONS 

The work presented in this paper originated from two research questions, "Is it possible to overcome 

the historical data limitations?" and "What's the best parametric cost estimation approach for 

industrial components?". In this regard, the goal consisted of evaluating and comparing different 

parametric cost estimation techniques by using non-historical data obtained from a software tool for 

analytical cost estimation. An original database of ninety records related to a specific family of 

components (i.e., axial compressor discs) was used for this goal. From the analysis carried out in this 

work, it is possible to conclude that the ML techniques are a valid alternative to the traditional linear 
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regression ones. ML techniques, given their non-linearity, can manage very complex problems. For 

regression, it is possible to obtain greater precision if the problem is simplified (for example, by 

considering only one material instead of five). Regarding the differences between random forest and 

neural networks, the former is faster (more immediate parametric optimisation process). However, in 

estimating data outside the training range, Neural Networks have proved to be more accurate in most 

cases than the Random Forest. The accuracy in cost estimation improves while increasing the database 

dimensions. For a database of around 500 records of different components of the same family, Randon 

Forest accuracy (MAPE) is 3.6% and 5.6%, respectively, for process and raw material cost, lower than 

Deep Learning (3.7% and 8.0%). The cost models developed for the case study used in this paper refer 

to a specific family of components (typical of configurable products). Hence, they are applicable since 

the overall shape and manufacturing process will remain the same. This application is the main 

limitation of this work. Therefore, the evaluation and comparison of these cost models for non-

configurable components should be investigated in the future. Furthermore, linear and non-linear 

methods should be implemented for other turbomachinery components (i.e., nozzles) for evaluating 

their performances. Besides, the Monte Carlo method could be of support to generate a more robust 

database of actual cost data. 
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